WO1999031751A1 - Lithium ion secondary battery and its manufacture - Google Patents
Lithium ion secondary battery and its manufacture Download PDFInfo
- Publication number
- WO1999031751A1 WO1999031751A1 PCT/JP1997/004678 JP9704678W WO9931751A1 WO 1999031751 A1 WO1999031751 A1 WO 1999031751A1 JP 9704678 W JP9704678 W JP 9704678W WO 9931751 A1 WO9931751 A1 WO 9931751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- negative electrode
- separator
- positive electrode
- adhesive resin
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/10—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/40—Printed batteries, e.g. thin film batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium ion secondary battery in which a positive electrode and a negative electrode face each other with a separator holding an electrolyte therebetween.
- TECHNICAL FIELD The present invention relates to a battery structure which does not require an external metal can and can take any form such as a thin shape, and a manufacturing method for forming the structure. Height
- the lithium-ion battery is the secondary battery that can realize the highest voltage, the highest energy density and the highest load among the existing batteries, and its improvement is being actively promoted even today.
- This lithium ion secondary battery has, as its main components, a positive electrode, a negative electrode, and an ion conductive layer sandwiched between both electrodes.
- an active material powder such as a lithium-cobalt composite oxide is mixed with an electron conductor powder and a binder-resin 5 for a positive electrode and applied to an aluminum current collector.
- a carbon-based active material powder is mixed with a binder resin and applied to the copper current collector for the negative electrode.
- a plate shape is used.
- a porous film made of polyethylene or polypropylene filled with a non-aqueous solvent containing lithium ions is used.
- FIG. 9 is a schematic sectional view showing the structure of a conventional cylindrical lithium ion secondary battery disclosed in Japanese Patent Application Laid-Open No. 8-83608.
- 1 is an outer can made of stainless steel or the like also serving as a negative electrode terminal
- 2 is an electrode body housed in the outer can 1
- 2 is a separator 5 disposed between the positive electrode 3 and the negative electrode 4.
- the electrode stack is spirally wound.
- the electrode assembly 2 needs to apply external pressure to the electrode assembly 2 in order to maintain electrical connection between the positive electrode 3, the separator 4, and the negative electrode 5. Therefore, the electrode body 2 is placed in the strong outer can 1 and pressurized to maintain contact between the above-described surfaces.
- prismatic batteries a method has been used in which rectangular strips of electrode stacks are bundled and placed in a square metal can to apply force from the outside to hold them down.
- a method of using a strong outer can made of metal or the like is used as a method of bringing the positive electrode and the negative electrode into close contact. Without an outer can, the surfaces of the electrode stack will peel off, making it difficult to maintain electrical connection and deteriorating battery characteristics.
- the weight and volume of the outer can occupying the entire battery not only lowers the energy density of the battery itself, but also limits the shape of the battery due to the rigidity of the outer can itself. Difficult to do.
- Japanese Patent Application Laid-Open No. 5-159802 discloses a manufacturing method in which an ion-conductive solid electrolyte layer and a positive electrode and a negative electrode are integrated by heating using a thermoplastic resin binder. ing. In this case, the electrodes are brought into close contact by integrating the positive electrode and the negative electrode with the solid electrolyte layer, so that the electrical connection between the positive electrode, the negative electrode and the solid electrolyte layer is maintained without applying external force. Operates as a battery.
- the positive electrode and the negative electrode and the solid electrolyte are joined with a binder, but the interface between the positive electrode and the negative electrode and the solid electrolyte is bound. Since it is covered with an agent, it is disadvantageous in terms of ionic conductivity as compared with, for example, the case where a liquid electrolyte is used. Even if a binder having ionic conductivity is used, a material having an ionic conductivity equal to or higher than that of the liquid electrolyte has not been generally found, and the same level of the battery using the liquid electrolyte has been found. There were problems such as difficulty in obtaining battery performance. W
- the present invention has been made as a result of intensive studies on a preferable bonding method between the separator and the positive electrode and the negative electrode in order to solve such a problem, and even without using a strong outer can.
- the positive electrode and negative electrode can be brought into close contact with the separator 5 without increasing the ion conduction resistance between the positive electrode and the negative electrode, enabling higher energy density, thinner, and multi-layered configurations of any form.
- An object of the present invention is to provide a compact and stable lithium ion secondary battery having excellent charge / discharge characteristics and a large battery capacity, and a method for manufacturing the same.
- the first configuration of the lithium ion secondary battery according to the present invention includes a positive electrode in which a positive electrode active material layer is joined to a positive electrode current collector, a negative electrode in which a negative electrode active material layer is joined to a negative electrode current collector, A plurality of electrode laminates each having a surface facing the surface of the layer and having a separator for holding an electrolyte containing lithium ions; The protrusions and recesses formed on the surface of the layer, and the protrusions formed by joining each of the facing surfaces and the surface of each of the active material layers adjacent to the facing surfaces with an adhesive resin layer. A void having a predetermined depth formed by the joint surface of the portion and the recess, and an electrolyte containing lithium ions held in the void and zero.
- the adhesion between the positive electrode and the negative electrode active material layer and the separator can be ensured by the joint surface of the convex portion, and the electrolytic solution held in the gap formed by the joint surface of the convex portion and the concave portion allows Good ion conductivity between the positive and negative electrode active material layers and the separator can be ensured, so that high energy consumption is achieved.
- the following battery is obtained.
- due to the multilayered electrode stack In addition, a stable, lightweight, compact battery with a large battery capacity can be obtained.
- the depth of the gap is set to 30 m or less.
- a third configuration of the lithium ion secondary battery according to the present invention is the lithium ion secondary battery according to the first configuration, wherein an area of a bonding surface between the respective surfaces is 10 to 30% of a total area of the respective opposing surfaces. is there.
- the bonding strength between the separator and the positive electrode and the negative electrode active material layer is respectively equal to the positive electrode current collector and the positive electrode active material layer. And a bonding strength equal to or higher than the bonding strength between the negative electrode current collector and the negative electrode active material layer.
- the adhesive resin layer is made porous.
- the ion conduction resistance between the positive electrode and the negative electrode can be further reduced.
- a void to which the adhesive resin layer is not attached is formed. Thereby, a further increase in ion conduction resistance can be suppressed.
- a seventh configuration of the lithium ion secondary battery according to the present invention in the first configuration, a plurality of layers of the electrode laminate are configured such that a positive electrode and a negative electrode are alternately arranged between a plurality of separated separators. It is formed by this.
- An eighth configuration of the lithium ion secondary battery according to the present invention is the lithium ion secondary battery according to the first configuration, wherein the plurality of layers of the electrode laminate are configured such that the positive electrode and the negative electrode are alternately arranged during the separated separation.
- the ninth configuration of the lithium ion secondary battery according to the present invention is the ninth configuration according to the first configuration, wherein a plurality of layers of the electrode laminate are configured such that a positive electrode and a negative electrode are alternately arranged in a folded separator. It was formed.
- the method for manufacturing a lithium ion secondary battery according to the present invention includes a method of manufacturing a lithium ion secondary battery, comprising: a convex portion and a concave portion on at least two surfaces of one surface of a positive electrode active material layer, one surface of a negative electrode active material layer, and two opposite surfaces of a separator. Forming an adhesive resin layer on at least two surfaces of one surface of the positive electrode active material layer, one surface of the negative electrode active material layer, and two opposing surfaces of the separator.
- One surface of the positive electrode active material layer and one surface of the negative electrode active material layer are bonded to each surface of the separator and press-bonded, and a bonding surface formed by the convex portion and a predetermined depth formed by the concave portion. And a step of forming a plurality of layers of the electrode laminate having the above voids.
- FIGS. 1, 2, and 3 are schematic cross-sectional views each showing a battery structure of an embodiment of the lithium ion secondary battery of the present invention
- FIG. 4 is a sectional view showing an embodiment of the present invention
- FIG. 5 is a schematic cross-sectional view showing an electrode laminate constituting such a battery
- FIG. 5 is an explanatory diagram showing a method of applying an adhesive resin liquid using a roll having micropores according to one embodiment of the present invention.
- FIG. 6 is an explanatory view showing a method of applying an adhesive resin liquid by screen printing according to one embodiment of the present invention
- FIG. 7 is a diagram illustrating an adhesion between a spray gun and a screen according to one embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional views each showing a battery structure of an embodiment of the lithium ion secondary battery of the present invention
- FIG. 4 is a sectional view showing an embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view showing an electrode laminate constituting
- FIG. 8 is an explanatory view showing a method of applying an adhesive resin liquid
- FIG. 8 is an explanatory view showing a method of applying an adhesive resin liquid by a dispenser according to an embodiment of the present invention
- FIG. FIG. 2 is a schematic cross-sectional view illustrating an example of a secondary battery.
- FIGS. 1, 2 and 3 are schematic cross-sectional views showing the battery structure of one embodiment of the lithium ion secondary battery of the present invention
- FIG. 1 shows a positive electrode 3, a separator 4
- Figure 2 shows a flat laminated battery with multiple layers of electrode stacks formed by repeatedly stacking the negative electrode 5 in order
- Fig. 3 shows a plate-shaped wound type laminated battery body in which a plurality of electrode laminates are formed by laminating a plurality of negative (positive) poles therebetween.
- a flat wound type laminated battery in which a pole is arranged, a strip-shaped negative (positive) pole is arranged on one side thereof, and the strip is wound into an elliptical shape to form a multi-layered electrode laminate. Showing body.
- FIG. 1 shows a positive electrode 3, a separator 4
- Figure 2 shows a flat laminated battery with multiple layers of electrode stacks formed by repeatedly stacking the negative electrode 5 in order
- Fig. 3 shows a plate-shaped wound type laminated battery body in which
- reference numeral 3 denotes a positive electrode obtained by bonding a positive electrode active material layer 7 to a positive electrode current collector 6
- 5 denotes a negative electrode obtained by bonding a negative electrode active material layer 9 to a negative electrode current collector 10
- 4 denotes a positive electrode 3 and a negative electrode.
- 5 is a separator that holds an electrolyte containing lithium ions, and is a surface of the separator 4 that faces the two active material layers 7 and 9 and the positive electrode active material layer 7 and the negative electrode active material layer 9. Convex portions and concave portions are formed on the surface adjacent (facing) the opposing surface of Separation 4.
- Reference numeral 1 denotes an adhesive resin layer for joining the opposing surface of the separator 4 to the surfaces of the adjacent active material layers 7 and 9, which are attached to the abutting projections to join the three members.
- Reference numeral 12 denotes a gap having a predetermined depth L formed between the electrode (that is, the active material layers 7 and 9) and the separator 4 and formed by the joint surface 11a of the protrusion and the recess. 2 holds an electrolyte containing lithium ions.
- the positive and negative electrode active material layers 7 and 9 are formed with concavities and convexities on opposing surfaces of the separator serving as the electrolyte layer, and the bonding surface 11 a of the convex portion is formed via the adhesive resin layer 11. Adhesion between the electrode and the separator can be ensured overnight, and peeling between the electrode and the separator can be suppressed, which was difficult with conventional batteries.
- the active material layers 7, 9 and the separation layer 4 are bonded and adhered with an adhesive resin, and at the same time, a gap having a predetermined depth formed by the bonding surface 11a of the convex portion and the concave portion therebetween.
- Electrodes By holding the electrolyte inside 12, good ionic conductivity at the electrode-electrolyte interface can be ensured, and ionic conduction resistance can be reduced. Electrodes (Positive electrode and negative electrode) The amount of ions entering and exiting in the active material layer inside and the moving speed and amount of ions to the opposing electrode can be reduced to about the same level as those of conventional lithium ion batteries using an outer can. It becomes possible. The electrical connection between the active material layers 7 and 9 and Separation 4 can be maintained without applying external force.
- the battery structure Eliminates the need for an outer can, which allows the battery to be lighter and thinner, has a multilayer structure of any shape, and has excellent charge / discharge characteristics and battery performance comparable to those of batteries using conventional electrolytes. Is obtained. Further, the battery capacity can be increased according to the number of layers of the electrode laminate.
- the concave portions and the convex portions are regularly formed on the surfaces of the positive electrode and the negative electrode active material layers 7 and 9, and the separator 4, the positive electrode and the negative electrode are formed.
- the joining regions with the active material layers 7 and 9 are joined so that they coincide with each other on both surfaces of the separator 4. With this configuration, a strong bonding strength can be maintained even when a force acts on the bonding surface between the separator 4 and the positive electrode and negative electrode active material layers 7 and 9.
- irregularities are formed on both the positive and negative electrode active material layers 7 and 9 and Separation 4, but irregularities may be formed only on the positive and negative electrode active material layers 7 and 9.
- a fluororesin having concaves and convexes formed on the surface is used as a separator, and the positive and negative electrode active material layers 7 and 9 have flat surfaces without irregularities. You may.
- the adhesive resin layer 11 is selectively formed in the joining region.
- the adhesive resin layer 11 is applied to the entire surface of the separator 4. You may do so.
- the adhesive resin layer 11 is to be selectively formed in the joint area, the position of the convex portion and It is necessary to match the position of the dot of the adhesive resin layer 11. In this case, however, the adhesive resin may be applied to the entire surface, so that the adhesive resin layer can be easily formed.
- the injection of the electrolyte is performed by immersing the flat laminated battery body in the electrolyte and depressurizing the electrolyte, whereby the gas in the gap and the electrolyte are separated. This is easily achieved by substitution. After the injection, it is preferable to heat and dry the flat plate-shaped laminated battery.
- the outer package is formed.
- the electrolyte may be injected into the exterior body through the opening of the battery, the electrolyte may be injected into at least the gap, and finally, the opening of the exterior body may be sealed.
- the electrolytic solution when the electrolytic solution is supplied, the back surface of the battery body and the exterior body are in close contact with each other, so that the electrolytic solution does not flow around to the back surface of the battery body, and unnecessary electrolysis that does not contribute to the electrolytic action is performed.
- the liquid can be eliminated, and the weight of the entire battery can be reduced.
- the depth L of the bonding surface 11 a of the convex portion and the gap 12 formed by the concave portion between the active material layers 7 and 9 and the separator 4 varies depending on the conductivity of the electrolyte, but usually, in the case of 1 0 'approximately 2 S / cm is used, 3 if 0 ⁇ M less, the active material layer 7, 9 and separators Isseki ion conduction resistance between 4 becomes sufficiently small, the liquid electrolyte type battery Since it can be used at a high load factor not inferior to that of the above, it is preferable to set it to 30 zm or less.
- the depth L of the voids 12 is set to 10 / m or less, so that the diffusion of the reactive species proceeds more easily, so that the ionic conduction resistance can be further reduced. It is more desirable to adjust to. Further, in general, even if the solution is stirred, an adhesion layer of several ⁇ m (expansion) is formed on the surfaces of the active material layers 7 and 9 where an electrode reaction occurs. It is thought that diffusion of reactive species will proceed most easily by adjusting the depth L of the voids 12 to less than this value. Is most preferably several / m or less.
- the area of 1 la of the bonding surface is 30% or less of the total area of each of the opposing surfaces of the active material layers 7 and 9 and the separation 4, the separation between the active material layers 7 and 9 and the separation Since the increase in ion conduction resistance during the evening can be suppressed, and it is possible to use the battery at a high load factor that is not inferior to conventional liquid electrolyte type batteries, it is desirable that the content be 30% or less.
- the area of the bonding surface 11a is less than 10%, the bonding strength between the separator 4 and the positive electrode and negative electrode active material layers 7 and 9 becomes weak. Is preferably 10% to 30% of the total area of each facing surface, and most preferably adjusted to about 20%.
- the peeling between the positive and negative electrode active material layers 7 and 9 and the separator 4 is larger than the separation between the positive and negative electrode active material layers 7 and 9 and the separator 4. Since the destruction of the active material layer (peeling of the active material layer and the current collector) occurs preferentially, the bonding strength between the separator 4 and the positive electrode and the negative electrode active material layers 7 and 9 is increased by the positive current collector 6 and the positive electrode current collector, respectively. It is desirable that the bonding strength between the active material layer 7 and the negative electrode current collector 10 and the negative electrode active material layer 9 be equal to or higher than the bonding strength.
- the adhesive resin layer 11 porous, it is possible to reduce the ionic conduction resistance in the adhesive resin layer and the joint, and it is possible to reduce the resistance between the electrodes. Furthermore, even if the adhesive resin layer 11 is adhered to the bonding surface 1 la, both surfaces of the separator 4 (opposite surface) or the entire surface of the active material layers 7 and 9 adjacent to this opposing surface, Since the ion conductivity can be secured through the micropores of the layer 11, the application of the adhesive resin layer 11 is facilitated. Further, by forming a void to which the adhesive resin layer 11 is not attached, the ion conduction resistance can be further reduced.
- the lithium ion secondary battery configured as described above is convex on at least two surfaces of one surface of each of the positive electrode active material layer 7 and the negative electrode active material layer 9 and two opposite surfaces of the separator 4.
- One surface of the positive electrode active material layer 7 and one surface of the negative electrode active material layer 9 are bonded to each surface of the night 4 and pressure-bonded, and the bonding surface 11a by the convex portion and the predetermined depth by the concave portion are formed. It is manufactured by performing a step of forming a plurality of layers of the electrode laminate 8 having the voids 12.
- the adhesive resin layer it is preferable to locally adhere the adhesive resin layer to a portion corresponding to the convex portion, and form a void 12 to which the adhesive resin layer 11 is not attached.
- the following methods can be used to apply the adhesive resin layer 11 locally and to apply a large amount of adhesive resin to both surfaces of the separator 4 in a short time.
- FIG. 5 is an explanatory view showing a method of applying an adhesive resin using a rotating roll having fine holes on the surface, where (a) is viewed from above and (b) is viewed from the side.
- Adhesive resin is filled inside the rotating roll 13 with micro holes 13 a on the surface, and pressure is applied to the inside of the rotating roll 13 with the pressurizer 16 to apply adhesive resin from the micro holes 13 a. Spill.
- rotating the entire rotating roll 13 while moving the separating material 14 supplied from the separating roll 15 sandwiched between the rotating rolls 13, the separating material 1 4 Apply 1 7 in dots.
- FIG. 6 there is a method of applying an adhesive resin using a screen and a rotating roll in which dots or linear holes are formed.
- Separator screen 1 9 with holes 19 a opened in dot form Separation material 14 Installed near the surface of the material, Separation moving adhesive resin 17 from adhesive resin dropping port 20
- the shape of the holes 19 a of the screen 19 is reduced.
- the reflected adhesive resin 17 pattern is transferred to the separation evening material 14.
- the adhesive resin can be applied to both surfaces of the separation material 14 in a dot-like manner.
- FIG. 7 is an explanatory view showing a method of applying an adhesive resin using a spray gun.
- the adhesive resin 17 adheres on the separation material 14 in a shape corresponding to the holes of the screen 26, for example, in a dot shape.
- At least one spray gun 23 is arranged on each side of Separation Material 14 and at least one spray gun is continuously sprayed with the adhesive resin liquid while moving Separation Material 14.
- the adhesive resin can be applied in the form of dots. Note that a net or the like may be used instead of the screen 26.
- At least one or more dispensers 28 filled with resin liquid are arranged, and the adhesive resin liquid is dropped intermittently as the separator 27 moves, so that the adhesive resin is applied in a dot-like manner. It may be. (A) is viewed from above and (b) is viewed from the side.
- Examples of the active material provided in the present invention include, in the positive electrode, a composite oxide of lithium and a transition metal such as cobalt, nickel, and manganese; a chalcogen compound containing lithium; or a composite compound thereof.
- the above-mentioned composite oxides, chalcogen compounds containing lithium, or those having various additive elements in these composite compounds are used.
- An aromatic hydrocarbon compound having an acene structure such as a carbon-based compound, billene, or perylene is preferably used, but any substance that can occlude and release lithium ions, which are the main components of battery operation, can be used.
- These active materials are used in the form of particles.
- the active material may have a particle diameter of 0.3 to 2 Ojm, and particularly preferably 0.3 to 5 zm.
- any resin that does not dissolve in the electrolytic solution and does not cause an electrochemical reaction inside the electrode laminate can be used.
- homopolymers or copolymers such as vinylidene fluoride, ethylene fluoride, acrylonitrile, and ethylene oxide, and ethylene propylene diamine rubber can be used.
- any metal can be used as long as it is stable in the battery.
- aluminum is preferably used for the positive electrode
- copper is preferably used for the negative electrode.
- the current collector may be in the form of foil, mesh, expanded metal, etc., but those having a large void area, such as meshed expanded metal, may be used after bonding. It is preferable in terms of facilitating the maintenance of the solution.
- Separators can be made of any material having sufficient strength, such as an electronically insulating porous film, a net, and a non-woven fabric.
- the material is not particularly limited, but polyethylene and polypropylene are preferable from the viewpoint of adhesiveness and safety.
- a non-aqueous solvent and an electrolyte salt containing lithium used in a conventional battery can be used as a solvent and an electrolyte salt used for an electrolytic solution used as an ion conductor.
- a non-aqueous solvent and an electrolyte salt containing lithium used in a conventional battery can be used as a solvent and an electrolyte salt used for an electrolytic solution used as an ion conductor.
- ether solvents such as dimethoxetane, diethoxetane, getyl ether and dimethyl ether
- ester solvents such as propylene carbonate, ethylene carbonate, getyl carbonate and dimethyl ether
- two kinds of mixed liquids composed of different solvents can be used.
- the electrolyte salt used for the electrolyte L i PF 6, L i A s F 6, L i C 1_Rei 4, L i BF 4, L i CF 3 S 0 3, L i N (CF 3 S 0 2) 2, L i C ( CF 3 S 0 2) 3, etc. L i N (C 2 F 5 S 0 2) 2 can be used.
- the adhesive resin used to bond the current collector to the electrode and the adhesive resin used to bond the electrode to the separator are both insoluble in the electrolyte and do not cause an electrochemical reaction inside the battery. It is more preferable if it can be used and becomes a porous membrane.
- a mixture mainly composed of a fluorine-based resin or a fluorine-based resin, or a mixture mainly composed of polyvinyl alcohol or polyvinyl alcohol A mixture is used.
- a polymer or copolymer having a fluorine atom in its molecular structure such as vinylidene fluoride or 4-fluoroethylene
- a polymer or copolymer having vinyl alcohol in its molecular structure or a polymer Methyl acrylate, polystyrene, polyethylene, polypropylene, polyvinylidene chloride, polyvinyl chloride, polyacrylonitrile, polyethylene Mixtures with such as can be used.
- polyvinylidene fluoride, a fluororesin is suitable.
- the positive electrode active material paste prepared by dispersing polyvinylidene fluoride vinylidene down the 5 parts by weight N- Mechirubi port Li Dong, Doc evening It was applied to a thickness of 30 by a single blade method to form an active material thin film.
- An aluminum net with a thickness of 30 ⁇ m serving as a positive electrode current collector is placed on the upper part, and a positive electrode active material paste adjusted to a thickness of 300 by the doctor blade method is applied on the upper part again to form a positive electrode.
- a laminate of the current collector and the positive electrode active material paste was produced.
- the gap between the rolls was adjusted to 400 / m using a rotary port to remove the laminate.
- a positive electrode having an uneven shape on the surface of the positive electrode active material layer was produced.
- sandwiching an aluminum mesh instead of a flat aluminum foil as a current collector it is possible to create irregularities reflecting the shape of the mesh on the surface of the positive electrode active material layer 7.
- the thickness of the electrode and the degree of the unevenness can be adjusted by adjusting the size of the gap between the rotary holes.
- the shape of the mesh (wire diameter, mesh size, porosity, etc.) of the positive electrode current collector the shape of the unevenness formed on the surface of the positive electrode active material layer 7 can be changed. .
- a 20 / m-thick copper mesh serving as a negative electrode current collector is placed on the upper part, and a negative electrode active material paste adjusted to a thickness of 300 m by the doctor blade method is applied to the upper part of the copper mesh again.
- a laminate of a current collector and a negative electrode active material paste was prepared. After leaving the laminate in a dryer at 60 ° C for 60 minutes to make it semi-dry, the gap between the rolls was adjusted to 400 ⁇ m using a rotary port, and the laminate was Was rolled to a thickness of 400 ⁇ m so as to be in close contact with each other, thereby producing a negative electrode having an uneven shape on the surface of the negative electrode active material layer 9.
- the positive electrode by sandwiching a copper net instead of a flat copper foil as a current collector, irregularities reflecting the net shape can be created on the surface of the negative electrode active material layer 9.
- NMP N-methylpyrrolidone
- Adhesive resin coating has micro holes 13a on the surface as shown in Fig. 5. This was performed using a rotating roll 13. The inside of the rotating roll 13 is filled with the above-mentioned adhesive resin liquid, and the adhesive resin liquid permeates through the minute holes 13a on the surface. Take out the separating material 14 from the separating roll 15 and rotate it while applying pressure to the inside of the rotating roll 13 having the minute holes 13 a on the separating material 14. Adhesive resin 17 could be applied to one side of Separet overnight material 14 in the form of dots. Also, the amount of the adhesive resin adhered could be adjusted by adjusting the pressure inside the rotating roll 13 and changing the discharge amount from the minute holes 13a.
- the positive electrode 3 punched into a predetermined size was bonded, and a laminated body was formed in which the separator 4, the negative electrode 5, the separator 4, and the positive electrode 3 were joined in this order.
- the adhesive resin liquid prepared above was applied to one surface of another separator which was punched into a predetermined size and joined with the negative electrode interposed therebetween, and the application surface of this separate separator was bonded to the first.
- the laminate was bonded to the positive electrode surface. This process is repeated to form a battery body having a plurality of electrode laminates in which the positive electrode and the negative electrode face each other across the separator, and the battery body is dried while being pressurized. A laminated battery body was manufactured.
- the adhesive resin layer 11 becomes a porous film (adhesive resin layer) having holes communicating from the separation side to the positive electrode and the negative electrode side due to the evaporation of NMP with drying.
- the thickness of this adhesive resin layer is about lm W
- the current collectors connected to the respective ends of the positive electrode and the negative electrode current collectors of the flat plate-shaped laminated battery body were spot-welded to each other between the positive electrode and the negative electrode. Electrically connected in parallel.
- the flat plate-like layered structure cell body to the ethylene carbonate Jechiru as a solvent was injected electrolyte solution to the L i PF 6 as a solute.
- the peel strength of the positive electrode active material and the separator was measured, and the peel strength of the negative electrode active material and the separator was measured.
- the strengths were 25 to 30 gf / cm and 15 to 20 gfcm, respectively.
- the lithium-ion secondary battery was manufactured by packing the flat-plate laminated battery body after the injection of the electrolytic solution with an aluminum laminate film, and performing heat sealing and sealing.
- the positive electrode 3, the separator 4, and the negative electrode 5 have the surface facing the two active material layers 7 and 9 of the separator 4 and the positive electrode 5 active material layer 7 and the negative electrode active material.
- a convex portion and a concave portion are formed on the surface of the layer 9 adjacent to the opposing surface of the separation layer 4.
- the adhesive resin layer 11 attached to the joint surface 1 la of the convex portion is in close contact with the convex portion.
- An electrolyte solution containing lithium ions is held in the voids 12 formed by the bonding surface 1 la and the recesses (generated according to the unevenness of the surface when the electrode and the separator are brought into close contact).
- the active material layers 7 and 9 and the separator 4 are not completely covered with the adhesive resin layer 11 and the voids 12 hold the electrolyte so that the active material layers, and 9 and the separator 4 are separated.
- the increase in internal resistance during one night is suppressed, good ionic conductivity is ensured, and the active material layers 7, 9 and the separation part 4 are formed on the joint surface 1 la of the convex part by the adhesive resin layer 11.
- W thin, light-weight, high-capacity battery with excellent charge / discharge characteristics was obtained, which does not require external pressurization, that is, does not require a strong outer can.
- the concave portions and convex portions shown in FIG. 4 are formed regularly on the surfaces of the positive electrode and negative electrode active material layers 7 and 9, and the separator 4 and the positive electrode and negative electrode active material layers 7 and 9 are formed. 9 is joined so that they coincide with each other on both sides of Separete 4 so that force acts on the joint surface between Separete 4 and the positive electrode 5 and the negative electrode active material layers 7, 9. In this case, strong bonding strength can be maintained.
- the positive and negative electrode active material layers 7 and 9 have irregularities.
- a fluororesin having irregularities formed on its surface is used as the separator 4 and the positive and negative electrode active material layers are used.
- 7 and 9 may be those having a flat surface without forming concave and convex.
- the adhesive resin layer 11 is selectively formed in the joining region, but may be applied to the entire surface of the separator 4. If the adhesive resin layer 11 is to be formed selectively in the bonding area, the position of the protrusion must match the position of the dot of the adhesive resin layer 11, but the entire surface of the separator 4 When the adhesive resin layer 11 is formed on the entire surface, the adhesive resin may be applied to the entire surface, so that the adhesive resin layer can be easily formed.
- the injection of the electrolyte is performed by immersing the flat-plate laminated battery body in the electrolyte and depressurizing the electrolyte, thereby replacing the gas in the gap 12 with the electrolyte. This was easily achieved by: After the injection, the flat-plate-type laminated battery body was heated and dried.
- the flat-plate laminated battery body is packed with an aluminum laminated film, the inside of the pack is decompressed, and the outer surface of the flat-layer laminated structure battery is brought into close contact with the film. 5 may be injected, and an electrolytic solution may be injected into at least the gap, and finally the opening may be sealed.
- the battery body is used. Since the back surface and the film are in close contact with each other, it is possible to prevent the electrolyte solution from flowing into the back surface of the battery body, to eliminate unnecessary electrolyte solutions that do not contribute to the electrolytic action, and to reduce the weight of the entire battery. .
- the positive electrode 3 is closely adhered and bonded between the two separators 4 in the same manner as described above, and an adhesive resin liquid is applied to one surface of the separator 4 with the positive electrode 3 interposed therebetween.
- the process of pasting the negative electrode 5 on the application surface, and then pasting another positive electrode on the negative electrode 5 in which the positive electrode is pasted on the negative electrode 5 overnight may be repeated.
- a viscous adhesive resin liquid prepared as the adhesive resin layer 11 shown in Example 1 by mixing the following compound in place of polyvinylidene fluoride and N-methylpyrrolidone in the same composition ratio was used.
- a battery having a flat laminated battery body shown in FIG. 1 was produced in the same manner as in Example 1 above.
- the peel strengths of the positive electrode active material layer 7 and Separation 4 and the negative electrode active material layer 9 and Separation 4 of this flat plate-shaped laminated battery were measured, the strengths were 15 to 70, respectively. gf / cm, converged to the range of 10 to 70 gf / cm. W
- a lithium ion secondary battery was produced by injecting an electrolytic solution in the same manner as in Example 1 above, packing the package with an aluminum laminate film, and sealing it.
- a battery that was thin, lightweight, excellent in charge / discharge characteristics, and large in battery capacity was obtained.
- the positive electrode active material paste is applied to an aluminum mesh having a thickness of 30 m and an opening ratio of 70% by a doctor blade method so as to have a thickness of 300 / m, and dried at 60 ° C. After being left in the machine for 60 minutes, the positive electrode 3 was produced by pressing again to a thickness of 250 m.
- the depth L of the void formed by la and the concave portion was 10 zm or less. Further, the negative electrode 5 was produced in the same manner using a copper net.
- the depth L of the gap is adjusted to 10 ⁇ m or less, so that diffusion of the reactive species proceeds more easily, and the active material layer 7,09—separate interface Since the ion conduction resistance of the battery can be reduced, a lithium ion secondary battery using the same can be used at a high load factor not inferior to a conventional liquid electrolyte battery.
- the depth L of the gap 12 can be adjusted by the pressing force during rolling when forming the positive electrode and the negative electrode, the wire diameter of the net, and the like. Example 4.
- the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, as shown in FIG.
- Such a flat-plate laminated battery body was manufactured.
- the area of the bonding surface 11a of the electrode laminate 8 was adjusted to 20% of the total area of each of the active material layers 7 and 9. Since the covering portion of the adhesive resin layer is 20%, in the battery using the same, it is possible to suppress an increase in the ionic conduction resistance between the active material layers 7 and 9, and it is not inferior to the conventional liquid electrolyte type battery. Use at a high load factor became possible.
- the area of 1 la of the joint surface is adjusted by the wire diameter of the net, the porosity, etc. It is adjusted by the shape of the active material layers 7 and 9 and the surface of the separator 4, and the application (adhesion) state of the adhesive resin. it can.
- the positive electrode active material base was applied to a 300-m-thick aluminum punching metal current-collecting base material with a thickness of 30 / m and an aperture ratio of 80% by the doctor blade method to a thickness of 300 m. After standing in a drier at 0 ° C. for 60 minutes, it was pressed again so as to have a thickness of 250 ⁇ m, thereby producing a positive electrode 3 in which projections and depressions were formed on the surface of the active material layer 7. Also, the negative electrode 5 was manufactured by forming a convex portion and a concave portion on the surface of the active material layer 9 using a copper-made punching metal in the same manner.
- the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, as shown in FIG. A flat plate-shaped laminated battery body was produced.
- the depth L of the void 12 formed between the active material layers 7 and 9 and the separator 4 by the concave surface 11 a and the concave portion of the convex portion of the electrode laminate 8 is reduced to 10 ⁇ m or less.
- the depth L of the gap can be adjusted by the pressing force during rolling during electrode formation, the aperture ratio of the punched metal, the shape of the holes, and the like.
- the depth of the voids By adjusting the depth of the voids to 10 m or less, diffusion of the reactive species proceeds more easily, so that the ionic conduction resistance of the active material layers 7 and 9 and the separator 4 can be reduced. It can be used at a high load rate that is not inferior to that of liquid electrolyte type batteries.
- the positive electrode active material paste was applied to a thickness of 300 zm on a punched aluminum current collecting base material with a thickness of 30 zm and an aperture ratio of 80% by the dough-blade method to a thickness of 300 zm. After standing in a dryer at 60 ° C. for 60 minutes, it was pressed again so as to have a thickness of 200 m, and a positive electrode 3 in which convex portions and concave portions were formed on the surface of the active material layer 7 was produced. Also, the negative electrode 5 was manufactured by forming a convex portion and a concave portion on the surface of the active material layer 9 using a copper-made punching metal in the same manner.
- the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, and a flat plate as shown in FIG. A laminated battery structure was produced.
- the area of 1 la of the bonding surface between the active material layers 7 and 9 and the separator was adjusted to 20% of the total area of each of the active material layers 7 and 9. 9 and Separation—The rise in ion conduction resistance in the evening can be suppressed, in other words, it can be reduced, making it possible to use the battery at a high load factor that is not inferior to conventional liquid electrolyte type batteries.
- the positive electrode active material paste is applied on a 30- ⁇ m-thick aluminum foil current-collecting base material to a thickness of 300 m by the Doc Yuichi Blade Method, and then dried in a 60 ° C dryer. After standing for 60 minutes, an expanded metal with a thickness of 30 3m and an aperture ratio of 20% is pressed on the surface of the active material paste, and the expanded metal is pressed.
- the positive electrode 3 was produced by forming irregularities having a depth of 30 / m on the surface of the active material layer 7 by removing the metal, and then pressing again so that the total thickness became 250 / m.
- Negative electrode 5 was also produced in the same manner using a copper foil current collector.
- the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated.
- a flat laminated structure battery body as shown in the figure was produced. At that time, the depth L of the void 10 formed by the recesses on the surfaces of the active material layers 7 and 9 between the active material layers 7 and 9 and the separator 4 was adjusted to be 10 m or less.
- the positive electrode active material paste is applied on a 30 / m-thick aluminum foil current-collecting base material 5 to a thickness of 300 m by a doctor blade method, and dried in a 60 ° C dryer. After standing for 60 minutes, a punching metal with a thickness of 30 / m and an aperture ratio of 20% is pressed on the surface of the active material paste, and the punching metal is removed to form irregularities with a depth of 30 ⁇ m on the electrode surface. After that, pressing was performed again so that the total thickness became 250 ⁇ m, and a positive electrode was produced. Negative electrode 5 was also prepared in the same manner using a copper foil current collector.
- the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, as shown in FIG. A flat plate-shaped laminated battery body was produced.
- the area of the junction surface 11a between the active material layers 7, 9 and the separator 4 was adjusted to 20% of the total area of the active material layers 7, 59, so that the active material layers 7, 9 and the separator were separated.
- the rise in ionic conduction resistance during one night can be suppressed, and the conventional liquid electrolyte It can be used at a high load rate that is not inferior to a rechargeable battery.
- a battery was manufactured in the same manner as in Example 1 except that only the method of applying the adhesive resin liquid was changed.
- a porous polypropylene sheet with a width of 12 cm and a thickness of 25 m (available from Hoechst # 24) 0 0) was taken out, and a shingle-shaped screen 19 having a hole 19 a in a dot shape having a diameter of 100 ⁇ m was pressed onto the separation material 14.
- the adhesive resin liquid shown in Example 1 was dropped on the screen 19, and the adhesive resin was rolled from the screen at the coating port 21 to form a dot-like adhesive resin liquid on the separator. Transfer coating was possible.
- the adhesive resin liquid was successfully applied to the two separators 4 sandwiching the negative electrode 5 therebetween.
- the adhesive resin liquid shown in Example 2 was used, the adhesive resin liquid could be applied favorably in the form of dots on a separate plate. In this way, a lithium secondary battery having the same excellent characteristics as in Example 1 above was obtained even when the separation resin to which the adhesive resin layer was attached was used.
- a battery was manufactured in the same manner as in Example 1 except that only the method of applying the adhesive resin liquid was changed.
- a porous polypropylene sheet with a width of 12 cm and a thickness of 25 / m (Hoechst Celgard # 2400) is used as a material for separating material 14 and bundled in a roll.
- a beaker-like screen 26 with holes formed in the shape of dots was placed in the vicinity of the surface of the material 14 for separation.
- the adhesive resin liquid was sprayed onto the separation material 14 using the spray gun filled with the adhesive resin liquid shown in Example 1. Spraying evenly on the surface of Separation material 14 The adhesive resin liquid was applied in a dot-like manner.
- the adhesive resin liquid was applied favorably to the two separators 4 joined together with the negative electrode 5 interposed therebetween.
- the amount of the adhesive resin adhered could be adjusted by changing the spray speed.
- the adhesive resin liquid shown in Example 2 was used, the adhesive resin liquid could be satisfactorily applied to the separation material in a dot-like manner.
- a battery was manufactured in the same manner as in Example 1 except that only the method of applying the adhesive resin liquid was changed.
- a roll of 12 cm wide and 25 mm thick porous polypropylene sheet (Hoechst Cell Guard # 2) 400) was taken out, and the adhesive resin liquid shown in Example 1 was filled into eight dispensers 28 arranged on one side of the separation material 14.
- This adhesive resin liquid was applied intermittently to the surface of the separation material 14 at the same time as the separation resin material 14 was moved, whereby the adhesive resin solution could be applied in a dot-like manner.
- the adhesive resin liquid was successfully applied in a dotted manner to the two separators 4 joined together with the negative electrode 5 interposed therebetween.
- the adhesive resin liquid shown in Example 2 was used, the adhesive resin liquid was successfully applied to both surfaces of the separator.
- a lithium secondary battery having excellent characteristics was obtained by using Separation overnight to which the adhesive resin layer was adhered.
- the preparation of the negative electrode 5 and the positive electrode 3 and the preparation of the adhesive resin liquid were performed in the same manner as in Example 1 above.
- the adhesive resin liquid prepared on one side of each of the two strip-shaped separators 4 was used as in Example 1 above.
- apply in the form of dots After sandwiching the strip-shaped positive electrode between the two surfaces, bonding them together and placing them in a hot-air dryer at 60 ° C for 2 hours, evaporating the NMP of the adhesive resin solution, and separating the two sheets in the evening The positive electrode was joined.
- the prepared adhesive resin solution is applied to one surface of the strip-shaped separator with the positive electrode interposed therebetween in a similar manner in a dot-like manner, and one end of the separator is placed with this one surface in the middle.
- the negative electrode 5 cut into a predetermined size was sandwiched between the folds and the fold, and the pieces were overlaid and passed through Lamine overnight.
- the adhesive resin liquid prepared above was applied to the other surface of the strip-shaped separator in a dot-like manner in the same manner, and the predetermined size was applied to a position facing the negative electrode 5 sandwiched between the folds.
- a battery body having the above electrode laminate was formed, and this battery body was dried while being pressurized to produce a flat-plate wound type laminated structure battery body as shown in FIG.
- the current collectors connected to the ends of each of the negative electrode current collectors of the flat-plate-shaped laminated battery body were electrically connected in parallel by spot welding. Further, the flat wound type laminated structure battery body was impregnated with an electrolytic solution in the same manner as in Example 1 and sealed to obtain a secondary battery.
- the positive electrode 3 and the negative electrode 5 and the separator 4 are in close contact with each other by the adhesive resin layer 11 attached to the joint surface of the convex portion, and Since good ion conductivity can be ensured by the retained electrolyte, a thin, light-weight, large-capacity battery with excellent charge / discharge characteristics that does not require a strong outer can was obtained.
- a strip-shaped positive electrode 3 is joined between strip-shaped separators 4 while being wound up, and a plurality of negative electrodes 5 having a predetermined size are sandwiched therebetween.
- the strip-shaped negative electrode 5 is placed between the strip-shaped separators 4.
- a method may be used in which a plurality of the positive electrodes 3 having a predetermined size are sandwiched therebetween while the joined members are wound up.
- the method of winding the separator 4 has been described, but the band-shaped seno, which is formed by joining the band-shaped negative electrode 5 or the positive electrode 3 between the layers 4, is folded into a predetermined size.
- a method in which the positive electrode 3 or the negative electrode 5 is sandwiched therebetween and bonded together may be used.
- the strip-shaped positive electrode 3 is arranged between two strip-shaped separators 4, and the strip-shaped negative electrode 5 is arranged so as to protrude outside the one separator by a certain amount.
- the prepared adhesive resin liquid is applied to the inner surface of each separator 4 and the outer surface of the separator 4 on which the negative electrode 5 is to be disposed, in a dot-like manner by the above-described coating method.
- a predetermined amount of one end of the negative electrode 5 is passed through Lamine overnight, and then a negative electrode 5, Separe night 4, Positive electrode 3 and Separe night 4 are laminated to form a laminar laminate. did.
- the prepared adhesive resin liquid is applied to the outer surface of the other separator in the band-shaped laminate, and the protruded negative electrode 5 is bent and bonded to the coated surface, and the bent negative electrode 5 is bonded.
- the laminated body that has been laminated is wrapped in an elliptical shape so as to be wrapped inside, to form a battery body having a plurality of electrode laminates as shown in FIG. 3, and this battery body is dried while being pressurized. Then, the negative electrode, the separator, and the positive electrode were simultaneously bonded to produce a flat-plate-type laminated battery.
- Example 1 An electrolytic solution was injected into the flat wound type laminated structure battery body in the same manner as in Example 1 and sealed to obtain a battery. As in the case of Example 1 above, a battery having a small thickness, light weight, excellent charge / discharge characteristics, and a large battery capacity was obtained.
- a strip-shaped positive electrode 3 is arranged between strip-shaped separators 4.
- the negative electrode 5 is placed outside the separator 4 and rolled up.
- the belt-like negative electrode 5 is placed between the belt-like separator 4 and the other separator is placed outside the separator 4.
- a method of arranging and winding the positive electrode 3 may be used.
- It is used as a secondary battery for portable electronic devices such as personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped while improving the performance of the battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
A lithium ion secondary battery in which the electric connection between an active material layer and a separator can be maintained without using a solid casing, and the higher energy density and the optional forming such as thinning are possible, and which is excellent in charge and discharge property and is large in battery capacity. This plate-shaped lamination-structure battery is equipped with layers of electrodes laminates where projections and recesses are made at at least two faces, a face adjoining a separator of a positive electrode active material layer and a negative electrode active material layer and a face opposed to both active material layers of the separator, and the three members are joined and stuck fast to one another by adhesive resin layers, and also electrolytes including lithium ions are retained in the separator and the space made by the junction face of the projection and the recesses for electrical connection.
Description
W W
明 細 Details
:次電池及びその製造方法 技術分野 : Next battery and its manufacturing method
本発明は電解質を保持するセパレ一夕を挟んで正極および負極が対 向してなるリチウムイオン二次電池に関するもので、 詳しくは、 正極 および負極とセパレー夕との電気的接続を改良し、 強固な金属製の外 装缶が不要で薄型等の任意の形態をとりうる電池構造および該構造を0 形成する製造方法に関するものである。 背 The present invention relates to a lithium ion secondary battery in which a positive electrode and a negative electrode face each other with a separator holding an electrolyte therebetween. TECHNICAL FIELD The present invention relates to a battery structure which does not require an external metal can and can take any form such as a thin shape, and a manufacturing method for forming the structure. Height
携帯用電子機器の小型 ·軽量化への要望は非常に大きく、 その実現 のためには電池の性能向上が不可欠である。 そのため、 近年、 この電5 池性能の向上を図るために、 種々の電池の閧発、 改良が進められてい る。 電池に期待されている特性の向上には、 高電圧化、 高エネルギー 密度化、 耐高負荷化、 任意形状化、 安全性の確保などがある。 中でも リチウムイオン電池は、 現有する電池の中で最も高電圧、 高工ネルギ 一密度、 耐高負荷が実現できる二次電池であり、 現在でもその改良が0 盛んに進められている。 There is a great demand for smaller and lighter portable electronic devices, and to achieve this, it is essential to improve battery performance. Therefore, in recent years, various batteries have been proposed and improved in order to improve the battery performance. Improvements in the characteristics expected of batteries include higher voltage, higher energy density, higher load resistance, arbitrary shape, and safety. Among them, the lithium-ion battery is the secondary battery that can realize the highest voltage, the highest energy density and the highest load among the existing batteries, and its improvement is being actively promoted even today.
このリチウムィオン二次電池はその主要な構成要素として、 正極、 負極及び両電極間に挟まれるイオン伝導層を有する。 現在実用化され ているリチウムイオン二次電池においては、 正極にはリチウムーコバ ルト複合酸化物などの活物質粉末を電子電導体粉末とバインダ一樹脂5 とで混合してアルミニウム集電体に塗布して板状としたもの、 負極に は炭素系の活物質粉末をバインダ一樹脂と混合し銅集電体に塗布して
板状としたものが用いられている。 またイオン伝導層にはポリエチレ ンゃポリプロピレンなどの多孔質フィルムをリチウムイオンを含む非 水系の溶媒で満たしたものが使用されている。 This lithium ion secondary battery has, as its main components, a positive electrode, a negative electrode, and an ion conductive layer sandwiched between both electrodes. In a lithium-ion secondary battery that is currently in practical use, an active material powder such as a lithium-cobalt composite oxide is mixed with an electron conductor powder and a binder-resin 5 for a positive electrode and applied to an aluminum current collector. For the negative electrode, a carbon-based active material powder is mixed with a binder resin and applied to the copper current collector for the negative electrode. A plate shape is used. For the ion conductive layer, a porous film made of polyethylene or polypropylene filled with a non-aqueous solvent containing lithium ions is used.
例えば第 9図は、 特開平 8— 8 3 6 0 8号公報に開示された従来の 円筒型リチウムイオン二次電池の構造を示す断面模式図である。 第 9 図において、 1は負極端子を兼ねるステンレス製などの外装缶、 2は この外装缶 1内に収納された電極体であり、 電極体 2は正極 3と負極 4間にセパレー夕 5を配置した電極積層体を渦巻状に巻いた構造にな つている。 この電極体 2は、 正極 3、 セパレー夕 4および負極 5の各 面間の電気的接続を維持するために外部からの圧力を電極体 2に与え る必要がある。 そのため電極体 2を強固な外装缶 1に入れ、 加圧する ことで上記各面間の接触を保っている。 また角形電池では短冊状の電 極積層体を束ねて角型の金属缶に入れるなどの方法により、 外部から 力を加えて押さえつける方法が行われている。 For example, FIG. 9 is a schematic sectional view showing the structure of a conventional cylindrical lithium ion secondary battery disclosed in Japanese Patent Application Laid-Open No. 8-83608. In FIG. 9, 1 is an outer can made of stainless steel or the like also serving as a negative electrode terminal, 2 is an electrode body housed in the outer can 1, and 2 is a separator 5 disposed between the positive electrode 3 and the negative electrode 4. The electrode stack is spirally wound. The electrode assembly 2 needs to apply external pressure to the electrode assembly 2 in order to maintain electrical connection between the positive electrode 3, the separator 4, and the negative electrode 5. Therefore, the electrode body 2 is placed in the strong outer can 1 and pressurized to maintain contact between the above-described surfaces. In the case of prismatic batteries, a method has been used in which rectangular strips of electrode stacks are bundled and placed in a square metal can to apply force from the outside to hold them down.
上述のように現在の市販のリチウムイオン二次電池においては、 正 極と負極を密着させる方法として、 金属等でできた強固な外装缶を用 いる方法がとられている。 外装缶がなければ電極積層体の面間が剥離 し、 電気的な接続を維持することが困難になり、 電池特性が劣化して しまう。 一方、 この外装缶の電池全体に占める重量および体積が大き いために電池自身のエネルギー密度を低下させるだけでなく、 外装缶 自身が剛直であるために電池形状が限定されてしまい、 任意の形状と するのが困難である。 As described above, in a current commercially available lithium ion secondary battery, a method of using a strong outer can made of metal or the like is used as a method of bringing the positive electrode and the negative electrode into close contact. Without an outer can, the surfaces of the electrode stack will peel off, making it difficult to maintain electrical connection and deteriorating battery characteristics. On the other hand, the weight and volume of the outer can occupying the entire battery not only lowers the energy density of the battery itself, but also limits the shape of the battery due to the rigidity of the outer can itself. Difficult to do.
このような背景のもと、 軽量化や薄型化を目指し、 強固な外装缶の 不要なリチウムィオン二次電池の開発が進められている。 上記外装缶 の不要な電池の開発のポイントは、 正極および負極とそれらに挟まれ るイオン伝導層 (セパレ一夕) との電気的な接続を外部から力を加え
W Against this background, the development of lithium-ion rechargeable batteries that do not require strong outer cans is being pursued with the aim of reducing weight and thickness. The point of the development of batteries that do not require the above-mentioned outer can is to apply external force to the electrical connection between the positive and negative electrodes and the ion conductive layer (separate overnight) sandwiched between them. W
3 Three
ることなく如何に維持するかということである。 このような外力が不 要な接合手段のひとつとして、 樹脂などを用い正極および負極とセパ レー夕とを密着させる手法が提唱されている。 It is how to maintain without doing. As one of the joining means that does not require such an external force, a method of adhering the positive electrode and the negative electrode to the separator using resin or the like has been proposed.
例えば特開平 5— 1 5 9 8 0 2号公報には、 イオン伝導性の固体電 5 解質層と正極及び負極を熱可塑性樹脂結着剤を用いて加熱により一体 化する製造方法が示されている。 この場合は正極および負極と固体電 解質層とを一体化することによって電極間を密着させているので、 外 部から力を加えずとも正極および負極と固体電解質層間の電気的接続 が維持され電池として動作する。 For example, Japanese Patent Application Laid-Open No. 5-159802 discloses a manufacturing method in which an ion-conductive solid electrolyte layer and a positive electrode and a negative electrode are integrated by heating using a thermoplastic resin binder. ing. In this case, the electrodes are brought into close contact by integrating the positive electrode and the negative electrode with the solid electrolyte layer, so that the electrical connection between the positive electrode, the negative electrode and the solid electrolyte layer is maintained without applying external force. Operates as a battery.
0 従来のリチウムイオン二次電池は上記のように構成されており、 正 極および負極とセパレ一夕間の密着性、 電気的接続を確保するために 強固な外装缶を用いたものでは、 発電部以外である外装缶の電池全体 に占める体積や重量の割合が大きくなり、 エネルギー密度の高い電池 を作製するには不利であるという問題点があった。 また、 正極および5 負極とセパレー夕を接着性樹脂を介して密着させる方法が考えられて いるが、 例えば固体電解質 (セパレ一夕相当部品) と正極および負極 を単純に接着性樹脂を介して密着させる場合、 接着性樹脂層の抵抗が 大きいために電池セル内部のイオン伝導抵抗が増大し、 電池特性が低 下してしまうという問題点があった。0 Conventional lithium-ion secondary batteries are configured as described above, and if a strong outer can is used to secure the adhesion between the positive and negative electrodes and the separation However, the ratio of the volume and weight of the outer can, which is not the outer part, to the entire battery is large, which is disadvantageous for producing a battery having a high energy density. In addition, a method of adhering the positive electrode and the negative electrode to the separator via an adhesive resin has been considered. For example, a solid electrolyte (a part equivalent to Separate) and the positive electrode and the negative electrode are simply adhered to each other via the adhesive resin. In this case, there is a problem that the resistance of the adhesive resin layer is large, so that the ionic conduction resistance inside the battery cell is increased and the battery characteristics are deteriorated.
0 さらに、 特開平 5— 1 5 9 8 0 2号公報の例では正極および負極と 固体電解質とが結着剤で接合されているが、 正極および負極と固体電 解質との界面が結着剤で覆われるので、 例えば液体電解質を利用した 場合に比べてイオン伝導性の点で不利である。 たとえ、 イオン伝導性 を有する結着剤を用いるにしても、 液体電解質と同等以上のイオン伝5 導性を有する材料は一般に見出されておらず、 液体電解質を用いた電 池と同程度の電池性能を得ることは困難であるなどの問題点があった。
W 0 Further, in the example of JP-A-5-158902, the positive electrode and the negative electrode and the solid electrolyte are joined with a binder, but the interface between the positive electrode and the negative electrode and the solid electrolyte is bound. Since it is covered with an agent, it is disadvantageous in terms of ionic conductivity as compared with, for example, the case where a liquid electrolyte is used. Even if a binder having ionic conductivity is used, a material having an ionic conductivity equal to or higher than that of the liquid electrolyte has not been generally found, and the same level of the battery using the liquid electrolyte has been found. There were problems such as difficulty in obtaining battery performance. W
4 Four
本発明は、 かかる課題を解決するために、 本発明者らがセパレ一夕 と正極および負極との好ましい接着方法に関し鋭意検討した結果なさ れたもので、 強固な外装缶を使用せずとも、 正極および負極間のィォ ン伝導抵抗を増大させずに、 正極および負極とセパレ一夕間とを密着 5 させることができ、 高エネルギー密度化、 薄型化、 任意の形態の多層 化が可能で、 充放電特性に優れ、 しかも電池容量の大きい、 コンパク トで安定なリチウムィォン二次電池及びその製造方法を提供すること を目的とする。 0 発明の開示 The present invention has been made as a result of intensive studies on a preferable bonding method between the separator and the positive electrode and the negative electrode in order to solve such a problem, and even without using a strong outer can. The positive electrode and negative electrode can be brought into close contact with the separator 5 without increasing the ion conduction resistance between the positive electrode and the negative electrode, enabling higher energy density, thinner, and multi-layered configurations of any form. An object of the present invention is to provide a compact and stable lithium ion secondary battery having excellent charge / discharge characteristics and a large battery capacity, and a method for manufacturing the same. 0 Disclosure of the Invention
本発明に係るリチウムイオン二次電池の第 1の構成は、 正極集電体 に正極活物質層を接合した正極と、 負極集電体に負極活物質層を接合 した負極と、 上記各活物質層の面との対向面を有し、 かつリチウムィ オンを含む電解液を保持するセパレ一夕とを有する電極積層体を複数5 層備え、 上記対向面またはこの対向面に隣合う上記各活物質層の面に 形成された凸部および凹部と、 上記各対向面とこの対向面に隣合う上 記各活物質層の面とを接着性樹脂層により接合することにより形成さ れた、 上記凸部の接合面および上記凹部により形成され所定の深さを 有する空隙と、 この空隙に保持されたリチウムイオンを含む電解液と0 を有するものである。 The first configuration of the lithium ion secondary battery according to the present invention includes a positive electrode in which a positive electrode active material layer is joined to a positive electrode current collector, a negative electrode in which a negative electrode active material layer is joined to a negative electrode current collector, A plurality of electrode laminates each having a surface facing the surface of the layer and having a separator for holding an electrolyte containing lithium ions; The protrusions and recesses formed on the surface of the layer, and the protrusions formed by joining each of the facing surfaces and the surface of each of the active material layers adjacent to the facing surfaces with an adhesive resin layer. A void having a predetermined depth formed by the joint surface of the portion and the recess, and an electrolyte containing lithium ions held in the void and zero.
これによれば、 凸部の接合面により正極および負極活物質層とセパ レー夕との密着性が確保できるとともに、 凸部の接合面と凹部により 形成される空隙に保持された電解液により、 正極および負極活物質層 とセパレ一夕間の良好なイオン伝導性を確保できるので、 高工ネルギ5 一密度化、 薄型化が可能で任意の形態をとりうる充放電特性に優れた リチウムイオン二次電池が得られる。 また、 電極積層体の多層化によ
り、 軽量、 小型で、 しかも電池容量の大きな安定した電池が得られる。 本発明に係るリチウムィォン二次電池の第 2の構成は、 第 1の構成 において、 空隙の深さを 3 0 m以下としたものである。 According to this, the adhesion between the positive electrode and the negative electrode active material layer and the separator can be ensured by the joint surface of the convex portion, and the electrolytic solution held in the gap formed by the joint surface of the convex portion and the concave portion allows Good ion conductivity between the positive and negative electrode active material layers and the separator can be ensured, so that high energy consumption is achieved. The following battery is obtained. In addition, due to the multilayered electrode stack, In addition, a stable, lightweight, compact battery with a large battery capacity can be obtained. In a second configuration of the lithium ion secondary battery according to the present invention, in the first configuration, the depth of the gap is set to 30 m or less.
これにより、 反応種の拡散が容易に進み、 正極および負極活物質層 とセパレー夕間のイオン伝導抵抗の低減を図ることができ、 従来の液 体電解質型電池に劣らない高負荷率での使用が可能となる。 This facilitates the diffusion of the reactive species, reduces the ionic conduction resistance between the positive electrode and negative electrode active material layers and the separator, and enables the use at a high load factor comparable to conventional liquid electrolyte batteries. Becomes possible.
本発明に係るリチウムィオン二次電池の第 3の構成は、 第 1の構成 において、 各面間の接合面の面積が、 上記各対向面の総面積の 1 0〜 3 0 %としたものである。 A third configuration of the lithium ion secondary battery according to the present invention is the lithium ion secondary battery according to the first configuration, wherein an area of a bonding surface between the respective surfaces is 10 to 30% of a total area of the respective opposing surfaces. is there.
これにより、 正極および負極活物質層とセパレ一夕間のイオン伝導 抵抗の上昇を抑制でき、 従来の液体電解質型電池に劣らない高負荷率 での使用が可能となる。 As a result, it is possible to suppress an increase in ionic conduction resistance between the positive electrode and negative electrode active material layers and the separation, and it is possible to use the battery at a high load factor that is not inferior to that of a conventional liquid electrolyte battery.
本発明に係るリチウムィォン二次電池の第 4の構成は、 第 1の構成 において、 セパレー夕と正極および負極活物質層との接合強度が、 そ れぞれ正極集電体と正極活物質層および負極集電体と負極活物質層の 接合強度と同等以上としたものである。 According to a fourth configuration of the lithium ion secondary battery according to the present invention, in the first configuration, the bonding strength between the separator and the positive electrode and the negative electrode active material layer is respectively equal to the positive electrode current collector and the positive electrode active material layer. And a bonding strength equal to or higher than the bonding strength between the negative electrode current collector and the negative electrode active material layer.
これにより、 活物質層とセパレ一夕間の剥離よりも電極の破壊 (活 物質層と集電体の剥離) の方が優先的に起こる。 強固な外装缶を用い ずとも活物質層とセパレー夕の密着性を充分に確保、 維持できる。 本発明に係るリチウムイオン二次電池の第 5の構成は、 第 1の構成 において、 接着性樹脂層を多孔性としたものである。 As a result, destruction of the electrode (peeling of the active material layer and the current collector) occurs more preferentially than peeling of the active material layer from the separator. Even if a strong outer can is not used, sufficient adhesion between the active material layer and the separator can be secured and maintained. According to a fifth configuration of the lithium ion secondary battery according to the present invention, in the first configuration, the adhesive resin layer is made porous.
これにより、 正極および負極間のイオン伝導抵抗をさらに低減する ことができる。 Thereby, the ion conduction resistance between the positive electrode and the negative electrode can be further reduced.
本発明に係るリチウムィオン二次電池の第 6の構成は、 第 1の構成 において、 接着性樹脂層が付着されていない空隙を形成するものであ
これにより、 さらなるイオン伝導抵抗の上昇を抑えることができる。 本発明に係るリチウムイオン二次電池の第 7の構成は、 第 1の構成 において、 電極積層体の複数層が、 正極と負極とを、 切り離された複 数のセパレー夕間に交互に配置することにより形成されたものである。 本発明に係るリチウムイオン二次電池の第 8の構成は、 第 1の構成 において、 電極積層体の複数層が、 正極と負極とを、 巻き上げられた セパレ一夕間に交互に配置することにより形成されたものである。 本発明に係るリチウムィオン二次電池の第 9の構成は、 第 1の構成 において、 電極積層体の複数層が、 正極と負極とを、 折り畳んだセパ レ一夕間に交互に配置することにより形成されたものである。 According to a sixth configuration of the lithium ion secondary battery according to the present invention, in the first configuration, a void to which the adhesive resin layer is not attached is formed. Thereby, a further increase in ion conduction resistance can be suppressed. In a seventh configuration of the lithium ion secondary battery according to the present invention, in the first configuration, a plurality of layers of the electrode laminate are configured such that a positive electrode and a negative electrode are alternately arranged between a plurality of separated separators. It is formed by this. An eighth configuration of the lithium ion secondary battery according to the present invention is the lithium ion secondary battery according to the first configuration, wherein the plurality of layers of the electrode laminate are configured such that the positive electrode and the negative electrode are alternately arranged during the separated separation. It was formed. The ninth configuration of the lithium ion secondary battery according to the present invention is the ninth configuration according to the first configuration, wherein a plurality of layers of the electrode laminate are configured such that a positive electrode and a negative electrode are alternately arranged in a folded separator. It was formed.
第 7ないし第 9の構成によれば、 充放電特性に優れ、 軽量、 小型で、 しかも電池容量の大きな安定した多層構造の電池が簡便に得られる。 本発明に係るリチウムィォン二次電池の製造方法は、 正極活物質層 の一方の面、 負極活物質層の一方の面およびセパレー夕の対向する二 つの面の少なくとも二つの面に凸部および凹部を形成する工程、 上記 正極活物質層の一方の面、 上記負極活物質層の一方の面および上記セ パレ一夕の対向する二つの面の少なくとも二つの面に接着性樹脂層を 付着する工程、 上記セパレ一夕の各面に上記正極活物質層の一方の面 および負極活物質層の一方の面を貼り合わせて加圧接合し、 上記凸部 による接合面と上記凹部による所定の深さの空隙とを有する電極積層 体の複数層を形成する工程を備えたものである。 According to the seventh to ninth configurations, a battery having excellent charge-discharge characteristics, light weight, small size, and a stable multilayer structure having a large battery capacity can be easily obtained. The method for manufacturing a lithium ion secondary battery according to the present invention includes a method of manufacturing a lithium ion secondary battery, comprising: a convex portion and a concave portion on at least two surfaces of one surface of a positive electrode active material layer, one surface of a negative electrode active material layer, and two opposite surfaces of a separator. Forming an adhesive resin layer on at least two surfaces of one surface of the positive electrode active material layer, one surface of the negative electrode active material layer, and two opposing surfaces of the separator. One surface of the positive electrode active material layer and one surface of the negative electrode active material layer are bonded to each surface of the separator and press-bonded, and a bonding surface formed by the convex portion and a predetermined depth formed by the concave portion. And a step of forming a plurality of layers of the electrode laminate having the above voids.
これにより、 上記のコンパクトで、 かつ高性能で電池容量が大きな 多層構造のリチウムイオン二次電池が、 簡便に、 作業性良く得られる。 また、 その製造に際し、 局部的に接着性樹脂層を付着させ、 接着性 樹脂層が付着されていない空隙を形成するようにしたものである。 これにより、 電池内部の正極および負極間の抵抗を低く保つことが
できる。 図面の簡単な説明 As a result, a compact, high-performance, multi-layer lithium ion secondary battery having a large battery capacity can be obtained simply and with good workability. In the production, an adhesive resin layer is locally adhered to form a void to which the adhesive resin layer is not adhered. This keeps the resistance between the positive and negative electrodes inside the battery low. it can. BRIEF DESCRIPTION OF THE FIGURES
第 1図、 第 2図および第 3図は、 それぞれ本発明のリチウムイオン 二次電池の一実施の形態の電池構造を示す断面模式図であり、 第 4図 は本発明の一実施の形態に係る電池を構成する電極積層体を示す断面 模式図であり、 第 5図は本発明の一実施の形態に係る微小孔を有する ロールによる接着性樹脂液塗付方法を示す説明図であり、 第 6図は本 発明の一実施の形態に係るスクリーン印刷による接着性樹脂液塗付方 法を示す説明図であり、 第 7図は本発明の一実施の形態に係るスプレ 一ガンとスクリーンによる接着性樹脂液塗付方法を示す説明図であり、 第 8図は本発明の一実施の形態に係るデイスペンザによる接着性樹脂 液塗付方法を示す説明図であり、 第 9図は従来のリチウムイオン二次 電池の一例を示す断面模式図である。 発明を実施するための最良の形態 FIGS. 1, 2, and 3 are schematic cross-sectional views each showing a battery structure of an embodiment of the lithium ion secondary battery of the present invention, and FIG. 4 is a sectional view showing an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing an electrode laminate constituting such a battery, and FIG. 5 is an explanatory diagram showing a method of applying an adhesive resin liquid using a roll having micropores according to one embodiment of the present invention. FIG. 6 is an explanatory view showing a method of applying an adhesive resin liquid by screen printing according to one embodiment of the present invention, and FIG. 7 is a diagram illustrating an adhesion between a spray gun and a screen according to one embodiment of the present invention. FIG. 8 is an explanatory view showing a method of applying an adhesive resin liquid, FIG. 8 is an explanatory view showing a method of applying an adhesive resin liquid by a dispenser according to an embodiment of the present invention, and FIG. FIG. 2 is a schematic cross-sectional view illustrating an example of a secondary battery. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態を図に基づいて説明する。 An embodiment of the present invention will be described with reference to the drawings.
第 1図、 第 2図および第 3図は、 それぞれ本発明のリチウムイオン 二次電池の一実施の形態の電池構造を示す断面模式図であり、 第 1図 は正極 3、 セパレ一夕 4、 負極 5を順に繰り返し積み重ねて形成した 複数層の電極積層体を有する平板状積層構造電池体を、 第 2図は帯状 のセパレ一夕間に帯状の正 (負) 極を接合したものを巻き上げつつ、 複数の負 (正) 極を挟んで貼り合わせて複数層の電極積層体を形成し た平板状卷型積層構造電池体を、 第 3図は帯状のセパレ一夕間に帯状 の正 (負) 極を配置し、 その一側に帯状の負 (正) 極を配置して長円 状に卷回し、 複数層の電極積層体を形成した平板状卷型積層構造電池
体を示している。 第 4図は本発明に係る上記電池を構成する電極積層 体 8の一実施の形態を示す断面模式図である。 図において、 3は正極 活物質層 7を正極集電体 6に接合してなる正極、 5は負極活物質層 9 を負極集電体 1 0に接合してなる負極、 4は正極 3と負極 5間に配置 され、 リチウムイオンを含む電解液を保持するセパレ一夕であり、 セ パレー夕 4の両活物質層 7 , 9との対向面と正極活物質層 7及び負極 活物質層 9のセパレ一夕 4の対向面に隣り合う (対向する) 面とには 凸部及び凹部が形成されている。 1 1はセパレー夕 4の対向面と隣り 合う両活物質層 7, 9の面とを接合する接着性樹脂層で、 当接する凸 部に付着され 3者を接合している。 また、 1 2は電極 (即ち活物質層 7, 9 ) とセパレ一夕 4間、 凸部の接合面 1 1 aと凹部により形成さ れた所定の深さ Lを有する空隙で、 この空隙 1 2にリチウムイオンを 含む電解液が保持される。 FIGS. 1, 2 and 3 are schematic cross-sectional views showing the battery structure of one embodiment of the lithium ion secondary battery of the present invention, and FIG. 1 shows a positive electrode 3, a separator 4, Figure 2 shows a flat laminated battery with multiple layers of electrode stacks formed by repeatedly stacking the negative electrode 5 in order. Fig. 3 shows a plate-shaped wound type laminated battery body in which a plurality of electrode laminates are formed by laminating a plurality of negative (positive) poles therebetween. A flat wound type laminated battery in which a pole is arranged, a strip-shaped negative (positive) pole is arranged on one side thereof, and the strip is wound into an elliptical shape to form a multi-layered electrode laminate. Showing body. FIG. 4 is a schematic sectional view showing an embodiment of the electrode laminate 8 constituting the battery according to the present invention. In the figure, reference numeral 3 denotes a positive electrode obtained by bonding a positive electrode active material layer 7 to a positive electrode current collector 6, 5 denotes a negative electrode obtained by bonding a negative electrode active material layer 9 to a negative electrode current collector 10, and 4 denotes a positive electrode 3 and a negative electrode. 5 is a separator that holds an electrolyte containing lithium ions, and is a surface of the separator 4 that faces the two active material layers 7 and 9 and the positive electrode active material layer 7 and the negative electrode active material layer 9. Convex portions and concave portions are formed on the surface adjacent (facing) the opposing surface of Separation 4. Reference numeral 1 denotes an adhesive resin layer for joining the opposing surface of the separator 4 to the surfaces of the adjacent active material layers 7 and 9, which are attached to the abutting projections to join the three members. Reference numeral 12 denotes a gap having a predetermined depth L formed between the electrode (that is, the active material layers 7 and 9) and the separator 4 and formed by the joint surface 11a of the protrusion and the recess. 2 holds an electrolyte containing lithium ions.
この実施の形態では、 正極及び負極活物質層 7 , 9と電解質層とな るセパレー夕の対向面に凹凸を形成し、 凸部の接合面 1 1 aで接着性 樹脂層 1 1を介して電極とセパレ一夕間の密着性を確保でき、 従来の 電池では困難であった電極とセパレ一夕間の剥離抑制が可能となる。 活物質層 7 , 9とセパレ一夕 4とを接着性樹脂により接合、 密着させ ると同時に、 両者間、 凸部の接合面 1 1 aと凹部により形成される所 定の深さを有する空隙 1 2内部に電解液が保持されることにより、 電 極—電解質界面の良好なイオン伝導性を確保でき、 イオン伝導抵抗を 低減することができる。 電極 (正極及び負極) 内部の活物質層中で起 こるイオンの出入り量および対向する電極へのイオンの移動速度およ び移動量を従来の外装缶を用いたリチウムイオン電池程度にすること が可能となる。 外力を加えずとも活物質層 7, 9とセパレ一夕 4間の 電気的接続を維持できる。 従って、 電池構造を維持するための強固な
外装缶が不要となり、 電池の軽量化、 薄型化が可能となり、 任意の形 態の多層構造をとり得るとともに、 従来の電解液を用いた電池と同程 度の優れた充放電特性、 電池性能が得られる。 また、 電極積層体の積 層数に応じて電池容量を増大できる。 In this embodiment, the positive and negative electrode active material layers 7 and 9 are formed with concavities and convexities on opposing surfaces of the separator serving as the electrolyte layer, and the bonding surface 11 a of the convex portion is formed via the adhesive resin layer 11. Adhesion between the electrode and the separator can be ensured overnight, and peeling between the electrode and the separator can be suppressed, which was difficult with conventional batteries. The active material layers 7, 9 and the separation layer 4 are bonded and adhered with an adhesive resin, and at the same time, a gap having a predetermined depth formed by the bonding surface 11a of the convex portion and the concave portion therebetween. By holding the electrolyte inside 12, good ionic conductivity at the electrode-electrolyte interface can be ensured, and ionic conduction resistance can be reduced. Electrodes (Positive electrode and negative electrode) The amount of ions entering and exiting in the active material layer inside and the moving speed and amount of ions to the opposing electrode can be reduced to about the same level as those of conventional lithium ion batteries using an outer can. It becomes possible. The electrical connection between the active material layers 7 and 9 and Separation 4 can be maintained without applying external force. Therefore, to maintain the battery structure Eliminates the need for an outer can, which allows the battery to be lighter and thinner, has a multilayer structure of any shape, and has excellent charge / discharge characteristics and battery performance comparable to those of batteries using conventional electrolytes. Is obtained. Further, the battery capacity can be increased according to the number of layers of the electrode laminate.
なお、 この実施の形態では第 4図に示すように凹部および凸部は正 極および負極活物質層 7, 9の面に、 規則的に形成されており、 セパ レ一夕 4と正極および負極活物質層 7 , 9との接合領域が、 セパレ一 夕 4の両面で、 互いに符合するように接合している。 この構成により、 セパレー夕 4と正極および負極活物質層 7 , 9との接合面に力が働い た場合にも強固な接合強度を維持することができる。 In this embodiment, as shown in FIG. 4, the concave portions and the convex portions are regularly formed on the surfaces of the positive electrode and the negative electrode active material layers 7 and 9, and the separator 4, the positive electrode and the negative electrode are formed. The joining regions with the active material layers 7 and 9 are joined so that they coincide with each other on both surfaces of the separator 4. With this configuration, a strong bonding strength can be maintained even when a force acts on the bonding surface between the separator 4 and the positive electrode and negative electrode active material layers 7 and 9.
一方、 セパレー夕 4の両面で、 凹部および凸部が互いに符合してい ない場合にも有効である。 しかしながら、 かかる構造では、 セパレ一 夕 4と正極および負極活物質層 7 , 9との接合面に力が働いた場合、 接合位置がセパレー夕の両面でずれているため、 セパレ一夕 4にねじ れの方向の力がかかり、 この実施の形態の構造に比べてやや接合が破 壊されやすいという欠点がある。 On the other hand, it is also effective when the concave and convex portions on both sides of Separation 4 are not coincident with each other. However, in such a structure, if a force acts on the joint surface between the separator 4 and the positive and negative electrode active material layers 7 and 9, the joint position is shifted on both surfaces of the separator and the screw is screwed into the separator 4. There is a disadvantage in that the force is applied in these directions, and the joint is slightly broken as compared with the structure of this embodiment.
また、 この実施の形態では正極および負極活物質層 7, 9ならびに セパレ一夕 4の両方に凹凸を形成したが、 正極および負極活物質層 7 , 9のみに凹凸を形成してもよい。 また、 例えばフッ素樹脂の表面に凹 凸を形成したものをセパレ一夕として使用するとともに、 正極および 負極活物質層 7 , 9には凹凸を形成することなく平坦な表面を持つも のを使用してもよい。 Further, in this embodiment, irregularities are formed on both the positive and negative electrode active material layers 7 and 9 and Separation 4, but irregularities may be formed only on the positive and negative electrode active material layers 7 and 9. In addition, for example, a fluororesin having concaves and convexes formed on the surface is used as a separator, and the positive and negative electrode active material layers 7 and 9 have flat surfaces without irregularities. You may.
さらにまた、 この実施の形態では、 接合領域に選択的に接着性樹脂 層 1 1を形成したが、 例えば後述の多孔性の接着性樹脂を用いる場合 等は、 セパレー夕 4の表面全体に塗布するようにしてもよい。 接合領 域に選択的に接着性樹脂層 1 1を形成しょうとすると、 凸部の位置と
接着性樹脂層 1 1のドッ卜の位置とを一致させる必要があるが、 この 場合には、 全面に接着性樹脂を塗布すればよいため、 接着性樹脂層の 形成が容易である。 Furthermore, in this embodiment, the adhesive resin layer 11 is selectively formed in the joining region. However, for example, when a porous adhesive resin described later is used, the adhesive resin layer 11 is applied to the entire surface of the separator 4. You may do so. When the adhesive resin layer 11 is to be selectively formed in the joint area, the position of the convex portion and It is necessary to match the position of the dot of the adhesive resin layer 11. In this case, however, the adhesive resin may be applied to the entire surface, so that the adhesive resin layer can be easily formed.
加えて、 この実施の形態においては、 電解液の注入は、 平板状積層 構造電池体を電解液に浸漬し、 前記電解液を減圧することにより、 前 記空隙内の気体と前記電解液とを置換することによって簡便に達成さ れる。 なお、 注入後、 前記平板状積層構造電池体を加熱し、 乾燥する のが望ましい。 In addition, in this embodiment, the injection of the electrolyte is performed by immersing the flat laminated battery body in the electrolyte and depressurizing the electrolyte, whereby the gas in the gap and the electrolyte are separated. This is easily achieved by substitution. After the injection, it is preferable to heat and dry the flat plate-shaped laminated battery.
さらにまた、 平板状積層構造電池体を可撓性の外装体で被覆し、 外 装体内部を減圧し、 平板状積層構造電池体の外側面を前記外装体に密 着せしめた後に、 外装体の開口部から外装体内に、 電解液を注入し、 少なくとも空隙内に電解液を注入し、 最後に外装体の開口部を封着す るようにしてもよい。 かかる方法によれば、 電解液を供給する際には 前記電池体背面と外装体とは密着しているため、 前記電池体背面への 電解液の回り込みをなくし、 電解作用に寄与しない不要な電解液をな くすことができ、 電池全体としての重量を低減することが可能となる。 また、 活物質層 7 , 9とセパレ一夕 4間に、 凸部の接合面 1 1 aと 凹部により形成される空隙 1 2の深さ Lは、 電解液の伝導度により異 なるが、 通常使用される 1 0 '2 S / c m程度の場合には、 3 0〃m以下 であれば、 活物質層 7 , 9とセパレ一夕 4間のイオン伝導抵抗は充分 小さくなり、 液体電解質型電池に劣らない高負荷率での使用が可能と なるので、 3 0 z m以下とするのが望ましい。 また、 空隙 1 2の深さ Lを 1 0 / m以下にすることにより、 反応種の拡散がより容易に進む ため、 イオン伝導抵抗のより一層の低減を図ることができるので、 1 0 z m以下に調整するのがより望ましい。 さらに、 一般に、 電極反応 の起こる活物質層 7, 9表面には溶液を撹拌しても数〃 mの付着層 (拡
散層) が存在すると言われており、 空隙 1 2の深さ Lをこれ以下に調 整することにより、 反応種の拡散が最も容易に進むと考えられること から、 空隙 1 2の深さ Lを数// m以下とするのが最も望ましい。 Furthermore, after covering the flat plate-shaped laminated battery body with a flexible outer package, depressurizing the inside of the outer package, and adhering the outer surface of the flat laminated battery structure to the outer package, the outer package is formed. The electrolyte may be injected into the exterior body through the opening of the battery, the electrolyte may be injected into at least the gap, and finally, the opening of the exterior body may be sealed. According to this method, when the electrolytic solution is supplied, the back surface of the battery body and the exterior body are in close contact with each other, so that the electrolytic solution does not flow around to the back surface of the battery body, and unnecessary electrolysis that does not contribute to the electrolytic action is performed. The liquid can be eliminated, and the weight of the entire battery can be reduced. In addition, the depth L of the bonding surface 11 a of the convex portion and the gap 12 formed by the concave portion between the active material layers 7 and 9 and the separator 4 varies depending on the conductivity of the electrolyte, but usually, in the case of 1 0 'approximately 2 S / cm is used, 3 if 0〃M less, the active material layer 7, 9 and separators Isseki ion conduction resistance between 4 becomes sufficiently small, the liquid electrolyte type battery Since it can be used at a high load factor not inferior to that of the above, it is preferable to set it to 30 zm or less. Further, by setting the depth L of the voids 12 to 10 / m or less, the diffusion of the reactive species proceeds more easily, so that the ionic conduction resistance can be further reduced. It is more desirable to adjust to. Further, in general, even if the solution is stirred, an adhesion layer of several μm (expansion) is formed on the surfaces of the active material layers 7 and 9 where an electrode reaction occurs. It is thought that diffusion of reactive species will proceed most easily by adjusting the depth L of the voids 12 to less than this value. Is most preferably several / m or less.
また、 接合面 1 l aの面積を、 活物質層 7 , 9とセパレ一夕 4とが 対向する各対向面の総面積の 3 0 %以下とすることにより、 活物質層 7 , 9とセパレ一夕 4間のイオン伝導抵抗の上昇を抑制でき、 従来の 液体電解質型電池に劣らない高負荷率での使用が可能となるので 3 0 %以下とするのが望ましい。 ところが、 接合面 1 1 aの面積を 1 0 % 未満とするとセパレ一夕 4と正極および負極活物質層 7 , 9との接合 強度が弱くなるので、 各面間の接合面 1 1 aの面積は、 各対向面の総 面積の 1 0 %〜3 0 %とするのが望ましく、 2 0 %程度に調整するの が最も望ましい。 Also, by setting the area of 1 la of the bonding surface to 30% or less of the total area of each of the opposing surfaces of the active material layers 7 and 9 and the separation 4, the separation between the active material layers 7 and 9 and the separation Since the increase in ion conduction resistance during the evening can be suppressed, and it is possible to use the battery at a high load factor that is not inferior to conventional liquid electrolyte type batteries, it is desirable that the content be 30% or less. However, if the area of the bonding surface 11a is less than 10%, the bonding strength between the separator 4 and the positive electrode and negative electrode active material layers 7 and 9 becomes weak. Is preferably 10% to 30% of the total area of each facing surface, and most preferably adjusted to about 20%.
また、 正極および負極活物質層 7 , 9とセパレ一夕 4間の接着強度 が充分に大きい場合には、 正極および負極活物質層 7 , 9とセパレ一 夕 4間の剥離よりも正極および負極の破壊 (活物質層と集電体の剥離) の方が優先的に起こるため、 セパレ一夕 4と正極および負極活物質層 7 , 9との接合強度を、 それぞれ正極集電体 6と正極活物質層 7およ び負極集電体 1 0と負極活物質層 9の接合強度と同等以上とすること が望ましい。 When the adhesive strength between the positive and negative electrode active material layers 7 and 9 and the separator 4 is sufficiently large, the peeling between the positive and negative electrode active material layers 7 and 9 and the separator 4 is larger than the separation between the positive and negative electrode active material layers 7 and 9 and the separator 4. Since the destruction of the active material layer (peeling of the active material layer and the current collector) occurs preferentially, the bonding strength between the separator 4 and the positive electrode and the negative electrode active material layers 7 and 9 is increased by the positive current collector 6 and the positive electrode current collector, respectively. It is desirable that the bonding strength between the active material layer 7 and the negative electrode current collector 10 and the negative electrode active material layer 9 be equal to or higher than the bonding strength.
また、 接着性樹脂層 1 1を多孔性とすることにより、 接着性樹脂層、 接合部におけるイオン伝導抵抗の低減を図ることができ、 電極間の抵 抗の低減が可能となる。 さらに、 たとえ接合面 1 l a、 セパレー夕 4 の両面 (対向面) あるいはこの対向面に隣合う活物質層 7 , 9の面全 面に接着性樹脂層 1 1が付着されていても接着性樹脂層 1 1の微小孔 を介してイオン伝導性を確保できるので、 接着性樹脂層 1 1の塗布が 容易になる。
さらに、 接着性樹脂層 1 1が付着されていない空隙を形成すること により、 イオン伝導抵抗をさらに低減することができる。 Further, by making the adhesive resin layer 11 porous, it is possible to reduce the ionic conduction resistance in the adhesive resin layer and the joint, and it is possible to reduce the resistance between the electrodes. Furthermore, even if the adhesive resin layer 11 is adhered to the bonding surface 1 la, both surfaces of the separator 4 (opposite surface) or the entire surface of the active material layers 7 and 9 adjacent to this opposing surface, Since the ion conductivity can be secured through the micropores of the layer 11, the application of the adhesive resin layer 11 is facilitated. Further, by forming a void to which the adhesive resin layer 11 is not attached, the ion conduction resistance can be further reduced.
そして、 上記のように構成されたリチウムイオン二次電池は、 正極 活物質層 7 , 負極活物質層 9の各々一方の面およびセパレー夕 4の対 向する二つの面の少なくとも二つの面に凸部および凹部を形成するェ 程、 正極活物質層 7 , 負極活物質層 9の各々一方の面およびセパレー 夕 4の対向する二つの面の少なくとも二つの面に樹脂層を付着するェ 程、 セパレ一夕 4の各面に正極活物質層 7の一方の面および負極活物 質層 9の一方の面を貼り合わせて加圧接合し、 凸部による接合面 1 1 aと凹部による所定の深さの空隙 1 2とを有する電極積層体 8の複数 層を形成する工程を施すことにより製造される。 Then, the lithium ion secondary battery configured as described above is convex on at least two surfaces of one surface of each of the positive electrode active material layer 7 and the negative electrode active material layer 9 and two opposite surfaces of the separator 4. The step of forming a portion and a concave portion, the step of adhering a resin layer to at least two surfaces of one surface of each of the positive electrode active material layer 7 and the negative electrode active material layer 9 and two opposing surfaces of the separator 4, One surface of the positive electrode active material layer 7 and one surface of the negative electrode active material layer 9 are bonded to each surface of the night 4 and pressure-bonded, and the bonding surface 11a by the convex portion and the predetermined depth by the concave portion are formed. It is manufactured by performing a step of forming a plurality of layers of the electrode laminate 8 having the voids 12.
その際、 局部的に、 特に凸部に対応する部分に接着性樹脂層を付着 させ、 接着性樹脂層 1 1が付着されていない空隙 1 2を形成すると良 い o At this time, it is preferable to locally adhere the adhesive resin layer to a portion corresponding to the convex portion, and form a void 12 to which the adhesive resin layer 11 is not attached.
なお、 局部的に接着性樹脂層 1 1を付着させる手段、 セパレ一夕 4 両面に短時間で大量に接着性樹脂を塗布する方法としては下記のよう な方法がある。 The following methods can be used to apply the adhesive resin layer 11 locally and to apply a large amount of adhesive resin to both surfaces of the separator 4 in a short time.
第 5図は表面に微小穴を有する回転ロールを用いた接着性樹脂の塗 布方法を示す説明図で、 (a)は上方から、 (b)は側方から見たところであ る。 表面に微小穴 1 3 aを有する回転ロール 1 3の内部に接着性樹脂 を充填し、 加圧器 1 6で回転ロール 1 3内部に圧力を加えることによ り微小穴 1 3 aから接着性樹脂を流出させる。 同時に回転ロール 1 3 で挟み込んだセパレー夕ロール 1 5から供給されるセパレ一夕材 1 4 を移動させながら回転ロール 1 3全体を回転させることにより、 セパ レ一夕材 1 4両面に接着性樹脂 1 7を点状に塗布する。 また、 この方 法によりセパレー夕材の片面だけに接着性樹脂 1 7を点状に塗布する
ことも、 さらに 2枚のセパレ一夕材を重ねて回転ロール 1 3間に挟み、 2枚のセパレ一夕材のそれぞれ片面に同時に接着性樹脂を塗布するこ ともできる。 FIG. 5 is an explanatory view showing a method of applying an adhesive resin using a rotating roll having fine holes on the surface, where (a) is viewed from above and (b) is viewed from the side. Adhesive resin is filled inside the rotating roll 13 with micro holes 13 a on the surface, and pressure is applied to the inside of the rotating roll 13 with the pressurizer 16 to apply adhesive resin from the micro holes 13 a. Spill. At the same time, rotating the entire rotating roll 13 while moving the separating material 14 supplied from the separating roll 15 sandwiched between the rotating rolls 13, the separating material 1 4 Apply 1 7 in dots. Also, apply adhesive resin 17 in a dotted pattern to only one side of the separation material by this method. In addition, it is also possible to stack two sheets of separating material one on top of the other and sandwich them between the rotating rolls 13, and simultaneously apply the adhesive resin to one surface of each of the two separating materials.
また、 第 6図の説明図に示すような、 点状あるいは線状に空孔を閧 けたスクリーンと回転ロールを用いる接着性樹脂の塗布方法がある。 点状に空孔 1 9 aを開けたキヤ夕ビラ状のスクリーン 1 9をセパレー 夕材 1 4表面近傍に設置し、 接着性樹脂滴下口 2 0から接着性樹脂 1 7を移動するセパレ一夕材 1 4の上に配置したスクリーン 1 9上に滴 下して供給し、 供給された接着性樹脂を回転ロール 2 1で圧延するこ とにより、 スクリーン 1 9の空孔 1 9 aの形状を反映した接着性樹脂 1 7のパターンをセパレー夕材 1 4に転写する。 これらを少なくとも 2台セパレ一夕材 1 4の両面に配設することにより、 セパレ一夕材 1 4の両面に接着性樹脂を点状に塗布することができる。 Further, as shown in the explanatory view of FIG. 6, there is a method of applying an adhesive resin using a screen and a rotating roll in which dots or linear holes are formed. Separator screen 1 9 with holes 19 a opened in dot form Separation material 14 Installed near the surface of the material, Separation moving adhesive resin 17 from adhesive resin dropping port 20 By supplying the adhesive resin dropwise onto the screen 19 placed on the material 14 and rolling the supplied adhesive resin with the rotating roll 21, the shape of the holes 19 a of the screen 19 is reduced. The reflected adhesive resin 17 pattern is transferred to the separation evening material 14. By arranging at least two units on both surfaces of the separation material 14, the adhesive resin can be applied to both surfaces of the separation material 14 in a dot-like manner.
また、 第 7図はスプレーガンを用いる接着性樹脂の塗布方法を示す 説明図である。 点状、 線状あるいは格子状に空孔を開けたキヤ夕ビラ 状のスクリーン 2 6をセパレ一夕材 1 4表面近傍に設置し、 液体の接 着性樹脂または接着性樹脂を溶媒に溶解させた接着性樹脂液をスプレ —ガン 2 3に充填した後に、 スクリーン 2 6を介してセパレー夕材 1 4上に噴霧する。 これにより、 セパレ一夕材 1 4上にスクリーン 2 6 の空孔に即した形状、 例えば点状に接着性樹脂 1 7が付着する。 この スプレーガン 2 3をセパレ一夕材 1 4両面にそれぞれ少なくとも 1台 以上並べ、 セパレー夕材 1 4を移動させながら接着性樹脂液を連続的 に噴霧させることにより、 セパレ一夕材 1 4両面に接着性樹脂を点状 に塗布することができる。 なお、 スクリーン 2 6の代わりに網等を用 いてもよい。 FIG. 7 is an explanatory view showing a method of applying an adhesive resin using a spray gun. Set up a screen 26 in the shape of a shower with holes in the form of dots, lines, or grids near the surface of the separation material 14 and dissolve the liquid adhesive resin or adhesive resin in the solvent. After filling the adhesive resin liquid into the spray gun 23, it is sprayed onto the separation material 14 through the screen 26. As a result, the adhesive resin 17 adheres on the separation material 14 in a shape corresponding to the holes of the screen 26, for example, in a dot shape. At least one spray gun 23 is arranged on each side of Separation Material 14 and at least one spray gun is continuously sprayed with the adhesive resin liquid while moving Separation Material 14. The adhesive resin can be applied in the form of dots. Note that a net or the like may be used instead of the screen 26.
また、 第 8図の説明図に示すように、 セパレー夕材 1 4上に接着性
樹脂液を充填した少なくとも 1個以上のディスペンサー 2 8を配置し、 セパレ一夕 2 7の移動に合わせて接着性樹脂液を断続的に滴下させる ことにより、 点状に接着性樹脂を塗布するようにしてもよい。 なお、 同図 (a)は上方から、 (b)は側方から見たところである。 Also, as shown in the explanatory diagram of FIG. At least one or more dispensers 28 filled with resin liquid are arranged, and the adhesive resin liquid is dropped intermittently as the separator 27 moves, so that the adhesive resin is applied in a dot-like manner. It may be. (A) is viewed from above and (b) is viewed from the side.
本発明に供される活物質としては、 正極においては例えば、 リチウ ムと、 コバルト, ニッケル, マンガン等の遷移金属との複合酸化物、 リチウムを含むカルコゲン化合物、 あるいはこれらの複合化合物、 さ らに上記複合酸化物、 リチウムを含むカルコゲン化合物、 あるいはこ れらの複合化合物に各種の添加元素を有するものが用いられ、 負極に おいては易黒鉛化炭素、 難黒鉛化炭素、 ポリアセン、 ポリアセチレン などの炭素系化合物、 ビレン、 ペリレンなどのァセン構造を含む芳香 族炭化水素化合物が好ましく用いられるが、 電池動作の主体となるリ チウムイオンを吸蔵、 放出できる物質ならば使用可能である。 また、 これらの活物質は粒子状のものが用いられ、 粒径としては、 0 . 3〜2 O j m のものが使用可能であり、 特に好ましくは 0 . 3〜5 z mのもの である。 Examples of the active material provided in the present invention include, in the positive electrode, a composite oxide of lithium and a transition metal such as cobalt, nickel, and manganese; a chalcogen compound containing lithium; or a composite compound thereof. The above-mentioned composite oxides, chalcogen compounds containing lithium, or those having various additive elements in these composite compounds are used. In the negative electrode, graphitizable carbon, non-graphitizable carbon, polyacene, polyacetylene, etc. An aromatic hydrocarbon compound having an acene structure such as a carbon-based compound, billene, or perylene is preferably used, but any substance that can occlude and release lithium ions, which are the main components of battery operation, can be used. These active materials are used in the form of particles. The active material may have a particle diameter of 0.3 to 2 Ojm, and particularly preferably 0.3 to 5 zm.
また、 活物質を電極板化するために用いられるバインダ一樹脂とし ては、 電解液に溶解せず電極積層体内部で電気化学反応を起こさない ものであれば使用可能である。 具体的にはフッ化ビニリデン、 フヅ化 エチレン、 アクリロニトリル、 エチレンォキシドなどの単独重合体ま たは共重合体、 エチレンプロピレンジァミンゴムなどが使用可能であ 。 As the binder resin used for forming the active material into an electrode plate, any resin that does not dissolve in the electrolytic solution and does not cause an electrochemical reaction inside the electrode laminate can be used. Specifically, homopolymers or copolymers such as vinylidene fluoride, ethylene fluoride, acrylonitrile, and ethylene oxide, and ethylene propylene diamine rubber can be used.
また、 集電体は電池内で安定な金属であれば使用可能であるが、 正 極ではアルミニウム、 負極では銅が好ましく用いられる。 集電体の形 状としては箔状、 網状、 ェクスパンドメタル等が使用可能であるが、 網状ゃェクスパンドメタルなどの空隙面積の大きいものが接着後の電
解液保持を容易にする点から好ましい。 As the current collector, any metal can be used as long as it is stable in the battery. However, aluminum is preferably used for the positive electrode, and copper is preferably used for the negative electrode. The current collector may be in the form of foil, mesh, expanded metal, etc., but those having a large void area, such as meshed expanded metal, may be used after bonding. It is preferable in terms of facilitating the maintenance of the solution.
また、 セパレー夕は電子絶縁性の多孔質膜、 網、 不織布等、 充分な 強度を有するものであればどのようなものでも使用可能である。 材質 は特に限定しないが、 ポリエチレン、 ポリプロピレンが接着性および 安全性の観点から望ましい。 Separators can be made of any material having sufficient strength, such as an electronically insulating porous film, a net, and a non-woven fabric. The material is not particularly limited, but polyethylene and polypropylene are preferable from the viewpoint of adhesiveness and safety.
また、 イオン伝導体として用いる電解液に供する溶剤、 電解質塩と しては、 従来の電池に使用されている非水系の溶剤及びリチウムを含 有する電解質塩が使用可能である。 具体的にはジメ トキシェタン、 ジ エトキシェタン、 ジェチルエーテル、 ジメチルエーテルなどのエーテ ル系溶剤、 炭酸プロピレン、 炭酸エチレン、 炭酸ジェチル、 炭酸ジメ チルなどのエステル系溶剤の単独液、 及び前述の同一溶剤同士あるい は異種溶剤からなる 2種の混合液が使用可能である。 また電解液に供 する電解質塩は、 L i P F6、 L i A s F6、 L i C 1〇4、 L i B F4、 L i C F3 S 03、 L i N(C F3 S 02)2、 L i C(C F3 S 02)3、 L i N(C2 F 5 S 02)2などが使用可能である。 In addition, as a solvent and an electrolyte salt used for an electrolytic solution used as an ion conductor, a non-aqueous solvent and an electrolyte salt containing lithium used in a conventional battery can be used. Specifically, there are single solvents of ether solvents such as dimethoxetane, diethoxetane, getyl ether and dimethyl ether, single solvents of ester solvents such as propylene carbonate, ethylene carbonate, getyl carbonate and dimethyl ether, and the same solvents as described above. Alternatively, two kinds of mixed liquids composed of different solvents can be used. The electrolyte salt used for the electrolyte, L i PF 6, L i A s F 6, L i C 1_Rei 4, L i BF 4, L i CF 3 S 0 3, L i N (CF 3 S 0 2) 2, L i C ( CF 3 S 0 2) 3, etc. L i N (C 2 F 5 S 0 2) 2 can be used.
また、 集電体と電極の接着に用いられる接着性樹脂、 および電極と セパレー夕の接着に用いられる接着性樹脂はともに、 電解液には溶解 せず電池内部で電気化学反応を起こさないものが使用可能であり、 多 孔質膜になるもであればより望ましく、 例えば、 フッ素系樹脂もしく はフヅ素系樹脂を主成分とする混合物、 ポリビニルアルコールあるい はポリビニルアルコールを主成分とする混合物が用いられる。 具体的 にはフヅ化ビニリデン、 4—フヅ化工チレンなどのフッ素原子を分子 構造内に有する重合体もしくは共重合体、 ビニルアルコールを分子骨 格に有する重合体もしくは共重合体、 あるいはポリメ夕クリル酸メチ ル、 ポリスチレン、 ポリエチレン、 ポリプロピレン、 ポリ塩化ビニリ デン、 ポリ塩化ビニル、 ポリアクリロニトリル、 ポリエチレンェキサ
ィ ドなどとの混合物などが使用可能である。 特に、 フッ素系樹脂のポ リフッ化ビニリデンが適当である。 Also, the adhesive resin used to bond the current collector to the electrode and the adhesive resin used to bond the electrode to the separator are both insoluble in the electrolyte and do not cause an electrochemical reaction inside the battery. It is more preferable if it can be used and becomes a porous membrane. For example, a mixture mainly composed of a fluorine-based resin or a fluorine-based resin, or a mixture mainly composed of polyvinyl alcohol or polyvinyl alcohol A mixture is used. Specifically, a polymer or copolymer having a fluorine atom in its molecular structure, such as vinylidene fluoride or 4-fluoroethylene, a polymer or copolymer having vinyl alcohol in its molecular structure, or a polymer Methyl acrylate, polystyrene, polyethylene, polypropylene, polyvinylidene chloride, polyvinyl chloride, polyacrylonitrile, polyethylene Mixtures with such as can be used. In particular, polyvinylidene fluoride, a fluororesin, is suitable.
以下、 実施例を示し本発明を具体的に説明するが、 勿論これらによ り本発明が限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited by these examples.
実施例 1 . Example 1
まず、 正極の作製について説明する。 First, the fabrication of the positive electrode will be described.
L i C o 02 を 8 7重量部、 黒鉛粉を 8重量部、 ポリフッ化ビニリデ ンを 5重量部を N—メチルビ口リ ドンに分散させることにより調製し た正極活物質ペーストを、 ドク夕一ブレード法にて厚さ 3 0 に 塗布して活物質薄膜を形成した。 その上部に正極集電体となる厚さ 3 0〃mのアルミニウム網を載せ、 さらにその上部に再度ドクターブレ ード法で厚さ 3 0 0 に調整した正極活物質ペーストを塗布して正 極集電体と正極活物質ペーストとの積層体を作製した。 この積層体を 6 0 °Cの乾燥機中に 6 0分間放置して半乾き状態にした後、 回転口一 ルを用い、 ロール間の隙間を 4 0 0 / mに調整して積層体を厚さ 4 0 0 mに圧延することにより、 正極活物質層 Ί表面に凹凸形状を有す る正極を作製した。 集電体として平坦なアルミ箔ではなくアルミニゥ ム網を挟むことによつて正極活物質層 7表面に網の形状を反映した凹 凸を作り出すことができる。 なお、 この圧延工程において、 回転口一 ル間の隙間の大きさを調整することにより電極の厚み、 凹凸の程度を 調整することができる。 また、 正極集電体となる網の形状 (メッシュ の線径、 目の粗さ、 空孔度等) を変えることにより正極活物質層 7表 面に形成される凹凸の形状を変えることができる。 L i C o 0 2 8 7 parts by weight, 8 parts by weight of graphite powder, the positive electrode active material paste prepared by dispersing polyvinylidene fluoride vinylidene down the 5 parts by weight N- Mechirubi port Li Dong, Doc evening It was applied to a thickness of 30 by a single blade method to form an active material thin film. An aluminum net with a thickness of 30 μm serving as a positive electrode current collector is placed on the upper part, and a positive electrode active material paste adjusted to a thickness of 300 by the doctor blade method is applied on the upper part again to form a positive electrode. A laminate of the current collector and the positive electrode active material paste was produced. After leaving this laminate in a dryer at 60 ° C for 60 minutes to make it semi-dry, the gap between the rolls was adjusted to 400 / m using a rotary port to remove the laminate. By rolling to a thickness of 400 m, a positive electrode having an uneven shape on the surface of the positive electrode active material layer was produced. By sandwiching an aluminum mesh instead of a flat aluminum foil as a current collector, it is possible to create irregularities reflecting the shape of the mesh on the surface of the positive electrode active material layer 7. In this rolling step, the thickness of the electrode and the degree of the unevenness can be adjusted by adjusting the size of the gap between the rotary holes. Also, by changing the shape of the mesh (wire diameter, mesh size, porosity, etc.) of the positive electrode current collector, the shape of the unevenness formed on the surface of the positive electrode active material layer 7 can be changed. .
この正極を電解液に浸漬させた後に正極活物質層と正極集電体との 剥離強度を測定したところ、 2 0〜2 5 g f / c mの値を示した。 次に負極の作製について説明する。
メソフェーズマイクロビーズカーボン (商品名:大阪ガス製) 9 5 重量部、 ポリフヅ化ビニリデン 5重量部を N—メチルピロリ ドン (N M Pと略記する) に分散して作製した負極活物質ペーストを、 ドク夕 —プレード法にて厚さ 3 0 0〃mに塗布して活物質薄膜を形成した。 その上部に、 負極集電体となる厚さ 2 0 /mの銅網を載せ、 さらにそ の上部に再度ドクタープレード法で厚さ 3 0 0 mに調整した負極活 物質ペーストを塗布して負極集電体と負極活物質ペース卜との積層体 を作製した。 この積層体を 6 0 °Cの乾燥機中に 6 0分間放置して半乾 き状態にした後、 回転口一ルを用い、 ロール間の隙間を 4 0 0〃mに 調整して積層体を厚さ 4 0 0〃mに圧延することにより密着させて、 負極活物質層 9表面に凹凸形状を有する負極を作製した。正極と同様、 集電体として平坦な銅箔ではなく銅網を挟むことによって負極活物質 層 9表面には網の形状を反映した凹凸を作り出すことができる。 After this positive electrode was immersed in the electrolytic solution, the peel strength between the positive electrode active material layer and the positive electrode current collector was measured, and a value of 20 to 25 gf / cm was shown. Next, fabrication of the negative electrode will be described. Mesophase microbead carbon (trade name: Osaka Gas) 95 parts by weight, 5 parts by weight of polyvinylidene fluoride dispersed in N-methylpyrrolidone (abbreviated as NMP), and a negative electrode active material paste prepared by mixing The active material thin film was formed by applying a thickness of 300 μm by the method. A 20 / m-thick copper mesh serving as a negative electrode current collector is placed on the upper part, and a negative electrode active material paste adjusted to a thickness of 300 m by the doctor blade method is applied to the upper part of the copper mesh again. A laminate of a current collector and a negative electrode active material paste was prepared. After leaving the laminate in a dryer at 60 ° C for 60 minutes to make it semi-dry, the gap between the rolls was adjusted to 400〃m using a rotary port, and the laminate was Was rolled to a thickness of 400 μm so as to be in close contact with each other, thereby producing a negative electrode having an uneven shape on the surface of the negative electrode active material layer 9. Similarly to the positive electrode, by sandwiching a copper net instead of a flat copper foil as a current collector, irregularities reflecting the net shape can be created on the surface of the negative electrode active material layer 9.
この負極を電解液に浸漬させた後に負極活物質層と負極集電体との 剥離強度を測定したところ、 1 0〜1 5 / c mの値を示した。 次いで、 上記正極及び負極間にセパレ一夕を接合した電極積層体を 複数層備えた第 1図に示す平板状積層構造型の電池の作製について説 明する。 After the negative electrode was immersed in the electrolytic solution, the peel strength between the negative electrode active material layer and the negative electrode current collector was measured, and a value of 10 to 15 / cm was shown. Next, a description will be given of the manufacture of a flat-plate laminated structure type battery shown in FIG. 1 having a plurality of electrode laminates in which a separator is joined between the positive electrode and the negative electrode.
まず、 ポリフヅ化ビニリデンを 5重量部、 N—メチルピロリドン (以 下 NM Pと略記する) を 9 5重量部の組成比率で混合し、 均一溶液に なるように十分に撹拌し粘性のある接着性樹脂液を作製した。 First, 5 parts by weight of polyvinylidene fluoride and 95 parts by weight of N-methylpyrrolidone (hereinafter abbreviated as NMP) are mixed in a composition ratio, and the mixture is sufficiently stirred to form a homogeneous solution and viscous adhesiveness is obtained. A resin solution was prepared.
次に、 セパレ一夕として用いるセパレー夕材のロール状に束ねられ た幅 1 2 c m、 厚さ 2 5 mの多孔性のポリプロピレンシート (へキ スト製商品名セルガード # 2 4 0 0 ) の片面に上記のように調製した 接着性樹脂液を塗布した。 Next, one side of a 12-cm wide and 25-m-thick porous polypropylene sheet (Celgard # 2400) manufactured by Sephray, which is bundled in a roll of separe evening material. Then, the adhesive resin solution prepared as described above was applied.
接着性樹脂の塗布は第 5図に示すような表面に微小穴 1 3 aを有す
る回転ロール 1 3を用いて行った。 この回転ロール 1 3内部には上記 の接着性樹脂液が充填されており、 その表面の微小穴 1 3 aから接着 性樹脂液が染み出す構造となっている。 セパレ一夕ロール 1 5からセ パレ一夕材 1 4を取り出し、 セパレ一夕材 1 4上をこの微小穴 1 3 a を有する回転ロール 1 3内部に圧力をかけながら回転させることによ り、 セパレ一夕材 1 4の片面に点状に接着性樹脂 1 7を塗布すること ができた。 また接着性樹脂の付着量は、 回転ロール 1 3内部の圧力を 調整し微小穴 1 3 aからの吐出量を変えることにより調節ができた。 上記片面に接着性樹脂を塗布した 2枚のセパレ一夕 4を用意し、 樹 脂液が乾燥する前に、 2枚のセパレ一夕の接着性樹脂塗布面の間に負 極 5を挟み、 密着させて貼り合わせた後、 6 0 °Cの温風乾燥機に 2時 間入れ NM Pを蒸発させ、 2枚のセパレー夕間に負極を接合した。 負極 5を間に挟んで接合した 2枚のセパレー夕 4を所定の大きさに 打ち抜き、 この打ち抜いたセパレー夕の一方の面に上記調製した接着 性樹脂液を上記のように点状に塗布し、 所定の大きさに打ち抜いた正 極 3を貼り合わせ、 セパレ一夕 4、 負極 5、 セパレ一夕 4、 正極 3と 順に接合した積層体を形成した。 さらに、 所定の大きさに打ち抜いた 別の、 負極を挟んで接合したセパレ一夕の一面に上記調製した接着性 樹脂液を塗布し、 この別のセパレー夕の塗布面を、 先に貼り合わせた 上記積層体の正極の面に貼り合わせた。 この工程を繰り返し、 正極、 負極がセパレ一夕を挟んで対向する電極積層体を複数層有する電池体 を形成し、 この電池体を加圧しながら乾燥し、 第 1図に示すような平 板状積層構造電池体を作製した。 Adhesive resin coating has micro holes 13a on the surface as shown in Fig. 5. This was performed using a rotating roll 13. The inside of the rotating roll 13 is filled with the above-mentioned adhesive resin liquid, and the adhesive resin liquid permeates through the minute holes 13a on the surface. Take out the separating material 14 from the separating roll 15 and rotate it while applying pressure to the inside of the rotating roll 13 having the minute holes 13 a on the separating material 14. Adhesive resin 17 could be applied to one side of Separet overnight material 14 in the form of dots. Also, the amount of the adhesive resin adhered could be adjusted by adjusting the pressure inside the rotating roll 13 and changing the discharge amount from the minute holes 13a. Prepare two separators 4 coated with adhesive resin on one side above, and before the resin liquid dries, sandwich the negative electrode 5 between the adhesive resin coated surfaces of the two separators, After being adhered to each other, they were placed in a 60 ° C. hot air drier for 2 hours to evaporate NMP, and the negative electrode was joined between the two separators. The two separators 4 joined together with the negative electrode 5 interposed therebetween are punched into a predetermined size, and the adhesive resin liquid prepared as described above is applied to one side of the punched separators in a dotted manner as described above. Then, the positive electrode 3 punched into a predetermined size was bonded, and a laminated body was formed in which the separator 4, the negative electrode 5, the separator 4, and the positive electrode 3 were joined in this order. Further, the adhesive resin liquid prepared above was applied to one surface of another separator which was punched into a predetermined size and joined with the negative electrode interposed therebetween, and the application surface of this separate separator was bonded to the first. The laminate was bonded to the positive electrode surface. This process is repeated to form a battery body having a plurality of electrode laminates in which the positive electrode and the negative electrode face each other across the separator, and the battery body is dried while being pressurized. A laminated battery body was manufactured.
なお、 接着性樹脂層 1 1は乾燥に伴って NM Pが蒸発することによ りセパレ一夕側から正極及び負極側へ連通した孔を有する多孔質の膜 (接着性樹脂層) となる。 この接着性樹脂層の厚みは l m程度とし
W The adhesive resin layer 11 becomes a porous film (adhesive resin layer) having holes communicating from the separation side to the positive electrode and the negative electrode side due to the evaporation of NMP with drying. The thickness of this adhesive resin layer is about lm W
19 19
た。 Was.
次に、 この平板状積層構造電池体の正極及び負極集電体それぞれの 端部に接続した集電夕ブを、 正極同士、 負極同士スポット溶接するこ とによって、 上記平板状積層構造電池体を電気的に並列に接続した。 5 続いて、 この平板状積層構造電池体に炭酸エチレンと炭酸ジェチルを 溶媒とし、 L i P F6 を溶質とする電解質溶液を注入した。 この段階で 正極活物質とセパレ一夕、 負極活物質とセパレー夕の剥離強度を測定 したところ、 その強度はそれぞれ 2 5〜3 0 g f / c m、 1 5〜2 0 g f c mであった。Next, the current collectors connected to the respective ends of the positive electrode and the negative electrode current collectors of the flat plate-shaped laminated battery body were spot-welded to each other between the positive electrode and the negative electrode. Electrically connected in parallel. 5 Then, the flat plate-like layered structure cell body to the ethylene carbonate Jechiru as a solvent was injected electrolyte solution to the L i PF 6 as a solute. At this stage, the peel strength of the positive electrode active material and the separator was measured, and the peel strength of the negative electrode active material and the separator was measured. The strengths were 25 to 30 gf / cm and 15 to 20 gfcm, respectively.
0 この電解液注入後の平板状積層構造電池体をアルミラミネートフィ ルムでパックし、 熱融着して封口処理を行うことにより、 リチウムィ オン二次電池を作製した。 The lithium-ion secondary battery was manufactured by packing the flat-plate laminated battery body after the injection of the electrolytic solution with an aluminum laminate film, and performing heat sealing and sealing.
上述したように、 このリチウムイオン二次電池では正極 3、 セパレ —夕 4、 負極 5はセパレ一夕 4の両活物質層 7 , 9との対向面と正極5 活物質層 7及び負極活物質層 9のセパレー夕 4の対向面に隣り合う面 に凸部と凹部が形成されており、 凸部の接合面 1 l aに付着された接 着性樹脂層 1 1により密着されており、 凸部の接合面 1 l aと凹部に より形成される (電極とセパレ一夕を密着させる際に表面の凹凸に応 じて生じる) 空隙 1 2にリチウムイオンを含む電解液が保持される。0 活物質層 7 , 9およびセパレー夕 4が接着性樹脂層 1 1で覆われ尽く されること無く、 また空隙 1 2には電解液が保持されることにより、 活物質層 Ί , 9およびセパレ一夕 4間の内部抵抗の上昇が抑制され、 良好なイオン伝導性が確保され、 かつ接着性樹脂層 1 1による凸部の 接合面 1 l aで活物質層 7 , 9とセパレ一夕 4との接着強度が保たれ5 るので、 外部からの加圧を必要としない、 即ち強固な外装缶を必要と しない、 薄型、 軽量で、 充放電特性に優れた大容量の電池が得られた。
W As described above, in this lithium ion secondary battery, the positive electrode 3, the separator 4, and the negative electrode 5 have the surface facing the two active material layers 7 and 9 of the separator 4 and the positive electrode 5 active material layer 7 and the negative electrode active material. A convex portion and a concave portion are formed on the surface of the layer 9 adjacent to the opposing surface of the separation layer 4.The adhesive resin layer 11 attached to the joint surface 1 la of the convex portion is in close contact with the convex portion. An electrolyte solution containing lithium ions is held in the voids 12 formed by the bonding surface 1 la and the recesses (generated according to the unevenness of the surface when the electrode and the separator are brought into close contact). 0 The active material layers 7 and 9 and the separator 4 are not completely covered with the adhesive resin layer 11 and the voids 12 hold the electrolyte so that the active material layers, and 9 and the separator 4 are separated. The increase in internal resistance during one night is suppressed, good ionic conductivity is ensured, and the active material layers 7, 9 and the separation part 4 are formed on the joint surface 1 la of the convex part by the adhesive resin layer 11. As a result, a thin, light-weight, high-capacity battery with excellent charge / discharge characteristics was obtained, which does not require external pressurization, that is, does not require a strong outer can. W
20 20
さらに、 本実施例では第 4図に示す凹部および凸部は正極および負 極活物質層 7 , 9の面に、 規則的に形成されており、 セパレー夕 4と 正極および負極活物質層 7 , 9との接合領域が、 セパレ一夕 4の両面 で、 互いに符合するように接合しているので、 セパレ一夕 4と正極お 5 よび負極活物質層 7 , 9との接合面に力が働いた場合にも強固な接合 強度を維持することができる。 Further, in the present embodiment, the concave portions and convex portions shown in FIG. 4 are formed regularly on the surfaces of the positive electrode and negative electrode active material layers 7 and 9, and the separator 4 and the positive electrode and negative electrode active material layers 7 and 9 are formed. 9 is joined so that they coincide with each other on both sides of Separete 4 so that force acts on the joint surface between Separete 4 and the positive electrode 5 and the negative electrode active material layers 7, 9. In this case, strong bonding strength can be maintained.
また、 本実施例では正極および負極活物質層 7 , 9のみに凹凸を形 成したが、 例えばフッ素樹脂の表面に凹凸を形成したものをセパレー 夕 4として使用するとともに、 正極および負極活物質層 7 , 9には凹0 凸を形成することなく平坦な表面を持つものを使用してもよい。 Further, in this embodiment, only the positive and negative electrode active material layers 7 and 9 have irregularities. For example, a fluororesin having irregularities formed on its surface is used as the separator 4 and the positive and negative electrode active material layers are used. 7 and 9 may be those having a flat surface without forming concave and convex.
さらにまた、 本実施例では、 接合領域に選択的に接着性樹脂層 1 1 を形成したが、 セパレ一夕 4の表面全体に塗布するようにしてもよい。 接合領域に選択的に接着性樹脂層 1 1を形成しょうとすると、 凸部の 位置と接着性樹脂層 1 1のドットの位置とを一致させる必要があるが、5 セパレ一夕 4の表面全体に接着性樹脂層 1 1を形成する場合は、 全面 に接着性樹脂を塗布すればよいため、 接着性樹脂層の形成が容易であ 。 Furthermore, in the present embodiment, the adhesive resin layer 11 is selectively formed in the joining region, but may be applied to the entire surface of the separator 4. If the adhesive resin layer 11 is to be formed selectively in the bonding area, the position of the protrusion must match the position of the dot of the adhesive resin layer 11, but the entire surface of the separator 4 When the adhesive resin layer 11 is formed on the entire surface, the adhesive resin may be applied to the entire surface, so that the adhesive resin layer can be easily formed.
加えて、 本実施例において、 電解液の注入は、 平板状積層構造電池 体を電解液に浸潰し、 電解液を減圧することにより、 空隙 1 2内の気0 体と電解液とを置換することによって容易に達成できた。 また注入後、 前記平板状積層構造電池体を加熱し、 乾燥した。 In addition, in the present embodiment, the injection of the electrolyte is performed by immersing the flat-plate laminated battery body in the electrolyte and depressurizing the electrolyte, thereby replacing the gas in the gap 12 with the electrolyte. This was easily achieved by: After the injection, the flat-plate-type laminated battery body was heated and dried.
さらにまた、 平板状積層構造電池体をアルミラミネートフィルムで パックし、 パック内部を減圧し、 平板状積層構造電池体の外側面をフ イルムに密着させた後に、 開口部からパック内に、 電解液を注入し、5 少なくとも空隙内に電解液を注入し、 最後に開口部を封着するように してもよい。 この方法によれば、 電解液を供給する際には前記電池体
背面とフィルムとは密着しているため、 前記電池体背面への電解液の 回り込みをなくし、 電解作用に寄与しない不要な電解液をなくすこと ができ、 電池全体としての重量を低減することができる。 Furthermore, the flat-plate laminated battery body is packed with an aluminum laminated film, the inside of the pack is decompressed, and the outer surface of the flat-layer laminated structure battery is brought into close contact with the film. 5 may be injected, and an electrolytic solution may be injected into at least the gap, and finally the opening may be sealed. According to this method, when supplying the electrolytic solution, the battery body is used. Since the back surface and the film are in close contact with each other, it is possible to prevent the electrolyte solution from flowing into the back surface of the battery body, to eliminate unnecessary electrolyte solutions that do not contribute to the electrolytic action, and to reduce the weight of the entire battery. .
本実施例において、 2枚のセパレー夕 4間に上記と同様の方法で正 極 3を密着させて貼り合わせ、 正極 3を挟んだセパレ一夕 4の一面に 接着性樹脂液を塗布して、 塗布面に負極 5を貼り合わせ、 さらにこの 負極 5の上に、 2枚のセパレ一夕間に正極を貼り合わせた別のセパレ —夕を貼り合わせる工程を繰り返してもよい。 In the present embodiment, the positive electrode 3 is closely adhered and bonded between the two separators 4 in the same manner as described above, and an adhesive resin liquid is applied to one surface of the separator 4 with the positive electrode 3 interposed therebetween. The process of pasting the negative electrode 5 on the application surface, and then pasting another positive electrode on the negative electrode 5 in which the positive electrode is pasted on the negative electrode 5 overnight may be repeated.
実施例 2 . Example 2.
実施例 1に示した接着性樹脂層 1 1として、 ポリフッ化ビ二リデン の代わりに下記記載の化合物を同一組成比率で N—メチルピロリ ドン と混合することにより調製した、 粘性のある接着性樹脂液を用いた。 ポリテトラフルォロエチレン A viscous adhesive resin liquid prepared as the adhesive resin layer 11 shown in Example 1 by mixing the following compound in place of polyvinylidene fluoride and N-methylpyrrolidone in the same composition ratio Was used. Polytetrafluoroethylene
フッ化ビニリデンとァクリロ二トリルの共重合体 Copolymer of vinylidene fluoride and acrylonitrile
ポリフッ化ビニリデンとポリアクリロニトリルの混合物 Mixture of polyvinylidene fluoride and polyacrylonitrile
ポリフッ化ビニリデンとポリエチレンォキシドの混合物 Mixture of polyvinylidene fluoride and polyethylene oxide
ポリフヅ化ビニリデンとポリエチレンテレフ夕レート混合物 ポリフッ化ビニリデンとポリメ夕クリル酸メチルの混合物 Mixture of polyvinylidene fluoride and polyethylene terephthalate Mixture of polyvinylidene fluoride and polymethyl methacrylate
ポリフツイ匕ビニリデンとポリスチレンの混合物 A mixture of polyfutsudani vinylidene and polystyrene
ポリフツイ匕ビニリデンとポリプロビレンの混合物 A mixture of polyfutsudani vinylidene and polyvinylene
ポリフヅ化ビニリデンとポリェチレンの混合物 Mixture of polyvinylidene fluoride and polyethylene
これらの接着性樹脂液を用い、 上記実施例 1と同様の方法で、 第 1 図に示す平板状積層構造電池体を有する電池を作製した。 この平板状 積層構造電池体において、 正極活物質層 7とセパレ一夕 4、 負極活物 質層 9とセパレ一夕 4の剥離強度を測定したところ、 その強度はそれ ぞれ 1 5〜7 0 g f / c m、 1 0〜7 0 g f / c mの範囲に収束した。
W Using these adhesive resin liquids, a battery having a flat laminated battery body shown in FIG. 1 was produced in the same manner as in Example 1 above. When the peel strengths of the positive electrode active material layer 7 and Separation 4 and the negative electrode active material layer 9 and Separation 4 of this flat plate-shaped laminated battery were measured, the strengths were 15 to 70, respectively. gf / cm, converged to the range of 10 to 70 gf / cm. W
22 twenty two
さらに上記実施例 1と同様の方法で電解液を注入し、 アルミラミネ一 トフイルムでパックして封口処理することにより、 リチウムイオン二 次電池を作製した。 上記実施例 1と同様、 薄型、 軽量で、 充放電特性 に優れ、 電池容量の大きい電池が得られた。 Further, a lithium ion secondary battery was produced by injecting an electrolytic solution in the same manner as in Example 1 above, packing the package with an aluminum laminate film, and sealing it. As in Example 1, a battery that was thin, lightweight, excellent in charge / discharge characteristics, and large in battery capacity was obtained.
5 実施例 3 . 5 Example 3.
正極活物質ペーストを、 厚さ 3 0 m、 開口率 7 0 %のアルミニゥ ム網上にドクターブレ一ド法で厚さ 3 0 0 / mになるように塗工し、 6 0 °Cの乾燥機中で 6 0分間放置後、 さらに厚さ 2 5 0 mになるよ うに再度プレスし正極 3を作製した。 この方法によって上記実施例 10 の正極 3の正極活物質層 7側の接着面 (セパレー夕 4と隣合う面) に 形成される凸凹の山部と谷部の差、 即ち凸部の接合面 1 l aと凹部に より形成される空隙の深さ Lが 1 0 zm以下となった。 さらに負極 5 も銅網を用いて同様の方法で作製した。 次に、 このように形成した正 極 3と負極 5を用い、 実施例 1と同様の方法で、 セパレ一夕 4に接着5 性樹脂を点状に局部的に塗布し、 正極 3、 セパレ一夕 4、 負極 5、 セ パレ一夕 4と順に接合積層し、 第 1図に示すような平板状積層構造電 池体を作製した。 The positive electrode active material paste is applied to an aluminum mesh having a thickness of 30 m and an opening ratio of 70% by a doctor blade method so as to have a thickness of 300 / m, and dried at 60 ° C. After being left in the machine for 60 minutes, the positive electrode 3 was produced by pressing again to a thickness of 250 m. By this method, the difference between the peaks and valleys of the irregularities formed on the bonding surface (the surface adjacent to the separator 4) of the positive electrode 3 side of the positive electrode 3 of Example 10 above, that is, the bonding surface 1 of the convex portion The depth L of the void formed by la and the concave portion was 10 zm or less. Further, the negative electrode 5 was produced in the same manner using a copper net. Next, using the positive electrode 3 and the negative electrode 5 thus formed, an adhesive resin was locally applied to the separator 4 in a dotted manner in the same manner as in Example 1 to form the positive electrode 3 and the separator 5. Then, the anode 4, the negative electrode 5, and the separator 4 were joined and laminated in this order to produce a flat laminated battery as shown in Fig. 1.
この実施例における電極積層体 8は、 空隙の深さ Lを 1 0〃m以下 に調整しているので、 反応種の拡散がより容易に進み、 活物質層 7 ,0 9—セパレ一夕界面のイオン伝導抵抗の低減を図ることができるので、 これを用いたリチウムイオン二次電池では従来の液体電解質型電池に 劣らない高負荷率での使用が可能となった。 空隙 1 2の深さ Lは、 正 極及び負極形成時の圧延時の加圧力、 網の線径等により調節できる。 実施例 4 . In the electrode laminate 8 in this embodiment, the depth L of the gap is adjusted to 10 μm or less, so that diffusion of the reactive species proceeds more easily, and the active material layer 7,09—separate interface Since the ion conduction resistance of the battery can be reduced, a lithium ion secondary battery using the same can be used at a high load factor not inferior to a conventional liquid electrolyte battery. The depth L of the gap 12 can be adjusted by the pressing force during rolling when forming the positive electrode and the negative electrode, the wire diameter of the net, and the like. Example 4.
5 正極活物質べ一ストを、 厚さ 3 0 / m、 開口率 8 0 %のアルミニゥ ム網上にドク夕一ブレード法で厚さ 3 0 0 Π1になるように塗工し、
6 0 °Cの乾燥機中で 6 0分間放置後、 さらに厚さ 2 0 0 /z mになるよ うに再度プレスし、 活物質層 7表面に凸部と凹部が形成された正極 3 を作製した。 また負極 5も同様の方法で銅網を用いて作製した。 負極 活物質層 9表面にも凸部と凹部が形成されている。 次に実施例 1と同 様の方法で、 接着性樹脂を点状に塗布し、 正極 3、 セパレー夕 4、 負 極 5、 セパレ一夕 4とを順に接合積層して、 第 1図に示すような平板 状積層構造電池体を作製した。 この方法によって電極積層体 8の接合 面 1 1 aの面積を活物質層 7 , 9それぞれの総面積の 2 0 %に調節し た。 接着性樹脂層の被覆部分が 2 0 %であることから、 これを用いた 電池では、 活物質層 7 , 9間のイオン伝導抵抗の上昇を抑制でき、 従 来の液体電解質型電池に劣らない高負荷率での使用が可能となった。 なお、 接合面 1 l aの面積は、 網の線径、 空孔度等により調整される 活物質層 7 , 9、 セパレー夕 4表面の形状や、 接着性樹脂の塗布 (付 着) 状態によって調整できる。 5 Coat the cathode active material base on an aluminum mesh having a thickness of 30 / m and an aperture ratio of 80% by a dough blade method so that the thickness becomes 300-1. After standing in a dryer at 60 ° C. for 60 minutes, it was pressed again so as to have a thickness of 200 / zm, and a positive electrode 3 in which convex portions and concave portions were formed on the surface of the active material layer 7 was produced. . Also, the negative electrode 5 was produced using a copper net in the same manner. Protrusions and depressions are also formed on the surface of the negative electrode active material layer 9. Next, in the same manner as in Example 1, the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, as shown in FIG. Such a flat-plate laminated battery body was manufactured. By this method, the area of the bonding surface 11a of the electrode laminate 8 was adjusted to 20% of the total area of each of the active material layers 7 and 9. Since the covering portion of the adhesive resin layer is 20%, in the battery using the same, it is possible to suppress an increase in the ionic conduction resistance between the active material layers 7 and 9, and it is not inferior to the conventional liquid electrolyte type battery. Use at a high load factor became possible. The area of 1 la of the joint surface is adjusted by the wire diameter of the net, the porosity, etc. It is adjusted by the shape of the active material layers 7 and 9 and the surface of the separator 4, and the application (adhesion) state of the adhesive resin. it can.
実施例 5 . Embodiment 5.
正極活物質べ一ストを、 厚さ 3 0 / m、 開口率 8 0 %のアルミ製パ ンチングメタル集電基材上にドクターブレード法で厚さ 3 0 0 mに なるように塗工し、 6 0 °Cの乾燥機中で 6 0分間放置後、 さらに厚さ 2 5 0〃mになるように再度プレスし、 活物質層 7表面に凸部と凹部 が形成された正極 3を作製した。 また負極 5も同様の方法で銅製のパ ンチングメタルを用いて活物質層 9表面に凸部と凹部を形成し作製し た。 次に実施例 1と同様の方法で、 接着性樹脂を点状に塗布し、 正極 3、 セパレ一夕 4、 負極 5、 セパレ一夕 4とを順に接合積層して、 第 1図に示すような平板状積層構造電池体を作製した。 その際に、 電極 積層体 8の凸部の接合面 1 1 aと凹部により活物質層 7 , 9とセパレ —夕 4間に形成される空隙 1 2の深さ Lを 1 0〃m以下になるように
調節した。 空隙の深さ Lは電極形成時の圧延時の加圧力、 パンチング メタルの開口率、 孔の形状等により調整できる。 空隙の深さを 1 0 m以下に調整することによつて反応種の拡散がより容易に進むため、 活物質層 7 , 9とセパレー夕 4のイオン伝導抵抗の低減を図ることが でき、 従来の液体電解質型電池に劣らない高負荷率での使用が可能と なった。 The positive electrode active material base was applied to a 300-m-thick aluminum punching metal current-collecting base material with a thickness of 30 / m and an aperture ratio of 80% by the doctor blade method to a thickness of 300 m. After standing in a drier at 0 ° C. for 60 minutes, it was pressed again so as to have a thickness of 250 μm, thereby producing a positive electrode 3 in which projections and depressions were formed on the surface of the active material layer 7. Also, the negative electrode 5 was manufactured by forming a convex portion and a concave portion on the surface of the active material layer 9 using a copper-made punching metal in the same manner. Next, in the same manner as in Example 1, the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, as shown in FIG. A flat plate-shaped laminated battery body was produced. At this time, the depth L of the void 12 formed between the active material layers 7 and 9 and the separator 4 by the concave surface 11 a and the concave portion of the convex portion of the electrode laminate 8 is reduced to 10 μm or less. To be Adjusted. The depth L of the gap can be adjusted by the pressing force during rolling during electrode formation, the aperture ratio of the punched metal, the shape of the holes, and the like. By adjusting the depth of the voids to 10 m or less, diffusion of the reactive species proceeds more easily, so that the ionic conduction resistance of the active material layers 7 and 9 and the separator 4 can be reduced. It can be used at a high load rate that is not inferior to that of liquid electrolyte type batteries.
実施例 6 . Embodiment 6.
正極活物質ペーストを、 厚さ 3 0 z m、 開口率 8 0 %のアルミ製パ ンチングメタル集電基材上にドク夕一ブレード法で厚さ 3 0 0 z mに なるように塗工し、 6 0 °Cの乾燥機中で 6 0分間放置後、 さらに厚さ 2 0 0 mになるように再度プレスし、 活物質層 7表面に凸部と凹部 が形成された正極 3を作製した。 また負極 5も同様の方法で銅製のパ ンチングメタルを用いて活物質層 9表面に凸部と凹部を形成し作製し た。 次に実施例 1と同様の方法で、 接着性樹脂を点状に塗布し、 正極 3、 セパレー夕 4、 負極 5、 セパレー夕 4とを順に接合積層して、 第 1図に示すような平板状積層構造電池体を作製した。 この方法によつ て、 活物質層 7 , 9とセパレ一タ間の接合面 1 l aの面積を各活物質 層 7, 9の総面積の 2 0 %に調節したので、 活物質層 7 , 9とセパレ —夕間のイオン伝導抵抗の上昇を抑制でき、 換言すると低減すること ができ、 従来の液体電解質型電池に劣らない高負荷率での使用が可能 となった。 The positive electrode active material paste was applied to a thickness of 300 zm on a punched aluminum current collecting base material with a thickness of 30 zm and an aperture ratio of 80% by the dough-blade method to a thickness of 300 zm. After standing in a dryer at 60 ° C. for 60 minutes, it was pressed again so as to have a thickness of 200 m, and a positive electrode 3 in which convex portions and concave portions were formed on the surface of the active material layer 7 was produced. Also, the negative electrode 5 was manufactured by forming a convex portion and a concave portion on the surface of the active material layer 9 using a copper-made punching metal in the same manner. Next, in the same manner as in Example 1, the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, and a flat plate as shown in FIG. A laminated battery structure was produced. According to this method, the area of 1 la of the bonding surface between the active material layers 7 and 9 and the separator was adjusted to 20% of the total area of each of the active material layers 7 and 9. 9 and Separation—The rise in ion conduction resistance in the evening can be suppressed, in other words, it can be reduced, making it possible to use the battery at a high load factor that is not inferior to conventional liquid electrolyte type batteries.
実施例 7 . Embodiment 7.
正極活物質ペーストを、 厚さ 3 0〃mのアルミニウム箔集電基材上 にドク夕一ブレード法で厚さ 3 0 0 mになるように塗工し、 6 0 °C の乾燥機中で 6 0分間放置後、 厚さ 3 0〃m、 開口率 2 0 %のエキス パンドメタルを活物質ペースト表面にプレスし、 そのエキスパンドメ
W The positive electrode active material paste is applied on a 30-μm-thick aluminum foil current-collecting base material to a thickness of 300 m by the Doc Yuichi Blade Method, and then dried in a 60 ° C dryer. After standing for 60 minutes, an expanded metal with a thickness of 30 3m and an aperture ratio of 20% is pressed on the surface of the active material paste, and the expanded metal is pressed. W
25 twenty five
タルを取り除くことによって活物質層 7表面に深さ 3 0 / mの凹凸を 形成した後、 さらに全体の厚さが 2 5 0 / mになるように再度プレス して正極 3を作製した。 また負極 5も同様の方法で銅箔集電基材を用 いて作製した。 次に実施例 1と同様の方法で、 接着性樹脂を点状に塗 5 布し、 正極 3、 セパレー夕 4、 負極 5、 セパレ一夕 4とを順に接合積 層して、 第 1図に示すような平板状積層構造電池体を作製した。 その 際に、 活物質層 7, 9とセパレー夕 4間に活物質層 7 , 9表面の凹部 により形成される空隙 1 0の深さ Lを 1 0 m以下になるように調節 した。 空隙の深さ Lを 1 0 m以下に調整することによって反応種の0 拡散がより容易に進むため、 活物質層 7 , 9とセパレー夕 4間のィォ ン伝導抵抗の上昇を抑えることができ、 液体電解質型電池に劣らない 高負荷率での使用が可能となった。 The positive electrode 3 was produced by forming irregularities having a depth of 30 / m on the surface of the active material layer 7 by removing the metal, and then pressing again so that the total thickness became 250 / m. Negative electrode 5 was also produced in the same manner using a copper foil current collector. Next, in the same manner as in Example 1, the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated. A flat laminated structure battery body as shown in the figure was produced. At that time, the depth L of the void 10 formed by the recesses on the surfaces of the active material layers 7 and 9 between the active material layers 7 and 9 and the separator 4 was adjusted to be 10 m or less. By adjusting the gap depth L to 10 m or less, zero diffusion of reactive species proceeds more easily, so that the increase in ion conduction resistance between the active material layers 7, 9 and the separator 4 can be suppressed. As a result, it has become possible to use the battery at a high load factor that is not inferior to liquid electrolyte batteries.
実施例 8 . Example 8
正極活物質ペーストを、 厚さ 3 0 / mのアルミニウム箔集電基材上5 にドク夕一ブレード法で厚み 3 0 0 mになるように塗工し、 6 0 °C の乾燥機中で 6 0分間放置後、 厚さ 3 0 / m、 開口率 2 0 %のパンチ ングメタルを活物質ペースト表面にプレスし、 そのパンチングメタル を取り除くことによって電極表面に深さ 3 0〃mの凹凸を形成した後、 さらに全体の厚さが 2 5 0〃mになるように再びプレスし、 正極を作0 製した。 また負極 5も同様の方法で銅箔集電基材を用いて作製した。 The positive electrode active material paste is applied on a 30 / m-thick aluminum foil current-collecting base material 5 to a thickness of 300 m by a doctor blade method, and dried in a 60 ° C dryer. After standing for 60 minutes, a punching metal with a thickness of 30 / m and an aperture ratio of 20% is pressed on the surface of the active material paste, and the punching metal is removed to form irregularities with a depth of 30〃m on the electrode surface. After that, pressing was performed again so that the total thickness became 250 μm, and a positive electrode was produced. Negative electrode 5 was also prepared in the same manner using a copper foil current collector.
次に実施例 1と同様の方法で、 接着性樹脂を点状に塗布し、 正極 3、 セパレ一夕 4、 負極 5、 セパレ一夕 4とを順に接合積層して、 第 1図 に示すような平板状積層構造電池体を作製した。 この方法によって活 物質層 7 , 9とセパレー夕 4間の接合面 1 1 aの面積を活物質層 7 ,5 9全体の面積の 2 0 %に調節したので、 活物質層 7, 9とセパレ一夕 4間のイオン伝導抵抗の上昇を抑えることができ、 従来の液体電解質
型電池に劣らない高負荷率での使用が可能となった。 Next, in the same manner as in Example 1, the adhesive resin was applied in the form of dots, and the positive electrode 3, the separator 4, the negative electrode 5, and the separator 4 were sequentially joined and laminated, as shown in FIG. A flat plate-shaped laminated battery body was produced. With this method, the area of the junction surface 11a between the active material layers 7, 9 and the separator 4 was adjusted to 20% of the total area of the active material layers 7, 59, so that the active material layers 7, 9 and the separator were separated. The rise in ionic conduction resistance during one night can be suppressed, and the conventional liquid electrolyte It can be used at a high load rate that is not inferior to a rechargeable battery.
実施例 9 . Embodiment 9.
この実施例においては接着性樹脂液の塗布方法だけを変えて、 後は上 記実施例 1 と同様の方法で電池を作製した。 第 6図に示すように、 セ パレー夕材 1 4として用いるロール状に束ねられた幅 1 2 c m厚さ 2 5〃mの多孔性のポリプロピレンシート (へキスト製商品名セルガ一 ド # 2 4 0 0 ) を取り出し、 直径 1 0 0〃mの点状に空孔 1 9 aを閧 けたキヤタビラ状スクリーン 1 9をセパレ一夕材 1 4上に押しつけた。 スクリーン 1 9上に実施例 1に示した接着性樹脂液を滴下し、 塗着口 ール 2 1で接着性樹脂をスクリーン上から圧延することにより、 点状 に接着性樹脂液をセパレー夕上に転写塗布することができた。 同様の 方法で、 負極 5を挟んで接合した 2枚のセパレー夕 4にも点状に接着 性樹脂液を良好に塗布できた。 実施例 2で示した接着性樹脂液を用い た場合にも同様に、 良好にセパレー夕に点状に接着性樹脂液を塗布す ることができた。 このようにして、 接着性樹脂層を付着したセパレ一 夕を用いても、 上記実施例 1と同様の優れた特性のリチウム二次電池 が得られた。 In this example, a battery was manufactured in the same manner as in Example 1 except that only the method of applying the adhesive resin liquid was changed. As shown in Fig. 6, a porous polypropylene sheet with a width of 12 cm and a thickness of 25 m (available from Hoechst # 24) 0 0) was taken out, and a shingle-shaped screen 19 having a hole 19 a in a dot shape having a diameter of 100 μm was pressed onto the separation material 14. The adhesive resin liquid shown in Example 1 was dropped on the screen 19, and the adhesive resin was rolled from the screen at the coating port 21 to form a dot-like adhesive resin liquid on the separator. Transfer coating was possible. In the same manner, the adhesive resin liquid was successfully applied to the two separators 4 sandwiching the negative electrode 5 therebetween. Similarly, when the adhesive resin liquid shown in Example 2 was used, the adhesive resin liquid could be applied favorably in the form of dots on a separate plate. In this way, a lithium secondary battery having the same excellent characteristics as in Example 1 above was obtained even when the separation resin to which the adhesive resin layer was attached was used.
実施例 1 0 . Example 10
この実施例においても接着性樹脂液の塗布方法だけを変えて、 後は 上記実施例 1 と同様の方法で電池を作製した。 第 7図に示すように、 セパレ一夕材 1 4として用いるロール状に束ねられた幅 1 2 c m、 厚 さ 2 5 / mの多孔性のポリプロピレンシート (へキスト製セルガード # 2 4 0 0 ) を取り出し、 点状に空孔を開けたキヤ夕ビラ状スクリー ン 2 6をセパレ一夕材 1 4表面近傍に設置した。 次に実施例 1で示し た接着性樹脂液を充填したスプレーガンを用いて接着性樹脂液をセパ レ一夕材 1 4に噴霧した。 噴霧によりセパレ一夕材 1 4の表面に均一
に点状に接着性樹脂液を塗布することができた。 同様の方法で、 負極 5を挟んで接合した 2枚のセパレー夕 4にも点状に接着性樹脂液を良 好に塗布できた。 また接着性樹脂の付着量は噴霧速度を変えることに より調節ができた。 実施例 2で示した接着性樹脂液を用いた場合にも 同様に、 セパレ一夕材に点状に接着性樹脂液を良好に塗布することが できた。 このようにして接着性樹脂層を付着させたセパレ一夕を用い ても上記実施例 1と同様の優れた特性のリチウム二次電池が得られた。 実施例 1 1 . Also in this example, a battery was manufactured in the same manner as in Example 1 except that only the method of applying the adhesive resin liquid was changed. As shown in Fig. 7, a porous polypropylene sheet with a width of 12 cm and a thickness of 25 / m (Hoechst Celgard # 2400) is used as a material for separating material 14 and bundled in a roll. Then, a beaker-like screen 26 with holes formed in the shape of dots was placed in the vicinity of the surface of the material 14 for separation. Next, the adhesive resin liquid was sprayed onto the separation material 14 using the spray gun filled with the adhesive resin liquid shown in Example 1. Spraying evenly on the surface of Separation material 14 The adhesive resin liquid was applied in a dot-like manner. In the same manner, the adhesive resin liquid was applied favorably to the two separators 4 joined together with the negative electrode 5 interposed therebetween. In addition, the amount of the adhesive resin adhered could be adjusted by changing the spray speed. Similarly, in the case where the adhesive resin liquid shown in Example 2 was used, the adhesive resin liquid could be satisfactorily applied to the separation material in a dot-like manner. Thus, a lithium secondary battery having the same excellent characteristics as in Example 1 above was obtained using Separation overnight to which the adhesive resin layer was adhered. Example 11 1.
この実施例においても接着性樹脂液の塗布方法だけを変えて、 後は 上記実施例 1 と同様の方法で電池を作製した。 第 8図に示すように、 セパレ一夕材 1 4として用いるロール状に束ねられた幅 1 2 c m、 厚 さ 2 5〃mの多孔性のポリプロピレンシ一ト (へキスト製セルガ一ド # 2 4 0 0 ) を取り出し、 セパレ一夕材 1 4の片側に配置した 8個の ディスペンサー 2 8内に実施例 1に示した接着性樹脂液を充填した。 この接着性樹脂液をセパレー夕材 1 4の移動と同時にセパレ一夕材 1 4面に断続的に滴下することにより、 接着性樹脂液を点状に塗着する ことができた。 同様の方法で、 負極 5を挟んで接合した 2枚のセパレ 一夕 4にも点状に接着性樹脂液を良好に塗布できた。 実施例 2で示し た接着性樹脂液を用いた場合にも同様に、 良好にセパレ一夕の両面に 接着性樹脂液を塗布することができた。 同様に、 このようにして接着 性樹脂層を付着させたセパレ一夕を用いて優れた特性のリチウム二次 電池が得られた。 Also in this example, a battery was manufactured in the same manner as in Example 1 except that only the method of applying the adhesive resin liquid was changed. As shown in Fig. 8, a roll of 12 cm wide and 25 mm thick porous polypropylene sheet (Hoechst Cell Guard # 2) 400) was taken out, and the adhesive resin liquid shown in Example 1 was filled into eight dispensers 28 arranged on one side of the separation material 14. This adhesive resin liquid was applied intermittently to the surface of the separation material 14 at the same time as the separation resin material 14 was moved, whereby the adhesive resin solution could be applied in a dot-like manner. In the same manner, the adhesive resin liquid was successfully applied in a dotted manner to the two separators 4 joined together with the negative electrode 5 interposed therebetween. Similarly, when the adhesive resin liquid shown in Example 2 was used, the adhesive resin liquid was successfully applied to both surfaces of the separator. Similarly, a lithium secondary battery having excellent characteristics was obtained by using Separation overnight to which the adhesive resin layer was adhered.
実施例 1 2 . Example 1 2.
負極 5および正極 3の作製、 接着性樹脂液の調製を上記実施例 1と 同様に行い、 帯状の 2枚のセパレ一夕 4それぞれの片面に調製した接 着性樹脂液を上記実施例 1と同様の方法で点状に塗布し、 この塗布し
た面の間に帯状の正極を挟み、 密着させて貼り合わせた後、 6 0 °Cの 温風乾燥機に 2時間入れ、 接着性樹脂液の N M Pを蒸発させ、 2枚の セパレー夕間に正極を接合した。 The preparation of the negative electrode 5 and the positive electrode 3 and the preparation of the adhesive resin liquid were performed in the same manner as in Example 1 above. The adhesive resin liquid prepared on one side of each of the two strip-shaped separators 4 was used as in Example 1 above. In the same manner, apply in the form of dots After sandwiching the strip-shaped positive electrode between the two surfaces, bonding them together and placing them in a hot-air dryer at 60 ° C for 2 hours, evaporating the NMP of the adhesive resin solution, and separating the two sheets in the evening The positive electrode was joined.
正極を間に挟んで接合した帯状のセパレ一夕の一方の面に調製した 接着性樹脂液を同様の方法で点状に塗布し、 この一方の面を中にして 上記セパレー夕の一端を所定量折り曲げ、 折り目に所定の大きさに切 断した負極 5を挟み、 重ね合わせてラミネ一夕に通した。 引き続いて、 上記帯状のセパレ一夕の他方の面に調製した接着性樹脂液を同様の方 法で点状に塗布し、 先に折り目に挟んだ負極 5と対向する位置に所定 の大きさに切断した別の負極を貼り合わせ、 これを挟むように上記帯 状のセパレー夕を長円状に半周分巻き上げ、 さらに別の負極を貼り合 わせつつ上記セパレ一夕を巻き上げる工程を繰り返し、 複数層の電極 積層体を有する電池体を形成し、 この電池体を加圧しながら乾燥し、 第 2図に示すような平板状卷型積層構造電池体を作製した。 The prepared adhesive resin solution is applied to one surface of the strip-shaped separator with the positive electrode interposed therebetween in a similar manner in a dot-like manner, and one end of the separator is placed with this one surface in the middle. The negative electrode 5 cut into a predetermined size was sandwiched between the folds and the fold, and the pieces were overlaid and passed through Lamine overnight. Subsequently, the adhesive resin liquid prepared above was applied to the other surface of the strip-shaped separator in a dot-like manner in the same manner, and the predetermined size was applied to a position facing the negative electrode 5 sandwiched between the folds. A process of bonding another cut negative electrode, winding the strip-shaped separator into an elliptical shape for half a turn so as to sandwich the negative electrode, and further winding the separate separator while bonding another negative electrode, is repeated to form a plurality of layers. A battery body having the above electrode laminate was formed, and this battery body was dried while being pressurized to produce a flat-plate wound type laminated structure battery body as shown in FIG.
この平板状卷型積層構造電池体の負極集電体それぞれの端部に接続 した集電夕ブをスポット溶接することによって電気的に並列に接続し た。 さらに、 この平板状卷型積層構造電池体に、 上記実施例 1と同様 に電解液を含浸させ、 封口処理して二次電池を得た。 The current collectors connected to the ends of each of the negative electrode current collectors of the flat-plate-shaped laminated battery body were electrically connected in parallel by spot welding. Further, the flat wound type laminated structure battery body was impregnated with an electrolytic solution in the same manner as in Example 1 and sealed to obtain a secondary battery.
この平板状卷型積層構造電池体においても、 同様に、 凸部の接合面 に付着された接着性樹脂層 1 1により正極 3および負極 5とセパレ一 夕 4とが密着されており、 空隙に保持された電解液により良好なィォ ン伝導性が確保できるので、 強固な外装缶を必要としない、 薄型、 軽 量で、 充放電特性に優れた大容量の電池が得られた。 Also in this flat-plate wound type laminated structure battery body, similarly, the positive electrode 3 and the negative electrode 5 and the separator 4 are in close contact with each other by the adhesive resin layer 11 attached to the joint surface of the convex portion, and Since good ion conductivity can be ensured by the retained electrolyte, a thin, light-weight, large-capacity battery with excellent charge / discharge characteristics that does not require a strong outer can was obtained.
本実施例では、 帯状のセパレ一夕 4間に帯状の正極 3を接合したも のを巻き上げつつ、 間に所定の大きさの複数の負極 5を挟んで貼り合 わせる例を示したが、 逆に、 帯状のセパレ一夕 4間に帯状の負極 5を
接合したものを巻き上げつつ、 間に所定の大きさの複数の正極 3を挟 んで貼り合わせる方法でも良い。 In the present embodiment, an example is shown in which a strip-shaped positive electrode 3 is joined between strip-shaped separators 4 while being wound up, and a plurality of negative electrodes 5 having a predetermined size are sandwiched therebetween. Conversely, the strip-shaped negative electrode 5 is placed between the strip-shaped separators 4. A method may be used in which a plurality of the positive electrodes 3 having a predetermined size are sandwiched therebetween while the joined members are wound up.
また、 本実施例においてはセパレー夕 4を巻き上げる方法を示した が、 帯状のセノ、'レ一夕 4間に帯状の負極 5または正極 3を接合したも のを折り畳みつつ、 所定の大きさの正極 3または負極 5を間に挟み貼 り合わせる方法でも良い。 Further, in this embodiment, the method of winding the separator 4 has been described, but the band-shaped seno, which is formed by joining the band-shaped negative electrode 5 or the positive electrode 3 between the layers 4, is folded into a predetermined size. A method in which the positive electrode 3 or the negative electrode 5 is sandwiched therebetween and bonded together may be used.
実施例 1 3 . Example 13
負極 5および正極 3の作製、 接着性樹脂液の調製を上記実施例 1と 同様に行う。 The production of the negative electrode 5 and the positive electrode 3 and the preparation of the adhesive resin solution are performed in the same manner as in Example 1 above.
帯状の正極 3を帯状の 2枚のセパレ一夕 4間に配置し、 帯状の負極 5を一方のセパレー夕の外側に一定量突出させて配置する。 予め、 各 セパレー夕 4の内側の面および負極 5を配置するセパレー夕 4の外側 の面には、 調製した接着性樹脂液を上記塗布方法により点状に塗布し ておく。 負極 5の一端を一定量先行してラミネ一夕に通し、 次いで負 極 5、 セパレ一夕 4、 正極 3、 セパレ一夕 4とを重ね合わせながらラ ミネ一夕に通し帯状の積層物を形成した。 その後、 帯状の積層物の他 方のセパレー夕の外側の面に調製した接着性樹脂液を塗布し、 突出さ せた負極 5をこの塗布面に折り曲げて貼り合わせ、 この折り曲げた負 極 5を内側に包み込むようにラミネ一トした積層物を長円状に巻き上 げ、第 3図に示すような複数層の電極積層体を有する電池体を形成し、 この電池体を加圧しながら乾燥し、 負極とセパレー夕と正極とを同時 に接合し、 平板状卷型積層構造電池体を作製した。 The strip-shaped positive electrode 3 is arranged between two strip-shaped separators 4, and the strip-shaped negative electrode 5 is arranged so as to protrude outside the one separator by a certain amount. In advance, the prepared adhesive resin liquid is applied to the inner surface of each separator 4 and the outer surface of the separator 4 on which the negative electrode 5 is to be disposed, in a dot-like manner by the above-described coating method. A predetermined amount of one end of the negative electrode 5 is passed through Lamine overnight, and then a negative electrode 5, Separe night 4, Positive electrode 3 and Separe night 4 are laminated to form a laminar laminate. did. Then, the prepared adhesive resin liquid is applied to the outer surface of the other separator in the band-shaped laminate, and the protruded negative electrode 5 is bent and bonded to the coated surface, and the bent negative electrode 5 is bonded. The laminated body that has been laminated is wrapped in an elliptical shape so as to be wrapped inside, to form a battery body having a plurality of electrode laminates as shown in FIG. 3, and this battery body is dried while being pressurized. Then, the negative electrode, the separator, and the positive electrode were simultaneously bonded to produce a flat-plate-type laminated battery.
この平板状卷型積層構造電池体に、 上記実施例 1と同様に電解液を 注入し、 封口処理して電池を得た。 上記実施例 1と同様、 薄型、 軽量 で、 充放電特性に優れ、 電池容量の大きい電池が得られた。 An electrolytic solution was injected into the flat wound type laminated structure battery body in the same manner as in Example 1 and sealed to obtain a battery. As in the case of Example 1 above, a battery having a small thickness, light weight, excellent charge / discharge characteristics, and a large battery capacity was obtained.
本実施例では、 帯状のセパレー夕 4間に帯状の正極 3を配置し、 一
方のセパレ一夕 4の外側に負極 5を配置して巻き上げる例を示したが、 逆に、 帯状のセパレ一夕 4間に帯状の負極 5を配置し、 一方のセパレ —夕 4の外側に正極 3を配置して巻き上げる方法でも良い。 In the present embodiment, a strip-shaped positive electrode 3 is arranged between strip-shaped separators 4. In the example shown above, the negative electrode 5 is placed outside the separator 4 and rolled up. Conversely, the belt-like negative electrode 5 is placed between the belt-like separator 4 and the other separator is placed outside the separator 4. A method of arranging and winding the positive electrode 3 may be used.
上記実施例において、 積層数を種々変化させたところ、 積層数に比 例して電池容量が増加した。 産業上の利用可能性 In the above example, when the number of layers was changed variously, the battery capacity increased in proportion to the number of layers. Industrial applicability
形態パソコン、 携帯電話等の携帯用電子機器の二次電池として用いら れ、 電池の性能向上とともに、 小型,軽量化、 任意形状化が可能とな る。
It is used as a secondary battery for portable electronic devices such as personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped while improving the performance of the battery.
Claims
1 . 正極集電体に正極活物質層を接合した正極と、 負極集電体に負 極活物質層を接合した負極と、 上記各活物質層の面との対向面を有し、 かつリチウムイオンを含む電解液を保持するセパレ一夕とを有する電 極積層体を複数層備え、 上記対向面またはこの対向面に隣合う上記各 活物質層の面に形成された凸部および凹部と、 上記各対向面とこの対 向面に隣合う上記各活物質層の面とを接着性樹脂層により接合するこ とにより形成された、 上記凸部の接合面および上記凹部により形成さ れ所定の深さを有する空隙と、 この空隙に保持されたリチウムイオン を含む電解液とを有するリチウムイオン二次電池。 1. A positive electrode in which a positive electrode active material layer is joined to a positive electrode current collector, a negative electrode in which a negative electrode active material layer is joined to a negative electrode current collector, and a surface facing each of the above active material layers, and lithium A plurality of electrode stacks each having a separator holding an electrolyte solution containing ions, a convex portion and a concave portion formed on the opposing surface or the surface of each active material layer adjacent to the opposing surface; A predetermined surface formed by bonding the convex portions and the concave portions formed by bonding the respective opposing surfaces and the surfaces of the respective active material layers adjacent to the opposing surfaces with an adhesive resin layer. A lithium ion secondary battery including a gap having a depth and an electrolyte containing lithium ions held in the gap.
2 . 空隙の深さが、 3 0〃m以下である請求の範囲第 1項に記載の リチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein the depth of the void is 30 μm or less.
3 . 各面間の接合面の面積が、 上記各対向面の総面積の 1 0〜3 0 % である請求の範囲第 1項に記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 1, wherein an area of a bonding surface between the respective surfaces is 10 to 30% of a total area of the respective opposing surfaces.
4 . セパレ一夕と正極および負極活物質層との接合強度が、 それそ れ正極集電体と正極活物質層および負極集電体と負極活物質層の接合 強度と同等以上である請求の範囲第 1項に記載のリチウムイオン二次 電池。 4. The bonding strength between the separator and the positive and negative electrode active material layers is equal to or higher than the bonding strength between the positive electrode current collector and the positive electrode active material layer and between the negative electrode current collector and the negative electrode active material layer, respectively. 2. The lithium-ion secondary battery according to item 1.
5 . 接着性樹脂層が多孔性である請求の範囲第 1項に記載のリチウ ムイオン二次電池。 5. The lithium ion secondary battery according to claim 1, wherein the adhesive resin layer is porous.
6 . 接着性樹脂層が付着されていない空隙が形成されている請求の 範囲第 1項に記載のリチウムィオン二次電池。 6. The lithium ion secondary battery according to claim 1, wherein a void to which the adhesive resin layer is not attached is formed.
7 . 電極積層体の複数層が、 正極と負極とを、 切り離された複数の セパレ一夕間に交互に配置することにより形成されたことを特徴とす る請求の範囲第 1項に記載のリチウムイオン二次電池。 7. The method according to claim 1, wherein the plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode during a plurality of separated separations. Lithium ion secondary battery.
8 . 電極積層体の複数層が、 正極と負極とを、 巻き上げられたセパ
レー夕間に交互に配置することにより形成されたことを特徴とする請 求の範囲第 1項に記載のリチウムィオン二次電池。 8. The multiple layers of the electrode stack, the positive electrode and the negative electrode 2. The lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is formed by alternately arranging the lithium ion batteries during a laser beam.
9 . 電極積層体の複数層が、 正極と負極とを、 折り畳んだセパレ一 夕間に交互に配置することにより形成されたことを特徴とする請求の 範囲第 1項に記載のリチウムィオン二次電池。 9. The lithium ion secondary battery according to claim 1, wherein the plurality of layers of the electrode laminate are formed by alternately arranging a positive electrode and a negative electrode in a folded separator. battery.
1 0 . 正極活物質層の一方の面、 負極活物質層の一方の面およびセ パレー夕の対向する二つの面の少なくとも二つの面に凸部および凹部 を形成する工程、 上記正極活物質層の一方の面、 上記負極活物質層の 一方の面および上記セパレー夕の対向する二つの面の少なくとも二つ の面に接着性樹脂層を付着する工程、 上記セパレー夕の各面に上記正 極活物質層の一方の面および負極活物質層の一方の面を貼り合わせて 加圧接合し、 上記凸部による接合面と上記凹部による所定の深さの空 隙とを有する電極積層体を形成する工程を備えたリチウムイオン二次 電池の製造方法。 10. a step of forming convex portions and concave portions on at least two surfaces of one surface of the positive electrode active material layer, one surface of the negative electrode active material layer, and two opposing surfaces of the separator; Adhering an adhesive resin layer to at least one of the one surface of the negative electrode active material layer and the two opposing surfaces of the separator; and forming the positive electrode on each surface of the separator. One surface of the active material layer and one surface of the negative electrode active material layer are bonded and pressure-bonded to form an electrode laminate having a bonding surface formed by the convex portions and a gap having a predetermined depth formed by the concave portions. A method for producing a lithium ion secondary battery, comprising the steps of:
1 1 . 局部的に接着性樹脂層を付着させ、 上記接着性樹脂層が付着 されていない空隙を形成するようにした請求の範囲第 1 0項に記載の 11. The method according to claim 10, wherein the adhesive resin layer is locally adhered to form a void to which the adhesive resin layer is not adhered.
'二次電池の製造方法。
'Rechargeable battery manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1997/004678 WO1999031751A1 (en) | 1997-12-18 | 1997-12-18 | Lithium ion secondary battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1997/004678 WO1999031751A1 (en) | 1997-12-18 | 1997-12-18 | Lithium ion secondary battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999031751A1 true WO1999031751A1 (en) | 1999-06-24 |
Family
ID=14181684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/004678 WO1999031751A1 (en) | 1997-12-18 | 1997-12-18 | Lithium ion secondary battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999031751A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001118558A (en) * | 1999-10-19 | 2001-04-27 | Asahi Kasei Corp | Partially coated separator |
JP2003100349A (en) * | 2001-09-26 | 2003-04-04 | Nitto Denko Corp | Method of making adhesive polymer gel electrolyte |
JP2005327663A (en) * | 2004-05-17 | 2005-11-24 | Nitto Denko Corp | Electrode element and method of manufacturing large-sized rechargeable lithium-ion battery |
JP2010108802A (en) * | 2008-10-31 | 2010-05-13 | Ohara Inc | Separator for battery and method for manufacturing the same |
JP2012528456A (en) * | 2009-05-26 | 2012-11-12 | オプトドット コーポレイション | Lithium battery using nanoporous separator layer |
JP2013524431A (en) * | 2010-04-01 | 2013-06-17 | エルジー・ケム・リミテッド | Electrode assembly having novel structure and method of manufacturing the same |
JP2015138770A (en) * | 2014-01-24 | 2015-07-30 | 旭化成イーマテリアルズ株式会社 | Laminate, power storage device separator, power storage device, lithium ion secondary battery, and copolymer |
JP2015537337A (en) * | 2013-01-16 | 2015-12-24 | エルジー・ケム・リミテッド | Electrode assembly manufacturing equipment |
JP2016522553A (en) * | 2013-09-30 | 2016-07-28 | エルジー・ケム・リミテッド | Method for manufacturing separator for lithium secondary battery, separator manufactured by the method, and lithium secondary battery including the same |
JP2016535923A (en) * | 2013-11-04 | 2016-11-17 | エルジー・ケム・リミテッド | Method for forming adhesive layer for secondary battery |
JP2018055951A (en) * | 2016-09-28 | 2018-04-05 | 日産自動車株式会社 | Secondary battery |
CN110021781A (en) * | 2018-01-09 | 2019-07-16 | 丰田自动车株式会社 | Nonaqueous electrolytic solution secondary battery |
US10381623B2 (en) | 2015-07-09 | 2019-08-13 | Optodot Corporation | Nanoporous separators for batteries and related manufacturing methods |
US10505168B2 (en) | 2006-02-15 | 2019-12-10 | Optodot Corporation | Separators for electrochemical cells |
US10833307B2 (en) | 2010-07-19 | 2020-11-10 | Optodot Corporation | Separators for electrochemical cells |
US10879513B2 (en) | 2013-04-29 | 2020-12-29 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
CN113097440A (en) * | 2021-03-31 | 2021-07-09 | 宁德新能源科技有限公司 | Electrochemical device and electric equipment |
EP4187675A3 (en) * | 2021-11-30 | 2023-06-28 | Prime Planet Energy & Solutions, Inc. | Manufacturing method of secondary battery |
US12040506B2 (en) | 2015-04-15 | 2024-07-16 | Lg Energy Solution, Ltd. | Nanoporous separators for batteries and related manufacturing methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5541689A (en) * | 1978-08-23 | 1980-03-24 | Mallory & Co Inc P R | Chemical battery |
JPH0435351U (en) * | 1990-07-23 | 1992-03-24 | ||
JPH06251775A (en) * | 1993-02-25 | 1994-09-09 | Tdk Corp | Laminated type battery |
JPH06310126A (en) * | 1993-04-23 | 1994-11-04 | Japan Storage Battery Co Ltd | Nonaquous electrolytic secondary battery |
JPH09500485A (en) * | 1993-11-30 | 1997-01-14 | ベル コミュニケーションズ リサーチ,インコーポレイテッド | Electrolyte activatable lithium-ion rechargeable battery cell and method of manufacturing the same |
-
1997
- 1997-12-18 WO PCT/JP1997/004678 patent/WO1999031751A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5541689A (en) * | 1978-08-23 | 1980-03-24 | Mallory & Co Inc P R | Chemical battery |
JPH0435351U (en) * | 1990-07-23 | 1992-03-24 | ||
JPH06251775A (en) * | 1993-02-25 | 1994-09-09 | Tdk Corp | Laminated type battery |
JPH06310126A (en) * | 1993-04-23 | 1994-11-04 | Japan Storage Battery Co Ltd | Nonaquous electrolytic secondary battery |
JPH09500485A (en) * | 1993-11-30 | 1997-01-14 | ベル コミュニケーションズ リサーチ,インコーポレイテッド | Electrolyte activatable lithium-ion rechargeable battery cell and method of manufacturing the same |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001118558A (en) * | 1999-10-19 | 2001-04-27 | Asahi Kasei Corp | Partially coated separator |
JP2003100349A (en) * | 2001-09-26 | 2003-04-04 | Nitto Denko Corp | Method of making adhesive polymer gel electrolyte |
JP2005327663A (en) * | 2004-05-17 | 2005-11-24 | Nitto Denko Corp | Electrode element and method of manufacturing large-sized rechargeable lithium-ion battery |
JP4601323B2 (en) * | 2004-05-17 | 2010-12-22 | 日東電工株式会社 | Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof |
US12046774B2 (en) | 2006-02-15 | 2024-07-23 | Lg Energy Solution, Ltd. | Separators for electrochemical cells |
US11522252B2 (en) | 2006-02-15 | 2022-12-06 | Lg Energy Solution, Ltd. | Separators for electrochemical cells |
US11264676B2 (en) | 2006-02-15 | 2022-03-01 | Optodot Corporation | Separators for electrochemical cells |
US11121432B2 (en) | 2006-02-15 | 2021-09-14 | Optodot Corporation | Separators for electrochemical cells |
US10797288B2 (en) | 2006-02-15 | 2020-10-06 | Optodot Corporation | Separators for electrochemical cells |
US10505168B2 (en) | 2006-02-15 | 2019-12-10 | Optodot Corporation | Separators for electrochemical cells |
JP2010108802A (en) * | 2008-10-31 | 2010-05-13 | Ohara Inc | Separator for battery and method for manufacturing the same |
US10403874B2 (en) | 2009-05-26 | 2019-09-03 | Optodot Corporation | Methods of producing batteries utilizing anode metal depositions directly on nanoporous separators |
US8962182B2 (en) | 2009-05-26 | 2015-02-24 | Optodot Corporation | Batteries utilizing anode coatings directly on nanoporous separators |
US11777176B2 (en) | 2009-05-26 | 2023-10-03 | Meta Materials Inc. | Lithium batteries utilizing nanoporous separator layers |
US11621459B2 (en) | 2009-05-26 | 2023-04-04 | Meta Materials Inc. | Batteries utilizing anode coatings directly on nanoporous separators |
US11605862B2 (en) | 2009-05-26 | 2023-03-14 | Meta Materials Inc. | Batteries utilizing anode coatings directly on nanoporous separators |
US9660297B2 (en) | 2009-05-26 | 2017-05-23 | Optodot Corporation | Methods of producing batteries utilizing anode coatings directly on nanoporous separators |
US11387523B2 (en) | 2009-05-26 | 2022-07-12 | Optodot Corporation | Batteries utilizing cathode coatings directly on nanoporous separators |
US11335976B2 (en) | 2009-05-26 | 2022-05-17 | Optodot Corporation | Batteries utilizing anode coatings directly on nanoporous separators |
US11870097B2 (en) | 2009-05-26 | 2024-01-09 | Meta Materials Inc. | Methods of producing batteries utilizing anode coatings directly on nanoporous separators |
US11283137B2 (en) | 2009-05-26 | 2022-03-22 | Optodot Corporation | Methods of producing batteries utilizing anode coatings directly on nanoporous separators |
JP2015173115A (en) * | 2009-05-26 | 2015-10-01 | オプトドット コーポレイション | Lithium battery utilizing nanoporous separator layer |
JP2012528456A (en) * | 2009-05-26 | 2012-11-12 | オプトドット コーポレイション | Lithium battery using nanoporous separator layer |
US9065120B2 (en) | 2009-05-26 | 2015-06-23 | Optodot Corporation | Batteries utilizing electrode coatings directly on nanoporous separators |
US10651444B2 (en) | 2009-05-26 | 2020-05-12 | Optodot Corporation | Lithium batteries utilizing nanoporous separator layers |
US9118047B2 (en) | 2009-05-26 | 2015-08-25 | Optodot Corporation | Batteries utilizing cathode coatings directly on nanoporous separators |
JP2013524431A (en) * | 2010-04-01 | 2013-06-17 | エルジー・ケム・リミテッド | Electrode assembly having novel structure and method of manufacturing the same |
US9136556B2 (en) | 2010-04-01 | 2015-09-15 | Lg Chem, Ltd. | Electrode assembly of novel structure and process for preparation of the same |
US10833307B2 (en) | 2010-07-19 | 2020-11-10 | Optodot Corporation | Separators for electrochemical cells |
US11728544B2 (en) | 2010-07-19 | 2023-08-15 | Lg Energy Solution, Ltd. | Separators for electrochemical cells |
JP2015537337A (en) * | 2013-01-16 | 2015-12-24 | エルジー・ケム・リミテッド | Electrode assembly manufacturing equipment |
US9768439B2 (en) | 2013-01-16 | 2017-09-19 | Lg Chem, Ltd. | Apparatus for preparing electrode assembly |
US11387521B2 (en) | 2013-04-29 | 2022-07-12 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
US10879513B2 (en) | 2013-04-29 | 2020-12-29 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
US11217859B2 (en) | 2013-04-29 | 2022-01-04 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
JP2016522553A (en) * | 2013-09-30 | 2016-07-28 | エルジー・ケム・リミテッド | Method for manufacturing separator for lithium secondary battery, separator manufactured by the method, and lithium secondary battery including the same |
US10115950B2 (en) | 2013-09-30 | 2018-10-30 | Lg Chem, Ltd. | Method of preparing separator for lithium secondary battery, separator prepared therefrom, and lithium secondary battery comprising the same |
US10193120B2 (en) | 2013-11-04 | 2019-01-29 | Lg Chem, Ltd. | Method for forming adhesion layer for secondary battery |
JP2016535923A (en) * | 2013-11-04 | 2016-11-17 | エルジー・ケム・リミテッド | Method for forming adhesive layer for secondary battery |
JP2015138770A (en) * | 2014-01-24 | 2015-07-30 | 旭化成イーマテリアルズ株式会社 | Laminate, power storage device separator, power storage device, lithium ion secondary battery, and copolymer |
US12040506B2 (en) | 2015-04-15 | 2024-07-16 | Lg Energy Solution, Ltd. | Nanoporous separators for batteries and related manufacturing methods |
US10381623B2 (en) | 2015-07-09 | 2019-08-13 | Optodot Corporation | Nanoporous separators for batteries and related manufacturing methods |
JP2018055951A (en) * | 2016-09-28 | 2018-04-05 | 日産自動車株式会社 | Secondary battery |
CN110021781A (en) * | 2018-01-09 | 2019-07-16 | 丰田自动车株式会社 | Nonaqueous electrolytic solution secondary battery |
CN110021781B (en) * | 2018-01-09 | 2022-05-06 | 丰田自动车株式会社 | Non-aqueous electrolyte secondary battery |
JP2019121541A (en) * | 2018-01-09 | 2019-07-22 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
CN113097440A (en) * | 2021-03-31 | 2021-07-09 | 宁德新能源科技有限公司 | Electrochemical device and electric equipment |
EP4187675A3 (en) * | 2021-11-30 | 2023-06-28 | Prime Planet Energy & Solutions, Inc. | Manufacturing method of secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3303694B2 (en) | Lithium ion secondary battery and method of manufacturing the same | |
EP0959513B1 (en) | Lithium ion secondary battery and manufacture thereof | |
JP3225864B2 (en) | Lithium ion secondary battery and method of manufacturing the same | |
EP0954042B1 (en) | Lithium ion secondary battery and manufacture thereof | |
JP4008508B2 (en) | Method for producing lithium ion secondary battery | |
JP3997573B2 (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP3474853B2 (en) | Manufacturing method of lithium ion secondary battery | |
WO1999031751A1 (en) | Lithium ion secondary battery and its manufacture | |
US6291102B1 (en) | Lithium ion secondary battery | |
KR19980064462A (en) | Lithium ion secondary battery | |
WO1999048163A1 (en) | Lithium ion battery and method for forming the same | |
JPH10284055A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
WO1999040645A1 (en) | Lithium battery and method for manufacturing the same | |
WO1999031750A1 (en) | Adhesive for cells, a cell using the same and a process for producing cells | |
JP2003151638A (en) | Lithium-ion secondary battery | |
WO1999033136A1 (en) | Lithium ion secondary battery and its manufacture | |
US20030134202A1 (en) | Lithium polymer battery | |
WO1999026308A1 (en) | Bonding agent for cells and cell using the same | |
WO1999034470A1 (en) | Process for manufacture of lithium ion secondary battery | |
WO1999048164A1 (en) | Secondary battery and method for forming the same | |
WO1999040644A1 (en) | Method for manufacturing lithium ion battery | |
US20010009736A1 (en) | Lithium ion secondary battery and process for producing the same | |
KR20000021264A (en) | Method for manufacturing a pole plate for a secondary battery of a lithium ion and a manufacturing apparatus thereof | |
KR100301996B1 (en) | Manufacture of lithium ion secondary battery | |
KR100300530B1 (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 2000539542 Format of ref document f/p: F |