JP3434557B2 - Non-aqueous solvent secondary battery - Google Patents
Non-aqueous solvent secondary batteryInfo
- Publication number
- JP3434557B2 JP3434557B2 JP01830894A JP1830894A JP3434557B2 JP 3434557 B2 JP3434557 B2 JP 3434557B2 JP 01830894 A JP01830894 A JP 01830894A JP 1830894 A JP1830894 A JP 1830894A JP 3434557 B2 JP3434557 B2 JP 3434557B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- secondary battery
- negative electrode
- aqueous solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、正極に五酸化バナジウ
ムを含み、負極にリチウムまたはリチウムを主成分とす
るアルカリ金属合金からなるリチウム系金属(以下、単
にリチウム系金属という)および該リチウム系金属の担
持体として炭素質材料を含む非水溶媒二次電池に関す
る。
【0002】
【従来の技術】近年、電子機器の発達に伴い、小型で軽
量であり、エネルギー密度が高く、さらに繰り返し充放
電可能な二次電池の開発が要望されている。この種の二
次電池としては、負極活物質として金属リチウムまたは
リチウム合金を用い、正極活物質としてモリブデン、バ
ナジウム、チタン、ニオブなどの酸化物、これらの硫化
物もしくはこれらのセレン化合物などを用いたものが知
られている。
【0003】しかしながら、負極活物質に金属リチウム
またはリチウム合金を用いた電池系では、充放電を繰り
返すと負極上にデンドライトが発生するため、充放電サ
イクル寿命が短いという欠点があった。これに対しては
負極にリチウムとその担持体として炭素質材料を用いる
ことにより、解決が図られている。特に正極に五酸化バ
ナジウム、負極にリチウム系金属および該リチウム系金
属の担持体として炭素質材料を用いた非水溶媒二次電池
は、作動電圧が高く、充放電サイクル寿命を大幅に向上
することが可能な電池として注目されている。
【0004】しかしながら、負極にリチウム系金属およ
び該リチウム系金属担持体として炭素質材料を用いた非
水溶媒二次電池は、金属リチウムまたはリチウム合金を
そのまま負極として用いる二次電池に比べて放電容量が
低く、その改善は大きな課題として残っている。
【0005】
【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決し、高容量の非水溶媒二次電池を提供する
ことである。
【0006】
【課題を解決するための手段】本発明は、正極に五酸化
バナジウムを含み、負極にリチウムまたはリチウムを主
成分とするアルカリ金属合金からなるリチウム系金属お
よび該リチウム系金属の担持体として炭素質材料を含む
非水溶媒二次電池において、正極の五酸化バナジウムの
二次粒子の平均粒径が30〜80μmであることを特徴
とする非水溶媒二次電池に関する。
【0007】五酸化バナジウムは、一般に非常に微細な
一次粒子が多数凝集、結着して二次粒子が形成されてい
る。本発明者らは、この二次粒子の粒径に着目し、二次
粒子の粒径と電池の放電容量の間に次のような相関があ
ることを見い出した。すなわち、二次粒子の粒径が大き
くなると、比表面積が減少し、その結果、正極活物質で
ある五酸化バナジウムと電解液との接触面積も低減する
こととなり、正極活物質の利用率の低下によって、電池
容量も低下してしまうこと、そして、このような正極活
物質の利用率低下を回避しうる二次粒子の最大粒径が、
150μm であることである。
【0008】本発明において、五酸化バナジウムの二次
粒子の平均粒径は150μm 以下であり、好ましくは3
0〜80μm であり、さらに好ましくは50〜80μm
である。二次粒子の平均粒径が150μm を越えると、
粒子と電解液との接触面積が減少するため、五酸化バナ
ジウムの利用率が低下し、電池の高容量化が図れない。
また、粒径が小さくなりすぎるとリチウムイオンの拡散
性が低下すること、および正極合剤の電気抵抗が増加す
ることから、二次粒子の粒径は30〜80μmが好まし
い。
【0009】また、前記の粒径を有する五酸化バナジウ
ム二次粒子は、原料となる五酸化バナジウム粒子をふる
い分けすることによって得ることができる。ふるい分け
には、共振型、円振動型などの振動ふるい装置、往復型
などの面内運動ふるい装置などを用いることができる。
【0010】なお、五酸化バナジウム二次粒子の粒径
は、乾燥空気を分散媒としてレーザー回折法により測定
する。
【0011】本発明に用いる正極は、上記の五酸化バナ
ジウムを活物質とし、これにアセチレンブラック等のカ
ーボンブラック、ニッケル粉末等の導電性材料およびポ
リエチレン、ポリプロピレン、ポリテトラフルオロエチ
レン、ポリアクリル酸、ポリアクリル酸エステル等の結
着剤を配合した組成のものである。
【0012】本発明の負極に用いるリチウム担持体とし
ては、フェノール樹脂、ポリアクリロニトリル、セルロ
ース等の有機高分子化合物を焼成して得られる炭素質材
料;コークス、ピッチ等を焼成して得られる炭素質材
料;および人造グラファイト、天然グラファイト等の炭
素質材料を挙げることができる。
【0013】負極の作製は以下のようにして行う。例え
ば、前記高分子化合物をアルゴン、窒素等の不活性ガス
雰囲気中において、500〜3,000℃、好ましくは
800〜1,500℃の温度および常圧もしくは減圧の
条件下に焼成した炭素質材料に、正極に用いるのと同様
の結着剤を添加混合し、ペレット状等の所望の形状に成
形する。次いで、この成形体にリチウム系金属を含有さ
せて負極とするものである。
【0014】前記リチウム系金属を前記ペレット状等の
成形体に含有させる方法としては、蒸着法、化学含浸
法、電解含浸法等を採用することができる。なお、前記
アルカリ金属合金は、リチウムを90重量%以上、好ま
しくは91〜93重量%含有するものを用いる。
【0015】セパレータには、ポリエチレン、ポリプロ
ピレンなどのポリオレフィン系樹脂等の不織布や多孔質
膜を用いることができる。
【0016】電解液としては、例えばプロピレンカーボ
ネート、エチレンカーボネート、1,2−ジメトキシエ
タン、γ−ブチロラクトン、2−メチルテトラヒドロフ
ラン等から選ばれる一種以上の非水有機溶媒に、LiC
lO4 、LiPF6 、LiBF4 等の電解質を0.2〜
1.5mol/l 、好ましくは0.5〜1.0mol/l の濃度
で溶解させたものを用いることができる。
【0017】本発明の非水溶媒二次電池は、上記正極、
負極および電解液を含浸したセパレータを含む電池要素
を組み立てることによって得られる。
【0018】
【発明の効果】本発明により、正極合剤の電気抵抗の低
減およびリチウムイオンの拡散性の向上が図られ、それ
によって、高容量の非水溶媒二次電池を提供することが
できる。
【0019】
【実施例】以下、本発明を実施例に基づいてさらに詳し
く説明するが、本発明はこれらに限定されるものではな
い。
【0020】実施例1
(1)正極の作製
325、280、250、170、120、80meshの
標準ふるいを用いて、五酸化バナジウム二次粒子を、平
均粒径10μm (試料A)、同30μm (試料B)、同
50μm (試料C)、同80μm (試料D)、同100
μm (試料E)および同150μm (試料F)の6種類
の試料にふるい分けして分別した。なお、平均粒径は乾
燥空気を分散媒として、セイシン企業社製PRO−70
00Sを用いて測定した。上記各試料を活物質とし、各
々に導電性材料としてカーボンブラックおよび結着剤と
してポリテトラフルオロエチレンを、活物質、導電性材
料および結着剤の重量比が90:6:4になるように配
合し、混合混練後、250MPa (2.5トン/cm2)の圧
力で直径15mm、厚さ0.77mmのペレット状に加圧成
形して6種類の正極を作製した。
【0021】(2)負極の作製
フェノール樹脂粉末を、1,000℃の空気中において
3時間焼成して炭素質粉末を得た。この粉末に結着剤と
してメタクリル酸アルキルエステル−ブタジエン共重合
体を93:7の重量比で配合し、混合混練後、250MP
a (2.5トン/cm2)の圧力で直径15.7mm、厚さ
0.90mmのペレット状に加圧成形した。次いで、この
ペレット成形体に、電解含浸法により、リチウムを含有
させて負極とした。
【0022】(3)電池の組み立て
図1は本発明にかかる非水溶媒二次電池の断面図であ
る。該非水溶媒二次電池を以下のようにして組み立て
た。まず、ステンレス鋼からなる正極容器(1)の内面
に直径12mm、厚さ0.05mmのステンレス製エキスパ
ンドメタルからなる正極集電体(3)を介して前記正極
(2)を収納した。次にプロピレンカーボネートに過塩
素酸リチウムを0.7mol/l の濃度になるように溶解し
た電解液をプロピレン製不織布に含浸させたセパレータ
(4)を、前記正極(2)上に載置した。さらに、ステ
ンレス鋼からなる負極容器(5)の内面に、直径12m
m、厚さ0.10mmのニッケル製のエキスパンドメタル
からなる負極集電体(6)を介して、負極(7)を着設
した。最後に、前記正極容器(1)の開口部に、絶縁ガ
スケット(8)を介して前記負極容器(5)を嵌合し、
正極容器(1)をかしめ加工して、正極容器と負極容器
(5)内に正極(2)、セパレータ(4)および負極
(7)を密閉することにより、外径20mm、厚さ2.5
mmのコイン形非水溶媒二次電池を、A〜Fの各正極につ
いて、各々20個ずつ組み立てた。
【0023】(4)充放電試験
上記のようにして組み立てた電池を、1mAの定電流で
3.4Vになるまで充電し、次いで同じく1mAの定電流
で1.8Vまで放電し、このときの放電時間から放電容
量を算出した。結果を表1に示す。なお、放電容量値は
電池10個の平均値である。
【0024】比較例1
正極活物質として、平均粒径300μm の五酸化バナジ
ウム二次粒子(試料G)を用いた以外は、実施例1と同
様の電池を組み立て、同様の充放電試験を行った。結果
を表1に示す。
【0025】
【表1】
【0026】表1から明らかなように、正極活物質とし
て平均粒径150μm 以下の五酸化バナジウム二次粒子
を用いることによって、高容量の非水溶媒二次電池が得
られる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium-based metal comprising a vanadium pentoxide for a positive electrode and lithium or an alkali metal alloy containing lithium as a main component (hereinafter, referred to as a negative electrode). And a non-aqueous solvent secondary battery containing a carbonaceous material as a support for the lithium-based metal. 2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery which is small and lightweight, has a high energy density, and can be repeatedly charged and discharged. As a secondary battery of this type, metal lithium or a lithium alloy was used as a negative electrode active material, and an oxide such as molybdenum, vanadium, titanium, or niobium, a sulfide thereof, or a selenium compound thereof was used as a positive electrode active material. Things are known. However, a battery system using metallic lithium or a lithium alloy as the negative electrode active material has a drawback that the charge / discharge cycle life is short because repetition of charge / discharge generates dendrite on the negative electrode. In order to solve this problem, a solution has been achieved by using lithium and a carbonaceous material as a carrier for the negative electrode. In particular, a non-aqueous solvent secondary battery using a vanadium pentoxide for the positive electrode, a lithium-based metal for the negative electrode, and a carbonaceous material as a carrier for the lithium-based metal has a high operating voltage and significantly improves the charge / discharge cycle life. Is attracting attention as a possible battery. However, a nonaqueous solvent secondary battery using a lithium-based metal for the negative electrode and a carbonaceous material as the lithium-based metal carrier has a discharge capacity that is lower than that of a secondary battery using metallic lithium or a lithium alloy as the negative electrode as it is. And its improvement remains a major challenge. An object of the present invention is to solve the above problems and to provide a high capacity non-aqueous solvent secondary battery. SUMMARY OF THE INVENTION The present invention relates to a lithium-based metal comprising vanadium pentoxide in a positive electrode and lithium or an alkali metal alloy containing lithium as a main component in a negative electrode, and a carrier of the lithium-based metal. The present invention relates to a non-aqueous solvent secondary battery containing a carbonaceous material, wherein the average particle size of the secondary particles of vanadium pentoxide of the positive electrode is 30 to 80 μm. [0007] Vanadium pentoxide generally has a number of very fine primary particles aggregated and bound to form secondary particles. The present inventors have paid attention to the particle size of the secondary particles, and have found that there is the following correlation between the particle size of the secondary particles and the discharge capacity of the battery. That is, when the particle size of the secondary particles increases, the specific surface area decreases, and as a result, the contact area between the positive electrode active material, vanadium pentoxide, and the electrolyte decreases, and the utilization rate of the positive electrode active material decreases. By that, the battery capacity also decreases, and the maximum particle size of the secondary particles that can avoid such a decrease in the utilization rate of the positive electrode active material,
150 μm. In the present invention, the average particle size of the secondary particles of vanadium pentoxide is 150 μm or less, preferably 3 μm or less.
0 to 80 μm, more preferably 50 to 80 μm
It is. When the average particle size of the secondary particles exceeds 150 μm,
Since the contact area between the particles and the electrolyte decreases, the utilization rate of vanadium pentoxide decreases, and the battery capacity cannot be increased.
When the particle size is too small, the diffusibility of lithium ions decreases and the electrical resistance of the positive electrode mixture increases. Therefore, the particle size of the secondary particles is preferably 30 to 80 μm. Further, the vanadium pentoxide secondary particles having the above-mentioned particle diameter can be obtained by sieving vanadium pentoxide particles as a raw material. For sieving, a vibration sieving device such as a resonance type or a circular vibration type, or an in-plane motion sieving device such as a reciprocating type can be used. [0010] The particle size of the secondary particles of vanadium pentoxide is measured by a laser diffraction method using dry air as a dispersion medium. The positive electrode used in the present invention comprises the above-mentioned vanadium pentoxide as an active material, carbon black such as acetylene black, a conductive material such as nickel powder, polyethylene, polypropylene, polytetrafluoroethylene, polyacrylic acid, and the like. It has a composition containing a binder such as polyacrylate. The lithium carrier used in the negative electrode of the present invention includes a carbonaceous material obtained by firing an organic polymer compound such as phenol resin, polyacrylonitrile, and cellulose; and a carbonaceous material obtained by firing coke and pitch. Materials; and carbonaceous materials such as artificial graphite and natural graphite. The production of the negative electrode is performed as follows. For example, a carbonaceous material obtained by calcining the polymer compound in an atmosphere of an inert gas such as argon or nitrogen at a temperature of 500 to 3,000 ° C., preferably 800 to 1,500 ° C. and at normal pressure or reduced pressure. Then, the same binder as that used for the positive electrode is added and mixed to form a desired shape such as a pellet. Next, a lithium-based metal is added to the molded body to form a negative electrode. As a method for incorporating the lithium-based metal into the compact such as a pellet, a vapor deposition method, a chemical impregnation method, an electrolytic impregnation method, or the like can be adopted. The alkali metal alloy contains at least 90% by weight of lithium, preferably 91 to 93% by weight. As the separator, a non-woven fabric or a porous film of a polyolefin resin such as polyethylene or polypropylene can be used. As the electrolyte, for example, one or more nonaqueous organic solvents selected from propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like are mixed with LiC
electrolytes such as 10 4 , LiPF 6 , LiBF 4
A solution dissolved at a concentration of 1.5 mol / l, preferably 0.5 to 1.0 mol / l can be used. The non-aqueous solvent secondary battery of the present invention comprises the above positive electrode,
It is obtained by assembling a battery element including a negative electrode and a separator impregnated with an electrolyte. According to the present invention, the electric resistance of the positive electrode mixture is reduced and the diffusivity of lithium ions is improved, whereby a high capacity non-aqueous solvent secondary battery can be provided. . Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Example 1 (1) Preparation of Positive Electrode Using a standard sieve of 325, 280, 250, 170, 120, or 80 mesh, the secondary particles of vanadium pentoxide were converted to an average particle diameter of 10 μm (sample A) and 30 μm (sample A). Sample B), 50 μm (Sample C), 80 μm (Sample D), 100
6 μm (sample E) and 150 μm (sample F) were separated by sieving. The average particle size was measured using PRO-70 manufactured by Seishin Enterprise Co.
It was measured using 00S. Each of the above samples was used as an active material, carbon black was used as a conductive material, and polytetrafluoroethylene was used as a binder. The weight ratio of the active material, the conductive material, and the binder was 90: 6: 4. After mixing, mixing and kneading, six types of positive electrodes were produced by press-forming at a pressure of 250 MPa (2.5 ton / cm 2 ) into pellets having a diameter of 15 mm and a thickness of 0.77 mm. (2) Preparation of negative electrode The phenol resin powder was calcined in air at 1,000 ° C. for 3 hours to obtain a carbonaceous powder. This powder was mixed with a methacrylic acid alkyl ester-butadiene copolymer in a weight ratio of 93: 7 as a binder, mixed and kneaded, and then mixed at 250 MPa.
a At a pressure of (2.5 ton / cm 2 ), it was pressed into a pellet having a diameter of 15.7 mm and a thickness of 0.90 mm. Next, lithium was contained in the pellet formed body by an electrolytic impregnation method to form a negative electrode. (3) Battery Assembly FIG. 1 is a sectional view of a non-aqueous solvent secondary battery according to the present invention. The non-aqueous solvent secondary battery was assembled as follows. First, the positive electrode (2) was housed inside a positive electrode container (1) made of stainless steel via a positive electrode current collector (3) made of stainless expanded metal having a diameter of 12 mm and a thickness of 0.05 mm. Next, a separator (4) in which an electrolyte solution obtained by dissolving lithium perchlorate in propylene carbonate to a concentration of 0.7 mol / l was impregnated in a propylene nonwoven fabric was placed on the positive electrode (2). Further, the inner surface of the negative electrode container (5) made of stainless steel has a diameter of 12 m.
A negative electrode (7) was mounted via a negative electrode current collector (6) made of nickel expanded metal having a thickness of 0.10 mm and a thickness of 0.10 mm. Finally, the negative electrode container (5) is fitted into the opening of the positive electrode container (1) via an insulating gasket (8),
The positive electrode container (1) is caulked and the positive electrode container (2), the separator (4) and the negative electrode (7) are sealed in the positive electrode container and the negative electrode container (5), so that the outer diameter is 20 mm and the thickness is 2.5 mm.
Twenty mm coin-shaped non-aqueous solvent secondary batteries were assembled for each of the positive electrodes A to F. (4) Charge / discharge test The battery assembled as described above was charged at a constant current of 1 mA until it reached 3.4 V, and then discharged at a constant current of 1 mA to 1.8 V. The discharge capacity was calculated from the discharge time. Table 1 shows the results. The discharge capacity value is an average value of 10 batteries. Comparative Example 1 A battery similar to that of Example 1 was assembled except that secondary particles of vanadium pentoxide having an average particle diameter of 300 μm (sample G) were used as a positive electrode active material, and a similar charge / discharge test was performed. . Table 1 shows the results. [Table 1] As is clear from Table 1, a high capacity nonaqueous solvent secondary battery can be obtained by using vanadium pentoxide secondary particles having an average particle size of 150 μm or less as the positive electrode active material.
【図面の簡単な説明】
【図1】本発明のコイン形非水溶媒二次電池の断面図で
ある。
【符号の説明】
1…正極容器
2…正極
3…正極集電体
4…セパレータ
5…負極容器
6…負極集電体
7…負極
8…ガスケットBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a coin-shaped non-aqueous solvent secondary battery of the present invention. [Description of Symbols] 1 ... Positive electrode container 2 ... Positive electrode 3 ... Positive electrode current collector 4 ... Separator 5 ... Negative electrode container 6 ... Negative electrode current collector 7 ... Negative electrode 8 ... Gasket
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−230668(JP,A) 特開 平4−280068(JP,A) 特開 平6−168714(JP,A) 特開 昭62−285363(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-230668 (JP, A) JP-A-4-280068 (JP, A) JP-A-6-168714 (JP, A) 285363 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/00-4/62
Claims (1)
リチウムまたはリチウムを主成分とするアルカリ金属合
金からなるリチウム系金属および該リチウム系金属の担
持体として炭素質材料を含む非水溶媒二次電池におい
て、正極の五酸化バナジウムの二次粒子の平均粒径が3
0〜80μmであることを特徴とする非水溶媒二次電
池。(57) [Claims 1] A lithium-based metal comprising vanadium pentoxide in a positive electrode and lithium or an alkali metal alloy containing lithium as a main component in a negative electrode, and carbon as a carrier of the lithium-based metal. In a non-aqueous solvent secondary battery containing a porous material, the average particle diameter of the secondary particles of vanadium pentoxide of the positive electrode is 3
A non-aqueous solvent secondary battery having a thickness of 0 to 80 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01830894A JP3434557B2 (en) | 1994-02-15 | 1994-02-15 | Non-aqueous solvent secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01830894A JP3434557B2 (en) | 1994-02-15 | 1994-02-15 | Non-aqueous solvent secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07230801A JPH07230801A (en) | 1995-08-29 |
JP3434557B2 true JP3434557B2 (en) | 2003-08-11 |
Family
ID=11967993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01830894A Expired - Fee Related JP3434557B2 (en) | 1994-02-15 | 1994-02-15 | Non-aqueous solvent secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3434557B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109155431B (en) | 2016-11-03 | 2022-01-25 | 株式会社Lg化学 | Lithium ion secondary battery |
-
1994
- 1994-02-15 JP JP01830894A patent/JP3434557B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07230801A (en) | 1995-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3995050B2 (en) | Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2000156229A (en) | Nonaqueous electrolyte lithium secondary battery | |
JP4218098B2 (en) | Nonaqueous electrolyte secondary battery and negative electrode material thereof | |
JP3598153B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3428750B2 (en) | Non-aqueous solvent secondary battery | |
JP2019019048A (en) | Manufacturing method of carbonaceous coated graphite particle, carbonaceous coated graphite particle, anode for lithium ion secondary battery, and lithium ion secondary battery | |
US5601950A (en) | Non-aqueous electrolyte secondary cell | |
JPH07201316A (en) | Nonaqueous electrolyte secondary battery | |
JP3435731B2 (en) | Non-aqueous electrolyte secondary battery | |
KR20040025600A (en) | Anode material and battery using the same | |
JPH11297311A (en) | Negative electrode material for nonaqueous secondary battery | |
KR100433592B1 (en) | Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same | |
JP3434557B2 (en) | Non-aqueous solvent secondary battery | |
JP2004095391A (en) | Battery and its manufacturing method | |
JP3144832B2 (en) | Non-aqueous solvent secondary battery | |
JP2000164211A (en) | Positive electrode material and battery using the same | |
JP3558751B2 (en) | Non-aqueous solvent secondary battery | |
JP2002313320A (en) | Nonaqueous secondary battery | |
JP3410291B2 (en) | Coin type non-aqueous solvent secondary battery | |
JP2001110406A (en) | Nonaqueous electrolyte secondary battery | |
JP2005281099A (en) | Carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode, and rechargeable lithium-ion battery | |
JPH07296848A (en) | Nonaqueous electrolyte secondary battery | |
JP4628007B2 (en) | Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3182277B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3728773B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |