JPH03219570A - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery

Info

Publication number
JPH03219570A
JPH03219570A JP2014100A JP1410090A JPH03219570A JP H03219570 A JPH03219570 A JP H03219570A JP 2014100 A JP2014100 A JP 2014100A JP 1410090 A JP1410090 A JP 1410090A JP H03219570 A JPH03219570 A JP H03219570A
Authority
JP
Japan
Prior art keywords
positive electrode
sheet
positive pole
agent
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014100A
Other languages
Japanese (ja)
Inventor
Takao Ogino
隆夫 荻野
Yoshitomo Masuda
善友 増田
Hiroaki Wada
宏明 和田
Tadaaki Miyazaki
忠昭 宮崎
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2014100A priority Critical patent/JPH03219570A/en
Publication of JPH03219570A publication Critical patent/JPH03219570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain good cycle characteristics and high rate discharge characteristics by putting a collector of a thin foil between powders of positive pole active material and sheets of mixed agent, and providing a highly conductive layer on the surface of the sheet of the mixed agent in contact with the collector. CONSTITUTION:A collector of aluminum foil, for example, put between sheets of positive pole mixed agent is used for a positive pole thin layer sheet. For the positive pole mixed agent sheets, powders of positive pole active material of LiV3O2 is used for example, powders of acetylene black is used for conductivity assisting agent, and these are mixed and formed into a sheet using binding agent of Teflon binder. This positive pole mixed agent sheet is used having a conductive layer of a higher conductivity than the positive pole mixed agent sheet applied on one side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リチウムを負極とする円筒形リチウム二次電
池に関し、更に詳述すると高放電容量を示し充放電特性
に優れたスパイラル構造電極を有する円筒形リチウム二
次電池に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a cylindrical lithium secondary battery using lithium as a negative electrode. The present invention relates to a cylindrical lithium secondary battery having a cylindrical lithium secondary battery.

(従来の技術) 近年、リチウム等のアルカリ金属を負極活物質に用いた
非水電解質電池は、高電圧、高エネルギー密度に優れた
自己放電性を示すことから注目されており、更にこれら
を充放電可能にした二次電池、特に円筒形とした高容量
二次電池は、ポータプル機器等、各種のエレクトロニク
ス機器の主電源用途として期待されていた。
(Prior art) In recent years, nonaqueous electrolyte batteries that use alkali metals such as lithium as negative electrode active materials have attracted attention because they exhibit high voltage, high energy density, and excellent self-discharge properties. Secondary batteries that can be discharged, especially cylindrical high-capacity secondary batteries, have been expected to be used as the main power source for various electronic devices such as portable devices.

従来、これらの円筒形電池は、大きな放電電流を取り出
せるように、電池反応にあずかる電極表面積を広くした
薄板状の正極板と負極板とをセパレーターを介してスパ
イラル上に形成した構造のものが、好ましく採用−され
ていた。
Conventionally, these cylindrical batteries have a structure in which a thin positive electrode plate and a negative electrode plate are formed in a spiral shape with a separator interposed between them, which have a large electrode surface area that participates in battery reactions, so that a large discharge current can be extracted. It was preferred and adopted.

これは、リチウム二次電池のように充放電に伴ってリチ
ウムイオンが可逆的に移動するような反応機構の場合、
単位面積当りの電流値、すなわちイオンの移動量が少な
いほうがハイレートな放電ができ、しかも充電時の電流
密度を低減できるので良好な充放電サイクル特性が得ら
れた。
This is true in the case of a reaction mechanism in which lithium ions move reversibly during charging and discharging, such as in lithium secondary batteries.
The smaller the current value per unit area, that is, the smaller the amount of ion movement, the higher the rate of discharge, and the lower the current density during charging, which resulted in better charge-discharge cycle characteristics.

従来、この種の非水電解質電池の正極板とじては、活物
質粉末と導電助剤、結着剤を混合、練合しシート状にし
たものを用いられた。
Conventionally, for the positive electrode plate of this type of non-aqueous electrolyte battery, a sheet formed by mixing and kneading active material powder, a conductive additive, and a binder has been used.

更にその改良として、正極板の長手方向の抵抗を低減す
るため、あるいは電池反応を均一に行なわせるために高
導電性の金属等を集電体に用い正極板と一体化する方法
が用いられた。
A further improvement was to use a highly conductive metal as a current collector and integrate it with the positive electrode plate in order to reduce the resistance in the longitudinal direction of the positive electrode plate or to ensure uniform battery reactions. .

−次電池の場合、正極板としてエクスパンドメタルなど
の金属網に上記合剤を塗布しロールで圧縮し埋め込む方
法が一般的であった。
In the case of secondary batteries, the general method was to apply the above mixture to a metal mesh such as expanded metal as a positive electrode plate, compress it with a roll, and embed it.

二次電池の場合は、上述のごとく充放電特性および高率
放電特性の向上のためには単位面積当りの電流値を低減
する必要があり、出来るだけ電極面積を広く取ることが
望まれた。そこで集電体としては10〜50μm程度の
アルミニウムやステンレスなどの薄い箔を用い、その集
電体に薄く圧延した正極合剤シートを接触させ巻き上げ
一体化を図るような方法が取られている場合が多(見受
けられた。
In the case of secondary batteries, as mentioned above, it is necessary to reduce the current value per unit area in order to improve charge-discharge characteristics and high-rate discharge characteristics, and it is desirable to have as large an electrode area as possible. Therefore, a method is used in which a thin foil such as aluminum or stainless steel with a thickness of about 10 to 50 μm is used as the current collector, and a thinly rolled positive electrode mixture sheet is brought into contact with the current collector and rolled up to integrate the foil. There were many (found).

この正極の製法として、例えば特開昭62−16065
6号公報の記載によれば、正極集電体な兼ねる金属箔に
ポリアクリル酸またはアクリル酸とアクリル酸エステル
との共重合体を結着剤とし、炭素粉を導電フィラーとし
て含む導電性媒体を塗布し、この導電性塗膜上に正極合
剤層を形成し、乾燥−体化する正極の製法があった。
As a manufacturing method of this positive electrode, for example, Japanese Patent Application Laid-Open No. 62-16065
According to the description in Publication No. 6, a conductive medium containing polyacrylic acid or a copolymer of acrylic acid and acrylic ester as a binder and carbon powder as a conductive filler is placed on a metal foil that also serves as a positive electrode current collector. There is a method for manufacturing a positive electrode in which a positive electrode mixture layer is formed on the conductive coating film, and then dried.

(発明が解決しようとする課題) シート状の正極板をそのままスパイラル構造電極として
組み立てた電池は、正極板の長手方向に導電性が取れず
殆ど放電が不可能となる難点がある。
(Problems to be Solved by the Invention) A battery in which a sheet-like positive electrode plate is assembled directly as a spiral structure electrode has a drawback in that the positive electrode plate does not have conductivity in the longitudinal direction and is almost impossible to discharge.

一次電池の場合、エキスパンディングメタルで正極を作
製すると金属網は塗布圧縮時の耐久性を確保するためあ
る程度厚くする必要があり、また塗布する方法によると
正極板の厚みも厚くなりスパイラルに巻いた場合の電極
長さが比較的短くなり、また電極表面積も狭くなる傾向
があり好ましくない。
In the case of primary batteries, when the positive electrode is made of expanding metal, the metal mesh needs to be made somewhat thick to ensure durability during coating and compression, and depending on the coating method, the thickness of the positive electrode plate also increases, making it difficult to wrap it in a spiral. In this case, the length of the electrode becomes relatively short and the surface area of the electrode also tends to become narrow, which is not preferable.

二次電池に適した正極合剤シートの集電体との一体化法
に関し、本発明者らが検討を加えたところ、以下の難点
が存在することが明らかとなつた。
When the present inventors investigated a method for integrating a positive electrode mixture sheet with a current collector suitable for secondary batteries, it became clear that the following difficulties existed.

薄い金属箔に正極合剤シートを接触させ導通を取る方法
は、正極板をかなり薄くすることが出来る。しかじから
、エキスバンドメタルなどの金属網に正極合剤を担持さ
せるときは、一種のアンカー効果の働きにより非常に導
通を良好に保ちつるが、それと異なり薄い金属箔と正極
合剤シートの場合は平面同士の接触であるためその保持
がかなり困難となる。すなわちリチウム電池の場合は、
充放電サイクルに伴い正極活物質が膨張、収縮を繰り返
すために初期は良好なる電導性を示していても、放電中
期−末期になると例えば正極合剤シートと金属箔集電体
間に電解液が侵入し一種の絶縁層が形成されるようなこ
とも起こりやすくなり、十分な導通が保てず放電容量の
低下や大電流での放電が不可能となる。
The method of bringing a positive electrode mixture sheet into contact with a thin metal foil to establish conduction allows the positive electrode plate to be made considerably thinner. However, when a positive electrode mixture is supported on a metal mesh such as expanded metal, it maintains very good conductivity due to a kind of anchor effect, but unlike that, when using a thin metal foil and a positive electrode mixture sheet, Since this is a contact between two planes, it is quite difficult to maintain it. In other words, in the case of lithium batteries,
As the positive electrode active material repeatedly expands and contracts during charge/discharge cycles, even if it exhibits good conductivity initially, in the middle to final stages of discharge, electrolyte may leak between the positive electrode mixture sheet and the metal foil current collector. It is also easy for the particles to invade and form a kind of insulating layer, making it impossible to maintain sufficient conduction, resulting in a decrease in discharge capacity and inability to discharge at a large current.

また、正極集電体に、結着剤としてポリアクリル酸誘導
体を用いて導電層を設ける方法は、同じく放電末期にな
ると導電層の塗布がはがれてくる難点がある。
Furthermore, the method of providing a conductive layer on the positive electrode current collector using a polyacrylic acid derivative as a binder also has the disadvantage that the coating of the conductive layer peels off at the end of discharge.

本発明は上記のような事情に鑑みなされたもので、リチ
ウム二次電池として十分な特性を発揮するための正極合
剤シートと箔状の集電体との一体化を最適に行なうこと
およびそれによる電池性能の向上を図ることを目的とす
るものである。
The present invention was made in view of the above-mentioned circumstances, and aims to optimally integrate a positive electrode mixture sheet and a foil-like current collector in order to exhibit sufficient characteristics as a lithium secondary battery. The aim is to improve battery performance by

(課題を解決するための手段) 本発明者らは上記目的を達成するために種々検討の結果
、円筒形リチウム電池において金属製の薄い箔を集電体
とし、その集電体を正極活物質粉末と導電助剤および結
着剤から形成される合剤シートで挟み込んだ構造とし、
かつ集電体と接する合剤シート表面に正極合剤よりも高
導電性を有する層を設けることにより解決した。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted various studies and found that a thin metal foil is used as a current collector in a cylindrical lithium battery, and the current collector is made of a positive electrode active material. It has a structure in which it is sandwiched between a mixture sheet formed from powder, a conductive additive, and a binder.
The problem was solved by providing a layer having higher conductivity than the positive electrode mixture on the surface of the mixture sheet in contact with the current collector.

本発明の円筒形リチウム電池は、上記構造としたことに
より優れたサイクル特性および高率放電毒性を達成した
ものである。
The cylindrical lithium battery of the present invention achieves excellent cycle characteristics and high rate discharge toxicity by having the above structure.

(作用) 箔状の集電体と正極合剤シート間の導通不良は、その両
者間の接触抵抗増大に起因するものであり、界面の導電
性すなわち正極合剤シート面の抵抗を小さ(することが
必要条件である。
(Function) Poor conductivity between the foil-like current collector and the positive electrode mixture sheet is caused by an increase in the contact resistance between them. This is a necessary condition.

現在用いられている合剤の配合は、導電助剤が活物質1
00に対して5〜15部、また結着剤は5〜10部が一
般的であり活物質を電池反応に有効に使うためには十分
な量であるが、この配合による合剤シート面を金属箔に
接したときには界面抵抗が大きく高率放電性が非常に悪
くなる。
The currently used combination is that the conductive additive is active material 1
Generally, the amount of binder is 5 to 15 parts based on 00, and 5 to 10 parts of binder, which is a sufficient amount to effectively use the active material in battery reactions. When it comes into contact with metal foil, the interfacial resistance is large and the high rate discharge performance becomes very poor.

そこで正極合剤の集電体に接する面において合剤組成よ
りも高導電性を持つ、例えば、導電助剤を非常に多くし
た層を設けることにより導通を改良でき、両界面に電解
液が侵入してもその低下は小さく抑制できる。この導電
層の電気抵抗率は正極合剤の抵抗率に対し、175以下
、特に1710以下が好ましい。
Therefore, conductivity can be improved by providing a layer with higher conductivity than the mixture composition on the surface of the positive electrode mixture that is in contact with the current collector, for example, a layer containing a very large amount of conductive additive, allowing the electrolyte to invade both interfaces. However, the decrease can be kept small. The electrical resistivity of this conductive layer is preferably 175 or less, particularly 1710 or less, relative to the resistivity of the positive electrode mixture.

(態様) 本発明の円筒形リチウム電池は、正極薄層シートとして
金属箔例えばアルミニウム箔のような集電体の両側に正
極合剤シートで挟み込んだものを使用している。
(Embodiment) The cylindrical lithium battery of the present invention uses, as the positive electrode thin layer sheet, a current collector such as metal foil, for example, aluminum foil, which is sandwiched between positive electrode mixture sheets on both sides.

正極合剤シートは、正極活物質例えば、LIV30□粉
末を用い導電助剤としてアセチレンブラック粉末を用い
これらをテフロンバインダーを結着剤として用い混合し
たものをシートにしたものである。そしてこの正極合剤
シートの片面すなわち集電体に接する側に、導電層とし
て正極合剤シートよりも高導電性である例えば、黒鉛と
アクリルシリコン樹脂より成る導電層を塗布したものを
使用している。ここで使用される正極合剤シートの厚み
は100〜150μmあるが、設ける導電層の厚みは2
〜20μm、好ましくは5〜lOμm程度で十分であり
、またこの層はカーボンなどの導電剤とアクリルシリコ
ン樹脂などの結着剤から構成されることが望ましく、そ
の層の形成は導電剤と樹脂を混合したペースト状の物質
を正極合剤シート上に塗布するなどの方法によるのが好
ましい。また集電体としては、10〜30μm厚みのア
ルミニウム、あるいはステンレス箔を用いる。
The positive electrode mixture sheet is a sheet made by mixing a positive electrode active material such as LIV30□ powder, acetylene black powder as a conductive agent, and a Teflon binder as a binder. Then, on one side of this positive electrode mixture sheet, that is, the side in contact with the current collector, a conductive layer having higher conductivity than the positive electrode mixture sheet, for example, made of graphite and acrylic silicone resin, is used. There is. The thickness of the positive electrode mixture sheet used here is 100 to 150 μm, but the thickness of the conductive layer provided is 2
~20μm, preferably about 5~10μm is sufficient, and this layer is preferably composed of a conductive agent such as carbon and a binder such as acrylic silicone resin, and the layer is formed by combining the conductive agent and resin. It is preferable to use a method such as applying a mixed paste-like substance onto a positive electrode mixture sheet. Further, as the current collector, aluminum or stainless steel foil with a thickness of 10 to 30 μm is used.

また上記正極剤としテ1;tV20s、Vso+a、L
iVJe、MnL、 Mo0a等の金属酸化物、TiS
2、Mo5a等の金属硫化物、ポリアニリン等の導電性
ポリマー等を使用することができる。
In addition, as the positive electrode material, Te 1; tV20s, Vso+a, L
iVJe, MnL, metal oxides such as Mo0a, TiS
2. Metal sulfides such as Mo5a, conductive polymers such as polyaniline, etc. can be used.

負極剤としては、リチウムを含むものであるが、具体的
には、リチウム金属、リチウムとアルミニウム、インジ
ウム、錫、鉛、ビスマス、カドミウム、亜鉛等との合金
などを挙げることができる。これらの中では特にリチウ
ム金属、リチウム−アルミニウム合金が好適に用いられ
る。
The negative electrode material contains lithium, and specifically includes lithium metal, alloys of lithium with aluminum, indium, tin, lead, bismuth, cadmium, zinc, and the like. Among these, lithium metal and lithium-aluminum alloy are particularly preferably used.

上記圧・負極間に分装されるセパレーターとしては、両
極の接触を確実に防止し得、かつ電解液を通したり含ん
だりできる材料、例えば、ポリテトラフルオロエチレン
、ポリプロピレンやポリエチレン等の合成樹脂製の不織
布、織布多孔体や網などを挙げることができるが、特に
厚さ20〜50μm程度のポリプロピレンまたはポリエ
チレン製の微孔性フィルムが好ましく用いられる。
The separator separated between the above pressure and negative electrodes is made of a material that can reliably prevent contact between the two electrodes and that can pass or contain the electrolyte, such as synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene. Nonwoven fabrics, porous woven fabrics, nets, etc. can be mentioned, but microporous films made of polypropylene or polyethylene with a thickness of about 20 to 50 μm are particularly preferably used.

上記圧・負極間に介在させる非水電解液としては、リチ
ウムイオンを含むものであり、このリチウムイオン源と
しては、リチウム塩、特にLiClO4、LiBF<、
 LiPF5、 LiCFaSOi  およびLiAs
F5から選ばれた一種または二種以上が好適であり、こ
れらの電解質は、通常溶媒により溶解された状態で使用
される。この場合、特に限定されるものではないが、プ
ロピレンカーボネート、テトラヒドロフラン、エチレン
カーボネート、ジエチルカーボネート、ジメトキシエタ
ン、γ−ブチロラクトン、ジオキソラン、ブチレンカー
ボネートおよびジメチルホルムアミドから選ばれた一種
または二種以上の有機溶媒が好適である。
The nonaqueous electrolyte interposed between the pressure and negative electrodes contains lithium ions, and the lithium ion source includes lithium salts, particularly LiClO4, LiBF<,
LiPF5, LiCFaSOi and LiAs
One or more electrolytes selected from F5 are preferred, and these electrolytes are usually used in a state dissolved in a solvent. In this case, one or more organic solvents selected from, but not limited to, propylene carbonate, tetrahydrofuran, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, dioxolane, butylene carbonate, and dimethylformamide are used. suitable.

なお、本発明電池のその他の構成部材としては、通常使
用されているものを支障なく用いることができる。
In addition, as for the other constituent members of the battery of the present invention, those commonly used can be used without any problem.

(実施例) 化学式LiVaOaで示されるバナジウム酸化物を正極
活物質に用い、これに導電助剤としてアセチレンブラッ
クをLiV、Oa : 100に対して10部、そして
テフロンバインダーを結着剤として10部添加して有機
溶媒で混練した後、ロール圧延により厚み100μm、
幅40 mmの薄層状の正極合剤シートを作製した。
(Example) Vanadium oxide represented by the chemical formula LiVaOa was used as a positive electrode active material, and 10 parts of acetylene black was added as a conductive agent to LiV, Oa: 100, and 10 parts of Teflon binder was added as a binder. After kneading with an organic solvent, roll rolling to a thickness of 100 μm,
A thin layered positive electrode mixture sheet with a width of 40 mm was produced.

この合剤シートの片面に黒鉛とアクリルシリコ 0 ン樹脂よりなる導電層を約5μmの厚さで塗布した。更
に25μmの軟質アルミニウム箔を集電体とし2枚の合
剤シートを上記導電層を設けた側を集電体に向は挟み込
み、150μm厚みのリチウム箔と共に両極間に25μ
mのポリプロピレン製の微孔性フィルムをセパレーター
として用い巻き上げた後、単3形容器に収納した。この
時の正極合剤の寸法は幅40mm、長さ260 mmで
ある。
A conductive layer made of graphite and acrylic silicone resin was coated on one side of this mixture sheet to a thickness of about 5 μm. Furthermore, a 25 μm soft aluminum foil is used as a current collector, and two mixture sheets are sandwiched with the conductive layer side facing the current collector, and a 25 μm thick aluminum foil is placed between the two electrodes along with a 150 μm thick lithium foil.
After winding up a polypropylene microporous film of 1.5 m as a separator, it was stored in an AA-sized container. The dimensions of the positive electrode mixture at this time were 40 mm in width and 260 mm in length.

次に比較例として、上記合剤シートの片面に導電層を設
けない他は全く同一の構成により単3形電池を作製した
Next, as a comparative example, an AA battery was fabricated with the same configuration except that no conductive layer was provided on one side of the mixture sheet.

上記二種類の電池につき、下記方法により放電容量の電
流依存性、および充放電サイクル性能を評価した。
Regarding the above two types of batteries, the current dependence of discharge capacity and charge/discharge cycle performance were evaluated by the following method.

放電容量の電流依存性: 30サイクルの充放電を行ない、3.OVまで充電した
後先ず100mAで放電し、再度充電し引続き750m
Aで放電した。実施例および比較例の両者に対し各々電
池5本づつの評価を行ない、各電流値での放電容量、そ
して750mA時の100mA時に対する容1 量保持率を求めた。
Current dependence of discharge capacity: 30 cycles of charging and discharging were performed.3. After charging to OV, first discharge at 100mA, then charge again and continue for 750m.
It was discharged at A. Five batteries each were evaluated for both the example and the comparative example, and the discharge capacity at each current value and the capacity retention rate at 750 mA versus 100 mA were determined.

充放電サイクル性能: 上限電圧3.OV、下限電圧2.OV、放電電流150
mA、充電電流60mAの条件で100サイクルまで充
放電を繰り返しその時点での初期に対する容量保持率を
調べ、電池5本の平均値で示した。
Charge/discharge cycle performance: Upper limit voltage 3. OV, lower limit voltage 2. OV, discharge current 150
Charging and discharging were repeated up to 100 cycles under the conditions of mA and charging current of 60 mA, and the capacity retention rate with respect to the initial stage at that point was examined, and the average value of five batteries was shown.

その結果を第1表に示す。The results are shown in Table 1.

 2 第 表 第1表に示した如く、正極合剤表面に導電層を設けた実
施例では100mA時の容量は比較例と大差がないもの
の750mAでは非常に高い放電容量を示している。ま
たサイクル性能においても比較例に対し非常に優れた保
持率を示している。
2 As shown in Table 1, in the example in which a conductive layer was provided on the surface of the positive electrode mixture, the capacity at 100 mA was not much different from the comparative example, but at 750 mA, the discharge capacity was extremely high. Also, in terms of cycle performance, the retention rate was extremely superior to that of the comparative example.

以上のように本発明の優れた効果が確認された。As described above, the excellent effects of the present invention were confirmed.

(効果) 以上説明したように、本発明の円筒形リチウム二次電池
は、高放電容量を示し、充放電特性、高率放電特性に優
れたものである。
(Effects) As explained above, the cylindrical lithium secondary battery of the present invention exhibits high discharge capacity and is excellent in charge and discharge characteristics and high rate discharge characteristics.

 3 43 4

Claims (1)

【特許請求の範囲】[Claims]  正極薄層シートとリチウムを含む負極薄層シートがセ
パレーターを介して渦巻上に巻かれたスパイラル構造電
極を電池容器内に収納してなる円筒形リチウム二次電池
において、金属箔からなる集電体を正極活物質粉末と導
電助剤および結着剤から形成される合剤シートで両側か
ら挟み込んだ構造を持つ集合体を上記正極薄層シートと
し、かつ集電体に接する合剤シート面に合剤よりも高導
電性を有する層を設けることを特徴とする円筒形リチウ
ム電池。
In a cylindrical lithium secondary battery in which a spiral structure electrode in which a positive electrode thin layer sheet and a negative electrode thin layer sheet containing lithium are spirally wound through a separator is housed in a battery container, a current collector made of metal foil is used. The positive electrode thin layer sheet is an assembly having a structure in which the positive electrode active material powder, a conductive agent, and a binder are sandwiched from both sides by a mixture sheet formed from the mixture sheet, and the mixture sheet surface that is in contact with the current collector is A cylindrical lithium battery characterized by providing a layer having higher conductivity than the agent.
JP2014100A 1990-01-24 1990-01-24 Cylindrical lithium secondary battery Pending JPH03219570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100A JPH03219570A (en) 1990-01-24 1990-01-24 Cylindrical lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100A JPH03219570A (en) 1990-01-24 1990-01-24 Cylindrical lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH03219570A true JPH03219570A (en) 1991-09-26

Family

ID=11851700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100A Pending JPH03219570A (en) 1990-01-24 1990-01-24 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH03219570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Similar Documents

Publication Publication Date Title
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
CN101882679B (en) Active material, battery, and method for manufacturing electrode
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH10144298A (en) Lithium secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
KR100600632B1 (en) Electrode for nonaqueous electrolyte battery
JP4830207B2 (en) battery
JP3691987B2 (en) Lithium secondary battery
JPH079818B2 (en) Non-aqueous alkaline battery
JP3446205B2 (en) Rechargeable battery
JP2005268206A (en) Positive electrode mixture, nonaqueous electrolyte secondary battery and its manufacturing method
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP2007059206A (en) Anode and battery
JPH03219570A (en) Cylindrical lithium secondary battery
JP2002134074A (en) Non-aqueous electrolyte battery
JP4560851B2 (en) Method for producing solid electrolyte battery
JP3383454B2 (en) Lithium secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2000090970A (en) Lithium secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2004193139A (en) Non-aqueous electrolyte secondary battery