JP2010232011A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2010232011A
JP2010232011A JP2009078255A JP2009078255A JP2010232011A JP 2010232011 A JP2010232011 A JP 2010232011A JP 2009078255 A JP2009078255 A JP 2009078255A JP 2009078255 A JP2009078255 A JP 2009078255A JP 2010232011 A JP2010232011 A JP 2010232011A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrode plate
electrode layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009078255A
Other languages
Japanese (ja)
Inventor
Tsuguhiro Onuma
継浩 大沼
Yuji Tanjo
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009078255A priority Critical patent/JP2010232011A/en
Publication of JP2010232011A publication Critical patent/JP2010232011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery capable of absorbing a pressure due to volume expansion following expansion of a power generation element accompanying charge and discharge of the secondary battery. <P>SOLUTION: The secondary battery 10 has a positive electrode and a negative electrode laminated through a separator 102 including an electrolyte in-between. Out of the electrode plates 101, 103 of the positive electrode or the negative electrode, the electrode layers 101b, c, 103b, c of one of the electrode plates are formed in lower density than the electrode layers 101b, c, 103b, c of the other electrode plate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池に関する。     The present invention relates to a secondary battery.

セパレータを介して積層された正極板と負極板を、熱収縮性樹脂フィルムで覆い、電池の充放電に伴う膨張による極板の緩みを抑える二次電池が知られている(特許文献1)。
特開平11−204136号公報
There is known a secondary battery in which a positive electrode plate and a negative electrode plate laminated via a separator are covered with a heat-shrinkable resin film to suppress loosening of the electrode plate due to expansion accompanying charge / discharge of the battery (Patent Document 1).
JP-A-11-204136

しかしながら、従来の二次電池の構成では、充放電に伴う膨張を抑えるために、電極板及びセパレータを含む発電要素を熱収縮性樹脂フィルムで強く圧迫させて覆うため、過度の力が発電要素に加わるおそれがあった。   However, in the configuration of the conventional secondary battery, in order to suppress expansion due to charging / discharging, the power generation element including the electrode plate and the separator is strongly pressed and covered with the heat-shrinkable resin film, so that excessive force is applied to the power generation element. There was a risk of joining.

そこで、本発明は、二次電池の充放電に伴う発電要素の膨張に追従して体積膨張による圧力を吸収できる二次電池を提供する。   Therefore, the present invention provides a secondary battery that can absorb the pressure due to volume expansion following the expansion of the power generation element accompanying charging and discharging of the secondary battery.

本発明は、正極又は負極の電極板のうち、一方の電極板の電極層が他の電極板の電極層より低密度に形成されることによって上記課題を解決する。 This invention solves the said subject by forming the electrode layer of one electrode plate among the positive electrode plates or the negative electrode plates at a lower density than the electrode layers of the other electrode plates.

本発明よれば、二次電池の充放電に伴い発電要素が膨張した場合、低密度の電極層により、当該膨張による圧力を吸収する構成となっているため、膨張による電池構造への影響を緩和することができる。 According to the present invention, when the power generation element expands as the secondary battery is charged / discharged, the low-density electrode layer absorbs the pressure due to the expansion, thereby reducing the influence of the expansion on the battery structure. can do.

発明の実施形態に係る二次電池の平面図である。1 is a plan view of a secondary battery according to an embodiment of the invention. 図1の二次電池のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of the secondary battery of FIG. 発明の他の実施形態に係る二次電池の断面図である。It is sectional drawing of the secondary battery which concerns on other embodiment of invention. 実施例1の二次電池と比較例の電池の劣化サイクル数―面圧特性を示すグラフである。It is a graph which shows the deterioration cycle number-surface pressure characteristic of the secondary battery of Example 1, and the battery of a comparative example.

以下、発明の実施形態を図面に基づいて説明する。
《第1実施形態》
図1は、発明の実施形態に係る二次電池10の平面図である。図2は、図1の二次電池の断面であって、A―A線に沿う断面図である。
Hereinafter, embodiments of the invention will be described with reference to the drawings.
<< First Embodiment >>
FIG. 1 is a plan view of a secondary battery 10 according to an embodiment of the invention. FIG. 2 is a cross-sectional view of the secondary battery of FIG. 1, taken along the line AA.

本実施形態に係る二次電池10は、リチウム系、平板状、積層タイプの二次電池であり、図1及び図2に示すように、2枚の正極板101と、4枚のセパレータ102と、3枚の負極板103と、正極の電極端子である正電極タブ104と、負極の電極端子である負電極タブ105と、上部外装部材106と、下部外装部材107と、特に図示しない電解液とから構成されている。発電要素は、正極板101、セパレータ102、負極板103及び電解液によって構成されている。   The secondary battery 10 according to the present embodiment is a lithium-based, flat plate, and laminated type secondary battery. As shown in FIGS. 1 and 2, two positive plates 101, four separators 102, Three negative plates 103, a positive electrode tab 104 that is a positive electrode terminal, a negative electrode tab 105 that is a negative electrode terminal, an upper exterior member 106, a lower exterior member 107, and an electrolyte not shown It consists of and. The power generation element includes a positive electrode plate 101, a separator 102, a negative electrode plate 103, and an electrolytic solution.

発電要素を構成する正極板101は、正極側集電体101aと、正極側集電体101aの両主面の一部にそれぞれ形成された正極層101b、101cとを有する。この正極板101の正極側集電体101aは、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔で構成されている。   The positive electrode plate 101 constituting the power generation element includes a positive electrode side current collector 101a and positive electrode layers 101b and 101c formed on part of both main surfaces of the positive electrode side current collector 101a. The positive electrode side current collector 101a of the positive electrode plate 101 is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil.

また、この正極板101の正極層101b、101cは、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、又は、コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンやポリフッ化ビニリデンの水性ディスパージョン等の接着剤と、N−メチル−2−ピロリドンなどの溶剤とを混合したものを、正極側集電体101aの一部の両主面に塗布し、乾燥及び圧延することにより形成される。   The positive electrode layers 101b and 101c of the positive electrode plate 101 are made of, for example, lithium composite oxide such as lithium nickelate (LiNiO2), lithium manganate (LiMnO2), or lithium cobaltate (LiCoO2), chalcogen (S, A positive electrode active material such as Se, Te), a conductive agent such as carbon black, an adhesive such as an aqueous dispersion of polytetrafluoroethylene or polyvinylidene fluoride, and a solvent such as N-methyl-2-pyrrolidone; The mixture is applied to a part of both main surfaces of the positive electrode side current collector 101a, dried and rolled.

発電要素を構成する負極板103は、負極側集電体103aと、当該負極側集電体103aの一部の両主面にそれぞれ形成された負極層103b、103cとを有する。この負極板103の負極側集電体103aは、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔で構成されている。   The negative electrode plate 103 constituting the power generation element includes a negative electrode side current collector 103a and negative electrode layers 103b and 103c formed on both main surfaces of a part of the negative electrode side current collector 103a. The negative electrode side current collector 103a of the negative electrode plate 103 is made of an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil.

また、この負極板103の負極層103b、103cは、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョンやポリフッ化ビニリデン等の結着剤と、N−メチル−2−ピロリドンなどの溶剤とをさらに混合し、この混合物を負極側集電体103aの両主面の一部に塗布し、乾燥及び圧延させることにより形成される。   Further, the negative electrode layers 103b and 103c of the negative electrode plate 103 occlude and release lithium ions of the positive electrode active material such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An aqueous dispersion of a styrene butadiene rubber resin powder as a precursor material of an organic fired body is mixed with the negative electrode active material, and dried and pulverized to support carbonized styrene butadiene rubber on the carbon particle surfaces. Is mixed with a binder such as an acrylic resin emulsion or polyvinylidene fluoride and a solvent such as N-methyl-2-pyrrolidone, and this mixture is mixed with both main electrodes of the negative electrode side current collector 103a. It is formed by applying to a part of the surface, drying and rolling.

特に、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量に伴って出力電圧も低下するので、電気自動車の電源として用いると急激な出力低下がないので有利である。なお、負極層103b及び103cの構成は後述する。   In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor and the output voltage decreases with the amount of discharge. This is advantageous because there is no reduction in output. The configuration of the negative electrode layers 103b and 103c will be described later.

発電要素のセパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備える。このセパレータ102は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。   The separator 102 of the power generation element prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and has a function of holding an electrolyte. This separator 102 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation and the current is cut off. It also has a function to

なお、本実施形態に係るセパレータ102は、ポリオレフィン等の単層膜にのみ限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものでもよい。このようにセパレータ102を複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与できる。   The separator 102 according to the present embodiment is not limited to a single-layer film such as polyolefin, but may be a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic nonwoven fabric. Thus, by making the separator 102 into multiple layers, various functions such as an overcurrent preventing function, an electrolyte holding function, and a separator shape maintaining (stiffness improving) function can be provided.

以上の発電要素は、セパレータ102を介して正極板101と負極板103を交互に積層する構成である。そして、2枚の正極板101は、正極側集電体101aを介して、金属箔製の正電極タブ104にそれぞれ接続される。一方で、3枚の負極板103は、負極側集電体103aを介して、同様に金属箔製の負電極タブ105にそれぞれ接続されている。   The above power generation element has a configuration in which positive plates 101 and negative plates 103 are alternately stacked with separators 102 interposed therebetween. The two positive plates 101 are respectively connected to the positive electrode tab 104 made of metal foil through the positive current collector 101a. On the other hand, the three negative electrode plates 103 are similarly connected to the negative electrode tab 105 made of metal foil through the negative electrode side current collector 103a.

なお、本実施形態に係る発電要素の正極板101、セパレータ102及び負極板103は、上記の枚数に何ら限定されない。例えば1枚の正極板101、3枚のセパレータ102及び1枚の負極板103でも発電要素を構成することができ、必要に応じて正極板101、セパレータ102及び負極板103の枚数を選択して構成することができる。   In addition, the positive electrode plate 101, the separator 102, and the negative electrode plate 103 of the power generation element according to the present embodiment are not limited to the above number. For example, one positive plate 101, three separators 102, and one negative plate 103 can constitute a power generation element, and the number of positive plates 101, separators 102 and negative plates 103 can be selected as necessary. Can be configured.

正電極タブ104も負電極タブ105も電気化学的に安定した金属材料であれば特に限定されないが、正電極タブ104としては、上述の正極側集電体101aと同様に、例えば、アルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等
を用いることができる。また、負電極タブ105としては、上述の負極側集電体103aと同様に、例えば、ニッケル箔、銅箔、ステンレス箔又は鉄箔等を用いることができる。
Although the positive electrode tab 104 and the negative electrode tab 105 are not particularly limited as long as they are electrochemically stable metal materials, as the positive electrode tab 104, for example, an aluminum foil, Aluminum alloy foil, copper foil, nickel foil, or the like can be used. In addition, as the negative electrode tab 105, for example, a nickel foil, a copper foil, a stainless steel foil, an iron foil, or the like can be used in the same manner as the negative electrode side current collector 103a.

ちなみに本実施形態では、電極板101、103の集電体101a、103aを構成する金属箔自体を電極端子104、105まで延長することにより、電極板101、103を電極端子104、105に接続している。しかしながら、正極層101b、101c及び負極層103b、103cの間に位置する集電体101a,103aを構成する金属箔と、接結部材を構成する金属箔とを別の材料や部品により接続することもできる。   By the way, in this embodiment, the electrode plates 101 and 103 are connected to the electrode terminals 104 and 105 by extending the metal foil itself constituting the current collectors 101 a and 103 a of the electrode plates 101 and 103 to the electrode terminals 104 and 105. ing. However, the metal foil constituting the current collectors 101a and 103a located between the positive electrode layers 101b and 101c and the negative electrode layers 103b and 103c and the metal foil constituting the connecting member are connected by different materials and parts. You can also.

発電要素は、上部外装部材106及び下部外装部材107に収容されて封止されている。本実施形態における上部外装部材106及び下部外装部材107は何れも複数層から構成されている。   The power generation element is housed and sealed in the upper exterior member 106 and the lower exterior member 107. Both the upper exterior member 106 and the lower exterior member 107 in this embodiment are composed of a plurality of layers.

この構造については、特に図示しないが、二次電池10の内側から外側に向かって、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成された内側層と、アルミニウム等の金属箔から構成された中間層と、ポリアミド系樹脂又はポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成された外側層という三層構造となっている。   About this structure, although not particularly illustrated, from a resin film excellent in electrolytic solution resistance and heat fusion properties such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer from the inside to the outside of the secondary battery 10. It has a three-layer structure consisting of an inner layer, an intermediate layer made of a metal foil such as aluminum, and an outer layer made of a resin film with excellent electrical insulation, such as a polyamide resin or a polyester resin. Yes.

したがって、上部外装部材106及び下部外装部材107は何れも、アルミニウム箔等金属箔の一方の面(二次電池10の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の樹脂でラミネートし、他方の面(二次電池10の外側面)をポリアミド系樹脂又はポリエステル系樹脂でラミネートした、樹脂−金属薄膜ラミネート剤等の可撓性を有する材料で形成されている。   Therefore, both the upper exterior member 106 and the lower exterior member 107 are made of resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer on one surface of the metal foil such as aluminum foil (inner surface of the secondary battery 10). And the other surface (the outer surface of the secondary battery 10) is laminated with a polyamide resin or a polyester resin, and is formed of a flexible material such as a resin-metal thin film laminating agent.

このように、外装部材106,107が樹脂層に加えて金属層を具備することにより、外装部材自体の強度向上を図ることが可能となる。また、外装部材106,107の内側層を、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の樹脂で構成することにより、外装部材同士106,107や外装部材106,107と後述するシール部材110,111との良好な融着性を確保することが可能となる。   As described above, when the exterior members 106 and 107 include the metal layer in addition to the resin layer, the strength of the exterior member itself can be improved. Further, the inner layer of the exterior members 106 and 107 is made of a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, so that the exterior members 106 and 107 and the exterior members 106 and 107 are described later. It is possible to ensure good fusing properties with the sealing members 110 and 111 to be performed.

図1及び2に示すように、封止された外装部材106、107の一方の端部から正電極タブ104が導出し、当該他方の端部から負電極タブ105が導出するので、電極タブ104、105の厚さ分だけ上部外装部材106と下部外装部材107との熱融着部に隙間が生じる。電極タブ104、105と外装部材106、107とが接触する部分に、ポリエチレンやポリプロピレン等から構成されたシール部材110,111を介在させ、二次電池10内部の封止性を維持することとしている。   As shown in FIGS. 1 and 2, the positive electrode tab 104 is led out from one end portion of the sealed exterior members 106 and 107, and the negative electrode tab 105 is led out from the other end portion. , 105, a gap is formed in the heat-sealed portion between the upper exterior member 106 and the lower exterior member 107. Sealing members 110 and 111 made of polyethylene, polypropylene, or the like are interposed at portions where the electrode tabs 104 and 105 and the exterior members 106 and 107 are in contact with each other to maintain the sealing performance inside the secondary battery 10. .

このシール部材110,111は、正電極タブ104及び負電極タブ105の何れにおいても、外装部材106、107を構成する樹脂と同系統の樹脂で構成することが熱融着性の観点から好ましい。   The sealing members 110 and 111 are preferably made of the same type of resin as that constituting the exterior members 106 and 107 in both the positive electrode tab 104 and the negative electrode tab 105 from the viewpoint of thermal fusion.

これらの外装部材106、107によって、上述した発電要素、正電極タブ104の一部及び負電極タブ105の一部を包み込み、当該外装部材106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウムや六フッ化リン酸リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、外装部材106、107により形成される空間を吸引して真空状態とした後に、外装部材106、107の外周端部を熱プレスにより熱融着して封止する。   These exterior members 106 and 107 enclose the above-described power generation element, a part of the positive electrode tab 104 and a part of the negative electrode tab 105, and an organic liquid solvent is added to the space formed by the exterior members 106 and 107. While injecting a liquid electrolyte having a lithium salt such as lithium chlorate, lithium borofluoride or lithium hexafluorophosphate as a solute, the space formed by the exterior members 106 and 107 is sucked into a vacuum state, The outer peripheral ends of the members 106 and 107 are heat-sealed by hot pressing and sealed.

本実施形態の有機液体溶媒は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)やメチルエチルカーボネート等のエステル系溶媒を用いるが、これに限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることもできる。   The organic liquid solvent of the present embodiment uses an ester solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC) or methyl ethyl carbonate, but is not limited to this, and is an ester solvent. In addition, an organic liquid solvent prepared by mixing and preparing an ether solvent or the like such as γ-butylactone (γ-BL) or dietoschiethane (DEE) can also be used.

ところで、薄型のセル電池を積層するリチウムイオン二次電池は充放電を繰り返すことにより劣化してしまい、電極層が膨張する。この電極層の膨張は、複数の積層されたセル電池の厚みを大きくし、リチウムイオン二次電池のパックの構造に影響を及ぼすおそれがある。特に、当該リチウムイオン二次電池が車両用の組電池として搭載される場合、組電池は、車両の動作に伴う振動等に耐えるため、頑丈なケース等に格納される。そのため組電池の配置スペースが限られているため、膨張した二次電池は外部へ圧力を放出できず、内部圧力が増加し、電池の内部構造に負荷が加わってしまう。   By the way, the lithium ion secondary battery which laminates | stacks a thin cell battery deteriorates by repeating charging / discharging, and an electrode layer expand | swells. This expansion of the electrode layer increases the thickness of the plurality of stacked cell batteries, and may affect the structure of the pack of lithium ion secondary batteries. In particular, when the lithium ion secondary battery is mounted as an assembled battery for a vehicle, the assembled battery is stored in a sturdy case or the like in order to withstand vibrations and the like associated with the operation of the vehicle. Therefore, since the arrangement space of the assembled battery is limited, the expanded secondary battery cannot release pressure to the outside, the internal pressure increases, and a load is applied to the internal structure of the battery.

本例の二次電池10は、正極又は負極の電極板において、他の電極層と比べて密度の小さい電極層を有する。以下、図2を参照して説明する。   The secondary battery 10 of the present example has an electrode layer having a lower density than other electrode layers in the positive electrode plate or the negative electrode plate. Hereinafter, a description will be given with reference to FIG.

本例の二次電池10において、最外層に配置されている負極板103、つまり図2に示す、上段の負極板103及び下段の負極板103の負極層103b、103cは、中段の負極板103の負極層103b、103cの密度より低い密度の電極層とされている。   In the secondary battery 10 of this example, the negative electrode plate 103 disposed in the outermost layer, that is, the negative electrode layers 103b and 103c of the upper negative electrode plate 103 and the lower negative electrode plate 103 shown in FIG. The negative electrode layers 103b and 103c have a density lower than that of the negative electrode layers 103b and 103c.

電極層の密度は、セル電池の製造過程であるプレス工程で、プレス圧を変えることにより、調整できる。本例は、上段の負極板103と下段の負極板103に対してはプレスを行わず、中段の負極板103と正極板101にそれぞれプレスを行う。   The density of the electrode layer can be adjusted by changing the pressing pressure in the pressing step, which is the manufacturing process of the cell battery. In this example, the upper negative electrode plate 103 and the lower negative electrode plate 103 are not pressed, and the intermediate negative electrode plate 103 and the positive electrode plate 101 are respectively pressed.

また本例は、低密度の負極層103b及び103cに含まれる導電材料を、他の低密度ではない負極層103b及び103cの導電材料より多くする。電極層の導電材は、ある程度の高い密度で形成されることにより導電パスを作る組成を有している。そのため、電極層はプレスされることで電荷を導き出す導電パスを形成し、電池としての性能を保つ。一方、本例において、低密度の負極層103b及び103cは、プレス工程を経ていないが、導電材料の含有量を他の負極層103b及び103cより多くすることにより、導電パスを確保することができる。   In this example, the conductive material contained in the low-density negative electrode layers 103b and 103c is made larger than the conductive material of the other non-low-density negative electrode layers 103b and 103c. The conductive material of the electrode layer has a composition that forms a conductive path by being formed at a certain high density. For this reason, the electrode layer is pressed to form a conductive path for deriving an electric charge, and the performance as a battery is maintained. On the other hand, in this example, the low-density negative electrode layers 103b and 103c are not subjected to a pressing step, but a conductive path can be secured by increasing the content of the conductive material as compared with the other negative electrode layers 103b and 103c. .

本例の二次電池10は充放電を繰り返し、正極板101の正極層101b及び101c又は負極板103の負極層103b及び103cが膨張した場合、セル電池の体積が増加し、特に電極板の積層方向の厚みが増加する。しかし本例の二次電池10では、低密度の電極層103b及び103cが、当該体積の増加分を吸収するため、電池内部の圧力を適正に保つことができ、内部構造を電池の性能を有する状態で長く保つことができる。   When the secondary battery 10 of this example repeats charging and discharging, and the positive electrode layers 101b and 101c of the positive electrode plate 101 or the negative electrode layers 103b and 103c of the negative electrode plate 103 expands, the volume of the cell battery increases, especially the lamination of the electrode plates. The thickness in the direction increases. However, in the secondary battery 10 of this example, the low-density electrode layers 103b and 103c absorb the increase in the volume, so that the internal pressure of the battery can be properly maintained, and the internal structure has battery performance. Can be kept long in condition.

また、充放電の繰り返しにより電極層の膨張が生じる場合、体積増加に伴う圧力は、電池の内部から外部へと伝わっていくため、電池内部よりも外部の方の圧力が高くなる。そして、圧力の伝達方向に対して、圧力を吸収する感度は、電池内部よりも電池外部の方が高い。本例では、外側の電極板に対して、低密度の負極層103b及び103cを配置するため、当該膨張による圧力をより吸収でき、電池寿命を長くすることができる。   In addition, when the electrode layer expands due to repeated charge and discharge, the pressure accompanying the increase in volume is transmitted from the inside of the battery to the outside, so that the pressure on the outside is higher than the inside of the battery. And the sensitivity which absorbs pressure with respect to the transmission direction of pressure is higher outside the battery than inside the battery. In this example, since the low-density negative electrode layers 103b and 103c are arranged on the outer electrode plate, the pressure due to the expansion can be absorbed more and the battery life can be extended.

また本例は、電極板の積層方向に対して最外層の電極層、つまり図2に示す上段の負極板103の負極層103b及び下段の負極板103の負極層103cに、低密度の電極層を配置する。本例の正極板101及び負極板103をセパレータを介して積層すると、最外層の電極層は電池性能に影響しない層になるため、この層に低密度の負極層103b及び103cを配置する。これにより、充放電の繰り返しによって他の電極層が膨張し、当該最外層の電極層に圧力が加わっても、電池性能に影響しにくい。また、当該最外層の電極層は、電池性能に影響しない層のため、上記の導電パスを形成しなくてもよく、より低密度に形成することができる。   Further, in this example, the outermost electrode layer in the stacking direction of the electrode plates, that is, the negative electrode layer 103b of the upper negative electrode plate 103 and the negative electrode layer 103c of the lower negative electrode plate 103 shown in FIG. Place. When the positive electrode plate 101 and the negative electrode plate 103 of this example are laminated via a separator, the outermost electrode layer becomes a layer that does not affect the battery performance, and thus low-density negative electrode layers 103b and 103c are arranged in this layer. Thereby, even if other electrode layers expand | swell by repetition of charging / discharging and a pressure is applied to the said electrode layer of the outermost layer, it is hard to influence battery performance. Further, since the outermost electrode layer is a layer that does not affect the battery performance, the conductive path does not need to be formed and can be formed at a lower density.

さらに、一般的なリチウムイオン電池において、正極板101の導電性に比べて負極板103の導電性の方が低い。そのため、本例では、導電性の低い方の負極板103に対して低密度の負極層103b及び103cを配置することで、低密度化に伴う導電性の低下を最小限に抑えて、電池全体としての容量を高く保つことができる。   Further, in a general lithium ion battery, the conductivity of the negative electrode plate 103 is lower than the conductivity of the positive electrode plate 101. Therefore, in this example, the low density negative electrode layers 103b and 103c are disposed on the negative conductivity negative electrode plate 103, thereby minimizing the decrease in conductivity due to the low density, and the entire battery. As the capacity can be kept high.

なお本例は、電極層の密度を変えるために、負極板103の電極層103b及び103cを同一の材料を用いつつ、プレス工程の圧力を調整するが、低密度の電極層の材料を、他の電極層の材料と異なる材料にすることで、密度を変えてもよい。また、それぞれの電極層に含まれる材料の平均粒径を変えたり、粒子形状を変えたりすることで、密度を変えてもよい。   In this example, in order to change the density of the electrode layer, the pressure of the pressing process is adjusted while using the same material for the electrode layers 103b and 103c of the negative electrode plate 103. The density may be changed by using a material different from the material of the electrode layer. Further, the density may be changed by changing the average particle diameter of the material contained in each electrode layer or changing the particle shape.

また、本例の二次電池において、複数の負極板103が、少なくとも2つ以上の異なる密度の電極層103b、103cを有する場合は、当該電極層103b、103cの中で、最も密度の低い電極層を、最外層の電極板に配置するとよい。これより、本例は、電池の充放電の繰り返しによる発電要素の体積の膨張を吸収しやすくできる。   In the secondary battery of this example, when the plurality of negative electrode plates 103 have at least two electrode layers 103b and 103c having different densities, the electrode having the lowest density among the electrode layers 103b and 103c. The layer may be disposed on the outermost electrode plate. Thus, this example can easily absorb the expansion of the volume of the power generation element due to repeated charging and discharging of the battery.

また低密度の電極層は、必ずしも負極板103の両面側に設ける必要はなく、片面側のみでもよく、また正極板101に設けでもよい。   In addition, the low-density electrode layer is not necessarily provided on both sides of the negative electrode plate 103, and may be provided only on one side or on the positive electrode plate 101.

《第2実施形態》
図3は、発明の他の実施形態に係る二次電池10であって、当該二次電池の内部構造の断面図を概略図として示す。本例は上述した第1実施形態に対して、低密度の電極層を有する点に変わりはないが、電極板の積層方向の最外層に、電極層が配置されていない点で異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を援用する。
<< Second Embodiment >>
FIG. 3 is a secondary battery 10 according to another embodiment of the invention, and shows a cross-sectional view of the internal structure of the secondary battery as a schematic diagram. This example is the same as the first embodiment described above in that it has a low-density electrode layer, but is different in that no electrode layer is disposed on the outermost layer in the stacking direction of the electrode plates. Since the other configuration is the same as that of the first embodiment described above, the description thereof is incorporated.

図3に示すように、上段の負極板201において、負極層201cは負極側集電体201aの下側の片面のみに形成され、下段の負極板203において、負極層203bは負極側集電体203aの上側の片面のみに形成されている。   As shown in FIG. 3, in the upper negative electrode plate 201, the negative electrode layer 201c is formed only on one lower surface of the negative electrode side current collector 201a, and in the lower negative electrode plate 203, the negative electrode layer 203b is the negative electrode side current collector. It is formed only on the upper surface of 203a.

上段の負極板201と下段の負極板203は、負極側集電体201a及び負極側集電体203aの片面に負極層201c及び負極層203bをそれぞれ形成しプレス工程をせずに、乾燥し、形成される。一方、中段の負極板202は、負極側集電体202aの両面に負極層202b及び負極層202cを形成し、プレス工程の後に乾燥し形成される。   The upper negative electrode plate 201 and the lower negative electrode plate 203 are dried without forming a negative electrode layer 201c and a negative electrode layer 203b on one side of the negative electrode side current collector 201a and the negative electrode side current collector 203a, respectively, It is formed. On the other hand, the negative electrode plate 202 in the middle stage is formed by forming the negative electrode layer 202b and the negative electrode layer 202c on both surfaces of the negative electrode side current collector 202a, and drying after the pressing step.

これにより、負極板201及び負極板203の負極層201c及び負極層203bは、中段の負極板202の負極層202b及び負極層202cに比べて低密度に形成される。   Thus, the negative electrode layer 201c and the negative electrode layer 203b of the negative electrode plate 201 and the negative electrode plate 203 are formed at a lower density than the negative electrode layer 202b and the negative electrode layer 202c of the intermediate negative electrode plate 202.

本例の二次電池10は、充放電を繰り返し電池が膨張した場合、低密度の負極層201c及び負極層203bは膨張による圧力を吸収するため、二次電池全体としての体積膨張が抑制され、また電池内部の電極層及び集電体に加わる圧力を緩和できる。   In the secondary battery 10 of this example, when the battery expands repeatedly by charging and discharging, the low-density negative electrode layer 201c and the negative electrode layer 203b absorb the pressure due to expansion, and thus the volume expansion of the entire secondary battery is suppressed, Moreover, the pressure applied to the electrode layer and the current collector inside the battery can be relaxed.

また二次電池において、本例と異なる、集電体の片面に電極層を塗布しプレス工程を経て作成される、低密度ではない電極層を最外層の電極板に配置する場合、当該最外層の電極板はプレス工程の際に湾曲してしまい、二次電池の積層体に影響を及ぼす。すなわち、集電体の両面に電極層を塗布する場合は、プレス工程の際、プレス工程により加わる圧力が両面で均等に図られるが、最外層のように集電体の片面のみに電極層を塗布する場合は、プレス工程により加わる圧力が集電体の主面と電極層の主面で異なるため、電極板が湾曲する。特に当該電極板のエッジ部分は、電極層を有しないためカールする。   Also, in the secondary battery, different from this example, when an electrode layer that is not low density and is formed through a pressing process by applying an electrode layer to one side of the current collector is disposed on the outermost electrode plate, the outermost layer The electrode plate is bent during the pressing process, affecting the laminate of the secondary battery. That is, when the electrode layer is applied on both sides of the current collector, the pressure applied by the pressing step is evenly applied on both sides during the pressing step, but the electrode layer is applied only on one side of the current collector like the outermost layer. In the case of application, the pressure applied by the pressing process is different between the main surface of the current collector and the main surface of the electrode layer, so that the electrode plate is curved. In particular, the edge portion of the electrode plate is curled because it does not have an electrode layer.

本例は、電極板を積層する二次電池10において、低密度の電極層を有する負極板201と負極板203を最外層に配置するため、負極板201と負極板203の湾曲を防ぐことができる。また本例は、低密度の電極層を有する負極板201と負極板203を最外層に形成し、プレス加工をしないため、負極板201と負極板203の湾曲や電極板のエッジ部分で生じるカールを防ぐことができる。 In this example, in the secondary battery 10 in which the electrode plates are stacked, the negative electrode plate 201 and the negative electrode plate 203 each having a low-density electrode layer are arranged in the outermost layer, so that the negative electrode plate 201 and the negative electrode plate 203 are prevented from being bent. it can. Further, in this example, since the negative electrode plate 201 and the negative electrode plate 203 having low-density electrode layers are formed in the outermost layer and are not pressed, curling of the negative electrode plate 201 and the negative electrode plate 203 or curl generated at the edge portion of the electrode plate Can be prevented.

また、本例において、最外層に配置される電極板は、集電体の片面のみに電極層を形成し、電池反応に寄与しない方の集電体の片面は電極層を有しため、セル電池の厚みを減少し、電池全体としての軽量化及びコストを削減することができる。   In this example, the electrode plate disposed in the outermost layer forms an electrode layer only on one side of the current collector, and one side of the current collector that does not contribute to the battery reaction has an electrode layer. The thickness of the battery can be reduced, and the weight and cost of the battery as a whole can be reduced.

また、本例の二次電池において、複数の負極板103が、少なくとも2つ以上の異なる密度の電極層103b、103cを有する場合は、当該電極層103b、103cの中で、最も密度の低い電極層を、最外層の電極板に配置するとよい。これより、本例は、電池の充放電の繰り返しによる発電要素の体積の膨張を吸収しやすくできる。   In the secondary battery of this example, when the plurality of negative electrode plates 103 have at least two electrode layers 103b and 103c having different densities, the electrode having the lowest density among the electrode layers 103b and 103c. The layer may be disposed on the outermost electrode plate. Thus, this example can easily absorb the expansion of the volume of the power generation element due to repeated charging and discharging of the battery.

なお、本例の二次電池10は、低密度の負極板201及び負極板203を最外層に配置するが、正極板を最外層に配置し低密度の電極層としてもよい。   In the secondary battery 10 of this example, the low-density negative electrode plate 201 and the negative electrode plate 203 are disposed in the outermost layer, but the positive electrode plate may be disposed in the outermost layer to form a low-density electrode layer.

《実施例》
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。また本実施例は、第1の実施形態にかかる二次電池10について、効果を確認する実施例を説明する。
"Example"
Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples. Also, in this example, an example of confirming the effect of the secondary battery 10 according to the first embodiment will be described.

(正極板)
分散用ミキサーに、純度99.9%の無水NMP(N−メチル−2−ピロリドン)を入れ、次にポリフッ化ビニリデン(PVdF)を投入し、NMPに十分に溶解させた。その後、正極活物質および導電助剤を少しずつ加え、十分に分散混合した後、NMPを加えて粘度を調節しスラリーAを得た。この時の配合材料は、正極活物質としてリチウムマンガン複合酸化物(平均粒子径10μm)を、導電助剤としてアセチレンブラックおよびバインダー成分としてポリフッ化ビニリデン(PVdF)を用い、配合比率は、正極活物質:導電助剤:バインダー= 84 :10 : 6とした。上記で調製した正極活物質塗工用のスラリーAを正極集電体であるアルミニウム箔(厚さ:20μm)両面上にドクターブレード法により塗布し、ホットプレート上で乾燥させ、正極板を得た。次に、当該正極板は、ロールプレス機を用いて荷重10t以下でプレスされ正極板101を得た。正極板101の密度g/cm3は、1.55g/cm3である。
(Positive electrode plate)
Anhydrous NMP (N-methyl-2-pyrrolidone) having a purity of 99.9% was put into a dispersing mixer, and then polyvinylidene fluoride (PVdF) was put into the mixer, which was sufficiently dissolved in NMP. Then, after adding a positive electrode active material and a conductive support agent little by little and fully disperse-mixing, NMP was added and the viscosity was adjusted and the slurry A was obtained. The compounding material at this time uses lithium manganese composite oxide (average particle diameter 10 μm) as the positive electrode active material, acetylene black as the conductive auxiliary agent, and polyvinylidene fluoride (PVdF) as the binder component, and the compounding ratio is the positive electrode active material. : Conductive aid: Binder = 84: 10: 6. The positive electrode active material coating slurry A prepared above was applied to both surfaces of an aluminum foil (thickness: 20 μm) as a positive electrode current collector by a doctor blade method and dried on a hot plate to obtain a positive electrode plate. . Next, the positive electrode plate was pressed with a load of 10 t or less using a roll press machine to obtain a positive electrode plate 101. The density g / cm 3 of the positive electrode plate 101 is 1.55 g / cm 3.

(負極板)
負極活物質である平均粒径が9μmのハードカーボン85質量%、導電助剤である気相成長炭素繊維(VGCF:登録商標)5質量%、およびバインダーであるポリフッ化ビニリデン(PVDF)10質量%からなる固形分に対し、スラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)を適量添加して、負極活物質塗工用のスラリーBを調製した。上記で調製した負極活物質塗工用のスラリーBを、負極集電体である銅箔(厚さ:15μm)上にドクターブレード法により塗布し、ホットプレート上で乾燥させ、負極板101を得た。次に、当該負極板101は、ロールプレス機を用いて荷重10t以下でプレスされ負極板103を得た。ここで、プレス工程をしていない負極板103が、低密度の負極板103となる。低密度の負極板103の密度は1.05g/cm3、低密度ではない負極板103の密度は、1.55g/cm3であった。
(Negative electrode plate)
85% by mass of hard carbon having an average particle size of 9 μm as a negative electrode active material, 5% by mass of vapor grown carbon fiber (VGCF: registered trademark) as a conductive additive, and 10% by mass of polyvinylidene fluoride (PVDF) as a binder An appropriate amount of N-methyl-2-pyrrolidone (NMP), which is a slurry viscosity adjusting solvent, was added to the solid content consisting of to prepare slurry B for negative electrode active material coating. The negative electrode active material coating slurry B prepared above was applied onto a copper foil (thickness: 15 μm) as a negative electrode current collector by a doctor blade method and dried on a hot plate to obtain a negative electrode plate 101. It was. Next, the negative electrode plate 101 was pressed with a load of 10 t or less using a roll press machine to obtain a negative electrode plate 103. Here, the negative electrode plate 103 that has not been subjected to the pressing step becomes the low-density negative electrode plate 103. The density of the low density negative electrode plate 103 was 1.05 g / cm 3, and the density of the non-low density negative electrode plate 103 was 1.55 g / cm 3.

(電解液)
エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびジエチルカーボネートを2:2:6の体積比で混合し、電解液の可塑剤(有機溶媒)とした。次に、当該可塑剤に、リチウム塩である六フッ化リン酸リチウム(LiPF)を1mol/リットルの濃度になるように添加し、電解液を調製した。
(Electrolyte)
Ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate were mixed at a volume ratio of 2: 2: 6 to obtain a plasticizer (organic solvent) of the electrolytic solution. Next, lithium hexafluorophosphate (LiPF 6 ), which is a lithium salt, was added to the plasticizer so as to have a concentration of 1 mol / liter to prepare an electrolytic solution.

(実施例1の二次電池)
上記により作製した正極板101と低密度の負極板103によりリチウムイオン電池用セパレータ102を対向して挟むように積層した単電池Aと、正極板101と負極板103によりリチウムイオン電池用セパレータを対向して挟むように積層した単電池Bを形成した。次に単電池Aを1個と単電池Bを14個とを積層した積層体を形成した。さらに当該積層体の最外層の正極層101bと負極板103によりリチウムイオン電池用セパレータ102を挟み込み積層体を形成した。その後、得られた積層体をラミネートパックで覆って熱溶着で封止し、実施例1の二次電池10を作製した。
(Secondary battery of Example 1)
The unit cell A in which the lithium ion battery separator 102 is sandwiched between the positive electrode plate 101 and the low density negative electrode plate 103 that are produced as described above, and the lithium ion battery separator is opposed to the positive electrode plate 101 and the negative electrode plate 103. A unit cell B was formed so as to be sandwiched between them. Next, a laminated body in which one single cell A and 14 single cells B were laminated was formed. Further, a lithium ion battery separator 102 was sandwiched between the positive electrode layer 101 b and the negative electrode plate 103 which are the outermost layers of the laminate, thereby forming a laminate. Thereafter, the obtained laminate was covered with a laminate pack and sealed by heat welding, and the secondary battery 10 of Example 1 was produced.

(比較例1の二次電池)
上記の単電池Bを15個積層した積層体を形成した。さらに当該積層体の最外層の正極層101bと負極板103によりリチウムイオン電池用セパレータ102を挟み込み積層体を形成した。その後、得られた積層体をラミネートパックで覆って熱溶着で封止し、比較例1の二次電池を作製した。
(Secondary battery of Comparative Example 1)
A laminate in which 15 unit cells B were laminated was formed. Further, a lithium ion battery separator 102 was sandwiched between the positive electrode layer 101 b and the negative electrode plate 103 which are the outermost layers of the laminate, thereby forming a laminate. Thereafter, the obtained laminate was covered with a laminate pack and sealed by heat welding, and a secondary battery of Comparative Example 1 was produced.

(評価方法)
実施例1の二次電池10及び比較例1の二次電池の厚みを固定するための治具を用いてそれぞれ挟み込み、かかる二次電池を繰り返し充放電し、劣化膨れによる二次電池の外部面の圧力を測定した。
(Evaluation methods)
The secondary battery 10 of Example 1 and the secondary battery of Comparative Example 1 are sandwiched using jigs for fixing the thickness, and the secondary battery is repeatedly charged and discharged, and the external surface of the secondary battery due to deterioration swelling The pressure of was measured.

以下、評価結果を表1及び図4に示す。なお、劣化サイクル数は、電池の充放電の回数を示す。図4は、実施例1及び比較例1の二次電池の劣化サイクル数に対する発生面圧の特性を示すグラフである。   The evaluation results are shown in Table 1 and FIG. The number of deterioration cycles indicates the number of times the battery is charged / discharged. FIG. 4 is a graph showing characteristics of the generated surface pressure with respect to the number of deterioration cycles of the secondary batteries of Example 1 and Comparative Example 1.

Figure 2010232011
(考察)
表1及び図4より、本例に係る二次電池10は比較例1に係る二次電池と比較すると、電池の充放電の繰り返しにより電池内部の膨れにより生じる圧力が小さい。特に、劣化サイクルが1000回以上では、実施例1と比較例1の間で、発生面圧の差が大きくなる。これにより本例は、充放電による電極層の膨張を抑制し、電池内部へ加わる圧力を軽減し、電池を延命できることが確認された。
Figure 2010232011
(Discussion)
From Table 1 and FIG. 4, when compared with the secondary battery according to Comparative Example 1, the secondary battery 10 according to this example has a smaller pressure generated due to swelling inside the battery due to repeated charging and discharging of the battery. In particular, when the deterioration cycle is 1000 times or more, the difference in generated surface pressure between Example 1 and Comparative Example 1 increases. Thereby, it was confirmed that this example can suppress the expansion | swelling of the electrode layer by charging / discharging, reduce the pressure added to the inside of a battery, and can extend a battery life.

10…二次電池
101…正極板
101a…正極側集電体
101b、c…正極層
102…セパレータ
103…負極板
103a…負極側集電体
103b、c…負極層
104…負極電極タブ
105…負極電極タブ
106…上部外装部材
107…下部外装部材
110…シール部材
111…シール部材
201、202、203…負極板
201a、202a、202a…負極側集電体
201b、c…負極層
202b、c…負極層
203b、c…負極層
DESCRIPTION OF SYMBOLS 10 ... Secondary battery 101 ... Positive electrode plate 101a ... Positive electrode side collector 101b, c ... Positive electrode layer 102 ... Separator 103 ... Negative electrode plate 103a ... Negative electrode side collector 103b, c ... Negative electrode layer 104 ... Negative electrode tab 105 ... Negative electrode Electrode tab 106 ... Upper exterior member 107 ... Lower exterior member 110 ... Seal member 111 ... Seal members 201, 202, 203 ... Negative electrode plate 201a, 202a, 202a ... Negative electrode side current collector 201b, c ... Negative electrode layer 202b, c ... Negative electrode Layer 203b, c ... negative electrode layer

Claims (10)

正極と負極の間に電解液を含むセパレータを介してこれらを積層させた二次電池において、
前記正極又は負極の電極板のうち、一の電極板の電極層は、他の電極板の電極層より低密度に形成されていることを特徴とする
二次電池。
In a secondary battery in which these are laminated via a separator containing an electrolytic solution between a positive electrode and a negative electrode,
Of the positive electrode plate or the negative electrode plate, an electrode layer of one electrode plate is formed at a lower density than an electrode layer of another electrode plate.
前記正極又は負極の電極板は、集電体の両面上に電極活物質を主体とする前記電極層を有し、
前記集電体の一方の面に形成された電極層は、前記集電体の他方の面に形成された電極層の密度より低密度に形成されている
請求項1記載の二次電池。
The positive or negative electrode plate has the electrode layer mainly composed of an electrode active material on both sides of a current collector,
The secondary battery according to claim 1, wherein the electrode layer formed on one surface of the current collector is formed at a density lower than that of the electrode layer formed on the other surface of the current collector.
前記低密度の電極層は、前記電極板の積層方向に対して最も外側に配置されていることを特徴とする
請求項1又は2に記載の二次電池。
The secondary battery according to claim 1, wherein the low-density electrode layer is disposed on the outermost side with respect to the stacking direction of the electrode plates.
前記電極板の積層方向に対して最も外側に配置される電極板は、集電体の片方の面上のみに前記低密度の電極層を有することを
特徴とする請求項1に記載の二次電池。
2. The secondary according to claim 1, wherein the electrode plate disposed on the outermost side with respect to the stacking direction of the electrode plates has the low-density electrode layer only on one surface of the current collector. battery.
前記低密度の電極層に含まれる導電材料は、前記他の電極層に含まれる導電材料より多く含まれることを特徴とする
請求項1〜4のいずれか一項に記載の二次電池。
5. The secondary battery according to claim 1, wherein the conductive material contained in the low-density electrode layer is contained in a larger amount than the conductive material contained in the other electrode layer.
前記低密度の電極層に含まれる材料は、前記他の電極層に含まれる材料と異なる材料で形成されることを特徴とする
請求項1〜5のいずれか一項に記載の二次電池。
The secondary battery according to claim 1, wherein the material included in the low-density electrode layer is formed of a material different from a material included in the other electrode layer.
前記低密度の電極層は、負極の電極板に形成されていることを特徴とする
請求項1〜6のいずれか一項に記載の二次電池。
The secondary battery according to claim 1, wherein the low-density electrode layer is formed on a negative electrode plate.
請求項1〜7のいずれか一項に記載の二次電池において、
複数の前記正極又は負極の一方の電極板を有し、
前記低密度の電極層は、前記複数の正極又は負極の一方の電極板の電極層の中で、最も密度の低い電極層であり、かつ、最も外側の前記電極板に配置されることを特徴とする
二次電池。
The secondary battery according to any one of claims 1 to 7,
Having one electrode plate of the plurality of positive electrodes or negative electrodes,
The low-density electrode layer is an electrode layer having the lowest density among the electrode layers of one of the plurality of positive and negative electrode plates, and is disposed on the outermost electrode plate. Secondary battery.
請求項1〜8のいずれか一項に記載の電池を用いたことを特徴とする組電池。 An assembled battery using the battery according to any one of claims 1 to 8. 請求項1〜9のいずれか一項に記載の電池をモータ駆動用電源として搭載した車両。 A vehicle equipped with the battery according to any one of claims 1 to 9 as a motor driving power source.
JP2009078255A 2009-03-27 2009-03-27 Secondary battery Pending JP2010232011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078255A JP2010232011A (en) 2009-03-27 2009-03-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078255A JP2010232011A (en) 2009-03-27 2009-03-27 Secondary battery

Publications (1)

Publication Number Publication Date
JP2010232011A true JP2010232011A (en) 2010-10-14

Family

ID=43047651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078255A Pending JP2010232011A (en) 2009-03-27 2009-03-27 Secondary battery

Country Status (1)

Country Link
JP (1) JP2010232011A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077527A (en) * 2011-09-30 2013-04-25 Gs Yuasa Corp Storage element
JP2013211262A (en) * 2012-02-29 2013-10-10 Semiconductor Energy Lab Co Ltd Power storage device
JP2014512638A (en) * 2011-03-09 2014-05-22 アクイオン エナジー インコーポレイテッド Metal-free aqueous electrolyte energy storage device
US9960397B2 (en) 2011-03-09 2018-05-01 Aquion Energy, Inc. Aqueous electrolyte energy storage device
JP7657862B2 (en) 2022-07-22 2025-04-07 三星エスディアイ株式会社 Lithium battery and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512638A (en) * 2011-03-09 2014-05-22 アクイオン エナジー インコーポレイテッド Metal-free aqueous electrolyte energy storage device
JP2016219426A (en) * 2011-03-09 2016-12-22 アクイオン エナジー インコーポレイテッド Aqueous electrolyte energy storage device
KR101823873B1 (en) 2011-03-09 2018-01-31 아퀴온 에너지 인코포레이티드 Metal-free aqueous electrolyte energy storage device
US9960397B2 (en) 2011-03-09 2018-05-01 Aquion Energy, Inc. Aqueous electrolyte energy storage device
JP2013077527A (en) * 2011-09-30 2013-04-25 Gs Yuasa Corp Storage element
JP2013211262A (en) * 2012-02-29 2013-10-10 Semiconductor Energy Lab Co Ltd Power storage device
JP2016015326A (en) * 2012-02-29 2016-01-28 株式会社半導体エネルギー研究所 Power storage device
US9859585B2 (en) 2012-02-29 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP7657862B2 (en) 2022-07-22 2025-04-07 三星エスディアイ株式会社 Lithium battery and its manufacturing method

Similar Documents

Publication Publication Date Title
US20060222943A1 (en) Cylindrical lithium secondary battery
US6291102B1 (en) Lithium ion secondary battery
US9917296B2 (en) Nonaqueous electrolyte secondary battery
WO2018179897A1 (en) Nonaqueous electrolytic secondary battery and battery module
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
KR20160027364A (en) Electrode assembly for secondary battery
JP2010232011A (en) Secondary battery
US10186693B2 (en) Flat secondary battery
JP7409762B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US20220384851A1 (en) Electrode Assembly and Method for Manufacturing the Same
JP2011198600A (en) Electrode plate for battery and battery using the same
JP6735036B2 (en) Lithium ion secondary battery
US9680153B2 (en) Nonaqueous electrolyte secondary battery
JP2006313736A (en) Non-aqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
US20220367880A1 (en) Secondary battery current collector and manufacturing method for same, and secondary battery
JP2005129393A (en) Secondary battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
KR101917488B1 (en) Flat secondary battery
JP5434143B2 (en) Thin battery
JP2006054115A (en) Manufacturing method of electrode plate for battery, electrode plate for battery, and secondary battery using it
JP4107214B2 (en) Secondary battery
JP7296042B2 (en) Non-aqueous electrolyte secondary battery
JP2014241267A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP4710276B2 (en) Secondary battery exterior member and secondary battery