JP2007128904A - Organic electrolyte battery - Google Patents

Organic electrolyte battery Download PDF

Info

Publication number
JP2007128904A
JP2007128904A JP2006354292A JP2006354292A JP2007128904A JP 2007128904 A JP2007128904 A JP 2007128904A JP 2006354292 A JP2006354292 A JP 2006354292A JP 2006354292 A JP2006354292 A JP 2006354292A JP 2007128904 A JP2007128904 A JP 2007128904A
Authority
JP
Japan
Prior art keywords
organic electrolyte
negative electrode
positive electrode
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354292A
Other languages
Japanese (ja)
Inventor
Kazunari Kinoshita
一成 木下
Makoto Tsutsue
誠 筒江
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006354292A priority Critical patent/JP2007128904A/en
Publication of JP2007128904A publication Critical patent/JP2007128904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electrolyte battery which has a structure having a lighter battery weight, while maintaining not only a high efficiency discharging property but also excellent battery characteristics. <P>SOLUTION: The organic electrolyte battery is composed of an anode made of an anode mixture layer of a sheet shape mainly made of spherical carbon particles containing a polymer which absorbs and holds organic electrolyte solution on both sides of an anode collector and a cathode, facing the anode, which contains a polymer which absorbs and holds organic electrolyte solution with a polyelectrolyte layer of a porous film in between composed of a polymer which absorbs and holds organic electrolyte on both sides of the anode and forms a cathode mixture layer of a sheet shape mainly made of lithium cobalt complex oxide. All the above is integrated into a lamination of a sheet or a film shape and the organic electrolyte solution is absorbed and held by the above lamination. A thickness of the cathode mixture layer shall be 0.1mm or less, that of the anode mixture layer shall be 0.15 mm or less, and the surfaces of the anode collector and the cathode collector are coated with a mixture of a conductive carbon material and a binder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極と有機電解液を吸収保持するポリマーからなる高分子電解質層と負極を積層してなる有機電解質電池の構成に関するものである。   The present invention relates to a configuration of an organic electrolyte battery formed by laminating a positive electrode and a polymer electrolyte layer made of a polymer that absorbs and holds an organic electrolytic solution and a negative electrode.

近年の携帯機器の小型、軽量、薄型化に対応して、リチウムイオン二次電池においても、小型、軽量、薄型化が強く求められている。リチウムイオン二次電池が実用化され、携帯電話やノート型パソコンの小型、軽量化に大いに貢献しているが機器の小型、軽量、薄型化の要望は強まる一方である。しかしながら、強固な外装ケースによって電極とセパレータ間を緊縛し、極板間距離の最小化および電極セパレータ間の良好な接触を実現している従来のリチウムイオン二次電池では、外装ケースの強度を保つための厚みが必要であり、薄型化に限界がある。   In response to the recent reduction in size, weight, and thickness of portable devices, lithium ion secondary batteries are also strongly required to be small, light, and thin. Lithium ion secondary batteries have been put to practical use and have greatly contributed to the reduction in size and weight of mobile phones and notebook computers, but the demand for smaller, lighter, and thinner devices is increasing. However, the strength of the outer case is maintained in the conventional lithium ion secondary battery in which the electrode and the separator are tightly bound by the strong outer case, and the distance between the electrode plates is minimized and the good contact between the electrode separators is realized. Therefore, there is a limit to reducing the thickness.

薄型化を追求する方法のひとつとして、セパレータである電解質層に有機電解液を吸収保持する多孔性のポリマーを用いたリチウムポリマー二次電池が注目されている。中でも、電解質層と電極に同一のポリマーを用い接合一体化されている電池系では上記のように強固な外装ケースを用いなくても良好な電解質層と電極間の接触が実現できるため、電池の薄型化に有効である。電解質層と電極間が接合一体化されている例としては米国特許4830939号明細書および、米国特許5478668号明細書がある。   As one of the methods for pursuing thinning, a lithium polymer secondary battery using a porous polymer that absorbs and holds an organic electrolytic solution in an electrolyte layer as a separator has attracted attention. Above all, in the battery system in which the same polymer is joined and integrated to the electrolyte layer and the electrode, the contact between the electrolyte layer and the electrode can be realized without using a strong outer case as described above. Effective for thinning. US Pat. No. 4,830,939 and US Pat. No. 5,478,668 are examples in which the electrolyte layer and the electrode are joined and integrated.

米国特許4830939号明細書の場合、負極金属リチウム上または正極上にモノマーと電解液の混合溶液を塗布した後、紫外線や電子線によりモノマーを重合させ固体高分子電解質を形成している。この場合、極板表面の微小な凹凸に沿って電解質層が形成されるため緊縛を加えなくても電極と電解質層の間に良好な接触が実現される。   In the case of U.S. Pat. No. 4,830,939, after applying a mixed solution of a monomer and an electrolytic solution on negative metal lithium or a positive electrode, the monomer is polymerized by ultraviolet rays or electron beams to form a solid polymer electrolyte. In this case, since the electrolyte layer is formed along the minute irregularities on the surface of the electrode plate, good contact is realized between the electrode and the electrolyte layer without applying any binding.

米国特許5478668号明細書の場合、ポリマー材料としてフッ化ビニリデン(VDF)と6フッ化プロピレン(HFP)の共重合体(P(VDF−HFP))を用い、積層電極の正極、負極およびセパレータである電解質層を作製した後、セパレータと正極あるいは負極を熱融着により一体化させることを特徴としている。   In the case of US Pat. No. 5,478,668, a copolymer of vinylidene fluoride (VDF) and propylene hexafluoride (HFP) (P (VDF-HFP)) is used as the polymer material, and the positive electrode, negative electrode and separator of the laminated electrode are used. After producing a certain electrolyte layer, the separator and the positive electrode or the negative electrode are integrated by heat fusion.

上記2例のように電極と電解質層を接合一体化することにより柔軟で薄いラミネートシート外装体を使用しても放電可能な薄い電池を得ることができる。
米国特許4830939号明細書 米国特許5478668号明細書
By joining and integrating the electrode and the electrolyte layer as in the above two examples, it is possible to obtain a thin battery that can be discharged even when a flexible and thin laminate sheet outer package is used.
US Pat. No. 4,830,939 US Pat. No. 5,478,668

しかし、実用的な電池容量を得るために上記の正極、電解質層および負極を積層一体化した積層電極を単純に積み重ねると、リチウムイオン二次電池に比べ集電体が電池重量に占める割合が大きくなってしまうという課題がある。一般的なリチウムイオン二次電池では図5に示すように正極集電体であるアルミニウム箔6aの両面に正極合剤層6bを形成した正極6と、負極集電体である銅箔7aの両面に負極合剤層7bを形成した負極7をセパレータ8を介して対向させ、これを巻回している。このためリチウムイオン二次電池では正極集電体6aおよび負極集電体7aの両面に各々1組ずつの電池構成が成り立っており集電体を効率的に利用している。これに対し、従来例に示した電解質層と電極間が接合一体化されているリチウムポリマー二次電池では、何層にもわたって、均一に電子線や紫外線あるいは熱をかけることが非常に困難であるため、この接合するという要件が障害と
なりリチウムイオン二次電池のように正極−セパレータ−負極−正極という繰り返しの構成が採れない。このため従来のリチウムポリマー二次電池では、図4に示すように正極集電体1aの片面に正極合剤層1bが形成された正極1と、負極集電体2aの片面に負極合剤層2bが形成された負極2を電解質層を挟んで対向させ、1組の正極集電体と負極集電体により1つの電池構成となっている。このため、電極合剤が塗着されていない側の集電体は利用されていない。
However, simply stacking the above-mentioned laminated electrode, which is a laminate of the positive electrode, electrolyte layer, and negative electrode, in order to obtain a practical battery capacity, the proportion of the current collector to the battery weight is larger than that of the lithium ion secondary battery. There is a problem of becoming. In a general lithium ion secondary battery, as shown in FIG. 5, both surfaces of a positive electrode 6 in which a positive electrode mixture layer 6b is formed on both surfaces of an aluminum foil 6a that is a positive electrode current collector and a copper foil 7a that is a negative electrode current collector. A negative electrode 7 on which a negative electrode mixture layer 7b is formed is opposed to a separator 8 with a separator 8 interposed therebetween, and this is wound. For this reason, in the lithium ion secondary battery, one set of battery configuration is formed on both surfaces of the positive electrode current collector 6a and the negative electrode current collector 7a, and the current collector is efficiently used. In contrast, in the lithium polymer secondary battery shown in the conventional example in which the electrolyte layer and the electrode are joined and integrated, it is very difficult to uniformly apply electron beams, ultraviolet rays, or heat over multiple layers. Therefore, this requirement of joining becomes an obstacle, and a repetitive configuration of positive electrode-separator-negative electrode-positive electrode cannot be adopted like a lithium ion secondary battery. Therefore, in the conventional lithium polymer secondary battery, as shown in FIG. 4, the positive electrode 1 having the positive electrode mixture layer 1b formed on one side of the positive electrode current collector 1a and the negative electrode mixture layer on one side of the negative electrode current collector 2a The negative electrode 2 on which 2b is formed faces each other with the electrolyte layer in between, and one battery configuration is constituted by a pair of positive electrode current collector and negative electrode current collector. For this reason, the current collector on the side where the electrode mixture is not applied is not used.

また、正極集電体の材料としては軽量なアルミニウムなどを用いることができるが、負極集電体にはアルミニウムを用いることができず、銅などを用いることから集電体が重くなり、電池重量に対する負極集電体の重量効率が悪いという欠点を有する。このような中、高率放電特性をはじめとして良好な電池特性を得る必要がある。   In addition, although light aluminum or the like can be used as a material for the positive electrode current collector, aluminum cannot be used for the negative electrode current collector, and the current collector becomes heavy due to the use of copper or the like. The negative electrode current collector has a disadvantage that the weight efficiency is poor. Under such circumstances, it is necessary to obtain good battery characteristics including high rate discharge characteristics.

本発明は上記従来例の問題点を解消し、高率放電特性をはじめとして良好な電池特性を維持しつつ、電池重量を軽量化した構成の有機電解質電池を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an organic electrolyte battery having a structure in which the weight of the battery is reduced while eliminating the above-mentioned problems of the conventional example and maintaining good battery characteristics such as high rate discharge characteristics.

本発明は上記目的を達成するため、以下のような電極構造としたことを特徴とする。   In order to achieve the above object, the present invention is characterized by the following electrode structure.

本発明は負極集電体の両面に有機電解液を吸収保持するポリマーを含み球状炭素粒子主体のシート状の負極合剤層を形成した負極と、前記負極の両面に有機電解液を吸収保持するポリマーからなる多孔性のフィルム状の高分子電解質層を介して有機電解液を吸収保持するポリマーを含みリチウムコバルト複合酸化物主体のシート状の正極合剤層を形成した正極を対向させ、これら全体をシートまたはフィルム状に積層一体化するとともにこれらに有機電解液を吸収保持させたことを特徴とする有機電解質電池であって、前記正極合剤層の厚さは0.1mm以下でかつ前記負極合剤層の厚さは0.15mm以下であり、前記負極集電体および前記正極集電体の表面に導電性炭素材と結着剤の混合物を塗着したことを特徴とする有機電解質電池である。   The present invention absorbs and holds an organic electrolyte solution on both sides of a negative electrode in which a sheet-like negative electrode mixture layer mainly composed of spherical carbon particles is formed, including a polymer that absorbs and holds an organic electrolyte solution on both sides of the negative electrode current collector. A positive electrode on which a lithium-cobalt composite oxide-based sheet-like positive electrode mixture layer containing a polymer that absorbs and retains an organic electrolyte solution through a porous film-like polymer electrolyte layer made of a polymer is opposed to each other. Is laminated and integrated into a sheet or film, and an organic electrolyte is absorbed and held in the sheet or film, wherein the positive electrode mixture layer has a thickness of 0.1 mm or less and the negative electrode An organic electrolyte battery comprising a mixture layer having a thickness of 0.15 mm or less and a mixture of a conductive carbon material and a binder applied to the surfaces of the negative electrode current collector and the positive electrode current collector so That.

本発明によれば、良好な高率放電特性を得るために適した構造となるので、良好な電池特性を維持しつつ、電池の薄型化、軽量化を実現することが可能となる。   According to the present invention, a structure suitable for obtaining good high-rate discharge characteristics can be achieved, so that the battery can be made thinner and lighter while maintaining good battery characteristics.

本発明の請求項1に記載の発明の一構成要件は、負極集電体の両面に負極合剤層を形成した負極と、前記負極の両面に高分子電解質層を介して負極の両面に正極を対向させ、積層したことを特徴とする有機電解質電池である。アルミニウムなどの軽量の金属を用いることができず重量効率の悪い負極集電体の両面に負極合剤層を形成し、一つの負極集電体を2面の負極合剤層で使用することにより、軽量な有機電解質電池を得ることができる。また、正極は負極の両側に分散して対向することにより、充放電時におけるイオンの移動距離をみじかくすることができ、電極反応をスムーズに進行させ、大電流を取り出すことができる。また、負極集電体1枚に対し、正極と負極の対向面を2面とすることで反応面積を2倍とすることができるため、単位面積当たりの負荷を下げることができ、高率の充放電を行うことができる。   One component of the invention described in claim 1 is that a negative electrode in which a negative electrode mixture layer is formed on both sides of a negative electrode current collector, and a positive electrode on both sides of the negative electrode through a polymer electrolyte layer on both sides of the negative electrode Is an organic electrolyte battery characterized by being laminated. By forming a negative electrode mixture layer on both surfaces of a negative electrode current collector that is incapable of using a lightweight metal such as aluminum and using one negative electrode current collector in two negative electrode mixture layers A lightweight organic electrolyte battery can be obtained. In addition, the positive electrode is dispersed on both sides of the negative electrode so as to face each other, so that the distance of ion movement during charging / discharging can be made delicate, the electrode reaction can proceed smoothly, and a large current can be taken out. Moreover, since the reaction area can be doubled by using two opposing surfaces of the positive electrode and the negative electrode for one negative electrode current collector, the load per unit area can be reduced, and a high rate Charging / discharging can be performed.

さらに本発明の請求項1に記載の発明の一構成要件は、負極集電体の両面に有機電解液を吸収保持するポリマーを含み球状炭素粒子主体のシート状の負極合剤層を形成した負極と、前記負極の両面に有機電解液を吸収保持するポリマーからなる多孔性のフィルム状の高分子電解質層を介して有機電解液を吸収保持するポリマーを含みリチウムコバルト複合酸化物主体のシート状の正極合剤層を形成した正極を対向させ、これら全体をシートまたはフィルム状に積層一体化するとともにこれらに有機電解液を吸収保持させた有機電解質
電池であり、特に、電極と電解質層間を積層一体化することにより、電池に緊縛を与えなくても十分な電導性が取れ、良好な電池特性が得られる。なお本発明の請求項1に記載の発明の他の構成要件は、実施例において詳述する。
Furthermore, one constituent feature of the invention described in claim 1 of the present invention is that the negative electrode current collector includes a polymer that absorbs and holds an organic electrolyte solution on both sides, and a negative electrode layer formed mainly of spherical carbon particles is formed. And a lithium-cobalt composite oxide-based sheet containing a polymer that absorbs and holds the organic electrolyte solution through a porous film-like polymer electrolyte layer made of a polymer that absorbs and holds the organic electrolyte solution on both sides of the negative electrode. This is an organic electrolyte battery in which the positive electrode formed with the positive electrode mixture layer is opposed to each other, and the whole is laminated and integrated into a sheet or film, and the organic electrolyte is absorbed and retained in this. In particular, the electrode and the electrolyte layer are laminated and integrated As a result, sufficient electric conductivity can be obtained without binding the battery, and good battery characteristics can be obtained. The other constituent elements of the invention described in claim 1 of the present invention will be described in detail in the embodiments.

また本発明の請求項2に記載の発明は、前記積層一体化した積層電極を少なくとも2つ以上積層することにより、必要な電池容量を得るものである。   According to a second aspect of the present invention, a required battery capacity is obtained by laminating at least two or more laminated electrodes.

本発明の請求項3に記載の正極は、多孔性のアルミニウム集電体の片面に正極合剤層を形成した有機電解質電池である。あるいは多孔性のアルミニウム集電体の両面に正極合剤層を形成した有機電解質電池であり、正極合剤を厚み的に偏在させたものである。正極集電体の材料としてアルミニウムは軽量であり、電池を軽量化する材料として好ましい。特に、積層電極を多層に積層する構成を取るときは、穴あき板などの多孔板を用いるのが好ましい。   The positive electrode according to claim 3 of the present invention is an organic electrolyte battery in which a positive electrode mixture layer is formed on one surface of a porous aluminum current collector. Or it is the organic electrolyte battery which formed the positive mix layer on both surfaces of the porous aluminum electrical power collector, and unevenly distributed the positive mix in thickness. Aluminum is lightweight as a material for the positive electrode current collector, and is preferable as a material for reducing the weight of the battery. In particular, when taking a configuration in which laminated electrodes are laminated in multiple layers, it is preferable to use a porous plate such as a perforated plate.

また、前記正極と前記負極の反応部分の面寸法を同一とすることで、余分な電極面積を必要としないものである。   Moreover, the surface area of the reaction part of the said positive electrode and the said negative electrode is made the same, and an extra electrode area is not required.

また、前記負極の反応部分の面寸法を前記正極の反応部分の面寸法よりも大きいものとすることで、電極端部での短絡を防ぐことができる。   Moreover, the short circuit in an electrode edge part can be prevented by making the surface dimension of the reaction part of the said negative electrode larger than the surface dimension of the reaction part of the said positive electrode.

本発明の好ましい形態は、多孔性の銅箔からなる集電体の両面に有機電解液を吸収保持するポリマーを含み球状炭素粒子主体のシートまたはフィルム状の負極合剤層を形成した負極と、前記負極の両面に有機電解液を吸収保持するポリマーからなる多孔性のフィルム状の高分子電解質層を介して多孔性のアルミニウム箔からなる集電体に有機電解液を吸収保持するポリマーを含みリチウムコバルト複合酸化物主体のシートまたはフィルム状の正極合剤層を形成した正極を対向させ、これら全体をシートまたはフィルム状に積層一体化するとともにこれらに有機電解液を吸収保持させた電池であり、前記有機電解液を吸収保持するポリマーが、ポリフッ化ビニリデンまたはフッ化ビニリデンと6フッ化プロピレンの共重合体の群より選ばれる1種以上を主成分とする有機電解質電池である。正極、高分子電解質層および負極に同一のポリマー材料として、ポリフッ化ビニリデンまたはフッ化ビニリデンと6フッ化プロピレンの共重合体を主成分とすることにより、有機電解液を吸収保持するポリマーにより正極、高分子電解質層および負極を熱融着により接合一体化できる。   A preferred embodiment of the present invention is a negative electrode in which a spherical carbon particle-based sheet or film-shaped negative electrode mixture layer is formed containing a polymer that absorbs and holds an organic electrolyte solution on both sides of a current collector made of a porous copper foil, Lithium containing a polymer that absorbs and holds organic electrolyte on a current collector made of porous aluminum foil via a porous film-like polymer electrolyte layer made of polymer that absorbs and holds organic electrolyte on both sides of the negative electrode This is a battery in which a cobalt composite oxide-based sheet or a positive electrode in which a film-like positive electrode mixture layer is formed is opposed to each other, and the whole is laminated and integrated into a sheet or film, and the organic electrolyte is absorbed and held in these. The polymer that absorbs and holds the organic electrolyte is selected from the group of polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride. It is an organic electrolyte battery as a main component or more. As the same polymer material for the positive electrode, the polymer electrolyte layer, and the negative electrode, polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride as a main component makes the positive electrode by a polymer that absorbs and holds an organic electrolyte solution, The polymer electrolyte layer and the negative electrode can be joined and integrated by heat fusion.

さらに、有機電解液を吸収保持するポリマーに、ポリエチレンオキシド、ポリメタクリル酸エステルの群より選ばれる1種以上を添加しているものであり、これらのポリマーを添加することにより、ポリマー中への有機電解液の吸収保持力を高める。   In addition, one or more selected from the group of polyethylene oxide and polymethacrylic acid ester is added to the polymer that absorbs and retains the organic electrolyte, and by adding these polymers, organics into the polymer are added. Increase the electrolyte absorption retention.

(実施の形態1)
本発明の有機電解質電池の構成の一部を、図1を参照して説明する。
(Embodiment 1)
A part of the configuration of the organic electrolyte battery of the present invention will be described with reference to FIG.

図1は正極板1と負極板2とを高分子電解質層3を介して積層してなる積層電極4である。正極板1は正極集電体であるアルミニウム芯板1aの片面に正極活物質としてコバルト酸リチウムと導電材と有機電解液を吸収保持するポリマーとからなる正極合剤層1bを塗布乾燥して作製する。負極板2は負極集電体である銅芯板2aの両面に球状炭素粒子と導電材と有機電解液を吸収保持するポリマーとからなる負極合剤層2bを塗付乾燥して作製する。高分子電解質層3は有機電解質を吸収保持するポリマーであるフッ化ビニリデンと6フッ化プロピレンの共重合体(P(VDF−HFP))からなる多孔性のフィルムである。そして負極板2の両側の負極合剤層2bにそれぞれ高分子電解質層3を介して正極板1の正極合剤層1bに対向させ、積層した後、熱融着により積層一体化して積層電極4
を構成している。
FIG. 1 shows a laminated electrode 4 in which a positive electrode plate 1 and a negative electrode plate 2 are laminated via a polymer electrolyte layer 3. The positive electrode plate 1 is prepared by applying and drying a positive electrode mixture layer 1b made of lithium cobaltate, a conductive material, and a polymer that absorbs and holds an organic electrolyte as a positive electrode active material on one surface of an aluminum core plate 1a that is a positive electrode current collector. To do. The negative electrode plate 2 is prepared by applying and drying a negative electrode mixture layer 2b made of spherical carbon particles, a conductive material, and a polymer that absorbs and holds an organic electrolyte on both surfaces of a copper core plate 2a that is a negative electrode current collector. The polymer electrolyte layer 3 is a porous film made of a copolymer (P (VDF-HFP)) of vinylidene fluoride and propylene hexafluoride, which is a polymer that absorbs and holds an organic electrolyte. Then, the negative electrode mixture layer 2b on both sides of the negative electrode plate 2 is opposed to the positive electrode mixture layer 1b of the positive electrode plate 1 through the polymer electrolyte layer 3, respectively, laminated, and then laminated and integrated by heat fusion to form the laminated electrode 4
Is configured.

前記積層電極をラミネートシート外装体に装入後、外装体の開口部より6フッ化リン酸リチウム1mol/lをエチレンカーボネートとエチルメチルカーボネートを1:3の体積比で混合した混合溶媒に溶解した電解液を注液する。注液後、外装体内部を減圧して積層電極4に電解液を十分に含浸させた後、大気圧に戻し外装体の開口部を熱シールにより封口する。封口した電池を45℃で20分間加熱し、有機電解液をポリマーに含浸させ、本発明の有機電解質電池を得る。なお、ラミネートシート外装体は、絶縁性樹脂フィルムの間に通気遮断のためのアルミニウムフィルムを配置し、全体を積層一体化したものである。   After charging the laminated electrode into the laminate sheet outer package, 1 mol / l of lithium hexafluorophosphate was dissolved in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3 from the opening of the outer package. Inject electrolyte. After the injection, the inside of the exterior body is decompressed and the laminated electrode 4 is sufficiently impregnated with the electrolytic solution, and then returned to atmospheric pressure, and the opening of the exterior body is sealed with a heat seal. The sealed battery is heated at 45 ° C. for 20 minutes, and the polymer is impregnated with the organic electrolytic solution to obtain the organic electrolyte battery of the present invention. In addition, the laminate sheet exterior body is obtained by arranging an aluminum film for blocking airflow between insulating resin films, and laminating and integrating the whole.

(実施の形態2)
本発明の他の構成の有機電解質電池の構成の一部を、図2を参照して説明する。正極1が正極集電体1aの両面に正極合剤層1bが形成された以外は、実施の形態1と同様の構成にて正極1と負極2とを高分子電解質層3を介して積層して積層電極5を構成する。
(Embodiment 2)
A part of the configuration of the organic electrolyte battery of another configuration of the present invention will be described with reference to FIG. The positive electrode 1 is formed by laminating the positive electrode 1 and the negative electrode 2 with the polymer electrolyte layer 3 in the same configuration as in the first embodiment except that the positive electrode mixture layer 1b is formed on both surfaces of the positive electrode current collector 1a. Thus, the laminated electrode 5 is configured.

(実施の形態3)
本発明の積層電極4を多積層した有機電解質電池の構成の一部を、図3を参照して説明する。
(Embodiment 3)
A part of the configuration of the organic electrolyte battery in which the multilayer electrode 4 of the present invention is laminated in multiple layers will be described with reference to FIG.

図3は実施の形態1の積層電極4を5つ積層した多積層電池の積層電極部分である。   FIG. 3 shows a stacked electrode portion of a multi-layer battery in which five stacked electrodes 4 of Embodiment 1 are stacked.

なお、正、負極の集電体にそれぞれの合剤層を形成する方法は、あらかじめ合剤シートを作製しておき、熱融着により集電体と合剤シートを接合させる方法、また集電体に直接合剤ペーストを塗着する方法などがある。集電体の片面に合剤層を形成する場合には、あらかじめ合剤シートを作製しておき、熱融着により集電体と合剤シートを接合させる方法が好ましい。   In addition, the method of forming each mixture layer on the positive and negative electrode current collectors is a method in which a mixture sheet is prepared in advance, and the current collector and the mixture sheet are joined by heat fusion. There is a method of applying a mixture paste directly to the body. In the case of forming the mixture layer on one side of the current collector, a method of preparing a mixture sheet in advance and bonding the current collector and the mixture sheet by heat fusion is preferable.

なお、正極活物質としては、コバルト酸リチウム、ニッケル酸リチウムまたはマンガン酸リチウムなど充放電によりリチウムイオンを可逆的に出し入れできるリチウム含有複合金属酸化物を用いることができる。
負極活物質としては、充放電によりリチウムイオンを可逆的に出し入れできる炭素材料、なかでも炭素質メソフューズ粒体を炭素化および黒鉛化して得られた粒状黒鉛粒子が好ましく、他に金属酸化物あるいは金属窒化物など充放電によりリチウムイオンを可逆的に出し入れできる材料を用いることができる。
As the positive electrode active material, a lithium-containing composite metal oxide capable of reversing lithium ions by charging / discharging such as lithium cobaltate, lithium nickelate, or lithium manganate can be used.
As the negative electrode active material, a carbon material capable of reversibly taking in and out lithium ions by charging / discharging is preferable, and in particular, granular graphite particles obtained by carbonizing and graphitizing carbonaceous mesofused particles are preferable. A material capable of reversing lithium ions by charging and discharging such as nitride can be used.

電解液は、溶媒としてエチレンカーボネートやプロピレンカーボネートなどの環状カーボネートと鎖状炭酸エステルの混合物、エチレンカーボネートとプロピレンカーボネートの環状カーボネートの混合物などを用いることができ、溶質としてLiPF6,LiCF3SO3,LiClO4,LiBF4,LiAsF6あるいはLiN(CF3SO2)などを用いることができる。鎖状炭酸エステルとしては、エチルメチルカーボネート、ジエチルカーボネートおよびジメチルカーボネートなどがある。 As the electrolyte, a mixture of a cyclic carbonate such as ethylene carbonate or propylene carbonate and a chain carbonate, a mixture of a cyclic carbonate of ethylene carbonate and propylene carbonate, or the like can be used as a solvent, and LiPF 6 , LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiAsF 6, LiN (CF 3 SO 2 ), or the like can be used. Examples of the chain carbonate include ethyl methyl carbonate, diethyl carbonate, and dimethyl carbonate.

本発明の実施例について図面を用い詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
下記に示す方法により本発明の有機電解質電池を作製した。
Example 1
The organic electrolyte battery of the present invention was produced by the method described below.

高分子電解質シートは以下の方法により作製した。フッ化ビニリデンと6フッ化プロピ
レンの共重合体(P(VDF−HFP)、6フッ化プロピレン比率12重量%)30gをアセトン150gに溶解し、造孔剤のフタル酸ジ-n-ブチル(DBP)30gを添加した混合溶液を調整する。この溶液をガラス板上に塗着した後、アセトンを乾燥除去して厚さ0.02mm、サイズが35mm×65mmの高分子電解質シートを作製する。
The polymer electrolyte sheet was produced by the following method. 30 g of a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP), propylene hexafluoride ratio 12 wt%) is dissolved in 150 g of acetone, and the pore-forming agent di-n-butyl phthalate (DBP) ) Prepare a mixed solution with 30 g added. After this solution is applied onto a glass plate, acetone is removed by drying to produce a polymer electrolyte sheet having a thickness of 0.02 mm and a size of 35 mm × 65 mm.

正極合剤層のシートはP(VDF−HFP)70gをアセトン1000gに溶解した溶液とコバルト酸リチウム1000g、アセチレンブラック50g、DBP100gを混合して調整したペーストをガラス板上に塗着、乾燥した後、圧延することで厚さ0.1mm、サイズが30mm×60mmのシートを得る。   The sheet of the positive electrode mixture layer was prepared by applying a paste prepared by mixing a solution prepared by dissolving 70 g of P (VDF-HFP) in 1000 g of acetone, 1000 g of lithium cobaltate, 50 g of acetylene black, and 100 g of DBP on a glass plate and drying it. By rolling, a sheet having a thickness of 0.1 mm and a size of 30 mm × 60 mm is obtained.

負極合剤層のシートはP(VDF−HFP)40gをアセトン300gに溶解した溶液と炭素質メソフェーズ球体を炭素化および黒鉛化した球状黒鉛粒子(大阪ガス製)250g、気相成長炭素繊維を黒鉛化したもの(VGCF)(大阪ガス製)20g、DBP60gを混合して調整したペーストをガラス板上に塗着、乾燥した後、圧延することで厚さ0.15mm、サイズが30mm×60mmのシートを得る。   The sheet of the negative electrode mixture layer is a solution of 40 g of P (VDF-HFP) dissolved in 300 g of acetone and 250 g of spherical graphite particles (made by Osaka Gas) obtained by carbonizing and graphitizing carbonaceous mesophase spheres, and vapor-grown carbon fibers are made of graphite. (VGCF) (Osaka Gas) 20g, DBP 60g mixed paste prepared on a glass plate, dried and then rolled, rolled to a sheet with a thickness of 0.15mm and a size of 30mm x 60mm Get.

正極、負極の各集電体は表面に導電性炭素材と結着剤の混合物を塗着した。集電体に塗着する導電性炭素材と結着剤の混合物は、アセチレンブラック30gとポリフッ化ビニリデンのN−メチルピロリドン溶液(12重量%)を分散・混合することで調整する。この混合物を厚さ0.06mmのアルミニウムと銅の穴あき板にそれぞれ塗付した後、80℃以上の温度でN−メチルピロリドンを乾燥除去することで導電性炭素材とポリフッ化ビニリデンから成る混合物を結着した集電体を作製する。   Each of the positive electrode and negative electrode current collectors was coated with a mixture of a conductive carbon material and a binder on the surface. The mixture of the conductive carbon material and the binder to be applied to the current collector is prepared by dispersing and mixing 30 g of acetylene black and an N-methylpyrrolidone solution (12% by weight) of polyvinylidene fluoride. After this mixture is applied to a perforated plate of aluminum and copper each having a thickness of 0.06 mm, a mixture comprising a conductive carbon material and polyvinylidene fluoride is obtained by drying and removing N-methylpyrrolidone at a temperature of 80 ° C. or higher. A current collector bound with is manufactured.

前記正極合剤層のシートを前記アルミニウムの集電体の片面に積層したものをポリテトラフルオロエチレンシート(PTFE、厚さ0.05mm)ではさみ、150℃に加熱した2本ローラを通して加熱・加圧することで熱融着させ正極板を作製する。PTFEは合剤層がローラに付着するのを防ぐために用いるものであり、銅箔やアルミニウム箔などの他の材料を用いてもよい。   A sheet of the positive electrode mixture layer laminated on one side of the aluminum current collector is sandwiched between polytetrafluoroethylene sheets (PTFE, thickness 0.05 mm) and heated and heated through two rollers heated to 150 ° C. The positive electrode plate is manufactured by heat-sealing by pressing. PTFE is used to prevent the mixture layer from adhering to the roller, and other materials such as copper foil and aluminum foil may be used.

同様の方法で前記銅集電体の両面に前記負極合剤層のシートを積層し負極板を作製する。   In the same manner, a negative electrode plate is prepared by laminating sheets of the negative electrode mixture layer on both surfaces of the copper current collector.

最後に、負極板の両面に高分子電解質シートを介して正極板の合剤面を対向、積層し、120℃に加熱した2本ローラで加熱・加圧することで熱融着一体化した積層電極を作製する。   Finally, a laminated electrode in which the mixture surface of the positive electrode plate is opposed to and laminated on both sides of the negative electrode plate via a polymer electrolyte sheet, and heat fusion is integrated by heating and pressing with two rollers heated to 120 ° C. Is made.

上記の積層一体化した積層電極をジエチルエーテル中に浸漬してDBPを抽出除去しポリマー部分に多孔性を設け、50℃、真空で乾燥する。乾燥終了後、積層電極を絶縁性樹脂フィルムの間にアルミニウムフィルムを配したラミネートシートで作られた袋状の外装体に装入し、エチレンカーボネートとエチルメチルカーボネートを体積比1:3で混合したものに1.5モル/lの割合で6フッ化リン酸リチウムを溶解した電解液3.5gを注液する。注液後0.5気圧の減圧下でポリマーの細孔部に電解液を吸収保持させた後、大気圧に戻して熱シールにより封口し、更に、45℃20分間加熱してポリマー中への電解液の吸収を行い、充放電可能な状態の電池Aとした。   The laminated electrode integrated as described above is immersed in diethyl ether to extract and remove DBP, thereby providing porosity in the polymer portion, and drying at 50 ° C. in vacuum. After drying, the laminated electrode was placed in a bag-shaped outer package made of a laminate sheet in which an aluminum film was placed between insulating resin films, and ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3. An electrolyte solution (3.5 g) in which lithium hexafluorophosphate is dissolved at a rate of 1.5 mol / l is poured into the product. After the injection, the electrolyte was absorbed and held in the pores of the polymer under a reduced pressure of 0.5 atm, then returned to atmospheric pressure and sealed with a heat seal, and further heated at 45 ° C. for 20 minutes to enter the polymer. The battery A was in a state capable of being charged and discharged by absorbing the electrolytic solution.

得られた電池Aの重量は3.3gであり、集電体が占める重量比率は14.6%であった。得られた電池を充電電流22mAで充電した後、放電電流220mAで放電したところ、放電容量は92mAhであった。   The weight of the obtained battery A was 3.3 g, and the weight ratio of the current collector was 14.6%. When the obtained battery was charged with a charging current of 22 mA and then discharged with a discharging current of 220 mA, the discharge capacity was 92 mAh.

(比較例1)
正極合剤層および負極合剤層のシート厚みを実施例1の2倍の厚みの0.2mmおよび0.3mmとし、正極、負極とも集電体の単面にのみ電極合剤層のシートを熱融着した以外は実施例1と同様の方法にて高分子電解質シート、正極板および負極板を作製する。
(Comparative Example 1)
The sheet thickness of the positive electrode mixture layer and the negative electrode mixture layer is set to 0.2 mm and 0.3 mm, which is twice the thickness of Example 1, and the electrode mixture layer sheet is provided only on one surface of the current collector for both the positive electrode and the negative electrode. A polymer electrolyte sheet, a positive electrode plate and a negative electrode plate are produced in the same manner as in Example 1 except that the heat fusion is performed.

最後に、負極板の合剤層を高分子電解質シートを介して正極板の合剤層と対向、積層し、120℃に加熱した2本ローラで加熱・加圧することで熱融着一体化した積層電極を作製する。   Finally, the mixture layer of the negative electrode plate was opposed to and laminated with the mixture layer of the positive electrode plate through the polymer electrolyte sheet, and heat fusion was integrated by heating and pressing with two rollers heated to 120 ° C. A laminated electrode is produced.

上記の積層電極を実施例1と同様の方法にて充放電可能な状態の電池Bとした。   The laminated electrode was made into a battery B in a chargeable / dischargeable state in the same manner as in Example 1.

得られた電池Bの重量は3.1gであり、集電体が占める重量比率は12.6%であった。この電池を充電電流22mAで充電した後、放電電流220mAで放電したところ、放電容量は35mAであった。   The weight of the obtained battery B was 3.1 g, and the weight ratio of the current collector was 12.6%. When this battery was charged with a charging current of 22 mA and then discharged with a discharging current of 220 mA, the discharge capacity was 35 mA.

(比較例2)
実施例1と同様の方法にて高分子電解質シート、正極合剤層シート、負極合剤層シートおよび集電体を作製する。
(Comparative Example 2)
A polymer electrolyte sheet, a positive electrode mixture layer sheet, a negative electrode mixture layer sheet, and a current collector are prepared in the same manner as in Example 1.

ただし正極板は、正極合剤層シートをアルミニウム集電体の両面に積層し、実施例1と同様に150℃に加熱した2本ローラを通して加熱・加圧することで熱融着させる。   However, the positive electrode plate is heat-sealed by laminating a positive electrode mixture layer sheet on both surfaces of the aluminum current collector and heating and pressing through two rollers heated to 150 ° C. as in Example 1.

また負極板は、負極合剤層シートを銅集電体の片面に積層し、実施例1と同様に150℃に加熱した2本ローラを通して加熱・加圧することで熱融着させる。   Further, the negative electrode plate is heat-sealed by laminating a negative electrode mixture layer sheet on one side of a copper current collector and heating and pressurizing it through two rollers heated to 150 ° C. as in Example 1.

最後に、実施例1の構成とは逆に、正極板の両面に高分子電解質シートを介して負極板の合剤層を対向、積層し、120℃に加熱した2本ローラで加熱・加圧することで熱融着一体化した積層電極を作製する。   Finally, contrary to the structure of Example 1, the mixture layer of the negative electrode plate is opposed and laminated on both surfaces of the positive electrode plate via the polymer electrolyte sheet, and heated and pressurized with two rollers heated to 120 ° C. Thus, a laminated electrode integrated by heat fusion is produced.

上記の積層電極を実施例1と同様の方法にて充放電可能な状態の電池Cとした。   The above laminated electrode was made into a battery C in a state where charge and discharge were possible in the same manner as in Example 1.

得られた電池Cの重量は3.538gであり、集電体が占める重量比率は19.5%であった。また、得られた電池を充電電流22mAで充電した後、放電電流220mAで放電したところ、放電容量は90mAhであった。   The weight of the obtained battery C was 3.538 g, and the weight ratio of the current collector was 19.5%. Moreover, when the obtained battery was charged with a charging current of 22 mA and then discharged with a discharging current of 220 mA, the discharge capacity was 90 mAh.

実施例1と比較例1および比較例2は電池容量の理論値が同じになるように作製している。それぞれの電池において電池重量に対する集電体の重量比率を比較すると、実施例1は14.6%、比較例1は12.6%、比較例2は19.7%である。実施例1は比較例1よりも正極集電体が1枚多いため電池重量がわずかに重いが、正極の厚みが比較例1の半分の0.1mmであるため高率放電特性が比較例1に比べて非常に良好である。次に、実施例1と比較例2を比較すると、どちらも集電体からの活物質層の厚みが同じであるため、高率放電特性は非常に良好である。しかし、比較例2では負極集電体が実施例1より1枚多いため電池全体における集電体の重量比率が高くなっている。以上のことから、実施例1の構成によれば電池重量における集電体重量の比率をできるだけ小さくすることができ、かつ良好な高率放電特性を得るために適した構造であることが分かる。   Example 1 and Comparative Example 1 and Comparative Example 2 are fabricated so that the theoretical values of battery capacity are the same. Comparing the weight ratio of the current collector to the battery weight in each battery, Example 1 is 14.6%, Comparative Example 1 is 12.6%, and Comparative Example 2 is 19.7%. In Example 1, the battery weight is slightly heavier because the number of the positive electrode current collector is one more than that in Comparative Example 1, but the positive electrode thickness is 0.1 mm, which is half that of Comparative Example 1, and the high rate discharge characteristic is Comparative Example 1. It is very good compared to Next, when Example 1 and Comparative Example 2 are compared, since the thickness of the active material layer from the current collector is the same, the high rate discharge characteristics are very good. However, in Comparative Example 2, since the number of negative electrode current collectors is one more than that in Example 1, the weight ratio of the current collectors in the entire battery is high. From the above, it can be seen that according to the configuration of Example 1, the ratio of the current collector weight to the battery weight can be made as small as possible, and the structure is suitable for obtaining good high rate discharge characteristics.

さらに、正極も集電体の両側に正極合剤層を作製した場合、電池容量の理論値を同じように作製すれば、正極合剤層の厚みは半分となり、高率放電特性はより向上する。   Furthermore, when the positive electrode mixture layer is prepared on both sides of the current collector, the thickness of the positive electrode mixture layer is halved and the high-rate discharge characteristics are further improved if the same theoretical battery capacity is prepared. .

以上のように本発明によれば、高率放電特性をはじめとして良好な電池特性を実現しつ
つ、負極集電体を1枚で合剤層2枚の集電体を兼ねることができるので電池重量中の集電体重量の比率を低く抑えられ、重量効率が良く、優れた高率放電特性の有機電解質電池を得ることができる。
As described above, according to the present invention, a battery having a single negative electrode current collector can also serve as a current collector of two mixture layers while realizing good battery characteristics such as high rate discharge characteristics. The ratio of the current collector weight in the weight can be kept low, the weight efficiency is good, and an organic electrolyte battery having excellent high rate discharge characteristics can be obtained.

本発明の一実施例を示す有機電解質電池の積層電極部分の断面図Sectional drawing of the laminated electrode part of the organic electrolyte battery which shows one Example of this invention 本発明の他の実施例を示す有機電解質電池の積層電極部分の断面図Sectional drawing of the laminated electrode part of the organic electrolyte battery which shows the other Example of this invention 本発明の一実施例を示す積層電極を5枚積層した有機電解質電池の積層電極部分の断面図Sectional drawing of the laminated electrode part of the organic electrolyte battery which laminated | stacked five laminated electrodes which show one Example of this invention 従来の構成の有機電解質電池の積層部分の断面図Sectional view of the layered portion of an organic electrolyte battery having a conventional configuration 従来の構成の円筒形リチウムイオン電池の構成電極の断面図Sectional view of the constituent electrodes of a conventional cylindrical lithium ion battery

符号の説明Explanation of symbols

1 正極板
1a 正極集電体
1b 正極合剤層
2 負極板
2a 負極集電体
2b 負極合剤層
3 高分子電解質層
4 積層電極
5 積層電極
6 正極板
6a 正極集電体
6b 正極合剤層
7 負極板
7a 負極集電体
7b 負極合剤層
8 セパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode collector 1b Positive electrode mixture layer 2 Negative electrode plate 2a Negative electrode collector 2b Negative electrode mixture layer 3 Polymer electrolyte layer 4 Laminated electrode 5 Laminated electrode 6 Positive electrode plate 6a Positive electrode collector 6b Positive electrode mixture layer 7 Negative electrode plate 7a Negative electrode current collector 7b Negative electrode mixture layer 8 Separator

Claims (3)

負極集電体の両面に有機電解液を吸収保持するポリマーを含み球状炭素粒子主体のシート状の2つの負極合剤層を形成した負極と、正極集電体の少なくとも片面に有機電解液を吸収保持するポリマーを含みリチウムコバルト複合酸化物主体のシート状の正極合剤層を形成した正極とを、合剤層どうしが有機電解液を吸収保持するポリマーからなる多孔性のフィルム状の高分子電解質層を介して対向するようにした積層電極を有する有機電解質電池であって、前記正極合剤層の厚さは0.1mm以下でかつ前記負極合剤層の厚さは0.15mm以下であり、前記負極集電体および前記正極集電体の表面に導電性炭素材と結着剤の混合物を塗着したことを特徴とする有機電解質電池。 Absorbing the organic electrolyte on at least one side of the positive electrode current collector and the negative electrode in which the negative electrode current collector contains a polymer that absorbs and holds the organic electrolyte solution and includes two negative electrode mixture layers mainly composed of spherical carbon particles A porous film-like polymer electrolyte comprising a polymer in which a mixture layer absorbs and holds an organic electrolyte solution, and a positive electrode in which a lithium-cobalt composite oxide-based sheet-like positive electrode mixture layer is formed. An organic electrolyte battery having laminated electrodes facing each other through a layer, wherein the positive electrode mixture layer has a thickness of 0.1 mm or less and the negative electrode mixture layer has a thickness of 0.15 mm or less An organic electrolyte battery, wherein a mixture of a conductive carbon material and a binder is applied to the surfaces of the negative electrode current collector and the positive electrode current collector. 前記積層電極を、少なくとも2つ以上積層した請求項1記載の有機電解質電池。 The organic electrolyte battery according to claim 1, wherein at least two of the laminated electrodes are laminated. 前記正極集電体および負極集電体を多孔性とした請求項1記載の有機電解質電池。 The organic electrolyte battery according to claim 1, wherein the positive electrode current collector and the negative electrode current collector are made porous.
JP2006354292A 1998-02-19 2006-12-28 Organic electrolyte battery Pending JP2007128904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354292A JP2007128904A (en) 1998-02-19 2006-12-28 Organic electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3699298 1998-02-19
JP2006354292A JP2007128904A (en) 1998-02-19 2006-12-28 Organic electrolyte battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10250736A Division JPH11307084A (en) 1998-02-18 1998-09-04 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JP2007128904A true JP2007128904A (en) 2007-05-24

Family

ID=38151323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354292A Pending JP2007128904A (en) 1998-02-19 2006-12-28 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2007128904A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148654A (en) * 1988-11-30 1990-06-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery
JPH03219570A (en) * 1990-01-24 1991-09-26 Bridgestone Corp Cylindrical lithium secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH09213301A (en) * 1996-02-06 1997-08-15 Ricoh Co Ltd Rectangular battery
JPH09320568A (en) * 1996-05-28 1997-12-12 Toray Ind Inc Nonaqueous electrolyte secondary battery
WO1997048106A1 (en) * 1996-06-13 1997-12-18 Asahi Kasei Kogyo Kabushiki Kaisha Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
JPH1021963A (en) * 1996-07-02 1998-01-23 Asahi Chem Ind Co Ltd Battery and manufacture thereof
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148654A (en) * 1988-11-30 1990-06-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery
JPH03219570A (en) * 1990-01-24 1991-09-26 Bridgestone Corp Cylindrical lithium secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH09213301A (en) * 1996-02-06 1997-08-15 Ricoh Co Ltd Rectangular battery
JPH09320568A (en) * 1996-05-28 1997-12-12 Toray Ind Inc Nonaqueous electrolyte secondary battery
WO1997048106A1 (en) * 1996-06-13 1997-12-18 Asahi Kasei Kogyo Kabushiki Kaisha Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
JPH1021963A (en) * 1996-07-02 1998-01-23 Asahi Chem Ind Co Ltd Battery and manufacture thereof
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Similar Documents

Publication Publication Date Title
KR100279071B1 (en) Lithium ion secondary battery
US6232014B1 (en) Lithium ion secondary battery and manufacture thereof
US6291102B1 (en) Lithium ion secondary battery
JP3223824B2 (en) Lithium ion secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
US6461762B1 (en) Rechargeable battery structure having a stacked structure of sequentially folded cells
JP4352475B2 (en) Solid electrolyte secondary battery
US20050233218A1 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
JP4008508B2 (en) Method for producing lithium ion secondary battery
KR100587437B1 (en) Nonaqueous Secondary Battery
JPH09213338A (en) Battery and lithium ion secondary battery
JP3953022B2 (en) Lithium ion secondary battery and method of configuring the same
WO1999031751A1 (en) Lithium ion secondary battery and its manufacture
KR20160027364A (en) Electrode assembly for secondary battery
JPH11307084A (en) Organic electrolyte battery
JPH10261386A (en) Battery case and battery
EP0973223A1 (en) Lithium battery and method for manufacturing the same
JP2000195501A (en) Organic electrolyte battery and manufacture of the same
JPH11154534A (en) Lithium ion secondary battery element
JP2002198016A (en) Thin secondary cell
JP2000149905A (en) Solid electrolyte battery
JP2010232011A (en) Secondary battery
JP2000133274A (en) Polymer lithium secondary battery
EP0973222A1 (en) Method for manufacturing lithium ion battery
JP4297711B2 (en) Electrochemical element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720