JP2001118558A - Partially coated separator - Google Patents
Partially coated separatorInfo
- Publication number
- JP2001118558A JP2001118558A JP29704299A JP29704299A JP2001118558A JP 2001118558 A JP2001118558 A JP 2001118558A JP 29704299 A JP29704299 A JP 29704299A JP 29704299 A JP29704299 A JP 29704299A JP 2001118558 A JP2001118558 A JP 2001118558A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- polymer
- thickness
- polymer layer
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高性能なリチウム
イオン二次電池用の新規なセパレータに関するものであ
る。The present invention relates to a novel separator for a high performance lithium ion secondary battery.
【0002】[0002]
【従来の技術】リチウムイオン二次電池は携帯用電子機
器の小型・軽量化の流れの中で、激しい開発競争が行わ
れている。同じリチウムイオン二次電池の中でも電池形
状の違いによって用途が異なることから電池への要求特
性も異なってきている。角型電池では携帯電話向けに薄
型化競争が激しい。この流れに対応して従来の剛直な外
装缶をできるだけ薄くする検討に加えて、ラミネートフ
ィルムを用いて外装缶をなくしたシート状電池の開発も
活発になってきている。このような薄型の電池では従来
の角型電池と比較して電池内部の電極コイルを外から押
しつける力が弱くなるため、電極とセパレータの間に隙
間が生じイオン伝導性の阻害による電池容量の低下や安
全性試験で高温時の電極間の短絡が生じやすくなるなど
の問題点が生じる。これに対してセパレータと電極間の
接着性向上によって改善することが指摘されている。2. Description of the Related Art Intense competition for the development of lithium ion secondary batteries has been taking place in the trend of reducing the size and weight of portable electronic devices. Even among the same lithium ion secondary batteries, the required characteristics of the batteries are different due to different uses depending on the shape of the batteries. In the case of prismatic batteries, competition for thinning for mobile phones is fierce. In response to this trend, in addition to the study to make the conventional rigid outer can as thin as possible, the development of a sheet-shaped battery in which the outer can is eliminated by using a laminated film is also becoming active. In such a thin battery, the force to press the electrode coil inside the battery from outside is weaker than the conventional square battery, so a gap is created between the electrode and the separator, and the battery capacity is reduced due to the inhibition of ion conductivity. And a problem that a short circuit between electrodes easily occurs at a high temperature in a safety test. On the other hand, it is pointed out that the improvement is achieved by improving the adhesion between the separator and the electrode.
【0003】また、円筒型電池ではパソコン用の電源が
中心でありパソコンの高性能化及び小型化に対応して高
容量化競争が激しい。高容量化には電極活物質の改良と
ともに電池缶内に活物質をできるだけ多く詰め込む方向
で検討が進んでいる。しかし、活物質をあまりに詰め込
みすぎると電池の充電時と放電時の電極の体積変化が大
きくなり、サイクル性能が低下することが問題とされて
いる。この現象に対してもセパレータと電極間の接着性
向上が良いとされている。[0003] In cylindrical batteries, power supplies for personal computers are mainly used, and competition for high capacity is intense in response to high performance and miniaturization of personal computers. In order to increase the capacity, studies are being made to improve the electrode active material and pack the active material in the battery can as much as possible. However, if the active material is packed too much, the volume change of the electrode at the time of charging and discharging of the battery becomes large, and there is a problem that the cycle performance is reduced. It is said that the improvement of the adhesion between the separator and the electrode is also good against this phenomenon.
【0004】従来、このような電極とセパレータの接着
強度の向上方法としては、特開平10−177865、
特開平10−189054、特開平10−275633
及び特開平11−213981にあるようにセパレータ
の上に接着性樹脂層或いは粘着剤層を設けることが提案
されている。Conventionally, as a method for improving the adhesive strength between the electrode and the separator, Japanese Patent Application Laid-Open No. 10-177865,
JP-A-10-189054, JP-A-10-275633
It has been proposed to provide an adhesive resin layer or a pressure-sensitive adhesive layer on a separator as disclosed in JP-A-11-213981.
【0005】[0005]
【発明が解決しようとする課題】上記の特開平10−1
77865、特開平10−189054、特開平10−
275633では、セパレータの上下両側に全面にイオ
ン伝導性及び接着性の樹脂層を設ける提案である。しか
し、イオン伝導性を有するポリマーゲルをセパレータに
使用したいわゆるリチウムポリマー電池ではイオン伝導
性の低さが最大の欠点であり、上記の提案のようにセパ
レータの上下両面にポリマーゲル層を設ける電池ではイ
オンの伝導性を低くしないために樹脂層の厚みをできる
だけ薄くする必要がある。樹脂層が薄くなれば接着強度
が下がるため、イオン伝導性と接着強度の両立は困難で
あった。SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-open No. Hei 10-1
77865, JP-A-10-189054, JP-A-10-905
No. 275633 proposes providing an ion-conductive and adhesive resin layer on the entire upper and lower sides of the separator. However, in a so-called lithium polymer battery using a polymer gel having ion conductivity for a separator, low ion conductivity is the biggest drawback, and in a battery having polymer gel layers on both the upper and lower surfaces of the separator as in the above proposal, It is necessary to make the thickness of the resin layer as small as possible in order not to lower the ion conductivity. If the resin layer becomes thinner, the adhesive strength decreases, so that it is difficult to achieve both ion conductivity and adhesive strength.
【0006】特開平11−213981はフィルムの上
下両面に不連続塗工によって多孔性の粘着層を形成した
セパレータの提案である。この場合の粘着剤の組成や孔
の形成方法が記載されておらず、詳細が不明であるが、
フィルムの上に塗工しただけで形成された多孔性の粘着
剤層は厚みが5μm以下では接着強度が弱いため10μ
m程度(5〜15μm)の厚みが必要としている。記載
によれば、「本発明に用いられる粘着剤の厚みは、5〜1
5μmが好ましい。厚みが5μm未満では粘着強度が10
g/20mmを割ってしまい貼り合わせた後、すれが発
生してしまう。」とあり、5〜15μmの厚みが必要と
している。フィルムの両面に各10μm程度の粘着剤層
を設けると、通常リチウムイオン二次電池に使用されて
いる膜厚25μmのセパレータと比較して膜厚が厚くな
りすぎる問題があった。Japanese Patent Application Laid-Open No. 11-213981 proposes a separator in which a porous adhesive layer is formed on both upper and lower surfaces of a film by discontinuous coating. In this case, the composition of the adhesive and the method of forming the pores are not described, and details are unknown,
When the thickness of the porous pressure-sensitive adhesive layer formed only by coating on the film is 5 μm or less, the adhesive strength is weak, so that the thickness is 10 μm.
A thickness of about m (5 to 15 μm) is required. According to the description, `` the thickness of the adhesive used in the present invention is 5 to 1
5 μm is preferred. If the thickness is less than 5 μm, the adhesive strength
After laminating by g / 20 mm and pasting together, rubbing occurs. And a thickness of 5 to 15 μm is required. When an adhesive layer having a thickness of about 10 μm is provided on both sides of the film, there is a problem that the film thickness becomes too large as compared with a 25 μm-thick separator normally used for a lithium ion secondary battery.
【0007】本発明の目的は、セパレータと電極間の接
着強度と正負電極間のイオン伝導性を実用可能な高いレ
ベルで両立させうるリチウムイオン二次電池用高性能セ
パレータの開発である。An object of the present invention is to develop a high-performance separator for a lithium ion secondary battery capable of realizing both a bonding strength between a separator and an electrode and ionic conductivity between a positive electrode and a negative electrode at a practically high level.
【0008】[0008]
【課題を解決するための手段】本発明者らは前記課題に
対して鋭意研究を重ねた結果、電解液によって適度に膨
潤しイオン伝導性が発現しかつ接着強度を有するポリマ
ーを選定し、セパレータの表面に必要最小限のポリマー
層を分散して部分的に存在させることにより、イオン伝
導性と電極との接着性を両立させうることを見出した。
すなわち本発明は、 (1)膜厚が5から50μmで気孔率が20から80%
のポリオレフィン微多孔膜の膜表面の片面又は両面に厚
みが5μm未満のポリマー層が50%以下の表面被覆率
で点在して存在することを特徴とするリチウムイオン二
次電池用セパレータ。 (2)ポリマー層を構成するポリマーがリチウムイオン
二次電池用有機電解液溶媒によって膨潤しイオン伝導性
を生じるポリマーを1種類以上含有するとともに電極と
の接着性を有することを特徴とする(1)記載のセパレ
ータ。 (3)ポリマー層を構成するポリマー種としてポリフッ
化ビニリデン、ポリエチレンオキシド、ポリアクリロニ
トリル、ポリメチルメタクリレート及びそれぞれの共重
合体から選ばれる少なくとも1種であることを特徴とす
る上記(1)または(2)記載のセパレータに関する。Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have selected a polymer which swells moderately with an electrolytic solution, exhibits ionic conductivity and has adhesive strength, and selects a polymer. It has been found that, by dispersing and partially presenting a minimum necessary polymer layer on the surface of the polymer, both ion conductivity and adhesiveness to the electrode can be achieved.
That is, the present invention provides: (1) a film thickness of 5 to 50 μm and a porosity of 20 to 80%
A separator for lithium ion secondary batteries, characterized in that a polymer layer having a thickness of less than 5 μm is interspersed with a surface coverage of 50% or less on one or both surfaces of the microporous polyolefin membrane of (1). (2) The polymer constituting the polymer layer contains at least one kind of polymer that swells with an organic electrolyte solution solvent for a lithium ion secondary battery and generates ionic conductivity and has adhesiveness to an electrode. ). (3) The above-mentioned (1) or (2), wherein the polymer species constituting the polymer layer is at least one selected from polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polymethyl methacrylate and a copolymer thereof. )).
【0009】ここで、基材となるポリオレフィン微多孔
膜の素材としてはリチウムイオン二次電池に使用可能な
高分子であればよいが、ポリエチレン、ポリプロピレ
ン、その共重合体またはこれらを組み合わせた系が好ま
しい。微多孔膜の製法には特に制限がないが、例えば、
上記素材を用いて可塑剤及び必要に応じて無機微粉体等
を加え混合し成形後抽出及び乾燥さらに延伸等を施す手
段により得ることができる。Here, the material of the microporous polyolefin membrane serving as the base material may be any polymer that can be used for a lithium ion secondary battery, but polyethylene, polypropylene, a copolymer thereof, or a combination thereof is used. preferable. There are no particular restrictions on the method for producing the microporous membrane, for example,
It can be obtained by means of adding and mixing a plasticizer and, if necessary, inorganic fine powder or the like using the above-mentioned raw materials, followed by extraction, drying and stretching after molding.
【0010】基材のポリオレフィン膜の膜厚は電極間隔
離の信頼性の確保には5μm以上が好ましく、より好ま
しくは10μm以上である。しかし、高容量化や薄型化
のためには薄膜の方が好ましく最大は50μmであり、
より好ましくは40μ以下である。気孔率は高気孔率の
方がイオン伝導性が良く最低20%以上が必要である
が、より好ましくは30%以上である。しかし、あまり
高くなると膜強度が弱くなることから80%以下が好ま
しい。より好ましくは60%以下である。The thickness of the polyolefin film as the substrate is preferably at least 5 μm, more preferably at least 10 μm, in order to ensure the reliability of the separation between the electrodes. However, for higher capacity and thinner, a thin film is preferable, and the maximum thickness is 50 μm.
More preferably, it is 40 μm or less. As for the porosity, the higher porosity has better ionic conductivity and requires at least 20% or more, and more preferably 30% or more. However, if it is too high, the film strength will be weak, so that it is preferably 80% or less. It is more preferably at most 60%.
【0011】ポリマー層の厚みは厚い方が電極との接着
性が増すが、厚いとセパレータとしての実用性がなくな
ることから5μよりも薄いことが好ましい。ポリマー層
の表面被覆率は接着性の面からは大きい方が好ましい
が、イオン伝導性の面からできるだけ多数に分散し点在
させて被覆率としては50%以下が好ましく、より好ま
しくは40%以下である。分散・点在させる形状は特に
制限がないが、水玉模様のように小さな円形のポリマー
層が規則正しく並んだ形状や格子模様のようにポリマー
層が交差する直線状に存在する形状が好ましい。[0011] The thicker the polymer layer is, the higher the adhesiveness to the electrode is, but the thicker the polymer layer is, the less practical it is as a separator. The surface coverage of the polymer layer is preferably large from the viewpoint of adhesiveness, but is preferably dispersed and dispersed as many as possible from the viewpoint of ion conductivity, and the coverage is preferably 50% or less, more preferably 40% or less. It is. The shape to be dispersed and scattered is not particularly limited, but is preferably a shape in which small circular polymer layers are regularly arranged, such as a polka dot pattern, or a shape in which the polymer layers intersect linearly, such as a lattice pattern.
【0012】ポリマー層を構成するポリマーはリチウム
イオン二次電池内で分解反応や溶解を生じないことが必
要であるが、使用される電解液で膨潤しイオン伝導性を
発現するポリマーを1種類以上含有するとともに、電極
との接着性を有することが必要である。これらのポリマ
ーとしては、フッ素化ポリマーやエチレンオキシド基を
含有するポリマーが好ましいが、特にポリフッ化ビニリ
デン、ポリエチレンオキシド、ポリアクリロニトリル、
ポリメチルメタクリレート及びそれぞれの共重合体から
選ばれる少なくとも1種であることが好ましい。 逆に
ポリスチレンのように官能基を持たず、フッ素系でもな
いポリマーの場合、適当な溶媒を選び、均一溶液にして
塗布することはできるが、接着性が十分ではなく、剥離
強度の大きいものが得られにくい。ポリマーを溶かす溶
媒としては、N−メチルピロリドン(以下NMPと略
す)、ジメチルフォルムアミド(DMF)、ジメチルス
ルフォキシド(DMSO)などがある。It is necessary that the polymer constituting the polymer layer does not cause a decomposition reaction or dissolution in the lithium ion secondary battery. However, at least one kind of polymer which swells in the electrolytic solution used and exhibits ionic conductivity is used. In addition to containing, it is necessary to have adhesiveness to the electrode. As these polymers, a fluorinated polymer or a polymer containing an ethylene oxide group is preferable, and in particular, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile,
It is preferably at least one selected from polymethyl methacrylate and respective copolymers. Conversely, in the case of a polymer that does not have a functional group and is not fluorine-based, such as polystyrene, it is possible to select an appropriate solvent and apply it in a uniform solution, but it is not sufficient in adhesiveness and has high peel strength. It is difficult to obtain. Examples of the solvent for dissolving the polymer include N-methylpyrrolidone (hereinafter abbreviated as NMP), dimethylformamide (DMF), and dimethylsulfoxide (DMSO).
【0013】(基材の微多孔膜の作製)特にこの方法に
限定されるものではないが、ポリオレフィンと可塑剤等
を加え、ヘンシェルミキサー等で混合し、2軸押出機等
により、溶融混練押出成形し、シートを得る。これを2
軸延伸機によって、同時または逐次2軸延伸し、さらに
可塑剤のみを溶解する溶媒によってこれを抽出除去す
る。その後この溶媒を乾燥、除去する。さらに必要に応
じて延伸、熱処理を施すこともできる。このようにし
て、基材となるポリオレフィン微多孔膜を得ることがで
きる。 (ポリマー溶液の塗工)ポリマー溶液の塗工を行うグラ
ビア印刷の版は、印刷用ロールの側面に幅方向と円周方
向にそれぞれ一定の間隔で幅0.5mm程度の直線を交
差させた格子模様が付いている。さらに、それぞれの直
線部分には例えば100メッシュで深度が50μmのセ
ルが彫られたものである。このようなグラビア印刷の版
を用い、塗工を施した後、乾燥することにより上記ポリ
マー溶液を基材の微多孔膜の上下両表面にポリマー層が
形成される。このようにしてポリマー層が部分被覆され
たセパレータを得ることができる。(Preparation of Microporous Membrane of Substrate) Although not particularly limited to this method, a polyolefin and a plasticizer are added, mixed with a Henschel mixer or the like, and melt-kneaded and extruded with a twin-screw extruder or the like. Form and obtain a sheet. This is 2
The film is simultaneously or sequentially biaxially stretched by an axial stretching machine, and further extracted and removed with a solvent that dissolves only the plasticizer. Thereafter, the solvent is dried and removed. Further, stretching and heat treatment can be performed as necessary. In this way, a microporous polyolefin membrane serving as a substrate can be obtained. (Coating of a polymer solution) A gravure printing plate for coating a polymer solution is a grid in which a straight line having a width of about 0.5 mm intersects a side surface of a printing roll at regular intervals in a width direction and a circumferential direction. There is a pattern. Further, each straight line portion is formed by engraving, for example, a cell of 100 mesh and a depth of 50 μm. After applying the coating using such a gravure printing plate and drying, a polymer layer is formed on the upper and lower surfaces of the microporous film of the base material using the polymer solution. Thus, a separator partially covered with the polymer layer can be obtained.
【0014】[0014]
【発明の実施形態】以下、本発明を実施例に基づいて説
明するが、本発明がこれによって限定されるものではな
い。尚、実施例における試験方法は次の通りである。 (1)膜厚 ダイヤルゲージ(尾崎製作所:PEACOCK No.
25)にて測定した。ポリマー層の膜厚は基材のポリオ
レフィン微多孔膜の膜厚とポリマー層込みの膜厚の差か
らポリマー層を計算する。 (2)気孔率 20cm角の試料を用意し、その試料体積(cm3)と
重量(g)を測定し、得られた結果から次式を用いて気
孔率(%)を計算した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on embodiments, but the present invention is not limited thereto. In addition, the test method in an Example is as follows. (1) Film thickness dial gauge (Ozaki Seisakusho: PEACOCK No.
25). The thickness of the polymer layer is calculated from the difference between the thickness of the base microporous polyolefin membrane and the thickness of the polymer layer. (2) Porosity A 20 cm square sample was prepared, the sample volume (cm 3 ) and weight (g) were measured, and the porosity (%) was calculated from the obtained result using the following equation.
【0015】気孔率={1−(重量/樹脂密度)/試料
体積}×100 (3)表面被覆率 基材のポリオレフィン微多孔膜の上面の面積に対するポ
リマー層の占有面積の割合を計算する。 (4)透気度 JIS P−8117に準拠しガーレー式透気度計にて
測定。 (5)剥離強度 JIS K−6854に準拠しT形剥離試験にて測定。 (6)電気抵抗 電気抵抗装置(安藤電気製LCRメーターAG−431
1)を用いて1V、1kHzの交流にて測定。Porosity = {1- (weight / resin density) / sample volume} × 100 (3) Surface coverage The ratio of the area occupied by the polymer layer to the area of the upper surface of the microporous polyolefin membrane of the substrate is calculated. (4) Air permeability Measured with a Gurley air permeability meter according to JIS P-8117. (5) Peel strength Measured by T-shaped peel test according to JIS K-6854. (6) Electric resistance Electric resistance device (LCR meter AG-431 manufactured by Ando Electric)
Measured at 1 V, 1 kHz AC using 1).
【0016】[0016]
【実施例1】(基材の微多孔膜の作製)重量平均分子量
(Mw)250,000の高密度ポリエチレン(密度
0.956、コモノマー単位含量0.0%)99.7重
量部及び2,6−ジ−t−ブチル−p−クレゾール0.
3重量部をヘンシェルミキサーを用いてドライブレンド
し、35mm二軸押出機に投入した。さらに、押出機に
流動パラフィン(37.78℃における動粘度7.59
×10-5m2/sec)を注入して200℃で溶融混練
し、コートハンガーダイを経て表面温度40℃に制御さ
れた冷却ロール上に押出キャストすることにより、厚み
1.8mmのシートを得た。ここで組成物の比率は、ポ
リエチレン混合物45重量部に対して、流動パラフィン
55重量部となるよう調節した。得られたシートを同時
2軸テンター延伸機を用いて延伸温度122度にて7×
7倍に延伸した。続いて塩化メチレン中に浸漬して流動
パラフィンを抽出除去し、その後付着した塩化メチレン
を乾燥除去した。さらに、テンター延伸機を用いて幅方
向に1.4倍延伸し、続いて幅方向に緩和させつつ熱処
理した。得られた微多孔膜の物性は膜厚25μm、気孔
率41%、透気度510秒であった。Example 1 (Preparation of Microporous Membrane of Substrate) 99.7 parts by weight of high-density polyethylene having a weight average molecular weight (Mw) of 250,000 (density 0.956, comonomer unit content 0.0%) and 2,2 6-di-t-butyl-p-cresol
3 parts by weight were dry-blended using a Henschel mixer and charged into a 35 mm twin-screw extruder. Further, liquid paraffin (a kinematic viscosity at 37.78 ° C. of 7.59) was added to the extruder.
× 10 −5 m 2 / sec), melt-kneaded at 200 ° C., and extruded through a coat hanger die onto a cooling roll controlled at a surface temperature of 40 ° C. to form a 1.8 mm thick sheet. Obtained. Here, the composition ratio was adjusted so that liquid paraffin was 55 parts by weight with respect to 45 parts by weight of the polyethylene mixture. Using a simultaneous biaxial tenter stretching machine, the obtained sheet was stretched to 7 × at a stretching temperature of 122 ° C.
The film was stretched 7 times. Subsequently, it was immersed in methylene chloride to extract and remove the liquid paraffin, and then the attached methylene chloride was dried and removed. Further, the film was stretched 1.4 times in the width direction using a tenter stretching machine, and then heat-treated while relaxing in the width direction. Physical properties of the obtained microporous film were a film thickness of 25 μm, a porosity of 41%, and an air permeability of 510 seconds.
【0017】(ポリマー溶液の調整)230度の溶融粘
度が約2500Pa・sのポリフッ化ビニリデンとヘキ
サフルオロプロピレンの共重合体(エルフアトケム社
製、KYNAR2801)を10重量部、数平均分子量
(Mn)が10,000(Aldrich社製)のポリ
エチレングリコール2重量部、NMP88重量部の組成
比率で混合し均一溶液になるように充分攪拌し高粘度の
ポリマー溶液を作製した。 (ポリマー溶液の塗工)直径16cm長さ30cmのロ
ールの側面に幅方向に4.5mmの間隔で幅0.5mm
の直線と円周方向に9.5mmの間隔で幅0.5mm直
線を交差させた格子模様を作る。さらにこの各直線部分
に100メッシュで深度が50μmのセルを彫る。この
ようなグラビア印刷用の版を用い、乾燥部付きの塗工機
を用いて上記のポリマー溶液を基材の微多孔膜の上下両
表面にグラビア塗工した。(Preparation of Polymer Solution) 10 parts by weight of a copolymer of polyvinylidene fluoride and hexafluoropropylene (KYNAR2801 manufactured by Elphatochem Co., Ltd.) having a melt viscosity at 230 ° C. of about 2500 Pa · s and a number average molecular weight (Mn) A mixture of 10,000 parts by weight of polyethylene glycol (manufactured by Aldrich) and 88 parts by weight of NMP was mixed and sufficiently stirred to form a uniform solution to prepare a high-viscosity polymer solution. (Coating of polymer solution) 0.5 mm width on the side surface of a roll having a diameter of 16 cm and a length of 30 cm at intervals of 4.5 mm in the width direction.
A grid pattern is created by intersecting a straight line of 0.5 mm in width at intervals of 9.5 mm in the circumferential direction. Further, a cell having a depth of 50 μm and a depth of 100 mesh is carved on each straight line portion. Using such a plate for gravure printing, the above-mentioned polymer solution was gravure-coated on both the upper and lower surfaces of the microporous film of the substrate using a coating machine with a drying unit.
【0018】このようにして基材のポリエチレン微多孔
膜の表面の15%に格子状に厚み2μmのポリマー層が
存在する部分塗工セパレータを得た。In this way, a partially coated separator having a 2 μm-thick polymer layer in a grid pattern on 15% of the surface of the polyethylene microporous membrane substrate was obtained.
【0019】[0019]
【実施例2】上記実施例1のポリマー溶液の調整のみを
次のように変更して、実施例1と同じ基材のポリエチレ
ン微多孔膜表面の15%に格子状に厚み2μmのポリマ
ー層が存在する部分塗工セパレータを得た。 (ポリマー溶液の調整)重量平均分子量(Mw)が30
0,000のポリエチレンオキシド(Aldrich社
製)8重量部、230度の溶融粘度が約2000Pa・
sのポリフッ化ビニリデン(KYNAR741)を4重
量部、NMP88重量部の組成比率で混合し均一溶液に
なるように充分攪拌し高粘度のポリマー溶液を作製し
た。Example 2 A polymer layer having a thickness of 2 μm was formed in a grid pattern on 15% of the surface of the microporous polyethylene film of the same base material as in Example 1 except that the preparation of the polymer solution in Example 1 was changed as follows. An existing partially coated separator was obtained. (Preparation of polymer solution) Weight average molecular weight (Mw) is 30
8 parts by weight of polyethylene oxide of 000 (manufactured by Aldrich) and a melt viscosity of 230 ° C. of about 2000 Pa ·
s polyvinylidene fluoride (KYNAR741) was mixed at a composition ratio of 4 parts by weight and NMP at 88 parts by weight, and sufficiently stirred to form a uniform solution to prepare a high-viscosity polymer solution.
【0020】[0020]
【実施例3】上記実施例1のポリマー溶液の調整のみを
次のように変更して、実施例1と同じ基材のポリエチレ
ン微多孔膜表面の15%に格子状に厚み2μmのポリマ
ー層が存在する部分塗工セパレータを得た。 (ポリマー溶液の調整)重量平均分子量(Mw)が8
6,200のポリアクリロニトリル(Aldrich社
製)8重量部、230度の溶融粘度が約2000Pa・
sのポリフッ化ビニリデン(KYNAR741)を4重
量部、NMP88重量部の組成比率で混合し均一溶液に
なるように充分攪拌し高粘度のポリマー溶液を作製し
た。Example 3 A polymer layer having a thickness of 2 μm was formed in a grid pattern on 15% of the surface of the polyethylene microporous membrane of the same base material as in Example 1 except that only the preparation of the polymer solution of Example 1 was changed as follows. An existing partially coated separator was obtained. (Preparation of polymer solution) Weight average molecular weight (Mw) is 8
8,200 parts by weight of polyacrylonitrile (manufactured by Aldrich) and a melt viscosity at 230 ° C of about 2000 Pa ·
s polyvinylidene fluoride (KYNAR741) was mixed at a composition ratio of 4 parts by weight and NMP at 88 parts by weight, and sufficiently stirred to form a uniform solution to prepare a high-viscosity polymer solution.
【0021】[0021]
【実施例4】上記実施例1のポリマー溶液の調整のみを
次のように変更して、実施例1と同じ基材のポリエチレ
ン微多孔膜表面の15%に格子状に厚み2μmのポリマ
ー層が存在する部分塗工セパレータを得た。 (ポリマー溶液の調整)重量平均分子量(Mw)が35
0,000のポリメチルメタクリレート(Aldric
h社製)8重量部、230度の溶融粘度が約2000P
a・sのポリフッ化ビニリデン(KYNAR741)を
4重量部、NMP88重量部の組成比率で混合し均一溶
液になるように充分攪拌し高粘度のポリマー溶液を作製
した。Example 4 A polymer layer having a thickness of 2 μm was formed in a grid pattern on 15% of the surface of a polyethylene microporous membrane of the same base material as in Example 1 except that the preparation of the polymer solution in Example 1 was changed as follows. An existing partially coated separator was obtained. (Adjustment of polymer solution) Weight average molecular weight (Mw) is 35
000 polymethyl methacrylate (Aldric)
h) 8 parts by weight, melt viscosity at 230 degree is about 2000P
Polyvinylidene fluoride (KYNAR741) of a.s was mixed at a composition ratio of 4 parts by weight and NMP at 88 parts by weight, and sufficiently stirred so as to form a uniform solution to prepare a high-viscosity polymer solution.
【0022】[0022]
【比較例1】上記実施例1のポリマー溶液の塗工を次の
ように変更して、基材のポリエチレン微多孔膜の全表面
が厚み2μmのポリマー層で被覆された全面塗工セパレ
ータを得た。 (ポリマー溶液の塗工)直径16cm長さ30cmのロ
ール全面に100メッシュで深度が50μのセルを彫っ
たグラビア印刷用の版を用意し、乾燥部付きの塗工機を
用いて上記のポリマー溶液を基材の微多孔膜の上下両表
面にグラビア塗工した。COMPARATIVE EXAMPLE 1 The coating of the polymer solution of Example 1 was changed as follows to obtain a full-surface coated separator in which the entire surface of the base polyethylene microporous membrane was coated with a polymer layer having a thickness of 2 μm. Was. (Coating of polymer solution) A gravure printing plate in which a cell having a depth of 50 μm was engraved with 100 mesh on the entire surface of a roll having a diameter of 16 cm and a length of 30 cm was prepared, and the above polymer solution was coated using a coating machine with a drying unit. Was gravure coated on both the upper and lower surfaces of the microporous membrane of the substrate.
【0023】上記実施例1〜4及び比較例1で得られた
セパレータを以下のようにして作製したリチウムイオン
二次電池を用いて評価した。 (正極の作製)LiCoO2 (日本重化学工業株式会社
製)80重量部、カーボンブラック6重量部、ポリフッ
化ビニリデン(KYNAR741)14重量部をNMP
に分散したペーストを厚さ30μmのアルミ箔に塗布し
乾燥後圧延することにより片面に厚みが100μmの活
物質層を有するシート状正極を作製した。The separators obtained in Examples 1 to 4 and Comparative Example 1 were evaluated using a lithium ion secondary battery manufactured as follows. (Preparation of positive electrode) 80 parts by weight of LiCoO 2 (manufactured by Nippon Heavy Industries, Ltd.), 6 parts by weight of carbon black, and 14 parts by weight of polyvinylidene fluoride (KYNAR741) were NMP
The paste dispersed in the above was coated on an aluminum foil having a thickness of 30 μm, dried and rolled to prepare a sheet-like positive electrode having an active material layer having a thickness of 100 μm on one surface.
【0024】(負極の作製)メソフェーズマイクロビー
ズ(大阪ガス社製)85部、ポリフッ化ビニリデン(K
YNAR741)15重量部を分散したペーストを厚さ
20μmの銅箔に塗布し乾燥圧延することにより片面に
厚みが100μmの活物質層を有するシート状負極を作
製した。 (電池の作製)上記セパレータ、シート状正極、シート
状負極を用いて正極と負極の間にセパレータを挟み寸法
が40mm×50mmの大きさの電池積層体を作製し
た。この積層体をアルミラミネートフィルムに入れた
後、エチレンカーボネートとジエチルカーボネートの混
合溶媒(重量比率で1:1)にLiPF6を1.0mo
l/リットルの濃度で溶解した電解液を室温で注入し
た。12時間含浸後アルミラミネートフィルムの外側か
ら電池積層体をロールで圧着した後、開口部を熱融着し
て封口処理してリチウムイオン二次電池を得た。 (評価結果)電池セルの電気抵抗及び電池から取り出し
た積層体(正極/セパレータ/負極)の剥離強度を測定
した。表1にその結果を示した。(Preparation of negative electrode) 85 parts of mesophase microbeads (manufactured by Osaka Gas Co., Ltd.), polyvinylidene fluoride (K
YNAR741) A paste in which 15 parts by weight of the paste was dispersed was applied to a copper foil having a thickness of 20 μm, and dried and rolled to prepare a sheet-shaped negative electrode having an active material layer having a thickness of 100 μm on one surface. (Preparation of Battery) A battery laminate having a size of 40 mm × 50 mm was prepared using the separator, the sheet-shaped positive electrode, and the sheet-shaped negative electrode with the separator interposed between the positive electrode and the negative electrode. After placing this laminate in an aluminum laminate film, LiPF 6 was added to a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 by weight) in an amount of 1.0 mol.
An electrolyte dissolved at a concentration of 1 / liter was injected at room temperature. After impregnation for 12 hours, the battery laminate was pressed from the outside of the aluminum laminate film with a roll, and the opening was heat-sealed and sealed to obtain a lithium ion secondary battery. (Evaluation Results) The electric resistance of the battery cell and the peel strength of the laminate (positive electrode / separator / negative electrode) taken out of the battery were measured. Table 1 shows the results.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【発明の効果】本発明の部分塗工セパレータは従来のセ
パレータでは達成できなかった低い電気抵抗と高い剥離
強度を同時に満足することから、現在開発が進められて
いる薄い角型電池や高容量円筒型電池用のセパレータと
して有用である。The partially coated separator of the present invention simultaneously satisfies a low electrical resistance and a high peel strength, which cannot be achieved by conventional separators. It is useful as a separator for a rechargeable battery.
Claims (3)
ら80%のポリオレフィン微多孔膜の膜表面の片面又は
両面に、厚みが5μm以下のポリマー層が50%以下の
表面被覆率で点在して存在することを特徴とするリチウ
ムイオン二次電池用セパレータ。1. A microporous polyolefin membrane having a thickness of 5 to 50 μm and a porosity of 20 to 80% is coated on one or both sides with a polymer layer having a thickness of 5 μm or less at a surface coverage of 50% or less. A separator for a lithium ion secondary battery, wherein the separator is present.
ウムイオン二次電池用有機電解液溶媒によって膨潤しイ
オン伝導性を生じるポリマーを1種類以上含有するとと
もに電極との接着性を有することを特徴とする請求項1
記載のセパレータ。2. The polymer constituting the polymer layer contains one or more polymers which swell with an organic electrolyte solution solvent for a lithium ion secondary battery and generate ionic conductivity, and have an adhesive property to an electrode. Claim 1
The separator as described.
ポリフッ化ビニリデン、ポリエチレンオキシド、ポリア
クリロニトリル、ポリメチルメタクリレート及びそれぞ
れの共重合体から選ばれる少なくとも1種であることを
特徴とする請求項1または2記載のセパレータ。3. The method according to claim 1, wherein the polymer species constituting the polymer layer is at least one selected from polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polymethyl methacrylate and their respective copolymers. The separator as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29704299A JP2001118558A (en) | 1999-10-19 | 1999-10-19 | Partially coated separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29704299A JP2001118558A (en) | 1999-10-19 | 1999-10-19 | Partially coated separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001118558A true JP2001118558A (en) | 2001-04-27 |
JP2001118558A5 JP2001118558A5 (en) | 2006-11-30 |
Family
ID=17841475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29704299A Pending JP2001118558A (en) | 1999-10-19 | 1999-10-19 | Partially coated separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001118558A (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413600B1 (en) * | 2001-07-16 | 2003-12-31 | 베스 주식회사 | Method of making lithium ion polymer battery |
EP1401037A2 (en) * | 2002-09-17 | 2004-03-24 | Tomoegawa Paper Co. Ltd. | Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith |
JP2005019156A (en) * | 2003-06-25 | 2005-01-20 | Tomoegawa Paper Co Ltd | Separator for electronic component, and electronic component |
JP2005056800A (en) * | 2003-08-07 | 2005-03-03 | Tomoegawa Paper Co Ltd | Separator for electronic parts and electronic parts |
KR100530350B1 (en) * | 2003-04-17 | 2005-11-22 | 주식회사 엘지화학 | The lithium ion secondary battery comprising 2-side coating type of separator |
JP2006049114A (en) * | 2004-08-05 | 2006-02-16 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolytic liquid secondary battery |
JP2006155914A (en) * | 2004-11-25 | 2006-06-15 | Toyobo Co Ltd | Composite porous membrane, its manufacturing method and secondary battery using it |
JP2007026730A (en) * | 2005-07-12 | 2007-02-01 | Nissan Motor Co Ltd | Separator structure, and manufacturing method of secondary battery using separator structure |
JP2010108679A (en) * | 2008-10-29 | 2010-05-13 | Panasonic Corp | Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same |
US7781094B2 (en) | 2003-11-19 | 2010-08-24 | Tonen Chemical Corporation | Microporous composite membrane and its production method and use |
JP2011054502A (en) * | 2009-09-04 | 2011-03-17 | Hitachi Maxell Ltd | Lithium secondary cell and manufacturing method thereof |
JP2012043762A (en) * | 2010-07-21 | 2012-03-01 | Toray Ind Inc | Composite porous membrane, method for producing composite porous membrane and battery separator using the composite porous membrane |
CN103259039A (en) * | 2012-02-21 | 2013-08-21 | 三星Sdi株式会社 | Lithium battery |
JP2014026986A (en) * | 2013-10-04 | 2014-02-06 | Hitachi Maxell Ltd | Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor |
WO2014021290A1 (en) * | 2012-07-30 | 2014-02-06 | 帝人株式会社 | Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery |
JP2014149935A (en) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery |
JP2014149936A (en) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery |
KR20150111723A (en) * | 2014-03-26 | 2015-10-06 | 주식회사 엘지화학 | Swelling tape and secondary battery comprising the same |
EP2677590A4 (en) * | 2011-02-15 | 2016-12-07 | Lg Chemical Ltd | Separator, preparation method thereof, and electrochemical device comprising same |
US9525189B2 (en) | 2011-09-26 | 2016-12-20 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
KR101711336B1 (en) | 2015-11-30 | 2017-02-28 | 스미또모 가가꾸 가부시키가이샤 | Nonaqueous electrolyte secondary battery separator, laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2017107848A (en) * | 2015-11-30 | 2017-06-15 | 住友化学株式会社 | Nonaqueous electrolyte secondary battery separator |
JP2017112119A (en) * | 2011-09-26 | 2017-06-22 | 住友化学株式会社 | Adhesive resin composition for secondary battery |
KR20170143425A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143422A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143428A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
CN107521169A (en) * | 2016-06-21 | 2017-12-29 | 住友化学株式会社 | Layered product |
KR20170143426A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143424A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143427A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
US9954211B2 (en) | 2011-02-15 | 2018-04-24 | Lg Chem, Ltd. | Separator, method for producing the same and electrochemical device including the same |
JP2019053862A (en) * | 2017-09-13 | 2019-04-04 | 株式会社Gsユアサ | Laminated electrode body and power storage element |
KR20190062536A (en) | 2016-10-24 | 2019-06-05 | 스미또모 가가꾸 가부시키가이샤 | A secondary battery including a separator and a separator |
KR20190062535A (en) | 2016-10-24 | 2019-06-05 | 스미또모 가가꾸 가부시키가이샤 | A secondary battery including a separator and a separator |
US10573867B2 (en) | 2015-11-30 | 2020-02-25 | Sumitomo Chemical Company, Limited | Method for producing nonaqueous electrolyte secondary battery separator |
US20200411827A1 (en) * | 2017-11-30 | 2020-12-31 | Teijin Limited | Separator for non-aqueous secondary battery and non-aqueous secondary battery |
US10950838B2 (en) | 2017-12-19 | 2021-03-16 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US10957941B2 (en) | 2017-12-19 | 2021-03-23 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11038208B2 (en) | 2017-12-19 | 2021-06-15 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11094997B2 (en) | 2017-05-29 | 2021-08-17 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11158883B2 (en) | 2017-12-19 | 2021-10-26 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11158907B2 (en) | 2017-12-19 | 2021-10-26 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11205799B2 (en) | 2017-12-19 | 2021-12-21 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834873A (en) * | 1994-05-18 | 1996-02-06 | Mitsui Petrochem Ind Ltd | Biaxially oriented microporous polyethylene film, production and use thereof |
WO1999031751A1 (en) * | 1997-12-18 | 1999-06-24 | Mitsubishi Denki Kabushiki Kaisha | Lithium ion secondary battery and its manufacture |
WO1999048959A1 (en) * | 1998-03-24 | 1999-09-30 | Asahi Kasei Kogyo Kabushiki Kaisha | Microporous polyolefin film |
-
1999
- 1999-10-19 JP JP29704299A patent/JP2001118558A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834873A (en) * | 1994-05-18 | 1996-02-06 | Mitsui Petrochem Ind Ltd | Biaxially oriented microporous polyethylene film, production and use thereof |
WO1999031751A1 (en) * | 1997-12-18 | 1999-06-24 | Mitsubishi Denki Kabushiki Kaisha | Lithium ion secondary battery and its manufacture |
WO1999048959A1 (en) * | 1998-03-24 | 1999-09-30 | Asahi Kasei Kogyo Kabushiki Kaisha | Microporous polyolefin film |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413600B1 (en) * | 2001-07-16 | 2003-12-31 | 베스 주식회사 | Method of making lithium ion polymer battery |
EP1401037A2 (en) * | 2002-09-17 | 2004-03-24 | Tomoegawa Paper Co. Ltd. | Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith |
EP1401037A3 (en) * | 2002-09-17 | 2006-12-20 | Tomoegawa Paper Co. Ltd. | Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith |
US7311994B2 (en) | 2002-09-17 | 2007-12-25 | Tomoegawa Paper Co., Ltd. | Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith |
KR100530350B1 (en) * | 2003-04-17 | 2005-11-22 | 주식회사 엘지화학 | The lithium ion secondary battery comprising 2-side coating type of separator |
JP2005019156A (en) * | 2003-06-25 | 2005-01-20 | Tomoegawa Paper Co Ltd | Separator for electronic component, and electronic component |
JP2005056800A (en) * | 2003-08-07 | 2005-03-03 | Tomoegawa Paper Co Ltd | Separator for electronic parts and electronic parts |
US7781094B2 (en) | 2003-11-19 | 2010-08-24 | Tonen Chemical Corporation | Microporous composite membrane and its production method and use |
JP2006049114A (en) * | 2004-08-05 | 2006-02-16 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolytic liquid secondary battery |
JP4581547B2 (en) * | 2004-08-05 | 2010-11-17 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery |
JP2006155914A (en) * | 2004-11-25 | 2006-06-15 | Toyobo Co Ltd | Composite porous membrane, its manufacturing method and secondary battery using it |
JP2007026730A (en) * | 2005-07-12 | 2007-02-01 | Nissan Motor Co Ltd | Separator structure, and manufacturing method of secondary battery using separator structure |
JP2010108679A (en) * | 2008-10-29 | 2010-05-13 | Panasonic Corp | Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same |
JP2011054502A (en) * | 2009-09-04 | 2011-03-17 | Hitachi Maxell Ltd | Lithium secondary cell and manufacturing method thereof |
JP2012043762A (en) * | 2010-07-21 | 2012-03-01 | Toray Ind Inc | Composite porous membrane, method for producing composite porous membrane and battery separator using the composite porous membrane |
US9954211B2 (en) | 2011-02-15 | 2018-04-24 | Lg Chem, Ltd. | Separator, method for producing the same and electrochemical device including the same |
EP2677590A4 (en) * | 2011-02-15 | 2016-12-07 | Lg Chemical Ltd | Separator, preparation method thereof, and electrochemical device comprising same |
US9843049B2 (en) | 2011-09-26 | 2017-12-12 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
JP2017112119A (en) * | 2011-09-26 | 2017-06-22 | 住友化学株式会社 | Adhesive resin composition for secondary battery |
US9525189B2 (en) | 2011-09-26 | 2016-12-20 | Sumitomo Chemical Company, Limited | Adhesive resin composition for secondary battery |
CN103259039A (en) * | 2012-02-21 | 2013-08-21 | 三星Sdi株式会社 | Lithium battery |
JP2013171838A (en) * | 2012-02-21 | 2013-09-02 | Samsung Sdi Co Ltd | Lithium battery |
EP2631974B2 (en) † | 2012-02-21 | 2019-08-21 | Samsung SDI Co., Ltd. | Lithium battery |
EP2631974B1 (en) | 2012-02-21 | 2016-07-27 | Samsung SDI Co., Ltd. | Lithium battery |
WO2014021290A1 (en) * | 2012-07-30 | 2014-02-06 | 帝人株式会社 | Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery |
JPWO2014021290A1 (en) * | 2012-07-30 | 2016-07-21 | 帝人株式会社 | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery |
JP5643465B2 (en) * | 2012-07-30 | 2014-12-17 | 帝人株式会社 | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery |
US10622611B2 (en) | 2012-07-30 | 2020-04-14 | Teijin Limited | Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
US9905825B2 (en) | 2012-07-30 | 2018-02-27 | Teijin Limited | Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
JP2014149936A (en) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery |
JP2014149935A (en) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery |
JP2014026986A (en) * | 2013-10-04 | 2014-02-06 | Hitachi Maxell Ltd | Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor |
KR20150111723A (en) * | 2014-03-26 | 2015-10-06 | 주식회사 엘지화학 | Swelling tape and secondary battery comprising the same |
KR101711696B1 (en) | 2014-03-26 | 2017-03-02 | 주식회사 엘지화학 | Swelling tape and secondary battery comprising the same |
KR101711336B1 (en) | 2015-11-30 | 2017-02-28 | 스미또모 가가꾸 가부시키가이샤 | Nonaqueous electrolyte secondary battery separator, laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2017107848A (en) * | 2015-11-30 | 2017-06-15 | 住友化学株式会社 | Nonaqueous electrolyte secondary battery separator |
US10573867B2 (en) | 2015-11-30 | 2020-02-25 | Sumitomo Chemical Company, Limited | Method for producing nonaqueous electrolyte secondary battery separator |
KR20170143425A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
US10319973B2 (en) | 2016-06-21 | 2019-06-11 | Sumitomo Chemical Company, Limited | Laminated body |
KR20170143423A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143424A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143426A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20180071994A (en) | 2016-06-21 | 2018-06-28 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
CN107521169B (en) * | 2016-06-21 | 2020-08-07 | 住友化学株式会社 | Laminated body |
KR20170143422A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143427A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
KR20170143428A (en) | 2016-06-21 | 2017-12-29 | 스미또모 가가꾸 가부시키가이샤 | Laminated body |
US10361458B2 (en) | 2016-06-21 | 2019-07-23 | Sumitomo Chemical Company, Limited | Laminated body |
US10361418B2 (en) | 2016-06-21 | 2019-07-23 | Sumitomo Chemical Company, Limited | Laminated body |
US10367182B2 (en) | 2016-06-21 | 2019-07-30 | Sumitomo Chemical Company, Limited | Laminated body |
US10388932B2 (en) | 2016-06-21 | 2019-08-20 | Sumitomo Chemical Company, Limited | Laminated body |
CN107521169A (en) * | 2016-06-21 | 2017-12-29 | 住友化学株式会社 | Layered product |
US10461297B2 (en) | 2016-06-21 | 2019-10-29 | Sumitomo Chemical Company, Limited | Laminated body |
US10476066B2 (en) | 2016-06-21 | 2019-11-12 | Sumitomo Chemical Company, Limited | Laminated body |
KR20190062535A (en) | 2016-10-24 | 2019-06-05 | 스미또모 가가꾸 가부시키가이샤 | A secondary battery including a separator and a separator |
KR20190062536A (en) | 2016-10-24 | 2019-06-05 | 스미또모 가가꾸 가부시키가이샤 | A secondary battery including a separator and a separator |
US11094997B2 (en) | 2017-05-29 | 2021-08-17 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
JP2019053862A (en) * | 2017-09-13 | 2019-04-04 | 株式会社Gsユアサ | Laminated electrode body and power storage element |
JP7069612B2 (en) | 2017-09-13 | 2022-05-18 | 株式会社Gsユアサ | Manufacturing method of laminated electrode body, power storage element and laminated electrode body |
US20200411827A1 (en) * | 2017-11-30 | 2020-12-31 | Teijin Limited | Separator for non-aqueous secondary battery and non-aqueous secondary battery |
US10950838B2 (en) | 2017-12-19 | 2021-03-16 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US10957941B2 (en) | 2017-12-19 | 2021-03-23 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11038208B2 (en) | 2017-12-19 | 2021-06-15 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11158883B2 (en) | 2017-12-19 | 2021-10-26 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11158907B2 (en) | 2017-12-19 | 2021-10-26 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
US11205799B2 (en) | 2017-12-19 | 2021-12-21 | Sumitomo Chemical Company, Limited | Nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001118558A (en) | Partially coated separator | |
EP3159163B1 (en) | Polyolefin multilayer microporous film, method for producing same, and cell separator | |
US9887406B2 (en) | Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery | |
US9368778B2 (en) | Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery | |
CN104124427B (en) | Electrode, electrochemical device comprising electrode, and manufacture method of electrode | |
TWI364864B (en) | Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same | |
JP5655088B2 (en) | Separator manufacturing method, separator formed by the method, and electrochemical device including the same | |
KR20200108474A (en) | Improved coated separator, lithium battery, and related method | |
US11777175B2 (en) | Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery | |
WO2012137376A1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
CN103890998A (en) | Nonaqueous secondary battery separator and non-aqueous secondary battery | |
EP2696391A1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
JP5356878B2 (en) | Non-aqueous secondary battery separator | |
CN103891001A (en) | Nonaqueous secondary battery separator and non-aqueous secondary battery | |
US9755208B2 (en) | Non-aqueous-secondary-battery separator and non-aqueous secondary battery | |
KR20180077189A (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
JP2007048738A (en) | Separator for electronic part and its manufacturing method | |
EP3745492A1 (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
US10892457B2 (en) | Method of producing laminated separator for nonaqueous electrolyte secondary battery | |
JP7054997B2 (en) | A method for manufacturing a separator for a non-aqueous secondary battery, a non-aqueous secondary battery, a separator for a non-aqueous secondary battery, and a coating composition for a non-aqueous secondary battery. | |
EP3920265B1 (en) | Separator for non-aqueous secondary battery, and non-aqueous secondary battery | |
JP2006351365A (en) | Separator for electronic components, and the electronic component | |
JP2016181439A (en) | Separator for nonaqueous secondary battery and nonaqueous secondary battery | |
JP2002203602A (en) | Electrolyte component holding separator, its way of use and its manufacturing | |
JPH11158304A (en) | Porous film, separator for battery by using the same, and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061017 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100621 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111017 |