JPH11149916A - Organic electrolytic battery - Google Patents

Organic electrolytic battery

Info

Publication number
JPH11149916A
JPH11149916A JP9316760A JP31676097A JPH11149916A JP H11149916 A JPH11149916 A JP H11149916A JP 9316760 A JP9316760 A JP 9316760A JP 31676097 A JP31676097 A JP 31676097A JP H11149916 A JPH11149916 A JP H11149916A
Authority
JP
Japan
Prior art keywords
current collector
battery
active material
material layer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9316760A
Other languages
Japanese (ja)
Other versions
JP3508514B2 (en
Inventor
Makoto Tsutsue
誠 筒江
Masaru Nishimura
賢 西村
Akiko Ishida
明子 石田
Yasuo Yoshihara
康雄 吉原
Kazunari Kinoshita
一成 木下
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31676097A priority Critical patent/JP3508514B2/en
Publication of JPH11149916A publication Critical patent/JPH11149916A/en
Application granted granted Critical
Publication of JP3508514B2 publication Critical patent/JP3508514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolytic battery having high adhesion strength between a collector and an active material layer and excellent battery properties by binding a conductive coating on the surface of the collector. SOLUTION: In an organic electrolytic battery comprising a positive electrode, an negative electrode, a polymer electrolyte, a mixture of a conductive carbon material 7 and polyvinylidene fluoride is applied to the surface of a collector 6 to be used for the positive electrode or the negative electrode. Consequently, the adhesion strength between the active material layer and the collector 6 is kept even after impregnation with an organic electrolytic solution and an organic electrolytic battery with excellent battery properties can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解質電池の、
とくにその集電体と活物質層との間の接触抵抗および密
着性の改善に関するものである。
The present invention relates to an organic electrolyte battery,
In particular, it relates to improvement of contact resistance and adhesion between the current collector and the active material layer.

【0002】[0002]

【従来の技術】携帯電話やノート型パソコンの小型、軽
量、薄型化の傾向は年々強くなっており、その電源であ
る電池においても小型、軽量、薄型化の要望が強まって
いる。こうした時流の中でリチウム電池が注目されてお
り、特に薄型化の方法として電解質として高分子材料を
用いた有機電解質電池であるリチウム・ポリマ二次電池
が注目されている。このリチウム・ポリマ二次電池とし
て、国の研究開発機関であるBellcoreが高分子材料とし
てフッ化ビニリデン(VDF)と6フッ化プロピレン(HFP)の
共重合体(P(VDF-HFP))を用いたポリマーイオン二次電
池を開発し、実用化に最も近い電池系として期待されて
いる。この電池系は正極、負極、電解質・セパレータに
同一のP(VDF-HFP)を使い、セパレータと正極・負極を熱
融着により一体化させることを特徴としている。
2. Description of the Related Art The trend toward smaller, lighter and thinner portable telephones and notebook personal computers is increasing year by year, and there is an increasing demand for smaller, lighter and thinner batteries as power sources. In such a trend, lithium batteries are receiving attention, and in particular, lithium-polymer secondary batteries, which are organic electrolyte batteries using a polymer material as an electrolyte, are attracting attention as a method for reducing the thickness. Bellcore, a national research and development organization, used a copolymer of vinylidene fluoride (VDF) and propylene hexafluoride (HFP) (P (VDF-HFP)) as a polymer material for this lithium-polymer secondary battery. Polymer ion secondary battery was developed and is expected as the battery system closest to practical use. This battery system is characterized by using the same P (VDF-HFP) for the positive electrode, the negative electrode, the electrolyte and the separator, and integrating the separator and the positive electrode and the negative electrode by heat fusion.

【0003】しかしながら、上記のリチウム・ポリマ二
次電池は正極および負極に多量のポリマーを含有してい
るため、現在商品化されているリチウム・イオン二次電
池と比較して容量が低い。このためリチウム・ポリマ二
次電池の容量を高めるには、一体化が可能な範囲で極板
中のポリマー量を低減する必要がある。しかし、ポリマ
ー量を低減すると活物質層と集電体との間の密着性が低
下し、接触抵抗は増大するという問題があった。この問
題に対して、集電体表面の絶縁化物を除去し、付着性の
導電性ポリマ組成で結着した金属集電体を用いる方法、
ポリマであるP(VDF-HFP)に導電性物質を加えたものを電
体表面の絶縁化物を除去した後、結着することが提案さ
れている(例えば、USP5,554,459)。
[0003] However, the above-mentioned lithium polymer secondary battery contains a large amount of polymer in the positive electrode and the negative electrode, and thus has a lower capacity than the lithium-ion secondary battery currently commercialized. For this reason, in order to increase the capacity of the lithium polymer secondary battery, it is necessary to reduce the amount of polymer in the electrode plate within a range where integration is possible. However, when the amount of the polymer is reduced, there is a problem that the adhesion between the active material layer and the current collector is reduced, and the contact resistance is increased. In order to solve this problem, a method using a metal current collector which is obtained by removing an insulator on the current collector surface and binding with an adhesive conductive polymer composition,
It has been proposed to bind a polymer obtained by adding a conductive substance to P (VDF-HFP) after removing an insulator on the surface of an electric body (for example, US Pat. No. 5,554,459).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
のポリマとしてP(VDF-HFP)を用いた集電体では、電解液
を電池に含浸させた場合、集電体の表面に結着した結着
層が電解液により膨潤し、集電体表面から剥離するとい
う欠点を有していた。このため、集電体と結着層の電気
的接触が悪くなり、電池の充放電による劣化が起こり、
サイクル寿命が低下する原因となっていた。
However, in the current collector using P (VDF-HFP) as the conventional polymer, when the electrolyte is impregnated in the battery, the binding bonded to the surface of the current collector is performed. The layer had a drawback that the layer was swollen by the electrolyte and peeled off from the current collector surface. For this reason, the electrical contact between the current collector and the binding layer is deteriorated, and deterioration due to charge and discharge of the battery occurs.
This caused the cycle life to decrease.

【0005】本発明はこのような従来の課題を解決する
ものであり、集電体と活物質層との密着性を保持し、サ
イクル特性の良い有機電解質電池を提供することを目的
とするものである。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide an organic electrolyte battery having good cycle characteristics while maintaining the adhesion between the current collector and the active material layer. It is.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の有機電解質電池は、正極あるいは負極の少
なくとも一方は、少なくとも活物質と導電材と非水電解
液および非水電解液を吸収保持するポリマーからなる活
物質層と、導電性炭素材とポリフッ化ビニリデンからな
る混合物を結着した集電体から構成される。このような
構成とすることにより、導電性炭素材を集電体に強固に
結着し、かつ、活物質層と集電体との密着性を高めるこ
とが可能となる。
In order to solve the above-mentioned problems, at least one of the positive electrode and the negative electrode comprises at least an active material, a conductive material, a non-aqueous electrolyte and a non-aqueous electrolyte. The active material layer is made of a polymer that absorbs and retains, and a current collector is formed by binding a mixture of a conductive carbon material and polyvinylidene fluoride. With such a configuration, the conductive carbon material can be firmly bound to the current collector, and the adhesion between the active material layer and the current collector can be increased.

【0007】[0007]

【発明の実施の形態】本発明は、正極あるいは負極の少
なくとも一方は、少なくとも活物質と導電材と非水電解
液および非水電解液を吸収保持するポリマーからなる活
物質層と、導電性炭素材とポリフッ化ビニリデンからな
る混合物を結着した集電体から成る有機電解質電池であ
る。このように結着剤に活物質層中のポリマーと親和性
が高く、電解液による膨潤が非常に低いポリマーである
ポリフッ化ビニリデンを用いることにより、電解液が存
在しても集電体から剥離することはなく、導電性炭素材
を集電体に強固に結着し、かつ、活物質層と集電体との
密着性を高めることが可能となり、サイクル特性の良い
有機電解質電池を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, at least one of a positive electrode and a negative electrode has at least one of an active material, a conductive material, a non-aqueous electrolyte, and an active material layer made of a polymer absorbing and retaining the non-aqueous electrolyte. An organic electrolyte battery comprising a current collector to which a mixture of a material and polyvinylidene fluoride is bound. By using polyvinylidene fluoride, which is a polymer that has a high affinity for the polymer in the active material layer and has a very low swelling due to the electrolyte, it can be separated from the current collector even in the presence of the electrolyte. To obtain an organic electrolyte battery with good cycle characteristics, by firmly binding the conductive carbon material to the current collector and improving the adhesion between the active material layer and the current collector. Can be.

【0008】さらに本発明は、集電体が活物質層に積層
または埋設されているものである。このように、集電体
と活物質層の集電性が良好となる構成とすることによ
り、導電性の結着層を有した集電体の効果がより得られ
るものである。
Further, in the present invention, the current collector is laminated or buried in the active material layer. As described above, the current collector having the conductive binding layer can be more effectively obtained by adopting a configuration in which the current collector and the active material layer have good current collection properties.

【0009】また本発明は、導電性炭素材がアセチレン
ブラック,ケッチェンブラックおよび炭素繊維の群から
選ばれた少なくとも1つであり、導電性炭素材と結着剤
の混合物は、炭素材の含有率が混合物中の20〜50重
量%のものである。これらの炭素材が導電剤として好ま
しく、また導電剤の含有率は20重量%以下では導電剤
としての効果が少なく、50重量%以上では結着力が低
下するため、20〜50重量%が好ましい。
Further, in the present invention, the conductive carbon material is at least one selected from the group consisting of acetylene black, Ketjen black and carbon fiber, and the mixture of the conductive carbon material and the binder contains carbon material. The percentage is between 20 and 50% by weight of the mixture. These carbon materials are preferable as the conductive agent. When the content of the conductive agent is 20% by weight or less, the effect as the conductive agent is small, and when the content is 50% by weight or more, the binding force is reduced.

【0010】これらの構成により、本発明の有機電解質
電池は集電体表面に導電性炭素材を結着させることによ
り、活物質層のポリマー量を低減して高容量化した有機
電解質電池においても良好な密着性と電気的接触が実現
でき、優れた電池特性を得ることができる。
With these configurations, the organic electrolyte battery of the present invention can be used in an organic electrolyte battery having a high capacity by reducing the amount of polymer in the active material layer by binding a conductive carbon material to the surface of the current collector. Good adhesion and electrical contact can be realized, and excellent battery characteristics can be obtained.

【0011】(実施の形態1)本発明の有機電解質電池
の構成を図1を参照して説明する。正極板は正極活物質
層1と正極集電体2を積層もしくは正極活物質層中に集
電体を埋設した構造を有する。負極板も同様に負極活物
質層5と負極集電体4を積層もしくは負極活物質層中に
集電体を埋設した構造を有する。ポリマー電解質3は正
極板と負極板との間に設置され、熱融着法やキャスト法
により正極、負極と一体化されている。
(Embodiment 1) The structure of an organic electrolyte battery according to the present invention will be described with reference to FIG. The positive electrode plate has a structure in which a positive electrode active material layer 1 and a positive electrode current collector 2 are stacked or a current collector is embedded in the positive electrode active material layer. Similarly, the negative electrode plate has a structure in which the negative electrode active material layer 5 and the negative electrode current collector 4 are laminated or the current collector is embedded in the negative electrode active material layer. The polymer electrolyte 3 is provided between the positive electrode plate and the negative electrode plate, and is integrated with the positive electrode and the negative electrode by a heat fusion method or a casting method.

【0012】正極集電体2はアルミニウム金属または導
電性材料にアルミニウムをコーティングしたもの等のパ
ンチングメタルまたはラスメタルからなり、表面には導
電性炭素材であるアセチレンブラック、ケッチェンブラ
ックまたは炭素繊維と、結着剤であるポリフッ化ビニリ
デンの混合物が結着している。
The positive electrode current collector 2 is made of a punching metal or a lath metal such as an aluminum metal or a conductive material coated with aluminum, and has acetylene black, ketjen black or carbon fiber as a conductive carbon material on its surface. A mixture of polyvinylidene fluoride as a binder is bound.

【0013】負極集電体4は銅,ニッケル金属または導
電性材料に銅あるいはニッケルをコーティングしたもの
等のパンチングメタルまたはラスメタルからなり、表面
には導電性炭素材であるアセチレンブラック,ケッチェ
ンブラックまたは炭素繊維と、結着剤であるポリフッ化
ビニリデンの混合物が結着している。
The negative electrode current collector 4 is made of a punching metal or a lath metal such as a copper, nickel metal or a conductive material coated with copper or nickel, and has acetylene black, ketjen black or a conductive carbon material on the surface. A mixture of carbon fibers and polyvinylidene fluoride as a binder is bound.

【0014】前記導電性炭素材を集電体に結着させる方
法としては、例えばアセチレンブラックをポリフッ化ビ
ニリデンのN-メチルピロリドン溶液中に分散させたもの
を直接集電体に塗布した後、溶剤のN-メチルピロリドン
を乾燥除去する。
As a method of binding the conductive carbon material to the current collector, for example, a material obtained by dispersing acetylene black in an N-methylpyrrolidone solution of polyvinylidene fluoride is directly applied to the current collector, and then the solvent is applied. Of N-methylpyrrolidone is removed by drying.

【0015】前記正極活物質層1および負極活物質層5
は、活物質、導電材およびポリマー溶液からなるペース
トをガラス板上に塗工した後、溶剤を乾燥除去して作製
する。
The positive electrode active material layer 1 and the negative electrode active material layer 5
Is prepared by applying a paste composed of an active material, a conductive material and a polymer solution on a glass plate, and then removing the solvent by drying.

【0016】さらに、前記正極活物質層1と正極集電体
2、前記負極活物質層5と負極集電体4をそれぞれ熱ロ
ーラで熱融着させ正極板および負極板を作成し、つぎに
ポリマ電解質3を正極板と負極板ではさんだものを熱ロ
ーラで熱融着させることで電池を作製する。
Further, the positive electrode active material layer 1 and the positive electrode current collector 2 and the negative electrode active material layer 5 and the negative electrode current collector 4 are heat-sealed with a heat roller to form a positive electrode plate and a negative electrode plate. A battery is manufactured by heat-sealing a polymer electrolyte 3 sandwiched between a positive electrode plate and a negative electrode plate with a heat roller.

【0017】[0017]

【実施例】(実施例1)フッ化ビニリデンと6フッ化プ
ロピレンの共重合体(P(VDF-HFP)、6フッ化プロピレン
比率12重量%)28gをアセトン144gに溶解し、
フタル酸ジ-n-ブチル(DBP)28gを添加した混合溶
液を調整する。この溶液をガラス板上に塗着厚0.5m
mで塗着した後、アセトンを乾燥除去して厚さ0.08
mm、サイズが30mm×50mmのポリマー電解質シ
ートを作製する。
EXAMPLES Example 1 28 g of a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP), propylene hexafluoride ratio 12% by weight) was dissolved in 144 g of acetone.
A mixed solution to which 28 g of di-n-butyl phthalate (DBP) was added was prepared. This solution is applied on a glass plate with a thickness of 0.5 m.
m, and then acetone was removed by drying to a thickness of 0.08.
A polymer electrolyte sheet having a size of 30 mm × 50 mm is prepared.

【0018】正極シートはP(VDF-HFP)71gをアセトン
1130gに溶解した溶液とコバルト酸リチウム100
0g,アセチレンブラック53g,DBP110gを混合
して調整したペーストをガラス板上に塗着厚0.9mm
で塗着した後、アセトンを乾燥除去することで厚さ0.
3mm、サイズが27mm×43mmのシートを得る。
The positive electrode sheet was prepared by dissolving 71 g of P (VDF-HFP) in 1130 g of acetone and lithium cobalt oxide 100
0 g, acetylene black 53 g, and DBP 110 g were mixed and the paste was adjusted on a glass plate to a thickness of 0.9 mm.
After coating with acetone, the acetone is dried and removed to a thickness of 0.1.
A sheet having a size of 3 mm and a size of 27 mm × 43 mm is obtained.

【0019】負極シートはP(VDF-HFP)35gをアセトン
321gに溶解した溶液と球状黒鉛(大阪ガス製 MC
MB)245g、炭素繊維(大阪ガス製 VGCF)2
0g,DBP54gを混合して調整したペーストをガラス
板上に塗着厚1.2mmで塗着した後、アセトンを乾燥
除去することで厚さ0.35mm、サイズが27mm×
43mmのシートを得る。
The negative electrode sheet was prepared by dissolving 35 g of P (VDF-HFP) in 321 g of acetone and spherical graphite (MC manufactured by Osaka Gas Co., Ltd.).
MB) 245 g, carbon fiber (VGCF made by Osaka Gas) 2
A paste prepared by mixing 0 g and 54 g of DBP was applied on a glass plate at a coating thickness of 1.2 mm, and acetone was dried and removed to obtain a 0.35 mm thick and 27 mm size.
A 43 mm sheet is obtained.

【0020】集電体に塗着する導電性炭素材と結着剤の
混合物は、アセチレンブラック30gとポリフッ化ビニ
リデンのN-メチルピロリドン溶液(12重量%)を分散
・混合することで調整する。この混合物を厚さ0.06
mmのアルミニウムと銅のラスメタルにそれぞれ塗着し
た後、80℃以上の温度でN-メチルピロリドンを乾燥除
去することで本発明の導電性炭素材とポリフッ化ビニリ
デンから成る混合物を結着した集電体を作製する。
The mixture of the conductive carbon material and the binder to be applied to the current collector is prepared by dispersing and mixing 30 g of acetylene black and an N-methylpyrrolidone solution of polyvinylidene fluoride (12% by weight). This mixture was added to a thickness of 0.06.
mm of aluminum and copper lath metal, respectively, and then the N-methylpyrrolidone is dried and removed at a temperature of 80 ° C. or more to bind the mixture comprising the conductive carbon material of the present invention and polyvinylidene fluoride. Make a body.

【0021】前記正極シートと前記アルミニウムの集電
体を積層したものをポリテトラフルオロエチレンシート
(PTFE、厚さ0.05mm)ではさみ、150℃に加熱
した2本ローラを通して加熱・加圧することで熱融着さ
せる。PTFEは活物質層がローラに付着するのを防ぐため
に用いるものであり、銅箔やアルミ箔などの他の材料を
用いてもよい。
A laminate of the positive electrode sheet and the aluminum current collector is sandwiched between polytetrafluoroethylene sheets (PTFE, 0.05 mm thick), and heated and pressed through two rollers heated to 150 ° C. Heat fusion. PTFE is used to prevent the active material layer from adhering to the roller, and other materials such as copper foil and aluminum foil may be used.

【0022】同様の方法で前記負極シートと前記銅集電
体とを用いて負極板を作製する。最後に、前記ポリマ電
解質を正極板と負極板で挟み、120℃に加熱した2本
ローラで加熱・加圧することで熱融着一体化した構成電
池を作製する。
In the same manner, a negative electrode plate is prepared using the negative electrode sheet and the copper current collector. Finally, the polymer electrolyte is sandwiched between a positive electrode plate and a negative electrode plate, and heated and pressed by two rollers heated to 120 ° C. to produce a heat-fused integrated battery.

【0023】上記の一体化した構成電池をジエチルエー
テル中に浸漬し、DBPを抽出除去し、50℃、真空で乾
燥した後、電解液に浸漬し、本発明の電池を得た。ここ
で電解液は6フッ化リン酸リチウムを炭酸エチレンと炭
酸エチルメチルの等体積混合物に溶解したものを用い
た。 (比較例1)集電体に塗着する導電性炭素材としてアセ
チレンブラック、結着剤としてP(VDF-HFP)の混合物を用
いた以外は、実施例1と同様にして比較例1の電池を作
製した。 (比較例2)集電体に導電性炭素材と結着剤の混合物を
結着させていないアルミニウムと銅の集電地をそれぞれ
正極と負極に用いた以外は、実施例1と同様にして比較
例2の電池を作製した。
The above integrated battery was immersed in diethyl ether to extract and remove DBP, dried in vacuum at 50 ° C., and immersed in an electrolyte to obtain the battery of the present invention. Here, the electrolyte used was a solution prepared by dissolving lithium hexafluorophosphate in an equal volume mixture of ethylene carbonate and ethyl methyl carbonate. (Comparative Example 1) The battery of Comparative Example 1 was prepared in the same manner as in Example 1 except that a mixture of acetylene black was used as the conductive carbon material applied to the current collector and P (VDF-HFP) was used as the binder. Was prepared. (Comparative Example 2) The same procedure as in Example 1 was carried out except that a current collector of aluminum and copper, in which the mixture of the conductive carbon material and the binder was not bound to the current collector, was used for the positive electrode and the negative electrode, respectively. A battery of Comparative Example 2 was produced.

【0024】得られた実施例と比較例1および2の電池
について交流インヒ゜ータ゛ンス法を用いて電池内部抵抗の測定
を行った。その結果、実施例の電池では内部抵抗が10
Ω・cm2であったのに対して、比較例1の電池では内
部抵抗が70Ω・cm2、比較例2の電池では110Ω
・cm2であり、実施例の電池の内部抵抗は著しく低く
なり、集電体と活物質層との電気的接触が劇的に改善さ
れていることがわかった。
The internal resistance of the batteries of the obtained Example and Comparative Examples 1 and 2 was measured by using the AC impedance method. As a result, in the battery of Example, the internal resistance was 10
Ω · cm 2, whereas the battery of Comparative Example 1 had an internal resistance of 70 Ω · cm 2 and the battery of Comparative Example 2 had an internal resistance of 110 Ω · cm 2.
Cm 2, indicating that the internal resistance of the battery of Example was significantly reduced, and that the electrical contact between the current collector and the active material layer was dramatically improved.

【0025】次に、充電電流30mAで充電した後、放
電電流30mAで放電するサイクル試験を行い、1サイ
クル目と20サイクル目の放電容量を測定した。その結
果、1サイクル目の放電容量は実施例の電池では142
mAh、比較例1の電池では135mAh、比較例2の
電池では105mAhであり、20サイクル目の放電容
量は実施例1の電池では140mAh、比較例1の電池
では30mAh、比較例2の電池では21mAhであっ
た。この結果から、実施例および比較例1の電池では、
集電体表面に導電性炭素材を結着させることにより、集
電体と活物質層の良好な密着性と電気的接触が実現でき
ることがわかった。しかし、サイクルの進行により比較
例1の電池は容量が低下し、20サイクルでは容量差が
大きくなった。
Next, a cycle test was conducted in which the battery was charged at a charging current of 30 mA and then discharged at a discharging current of 30 mA, and the discharge capacities at the first cycle and the 20th cycle were measured. As a result, the discharge capacity in the first cycle was 142
mAh, 135 mAh for the battery of Comparative Example 1, 105 mAh for the battery of Comparative Example 2, and the discharge capacity at the 20th cycle was 140 mAh for the battery of Example 1, 30 mAh for the battery of Comparative Example 1, and 21 mAh for the battery of Comparative Example 2. Met. From this result, in the batteries of Example and Comparative Example 1,
It was found that good adhesion and electrical contact between the current collector and the active material layer can be realized by binding the conductive carbon material to the current collector surface. However, the capacity of the battery of Comparative Example 1 was reduced as the cycle progressed, and the capacity difference was increased at 20 cycles.

【0026】これら実施例および比較例1の電池を分解
したところ、本発明の電池の集電体断面は図2に模式図
で示したように集電体6に導電性炭素材7が結着してい
るのに対し、比較例1の電池の集電体断面は図3に模式
図で示したように集電体6から導電性炭素材7が剥がれ
た状態であった。
When the batteries of these Examples and Comparative Example 1 were disassembled, the cross section of the current collector of the battery of the present invention was such that the conductive carbon material 7 was bonded to the current collector 6 as schematically shown in FIG. In contrast, the cross section of the current collector of the battery of Comparative Example 1 was in a state where the conductive carbon material 7 was peeled off from the current collector 6 as shown in the schematic diagram of FIG.

【0027】このように集電体表面に導電性炭素材を結
着させることにより、活物質層のポリマー量を低減して
高容量化したリチウム・ポリマー二次電池においても良
好な密着性と電気的接触が実現でき、優れた電池特性を
得ることができた。 (実施例2)導電性炭素材としてアセチレンブラックに
換え、ケッチェンブラックあるいは炭素繊維を用いた以
外は実施例1と同様に実施例の電池を作製し、実施例1
と同様の方法で内部抵抗の測定およびサイクル特性の検
討を行った。
By bonding the conductive carbon material to the surface of the current collector as described above, even in a lithium polymer secondary battery in which the amount of the polymer in the active material layer is reduced and the capacity is increased, good adhesion and electric power are obtained. Contact was achieved, and excellent battery characteristics were obtained. Example 2 A battery was prepared in the same manner as in Example 1 except that Ketjen Black or carbon fiber was used instead of acetylene black as the conductive carbon material.
The internal resistance was measured and the cycle characteristics were examined in the same manner as in the above.

【0028】その結果、アセチレンブラックを用いたと
きと同様の効果が得られた。 (実施例3)集電体に塗着するアセチレンブラックと結
着剤の混合物中のアセチレンブラックの含有率を変えた
以外は実施例1と同様の方法にて電池を作製した。
As a result, the same effect as when acetylene black was used was obtained. (Example 3) A battery was produced in the same manner as in Example 1 except that the content of acetylene black in the mixture of acetylene black and a binder applied to the current collector was changed.

【0029】得られた電池について交流インヒ゜ータ゛ンス法を
用いて電池内部抵抗の測定を行った。その結果を図4に
示す。また、充電電流30mAで充電した後、放電電流
30mAで放電するサイクル試験を行い、1サイクル目
と20サイクル目の放電容量を測定した。その結果を図
5に示す。
With respect to the obtained battery, the internal resistance of the battery was measured by using the AC impedance method. FIG. 4 shows the results. Further, after charging at a charging current of 30 mA, a cycle test of discharging at a discharging current of 30 mA was performed, and discharge capacities at the first cycle and the 20th cycle were measured. The result is shown in FIG.

【0030】図4より、アセチレンブラックの含有率が
20重量%以下では内部抵抗が高くなり、導電剤添加の
効果が得られなかった。また、図5の結果よりアセチレ
ンブラックの含有率が20重量%以下および50重量%
以上では1サイクル目に対する20サイクル目の容量低
下は著しく、20重量%以下では導電剤添加の効果が得
られず、また50重量%以下では結着性が悪くなるなり
ともに著しい容量低下となった。
FIG. 4 shows that when the content of acetylene black was 20% by weight or less, the internal resistance was increased, and the effect of the addition of the conductive agent was not obtained. Also, from the results of FIG. 5, the content of acetylene black was 20% by weight or less and 50% by weight.
Above, the capacity decrease in the 20th cycle with respect to the first cycle was remarkable. At 20% by weight or less, the effect of the addition of the conductive agent was not obtained, and at 50% by weight or less, the binding property was deteriorated and the capacity was significantly reduced. .

【0031】[0031]

【発明の効果】以上のように本発明は、集電体表面に導
電性炭素材とポリフッ化ビニリデンを結着させることに
より、活物質層との密着性と電気的接触が改善されるた
め、活物質層中のポリマー量を低減しても良好な電池特
性を有し、サイクル特性の良いリチウム・ポリマ電池を
作製することができる。また、ポリマー量を低減するこ
とにより、極板の高容量化が図れ、ポリマー二次電池の
課題であった電池容量の向上が実現できる。
As described above, according to the present invention, since the conductive carbon material and polyvinylidene fluoride are bonded to the surface of the current collector, the adhesion to the active material layer and the electrical contact are improved. Even if the amount of the polymer in the active material layer is reduced, a lithium-polymer battery having good battery characteristics and good cycle characteristics can be manufactured. In addition, by reducing the amount of the polymer, the capacity of the electrode plate can be increased, and the improvement of the battery capacity, which has been a problem of the polymer secondary battery, can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリマ電池の発電素子部の断面図FIG. 1 is a cross-sectional view of a power generation element portion of a polymer battery according to the present invention.

【図2】本発明の集電体の断面模式図FIG. 2 is a schematic cross-sectional view of a current collector of the present invention.

【図3】従来の集電体の断面模式図FIG. 3 is a schematic cross-sectional view of a conventional current collector.

【図4】導電性炭素材の含有量と内部抵抗の関係を示す
FIG. 4 is a diagram showing the relationship between the content of a conductive carbon material and internal resistance.

【図5】導電性炭素材の含有量と1サイクル、20サイ
クルの容量の関係を示す図
FIG. 5 is a diagram showing the relationship between the content of a conductive carbon material and the capacity of one cycle and 20 cycles.

【符号の説明】[Explanation of symbols]

1 正極活物質層 2 正極集電体 3 ポリマ電解質 4 負極活物質層 5 負極集電体 6 集電体 7 導電性炭素材 REFERENCE SIGNS LIST 1 positive electrode active material layer 2 positive electrode current collector 3 polymer electrolyte 4 negative electrode active material layer 5 negative electrode current collector 6 current collector 7 conductive carbon material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉原 康雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木下 一成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小川 昌彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yasuo Yoshihara 1006 Odakadoma, Kadoma-shi, Osaka, Japan Matsushita Electric Industrial Co., Ltd. (72) Inventor Masahiko Ogawa 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Nobuo Eda 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とポリマ電解質から成る有機
電解質電池において、正極あるいは負極の少なくとも一
方は、少なくとも活物質と導電材と非水電解液および非
水電解液を吸収保持するポリマーからなる活物質層と、
導電性炭素材とポリフッ化ビニリデンからなる混合物を
表面に結着した集電体から成る有機電解質電池。
In an organic electrolyte battery comprising a positive electrode, a negative electrode and a polymer electrolyte, at least one of the positive electrode and the negative electrode has at least one of an active material, a conductive material, a non-aqueous electrolyte and a polymer which absorbs and retains the non-aqueous electrolyte. A material layer,
An organic electrolyte battery comprising a current collector having a mixture of a conductive carbon material and polyvinylidene fluoride bound to the surface.
【請求項2】 前記集電体は活物質層に積層または埋設
されている請求項1記載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the current collector is laminated or embedded in an active material layer.
【請求項3】 前記導電性炭素材がアセチレンブラッ
ク,ケッチェンブラックおよび炭素繊維の群から選ばれ
た少なくとも1つである請求項1記載の有機電解質電
池。
3. The organic electrolyte battery according to claim 1, wherein the conductive carbon material is at least one selected from the group consisting of acetylene black, Ketjen black, and carbon fibers.
【請求項4】 前記導電性炭素材と結着剤の混合物は、
炭素材の含有率が混合物中の20〜50重量%である請
求項1記載の有機電解質電池。
4. The mixture of the conductive carbon material and the binder,
The organic electrolyte battery according to claim 1, wherein the content of the carbon material is 20 to 50% by weight in the mixture.
JP31676097A 1997-11-18 1997-11-18 Organic electrolyte battery Expired - Fee Related JP3508514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31676097A JP3508514B2 (en) 1997-11-18 1997-11-18 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31676097A JP3508514B2 (en) 1997-11-18 1997-11-18 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11149916A true JPH11149916A (en) 1999-06-02
JP3508514B2 JP3508514B2 (en) 2004-03-22

Family

ID=18080625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31676097A Expired - Fee Related JP3508514B2 (en) 1997-11-18 1997-11-18 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3508514B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173781A (en) * 2001-09-28 2003-06-20 Mitsubishi Materials Corp Paint for adhesive layer as well as electrode for secondary battery and secondary battery using them
KR100637122B1 (en) * 2000-04-11 2006-10-20 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery
US20110027649A1 (en) * 2008-04-02 2011-02-03 Takeshi Abe Positive electrode of lithium secondary battery and method for producing the same
JP2013254585A (en) * 2012-06-05 2013-12-19 Denso Corp Nonaqueous electrolyte secondary battery
WO2014042080A1 (en) 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
WO2015029949A1 (en) 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR20180101461A (en) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 Electrodes for energy storage devices
WO2019188539A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
WO2019188538A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
WO2019188535A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Conductive carbon material dispersion liquid
WO2019188537A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
KR20220149553A (en) 2020-02-27 2022-11-08 닛산 가가쿠 가부시키가이샤 Composition for forming a thin film for an energy storage device electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121265A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Nonaqueous battery
JPH05135769A (en) * 1991-11-13 1993-06-01 Matsushita Electric Ind Co Ltd Reversible electrode
JPH06163030A (en) * 1992-11-16 1994-06-10 Sony Corp Nonaqueous electrolyte secondary battery
JPH07201363A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH0935707A (en) * 1995-07-25 1997-02-07 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lithium secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH11502972A (en) * 1996-01-23 1999-03-09 ベル コミュニケーションズ リサーチ,インコーポレイテッド Lithium-ion battery material with low internal resistance and method of manufacturing the lithium-ion battery
JPH1173943A (en) * 1997-08-29 1999-03-16 Toshiba Corp Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121265A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Nonaqueous battery
JPH05135769A (en) * 1991-11-13 1993-06-01 Matsushita Electric Ind Co Ltd Reversible electrode
JPH06163030A (en) * 1992-11-16 1994-06-10 Sony Corp Nonaqueous electrolyte secondary battery
JPH07201363A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH0935707A (en) * 1995-07-25 1997-02-07 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lithium secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH11502972A (en) * 1996-01-23 1999-03-09 ベル コミュニケーションズ リサーチ,インコーポレイテッド Lithium-ion battery material with low internal resistance and method of manufacturing the lithium-ion battery
JPH1173943A (en) * 1997-08-29 1999-03-16 Toshiba Corp Nonaqueous electrolyte secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637122B1 (en) * 2000-04-11 2006-10-20 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery
JP2003173781A (en) * 2001-09-28 2003-06-20 Mitsubishi Materials Corp Paint for adhesive layer as well as electrode for secondary battery and secondary battery using them
US20110027649A1 (en) * 2008-04-02 2011-02-03 Takeshi Abe Positive electrode of lithium secondary battery and method for producing the same
US8734990B2 (en) * 2008-04-02 2014-05-27 Toyota Jidosha Kabushiki Kaisha Positive electrode of lithium secondary battery and method for producing the same
JP2013254585A (en) * 2012-06-05 2013-12-19 Denso Corp Nonaqueous electrolyte secondary battery
WO2014042080A1 (en) 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
US10193160B2 (en) 2012-09-14 2019-01-29 Nissan Chemical Industries, Ltd. Composite current collector for energy storage device electrode, and electrode
KR20150058303A (en) 2012-09-14 2015-05-28 닛산 가가쿠 고교 가부시키 가이샤 Composite current collector for energy storage device electrode, and electrode
WO2015029949A1 (en) 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR20160149324A (en) 2013-08-27 2016-12-27 닛산 가가쿠 고교 가부시키 가이샤 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR20160045792A (en) 2013-08-27 2016-04-27 닛산 가가쿠 고교 가부시키 가이샤 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
EP3695899A1 (en) 2013-08-27 2020-08-19 Nissan Chemical Corporation Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
US11326010B2 (en) 2013-08-27 2022-05-10 Nissan Chemical Industries, Ltd. Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR20180101461A (en) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 Electrodes for energy storage devices
US10749172B2 (en) 2016-01-07 2020-08-18 Nissan Chemical Industries, Ltd. Electrode for energy storage devices
WO2019188535A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Conductive carbon material dispersion liquid
WO2019188537A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
WO2019188538A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
KR20200135498A (en) 2018-03-29 2020-12-02 닛산 가가쿠 가부시키가이샤 Composition for forming undercoat layer of energy storage device
KR20200135499A (en) 2018-03-29 2020-12-02 닛산 가가쿠 가부시키가이샤 Composition for forming undercoat layer of energy storage device
WO2019188539A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
KR20220149553A (en) 2020-02-27 2022-11-08 닛산 가가쿠 가부시키가이샤 Composition for forming a thin film for an energy storage device electrode
US11670777B2 (en) 2020-02-27 2023-06-06 Nissan Chemical Corporation Thin film forming composition for energy storage device electrodes

Also Published As

Publication number Publication date
JP3508514B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US11322774B2 (en) Electrode electrochemical device and electronic device
TW434604B (en) Supercapacitor structure and method of making same
JP4038699B2 (en) Lithium ion battery
JP5167703B2 (en) Battery electrode
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP3223824B2 (en) Lithium ion secondary battery
JP2020526897A (en) Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
WO2022037092A1 (en) Current collector, pole piece and battery
WO1999026307A1 (en) Lithium ion secondary battery and manufacture thereof
WO1999026306A1 (en) Lithium ion secondary battery and manufacture thereof
JP5601361B2 (en) Battery electrode
WO1999031748A1 (en) Lithium ion secondary battery
CN104347881A (en) Preparation method and applications of battery graphene-base current collector
WO1999031749A1 (en) Manufacture of lithium ion secondary battery
CN111785925A (en) Pole piece, application and low-temperature-rise safety lithium ion battery containing pole piece
JP3508514B2 (en) Organic electrolyte battery
EP2051316A1 (en) Fabricating method of electrode adhesive bicell
WO1999031750A1 (en) Adhesive for cells, a cell using the same and a process for producing cells
JP2010067580A (en) Bipolar secondary battery
WO1999026308A1 (en) Bonding agent for cells and cell using the same
WO1999033136A1 (en) Lithium ion secondary battery and its manufacture
JP3240650B2 (en) Manufacturing method of solid state secondary battery
CN114243219A (en) Multifunctional composite diaphragm and preparation method thereof
Kaneko et al. Lithium-ion conduction in elastomeric binder in Li-ion batteries
JPH11329393A (en) Nonwoven cloth for battery separator and battery using it

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees