JPH02247979A - All-solid secondary battery and manufacture thereof - Google Patents

All-solid secondary battery and manufacture thereof

Info

Publication number
JPH02247979A
JPH02247979A JP1067059A JP6705989A JPH02247979A JP H02247979 A JPH02247979 A JP H02247979A JP 1067059 A JP1067059 A JP 1067059A JP 6705989 A JP6705989 A JP 6705989A JP H02247979 A JPH02247979 A JP H02247979A
Authority
JP
Japan
Prior art keywords
sheet
electrolyte
solid
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1067059A
Other languages
Japanese (ja)
Inventor
Yoshio Moriwaki
良夫 森脇
Tsutomu Iwaki
勉 岩城
Yasuhiko Mifuji
靖彦 美藤
Shuji Ito
修二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1067059A priority Critical patent/JPH02247979A/en
Publication of JPH02247979A publication Critical patent/JPH02247979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To achieve flexibility for this type of battery through its stabilized cycle charge/discharge performance by utilizing a sheet-like material consisting of carbon dispersed over a fibrous base structure as an electricity collector CONSTITUTION:A sheet-like material made up of carbon dispersed over a fibrous skeleton is used to form electricity collectors on both other sides of a component battery 5 having electrode layers on both surfaces of its electrolyte layer 1. The fiber is made of fluorine resin, and carbon consisting of fine carbon black is blended in a ratio is 30 to 80 weight percent ratio. The electrode material is a copper chevrel compound, while the electrolyte is made of a copper ion conductive material, and adhesive agent for the electrodes and electrolyte is made of resin. RbCu4I1.5Cl3.5 is used as the solid electrolyte. It is dissolved in toluene to, for example, 15wt. percent to produce the sheet 1 using a binding agent. Both positive pole sheet 2 and negative pole sheet 3, are, for example, 150mm in thickness and the sheet has the same thickness. Positive and negative sheets are arranged on both sides of the sheet/while sandwiching at in center.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解質を固体化し、構成材料がすべて固体の
全固体二次電池およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an all-solid-state secondary battery in which the electrolyte is solidified and all constituent materials are solid, and a method for manufacturing the same.

従来の技術 これまで、電池の高信頼性や薄型化などの新しい機能を
期待して固体電解質を用いた全固体二次電池の実現が要
望されていた。最近、これらに対応する形で、無機系あ
るいは高分子系の新しい固体電解質材料やこれらを用い
た全固体二次電池の研究が活発である。この電池の応用
としてはメモリーバックアップ用などが中心であり、固
体電解質として銅系、銀系、リチウム系などが取り上げ
られている。また電極材料についても多くの材料が提案
されている。良く知られている系として、電解質が銅イ
オン導電体、特にRbCu4IIlCI、系固体電解質
、電極が電極活物質である銅シュブレル化合物とRb 
CLl a I x Cl y系固体電解質の混合材料
がある。この場合電極材料や電解質材料は樹脂等の結着
剤で例えばシーNJeなどに加工したものが知られてい
る。
Conventional Technology Until now, there has been a desire to realize all-solid-state secondary batteries using solid electrolytes in anticipation of new functions such as high reliability and thinning of batteries. Recently, in response to these trends, there has been active research into new inorganic or polymer solid electrolyte materials and all-solid-state secondary batteries using these materials. The main application of this battery is for memory backup, etc., and copper-based, silver-based, lithium-based, etc. are being used as solid electrolytes. Furthermore, many materials have been proposed for electrode materials. As a well-known system, the electrolyte is a copper ion conductor, especially RbCu4IIlCI, a system solid electrolyte, and the electrode is a copper Chevrehl compound as an electrode active material and Rb
There is a mixed material of CL1 a I x Cl y based solid electrolyte. In this case, it is known that the electrode material and electrolyte material are processed into, for example, Sea NJe using a binder such as resin.

この全固体二次電池の通常の構成としては、他の電解液
を電解質に用いた電池と同様に、電解質層を中心としこ
の層の両面を正極と負極の電極で構成し、これを素電池
としてさらにこの両外側面に金属箔などの集電体を配す
のが一般的である。
The normal structure of this all-solid-state secondary battery is, like other batteries that use electrolytes as electrolytes, to have an electrolyte layer at the center, with positive and negative electrodes on both sides of this layer. Furthermore, it is common to arrange current collectors such as metal foil on both outer surfaces.

この場合の集電体は電極層との接着を強固にすること、
および電極中の電解質が金属と直接接触することによる
変質を防止する目的で導電性高分子フィルムを介して構
成することもよく用いられる。
In this case, the current collector should have strong adhesion with the electrode layer;
In order to prevent the electrolyte in the electrode from deteriorating due to direct contact with metal, it is often used to construct the electrode with a conductive polymer film interposed therebetween.

そしてこれをさらに外気が直接接触しないように金属ラ
ミネートや樹脂等で封止して電池として用いられる。ま
た必要に応じてこの電池構成を積層化することにより電
池電圧を上昇させる技術も用いられる。
This is further sealed with a metal laminate, resin, etc. to prevent direct contact with the outside air, and used as a battery. Furthermore, a technique for increasing the battery voltage by stacking this battery structure is also used as necessary.

発明が解決しようとする課題 これまで、このような構成の全固体二次電池は、充電と
放電の繰り返しを行なった場合に、その充放電の条件に
もよるが徐々に放電容量の低下が認められた。その原因
にらいて調べたところ、集電体材料にも種々の問題が存
在することがわかった。
Problems to be Solved by the Invention Until now, all-solid-state secondary batteries with such a configuration have been found to gradually decrease in discharge capacity when they are repeatedly charged and discharged, depending on the charging and discharging conditions. It was done. When we investigated the cause of this problem, we found that there were various problems with the current collector material.

すなわち、充放電の繰り返しにより電極層と集電体層の
接触状態に関し部分的な剥離が見られ、初期に比べて接
合界面に異常が認められること、および集電体に金属箔
を使用した場合には金属箔の腐食が観察されることであ
る。
In other words, due to repeated charging and discharging, partial peeling was observed in the contact between the electrode layer and the current collector layer, abnormalities were observed at the bonding interface compared to the initial stage, and when metal foil was used as the current collector. Corrosion of metal foil is observed.

また、この全固体二次電池は先の問題点以外に、他の電
解液を用いる電池と異なり電池構成が非常に簡単なため
薄型電池の実現が可能であり、新たな機能としてフレキ
シブル可能なことが要求される。そのためには使用する
集電体材料も電極層との接触を良好に維持しながら柔軟
性に富むことが要求される。
In addition to the above-mentioned problems, this all-solid-state secondary battery has a very simple battery structure unlike batteries that use other electrolytes, so it is possible to create a thin battery, and it has a new function that allows it to be flexible. is required. For this purpose, the current collector material used must also be highly flexible while maintaining good contact with the electrode layer.

したがって、この電池に用いる集電体材料としては、本
来の電気伝導性に優れるだけでなく、(1)電極層との
接触が強固であること、(2)電(3)、柔軟性に富む
ことなどが要求される。
Therefore, the current collector material used in this battery must not only have excellent electrical conductivity, but also (1) strong contact with the electrode layer, (2) electrical conductivity, and (3) high flexibility. etc. are required.

本発明は、これらの性能に優れた集電体を使用して、充
放電性能の安定化およびこの電池のフレキシブル化を実
現することを目的とする。
The purpose of the present invention is to stabilize the charging and discharging performance and to make this battery flexible by using a current collector with excellent performance.

課題を解決するための手段 本発明の全固体二1次電池は、電解質層の両面に電極層
を形成してなる素電池の両外側面に、繊維状の骨格にカ
ーボンを分散しシート状にした材料で構成する集電体を
配したことを特徴とする。そして特に繊維が弗素樹脂で
、カーボンが微細なカーボンブラックであり、両者の配
合比としてカーボンが30〜80重量%の材料であるこ
とが好ましい。また電極材料が銅シェプレル化合物で、
電解質材料が銅イオン導電体、特にRb Cu a I
 x C1,系固体電解質、電極・電解質の結着剤が樹
脂である全固体二次電池とすることが適している。
Means for Solving the Problems The all-solid-state secondary battery of the present invention has a cell with electrode layers formed on both sides of an electrolyte layer, and carbon dispersed in a fibrous skeleton on both outer surfaces of the unit cell to form a sheet. It is characterized by having a current collector made of a material made of In particular, it is preferable that the fibers be a fluororesin, the carbon be fine carbon black, and the blending ratio of the two be 30 to 80% by weight. In addition, the electrode material is a copper Sheprel compound,
The electrolyte material is a copper ion conductor, especially Rb Cu a I
It is suitable to use an all-solid-state secondary battery in which the x C1, system solid electrolyte and the binder between the electrode and the electrolyte are resin.

本発明の全固体二次電池の製造方法は弗素樹脂とカーボ
ン微粉末を練合し、シート状にしたものを集電体とし、
これを電解質層の両面に電極層を形成してなる素電池の
両外側面に直接ホットプレス法により接着することを特
徴とする。
The method for manufacturing an all-solid-state secondary battery of the present invention involves kneading fluororesin and fine carbon powder, forming a sheet into a current collector,
It is characterized by directly adhering this to both outer surfaces of a unit cell formed by forming electrode layers on both sides of an electrolyte layer by a hot press method.

作   用 本発明は上記した構成により、これまで問題であった充
放電性能の安定化を図るとともに、この電池のフレキシ
ブル化を実現できるものである。
Operation The present invention, with the above-described configuration, can stabilize the charging and discharging performance, which has been a problem hitherto, and can also make the battery more flexible.

この電池の集電体を、電気伝導性に優れ、かつ電解質材
料に対して不活性なカーボンを弗素樹脂などの繊維状の
骨格に分散した構造を採用することにより、集電体繊維
が電極層と強固に接着し、充放電を繰り返してもその界
面の接合状態が変化しないことによるものと判断できる
The current collector of this battery has a structure in which carbon, which has excellent electrical conductivity and is inert to the electrolyte material, is dispersed in a fibrous skeleton such as fluororesin, so that the current collector fibers are used as the electrode layer. This is thought to be due to the fact that the bonded state of the interface does not change even after repeated charging and discharging.

また、このような集電体が繊維状の骨格を有するシート
を採用することによりはじめて電池を折り曲げ可能なフ
レキシブル化が実現できる。
In addition, by employing a sheet having a fibrous skeleton as such a current collector, it is possible to make the battery bendable and flexible.

すでに、この電池の集電体を例えばスチレン−ブタジェ
ン系のゴム杖高分子とカーボンの混合材料で構成してき
たが、これらのものでは繊維状の骨格がないためにカー
ボンは使用しているものの充分な性能は得られない。
Already, the current collector of this battery has been constructed from a mixed material of, for example, styrene-butadiene rubber cane polymer and carbon, but these materials do not have a fibrous skeleton, so although carbon is used, it is insufficient. performance cannot be obtained.

本発明の方法によれば、上記特徴のある全固体二次電池
を能率良く製造することができる。
According to the method of the present invention, an all-solid-state secondary battery having the above characteristics can be efficiently manufactured.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

正極を構成する電極材料として、銅シュブレル(Cu*
MOsSs)を用い、これに電解質としてRbcu4I
+、scl*、sを35wt%、結着剤としてとしてス
チレン−ブタジェン系樹脂が5wt%になるようにトル
エンで溶解し全体を均一に混合し通常のドクターブレー
ド法によりシートを作成する。一方、負極用も正極用と
全く同様の構成でシートを作成した。
Copper Chebrel (Cu*
MOsSs) was used, and Rbcu4I was used as an electrolyte.
35 wt% of +, scl*, and s and 5 wt% of styrene-butadiene resin as a binder are dissolved in toluene, the whole is uniformly mixed, and a sheet is prepared by the usual doctor blade method. On the other hand, a sheet for the negative electrode was created with exactly the same configuration as that for the positive electrode.

固体電解質としてはRb Cua I +、se l*
、sを用い、やはり同じ結着剤で15wt%になるよう
にトルエンで溶解し全体を均一に混合し、やはりドクタ
ーブレード法によりシートを作成した。これらの内、電
極シートは正極2、負極3ともほぼ150μm1  固
体電解質シート1も同様に150μmとした。
As a solid electrolyte, Rb Cua I +, se l*
, s, the same binder was dissolved in toluene to a concentration of 15 wt %, the whole was mixed uniformly, and a sheet was also prepared by the doctor blade method. Among these, the electrode sheets were approximately 150 μm thick for both the positive electrode 2 and the negative electrode 3, and the solid electrolyte sheet 1 was similarly 150 μm thick.

これらのシートを適当な形状に裁断し、電解質シート1
を中心にその両面に正極シート2.負極シート3を配し
180℃、500 k g / c m ”の条件で加
圧した。このようにして3層が一体化した素電池6の、
さらに両面に繊維状の骨格にカーボンを分散しシート状
にした材料で構成した厚さ80μmの集電体4を配し、
ホットプレス法により110℃、100kg/cm”の
条件で加圧圧着した。なおこの場合の繊維状の骨格を持
つ材料は代表的弗素樹脂であるポリテトラフロロエチレ
ンであり、カーボンはカーボンブラックを用い、シート
中のカーボン重量%は60%とした。図はこの状態での
電池の構成断面図である。本発明のこの電池をAとする
Cut these sheets into an appropriate shape and make electrolyte sheet 1.
Centered on both sides of the positive electrode sheet 2. The negative electrode sheet 3 was arranged and pressurized at 180°C and 500 kg/cm''.The unit cell 6, in which the three layers were integrated in this way,
Furthermore, a current collector 4 with a thickness of 80 μm made of a sheet-like material with carbon dispersed in a fibrous skeleton is arranged on both sides.
The material with the fibrous skeleton in this case was polytetrafluoroethylene, which is a typical fluororesin, and the carbon was carbon black. The weight percent of carbon in the sheet was 60%. The figure is a cross-sectional view of the structure of the battery in this state. This battery of the present invention is designated as A.

つぎに比較電池として電極・電解質の3層一体化までの
素電池は先と同様とし、集電体だけを変えて構成した。
Next, as a comparative battery, the unit cell was constructed in the same way as before, up to the integration of the three layers of electrode and electrolyte, but only the current collector was changed.

すなわち集電体として、スチレン−ブタジェン系のゴム
杖高分子とカーボンブラックからできたシートで加圧圧
着して構成した電池をB1  さらに電極との接触面を
導電性高分子フィルムで形成しその上に銅箔を圧接した
構成の電池をCとした。
That is, B1 is a battery constructed by press-bonding a sheet made of styrene-butadiene rubber cane polymer and carbon black as a current collector, and the contact surface with the electrode is formed with a conductive polymer film. A battery having a structure in which a copper foil was pressure-bonded to the battery was designated as C.

これらA、  B、  Cの電池を15mmX30mm
に切断し、その後ポリプロピレンシートとステンレス箔
より構成される金属ラミネート膜により電池周囲を封口
し、両方のステンレス箔より正極・負極のリード端子を
取り出して電池のサイクル充放電試験を行った。
These A, B, and C batteries are 15mm x 30mm.
After that, the area around the battery was sealed with a metal laminate film composed of a polypropylene sheet and stainless steel foil, and the positive and negative electrode lead terminals were taken out from both stainless steel foils and the battery was subjected to a cycle charge/discharge test.

すなわち室温下で2mAで0.55Vまでの充電と、同
じ<2mAの0.3Vまでの放電を繰り返し、サイクル
ごとの放電容量を調べた。その結果、電池Aは、500
サイクルまでの充放電で初期から500サイクルまでほ
ぼ一定して2.8mAhの容量を示し、極めて安定した
性能を有することがわかった。
That is, charging to 0.55 V at 2 mA and discharging to 0.3 V at <2 mA were repeated at room temperature, and the discharge capacity for each cycle was examined. As a result, battery A has 500
It was found that the battery exhibited an almost constant capacity of 2.8 mAh during charging and discharging from the initial stage to 500 cycles, and had extremely stable performance.

これに対し、電池Bは初期放電容量で2.7mAhが得
られたが、200サイクルで2.0mAh1300サイ
クルで0.5mAhと性能低下が大きかった。また電池
Cも初期放電容量で2.6mAhが得られたが、100
サイクルで2.2mAh1200サイクルで0.7mA
hと電池Bと同様に性能低下が大きかった。
On the other hand, in battery B, an initial discharge capacity of 2.7 mAh was obtained, but the performance was significantly degraded to 2.0 mAh after 200 cycles and 0.5 mAh after 1300 cycles. Battery C also had an initial discharge capacity of 2.6mAh, but
2.2mAh in cycles 0.7mA in 1200 cycles
Similar to battery B and battery B, there was a large decrease in performance.

また同様のサイクル充放電試験を70℃の条件下で行な
った。この場合は電池B1 電池Cとも、先の室温での
試験結果よりさらに、サイクルごとの放電容量の低下が
加速される結果であったのに対し、電池Aは500サイ
クルでも同様に安定した性能を維持した。
A similar cycle charge/discharge test was also conducted at 70°C. In this case, for both batteries B1 and C, the decline in discharge capacity with each cycle was even more accelerated than in the previous test results at room temperature, whereas battery A showed similarly stable performance even after 500 cycles. Maintained.

このことから繊維状の骨格にカーボンを分散しシート状
にした材料で構成した集電体は1.電極層との接着の安
定性に優れ、化学的にも安定であることが証明できた。
From this, a current collector made of a sheet-like material with carbon dispersed in a fibrous skeleton is 1. It has been proven that the adhesive has excellent adhesion stability with the electrode layer and is chemically stable.

またこれらのA、  B、  Cの電池についてそれぞ
れ左右90度の50回の折り曲げ試験を行い、その後充
放電性能を調べた。電池Aは折り曲げ試験前後での性能
の変化は一切認められず、安定であったが、電池B1 
Cは一部集電体や電極層の剥離が認められるものもあり
、性能低下も大きかった。
Further, these batteries A, B, and C were each subjected to a bending test of 50 times at 90 degrees left and right, and then their charging and discharging performance was examined. Battery A was stable with no change in performance observed before and after the bending test, but battery B1
In C, peeling of the current collector and electrode layer was observed in some cases, and the performance deteriorated significantly.

なお別に調べた弗素樹脂繊維とカーボンの比率は30〜
80重量%が適当であり、この範囲を越えると充放電の
安定性が低下することがわかった。
In addition, the ratio of fluororesin fiber and carbon, which was separately investigated, was 30~
It has been found that 80% by weight is appropriate, and that if it exceeds this range, the stability of charging and discharging deteriorates.

発明の効果 本発明の全固体二次電池は集電体として、繊維状の骨格
にカーボンを分散しシート状にした材料を用いているの
で、サイクル充放電性能の安定化とこの電池のフレキシ
ブル化を実現することが可能である。
Effects of the Invention Since the all-solid-state secondary battery of the present invention uses a sheet-like material in which carbon is dispersed in a fibrous skeleton as a current collector, the cycle charge/discharge performance is stabilized and the battery becomes flexible. It is possible to realize this.

また本発明の全固体二次電池の製造方法は上記特徴のあ
る電池を能率良く製造することができる。
Further, the method for manufacturing an all-solid-state secondary battery of the present invention can efficiently manufacture a battery having the above-mentioned characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例における全固体二次電池の構成
断面図である。 1・・・固体電解質シート、2・・・正極シート、3・
・・負極シート、4・・・集電体、5・・・素電池。 代理人の氏名 弁理士 粟野重孝 ほか1名1−一一国
体最角判霞シ斗 2−m−正極シート 3−一一員、木2シート 4−−−$え虫体 5−−一素電ζ乞
The drawing is a cross-sectional view of the configuration of an all-solid-state secondary battery in one embodiment of the present invention. 1... Solid electrolyte sheet, 2... Positive electrode sheet, 3.
...Negative electrode sheet, 4... Current collector, 5... Unit cell. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1-11 Kokutai Saikakuban Kasumi Shito 2-m-positive electrode sheet 3-1 member, tree 2 sheet 4--$Emushitai 5--Ichimoto Electricity beggar

Claims (5)

【特許請求の範囲】[Claims] (1)電解質層の両面に電極層を形成してなる素電池の
両外側面に、繊維状の骨格にカーボンを分散しシート状
にした材料で構成する集電体を配したことを特徴とする
全固体二次電池。
(1) A current collector made of a sheet-like material in which carbon is dispersed in a fibrous skeleton is arranged on both outer surfaces of a cell formed by forming electrode layers on both sides of an electrolyte layer. All-solid-state secondary battery.
(2)繊維が弗素樹脂で、カーボンが微細なカーボンブ
ラックであり、両者の配合比としてカーボンが30〜8
0重量%の材料である請求項1記載の全固体二次電池。
(2) The fibers are fluororesin and the carbon is fine carbon black, and the blending ratio of the two is 30 to 8.
The all-solid-state secondary battery according to claim 1, which contains 0% by weight of the material.
(3)電極材料が銅シュブレル化合物で、電解質材料が
銅イオン導電体、電極・電解質の結着剤が樹脂である請
求項1記載の全固体二次電池。
(3) The all-solid-state secondary battery according to claim 1, wherein the electrode material is a copper Chebrel compound, the electrolyte material is a copper ion conductor, and the electrode/electrolyte binder is a resin.
(4)銅イオン導電体がRbCu_4I_xCl_y系
固体電解質である請求項3記載の全固体二次電池。
(4) The all-solid-state secondary battery according to claim 3, wherein the copper ion conductor is an RbCu_4I_xCl_y solid electrolyte.
(5)弗素樹脂とカーボン微粉末を練合し、シート状に
したものを集電体とし、これを電解質層の両面に電極層
を形成してなる素電池の両外側面に直接ホットプレス法
により接着することを特徴とする全固体二次電池の製造
方法。
(5) A hot pressing method in which a fluororesin and fine carbon powder are kneaded and made into a sheet shape, which is then used as a current collector, and this is directly applied to both outer surfaces of a unit cell, which is formed by forming electrode layers on both sides of an electrolyte layer. 1. A method for manufacturing an all-solid-state secondary battery, characterized by adhering the battery.
JP1067059A 1989-03-17 1989-03-17 All-solid secondary battery and manufacture thereof Pending JPH02247979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067059A JPH02247979A (en) 1989-03-17 1989-03-17 All-solid secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067059A JPH02247979A (en) 1989-03-17 1989-03-17 All-solid secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02247979A true JPH02247979A (en) 1990-10-03

Family

ID=13333891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067059A Pending JPH02247979A (en) 1989-03-17 1989-03-17 All-solid secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02247979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521624A (en) * 2009-03-26 2012-09-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Bipolar battery with improved operation
WO2014024926A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521624A (en) * 2009-03-26 2012-09-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Bipolar battery with improved operation
WO2014024926A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same
JP2014035888A (en) * 2012-08-09 2014-02-24 Toyota Motor Corp Solid state battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5587253A (en) Low resistance rechargeable lithium-ion battery
US5436091A (en) Solid state electrochemical cell having microroughened current collector
TW434604B (en) Supercapacitor structure and method of making same
US7413582B2 (en) Lithium battery
US6022642A (en) Lithium ion battery containing an electrically insulative film
JP4352475B2 (en) Solid electrolyte secondary battery
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
WO1998020566A1 (en) Film forming method for lithium ion rechargeable batteries
JPH11506264A (en) Electrical connection to polymer stack battery structure
KR20240004191A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3499916B2 (en) Polymer solid electrolyte battery and manufacturing method thereof
JP3260310B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JP2002050405A (en) Polymer electrolyte cell
US6472105B2 (en) Bonding agent for cells and cell using the same
CN113839037B (en) Conductive agent, electrode slurry, electrode plate and battery
JP2000195495A (en) Sheet battery
EP0954043A1 (en) Bonding agent for cells and cell using the same
JPH02247979A (en) All-solid secondary battery and manufacture thereof
JPS63298980A (en) Solid electrolyte battery
JP2001093535A (en) Solid electrolyte cell
JPH02253569A (en) Manufacture of solid state secondary battery
JP2001015125A (en) Lithium battery
JPH1092445A (en) Whole solid type lithium battery
JPH0513099A (en) Manufacture of solid secondary battery
JPH02247980A (en) Manufacture of all-solid secondary battery