JPH01657A - solid state electrochemical device - Google Patents

solid state electrochemical device

Info

Publication number
JPH01657A
JPH01657A JP62-279881A JP27988187A JPH01657A JP H01657 A JPH01657 A JP H01657A JP 27988187 A JP27988187 A JP 27988187A JP H01657 A JPH01657 A JP H01657A
Authority
JP
Japan
Prior art keywords
solid electrolyte
powder
solid
sheet
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-279881A
Other languages
Japanese (ja)
Other versions
JPH067496B2 (en
JPS64657A (en
Inventor
正樹 永田
直史 安田
繁雄 近藤
正 外邨
Original Assignee
ジェイエスアール株式会社
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェイエスアール株式会社, 松下電器産業株式会社 filed Critical ジェイエスアール株式会社
Priority to JP62279881A priority Critical patent/JPH067496B2/en
Priority claimed from JP62279881A external-priority patent/JPH067496B2/en
Priority to US07/172,166 priority patent/US4810599A/en
Priority to EP88104873A priority patent/EP0284104B1/en
Priority to DE3852412T priority patent/DE3852412T2/en
Priority to KR1019880003331A priority patent/KR970004137B1/en
Publication of JPH01657A publication Critical patent/JPH01657A/en
Publication of JPS64657A publication Critical patent/JPS64657A/en
Publication of JPH067496B2 publication Critical patent/JPH067496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電気化学素子に関し、さらに詳しくは、固
体電池、固体電気二重層キャパシタ、固体エレクトロク
ロミックデスプレイ等に利用される固体電気化学素子に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a solid-state electrochemical device, and more particularly, to a solid-state electrochemical device used in solid-state batteries, solid-state electric double layer capacitors, solid-state electrochromic displays, etc. .

〔従来の技術〕[Conventional technology]

固体電気化学素子は、その材料成分がすべて固体物質で
あるため液漏れがなく、小形化および薄形化が容易であ
る利点を有している。このような素子を構成する場合、
素子内部でイオンを動かすための固体状態のイオン伝導
体、すなわち固体電解質層必要である。該固体電解質は
可動イオン種により区別され、Li+イオン伝導性固体
電解質、Ag+イオン伝導性固体電解質、Cu+イオン
伝導性固体電解質、H+イオン伝導性固体電解質等があ
る。該固体電解質と電極材料とを組合わせることにより
固体電気化学素子が構成され、通常、加圧プレスされて
層状となった固体電解質粉の上下面に一対の電極層が配
置される。
Solid-state electrochemical devices have the advantage that all of their material components are solid substances, so there is no liquid leakage, and they can be easily made smaller and thinner. When constructing such an element,
A solid state ion conductor, that is, a solid electrolyte layer, is required to move ions inside the device. The solid electrolytes are classified by mobile ion species, and include Li + ion conductive solid electrolytes, Ag + ion conductive solid electrolytes, Cu + ion conductive solid electrolytes, H + ion conductive solid electrolytes, and the like. A solid electrochemical device is constructed by combining the solid electrolyte and an electrode material, and a pair of electrode layers is usually arranged on the upper and lower surfaces of solid electrolyte powder that has been pressure-pressed into layers.

液体電解質を用いる電気化学素子では、電解質と電極材
料との電気的およびイオン的接合は容易であるのに対し
、固体物質を用いる固体電気化学素子では固体電解質同
士、電極材料同士または固体電解質と電極材料との電気
的およびイオン的接合は一般に難しい。液体電解質を用
いる素子では、電解質が流れ出すのを防ぐため、または
電解質が電極に浸透しすぎて電極の形状が崩れるのを防
ぐため、電解質または電極に粘着剤等の挟雑物が混合さ
れている。しかし、固体電気化学素子では、挟雑物を混
入すると電気的およびイオン的接合がさらに困難になる
ため、挟雑物を使用することができない。したがって、
無機固体粉末である固体電解質や電極材料を用いて固体
電気化学素子を製造する際には高圧プレスによるペレッ
ト化が必要であり、さらに得られるペレットが硬くて脆
いため、生産性、均−性等を得る上で大きな障害となっ
ている。すなわち、電極材料と固体電解質の接合におい
ては、大きな圧力でこれらを密着させる必要があるが、
大面積の固体電気化学素子の場合、均一な密着は得られ
難く、また、圧力をかけすぎると固体電解質層が破損し
内部短絡を引き起こす等の問題が生じる。
In electrochemical devices that use liquid electrolytes, electrical and ionic bonding between the electrolyte and electrode materials is easy, whereas in solid electrochemical devices that use solid materials, solid electrolytes can be bonded to each other, electrode materials to each other, or solid electrolytes and electrodes. Electrical and ionic bonding with materials is generally difficult. In devices that use liquid electrolytes, the electrolyte or electrodes are mixed with adhesives or other impurities to prevent the electrolyte from flowing out or to prevent the electrolyte from penetrating into the electrodes too much and causing the electrodes to lose their shape. . However, in solid-state electrochemical devices, inclusion of impurities makes electrical and ionic bonding more difficult, so inclusions cannot be used. therefore,
When producing solid electrochemical devices using solid electrolytes and electrode materials, which are inorganic solid powders, it is necessary to pelletize them using a high-pressure press, and the resulting pellets are hard and brittle, resulting in problems with productivity, uniformity, etc. This is a major obstacle in obtaining the In other words, when joining an electrode material and a solid electrolyte, it is necessary to bring them into close contact with each other under great pressure.
In the case of a large-area solid electrochemical device, it is difficult to obtain uniform adhesion, and if too much pressure is applied, problems such as damage to the solid electrolyte layer and causing internal short circuits occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、前記従来技術の問題点を解決し、薄形
化および大面積化を図ることができ、また素子構成材料
の取扱いが容易で、素子組立ての際の加工性、生産性等
に優れた固体電気化学素子を提供することにある。
An object of the present invention is to solve the problems of the prior art as described above, to achieve a thinner design and larger area, to facilitate the handling of element constituent materials, and to improve processability and productivity during element assembly. The purpose of the present invention is to provide an excellent solid-state electrochemical device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、固体電解質層と、該固体電解質層を介して上
下面に接合される少なくとも一対の電極層とを有する固
体電気化学素子において、前記固体電解質層および/ま
たは電極層が、固体電解質粉および/または電極材料粉
を高分子弾性体中に分散させた該混合物を網状体の開口
部に充填してなるシート状成形体であることを特徴とす
る。
The present invention provides a solid electrochemical element having a solid electrolyte layer and at least a pair of electrode layers joined to upper and lower surfaces via the solid electrolyte layer, in which the solid electrolyte layer and/or the electrode layer is made of solid electrolyte powder. and/or a sheet-like molded body formed by filling the openings of a net-like body with the mixture in which electrode material powder is dispersed in an elastic polymer body.

本発明における固体電気化学素子は、基本的に固体電解
質層と核層の上下面に少なくとも一対の電極層が接合さ
れ、一体成型して得られる。一体成型する方法は、特に
限定されるものではないが、例えば不活性ガス下100
−150℃程度の温度で数十秒〜10分間程度加熱加圧
する方法が挙げられる。加熱し、加圧した後、不活性ガ
ス下で密着力を均一にするために1〜3時間程度、熱処
理を行なってもよい。また必要に応じ、一体成型体に引
出し電極(集電体)を配置したのち、簡単な封止技術、
例えばエポキシ樹脂等による樹脂封止またはポリエチレ
ンフィルム、ポリプロピレンフィルム等によるラミネー
ト封止により実用に供される。
The solid electrochemical device according to the present invention is basically obtained by integrally molding at least one pair of electrode layers joined to the upper and lower surfaces of a solid electrolyte layer and a core layer. The integral molding method is not particularly limited, but for example, 100% molding under an inert gas.
A method of heating and pressurizing at a temperature of about -150° C. for several tens of seconds to about 10 minutes is exemplified. After heating and pressurizing, heat treatment may be performed for about 1 to 3 hours under an inert gas to make the adhesion uniform. In addition, if necessary, after placing an extraction electrode (current collector) on the integrally molded body, a simple sealing technique,
For example, it is put to practical use by resin sealing with epoxy resin or the like, or by lamination sealing with polyethylene film, polypropylene film, or the like.

このようにして得られた固体電気化学素子は、製造し易
く柔軟性ををし、薄形で、大面積を有するものも容易に
製造することができる。
The solid electrochemical device thus obtained is easy to manufacture, has flexibility, and can be easily manufactured to be thin and have a large area.

本発明に用いられる固体電解質粉としては、Lif、L
iI・H2O5Li3N−Li4Si04−L i3 
PO4等のLi”イオン伝導性固体電解質、RbAg4
 Iシ、KAg4Iジ、Ag3 S!、Ag l−Ag
20−MoO3ガラス等のAg1イオン伝導性固体電解
質、RbCu412−^(13+x(X=0.2 〜0
.6)  、 Cu  J−Cu2 0−M。
The solid electrolyte powder used in the present invention includes Lif, L
iI・H2O5Li3N-Li4Si04-L i3
Li” ion conductive solid electrolyte such as PO4, RbAg4
Ishi, KAg4Iji, Ag3 S! , Ag l-Ag
20-Ag1 ion conductive solid electrolyte such as MoO3 glass, RbCu412-^(13+x(X=0.2~0
.. 6), CuJ-Cu20-M.

03ガラス等のCu+イオン伝導性固体電解質、H3M
Ot2PO+o・29H20、H3W12 P 040
・29H20等のH+イオン伝導性固体電解質、ナトリ
ウムベーターアルミナ(Na−β−A1203)  、
 Nat+aZr2  p、、−Q s  i、  o
12  (a=O〜3)で示されるl’Ja+イオン伝
導性固体電解質等をあげることができる。
Cu+ ion conductive solid electrolyte such as 03 glass, H3M
Ot2PO+o・29H20, H3W12 P 040
・H+ ion conductive solid electrolyte such as 29H20, sodium beta alumina (Na-β-A1203),
Nat+aZr2 p,, -Q s i, o
12 (a=O~3) l'Ja+ ion conductive solid electrolyte, etc. can be mentioned.

° これらの固体電解質のうち、Rbcu411.’1
rC13,2’;  、  RbCu4  11.!1
c13.ys   RbCu4  11.xiC13,
1?r等のRb Cu 412−X Cl 3+X  
(X = 0゜2〜0.6)で表わされるCu+イオン
伝導性固体電解質は、常温で10−2s / cmの高
イオン伝導性を有しており特に好ましい。
° Among these solid electrolytes, Rbcu411. '1
rC13,2'; , RbCu4 11. ! 1
c13. ys RbCu4 11. xiC13,
1? Rb such as r Cu 412-X Cl 3+X
The Cu+ ion conductive solid electrolyte represented by (X = 0°2 to 0.6) has a high ion conductivity of 10-2 s/cm at room temperature and is particularly preferred.

本発明に用いられる電極材料粉としては、黒鉛、アセチ
レンブラック、活性炭等の炭素材料、硫化チタン、硫化
ニオブ、硫化モリブデン、硫化銅、硫化銀、硫化鉛、銀
シュブレル、銅シユブレル、硫化鉄等の硫・化物、酸化
タングステン、酸化バナジウム、酸化クロム、酸化モリ
ブデン、酸化チタン、酸化鉄、酸化銀、酸化銅等の酸化
物、塩化銀、沃仕給、沃化鋼等のハロゲン化物、銅、銀
、リチウム、金、白金、チタン、これらの金属の合金、
ステンレス鋼等の金属材料などがあげられる。
The electrode material powder used in the present invention includes carbon materials such as graphite, acetylene black, and activated carbon, titanium sulfide, niobium sulfide, molybdenum sulfide, copper sulfide, silver sulfide, lead sulfide, silver shubrel, copper shubrel, iron sulfide, etc. Oxides such as sulfur and oxides, tungsten oxide, vanadium oxide, chromium oxide, molybdenum oxide, titanium oxide, iron oxide, silver oxide, copper oxide, silver chloride, iodine, halides such as iodide steel, copper, silver , lithium, gold, platinum, titanium, alloys of these metals,
Examples include metal materials such as stainless steel.

また、電極層中に電極材料粉と固体電解質粉とを存在さ
せる場合の電極材料粉/固体電解質粉の割合はl/4〜
5/4(重量比)が好ましい。
In addition, when electrode material powder and solid electrolyte powder are present in the electrode layer, the ratio of electrode material powder/solid electrolyte powder is l/4 to
5/4 (weight ratio) is preferred.

本発明に用いられる高分子弾性体としては、例えば、1
,4−ポリブタジェン、天然ゴム、ポリイソプレン、S
BR,、NBR,EPDM、EPM。
As the polymer elastic body used in the present invention, for example, 1
, 4-polybutadiene, natural rubber, polyisoprene, S
BR,, NBR, EPDM, EPM.

ウレタンゴム、ポリエステル系ゴム、クロロブレンゴム
、エピクロルヒドリンゴム、シリコーンゴム、スチレン
−ブタジェン−スチレンブロック共重合体(S B S
 ) 、スチレン−イソプレン−スチレンプロ・7り共
重合体(STS)、スチレン−エチレン−ブチレン−ス
チレンブロック共重合体<5EBS)、ブチルゴム、ホ
スファゼンゴム、ポリエチレン、ポリプロピレン、ポリ
エチレンオキシド、ポリプロピレンオキシド、ポリスチ
レン、塩化ビニル、エチレン−酢酸エチル共重合体、1
゜2−ポリブタジェン、エポキシ樹脂、フェノール樹脂
、環化ポリブタジェン、環化ポリイソプレン、ポリメタ
クリル酸メチルおよびこれらの混合物等の電気絶縁性高
分子弾性体があげられるが、電極材料粉、固体電解質粉
との接着性の点からSBS、SIS、5RBS、1.2
−ポリブタジェン等の熱可塑性を有するものが好ましく
、さらに柔軟性の点からASTM−A硬度で90以下の
ものが好ましい。また固体電解質粉の耐熱性の点から1
50℃以下での成型加工性を有するものが好ましい。
Urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber, silicone rubber, styrene-butadiene-styrene block copolymer (S B S
), styrene-isoprene-styrene pro-7 copolymer (STS), styrene-ethylene-butylene-styrene block copolymer <5EBS), butyl rubber, phosphazene rubber, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polystyrene, Vinyl chloride, ethylene-ethyl acetate copolymer, 1
゜2- Electrically insulating polymeric elastomers such as polybutadiene, epoxy resin, phenol resin, cyclized polybutadiene, cyclized polyisoprene, polymethyl methacrylate, and mixtures thereof are mentioned, but electrode material powder, solid electrolyte powder and In terms of adhesion, SBS, SIS, 5RBS, 1.2
- Thermoplastic materials such as polybutadiene are preferred, and from the viewpoint of flexibility, those with an ASTM-A hardness of 90 or less are preferred. Also, from the point of view of the heat resistance of solid electrolyte powder,
It is preferable that the material has moldability at 50° C. or lower.

本発明における固体電解質層としては、固体電解質粉を
高分子弾性体中に好ましくは体積分率55〜95%、よ
り好ましくは75〜92%で均一に分散せしめた混合物
を、非導電性網状体の開口部に充填してなる電解質シー
トを用いることが好ましい。
As the solid electrolyte layer in the present invention, a mixture in which solid electrolyte powder is uniformly dispersed in an elastomer polymer preferably at a volume fraction of 55 to 95%, more preferably 75 to 92% is used as a non-conductive network layer. It is preferable to use an electrolyte sheet filled in the openings of the electrolyte sheet.

固体電解質粉の体積分率が55%未満の場合、イオン導
電率が粉の状態に較べ1/1000〜1/10,000
に低下し、導電率の最も高いRbCu412−x C1
3+x系でもI X 10−6s 7cm以下となり、
また体積分率が95%を超える場合は、シート化の際、
得られる固体電解質シートが脆く、脱落し易くなる場合
がある。
When the volume fraction of solid electrolyte powder is less than 55%, the ionic conductivity is 1/1000 to 1/10,000 compared to the powder state.
RbCu412-x C1 has the highest conductivity.
Even in the 3+x system, I X 10-6s is 7cm or less,
In addition, if the volume fraction exceeds 95%, when forming a sheet,
The resulting solid electrolyte sheet may be brittle and easily fall off.

本発明における電極層としては、電極材料粉と固体電解
質粉とを、高分子弾性体中に好ましくは体積分率75〜
95%となるように分散せしめた混合物を導電性網状体
の開口部に充填してなる電極層、または固体電解質粉を
高分子弾性体中に好ましくは体積分率55〜95%とな
るように分散せしめた混合物を、電極材料を兼ねる導電
性網状体の開口部に充填してなる電極層であることが好
ましい。体積分率が75%未満では、電極層中の電極材
料粉と固体電解質粉との接触効率が低下し、電極として
充分な分極特性が得られず、また体積分率が95%を超
えるとシート化の際、脆くなり脱落し易くなる場合があ
る。
The electrode layer in the present invention preferably contains electrode material powder and solid electrolyte powder in a volume fraction of 75 to 75% in a polymer elastic body.
An electrode layer is formed by filling the openings of a conductive network with a mixture dispersed at a volume fraction of 95%, or a solid electrolyte powder is dispersed in a polymer elastic body at a volume fraction of preferably 55 to 95%. Preferably, the electrode layer is formed by filling the openings of a conductive network that also serves as an electrode material with a dispersed mixture. If the volume fraction is less than 75%, the contact efficiency between the electrode material powder and the solid electrolyte powder in the electrode layer will decrease, making it impossible to obtain sufficient polarization characteristics as an electrode, and if the volume fraction exceeds 95%, the sheet will deteriorate. When it oxidizes, it may become brittle and fall off easily.

また本発明における電極層は、電極材料粉と固体電解質
粉との混合比を段階的に変化させた複数のシートを混合
比の順に積層させ、固体電解質粉の混合割合の大きい電
極層面が固体電解質層と接合するようにすることが好ま
しい。
In addition, the electrode layer in the present invention is made by laminating a plurality of sheets in which the mixing ratio of electrode material powder and solid electrolyte powder is changed in stages, in order of the mixing ratio, so that the surface of the electrode layer with a larger mixing ratio of solid electrolyte powder is the solid electrolyte. It is preferable to bond with the layer.

本発明に用いられる固体電解質粉、電極材料粉の形状お
よび粒径は特に限定されるものではないが、高分子弾性
体との混合のし易さ等の点から、100〜200メツシ
ユ(タイラー標準ふるい)を通過するものが好ましい。
The shape and particle size of the solid electrolyte powder and electrode material powder used in the present invention are not particularly limited, but from the viewpoint of ease of mixing with the polymeric elastomer, etc. Those that pass through a sieve are preferred.

固体電解質粉および/または電極材料粉を高分子弾性体
中に均一に分散させて固体電解質雇用混合物または電極
層用混合物を得る方法は、特に限定されるものではない
が、例えば高分子弾性体を特定の溶剤に溶解させた高分
子溶液と固体電解質粉、電極材料粉等とをボールミル等
で混練する方法などがあげられる。この方法は、混練時
の発熱が少なく固体電解質粉、電極材料粉等の変質およ
び分解が起こり難いこと、さらに混線時に大気との接触
がほとんどなく、粉の湿気、酸素等による変質および分
解が起き難く、周囲の温度、酸素等の状態を特に調節す
る必要がないことから製造方法として好ましい。
The method of uniformly dispersing solid electrolyte powder and/or electrode material powder in an elastomer polymer to obtain a solid electrolyte mixture or a mixture for an electrode layer is not particularly limited, Examples include a method of kneading a polymer solution dissolved in a specific solvent with solid electrolyte powder, electrode material powder, etc. using a ball mill or the like. This method generates less heat during kneading and is unlikely to cause deterioration or decomposition of the solid electrolyte powder, electrode material powder, etc. Furthermore, there is almost no contact with the atmosphere during cross-talk, so the deterioration or decomposition of the powder due to moisture, oxygen, etc. It is preferable as a manufacturing method because it is difficult to control and there is no need to particularly adjust conditions such as ambient temperature and oxygen.

この場合用いられる溶剤としては、例えばn−ヘキサン
、n−へブタン、n−オクタン、シクロヘキサン、ベン
ゼン、トルエン、キシレン、酢酸エチル、トリクレン等
の非吸水性で固体電解質粉、電極材料粉と反応しない飽
和炭化水素系溶剤、芳香族炭化水素系溶剤、ハロゲン化
炭化水素系溶剤またはエステル系溶剤を使用することが
好ましい。
Examples of solvents used in this case include n-hexane, n-hebutane, n-octane, cyclohexane, benzene, toluene, xylene, ethyl acetate, and trichlene, which are non-water absorbing and do not react with the solid electrolyte powder or electrode material powder. It is preferable to use a saturated hydrocarbon solvent, an aromatic hydrocarbon solvent, a halogenated hydrocarbon solvent or an ester solvent.

本発明に用いられる網状体の材質としては、例えばセル
ロース、ナイロン6、ナイロン66、ポリプロピレン、
ポリエチレン、シリカ、アルミナ、ガラス等の非導電性
材料、活性炭のような導電性カーボン、銅、ニッケル、
チタン、ステンレス鋼等の導電性材料をあげることがで
き、網状体の具体例としては、これらの材質からなる織
布、不織布をあげることができる。これらの網状体の開
口率は35〜65%の範囲が適当である。開口率は網状
体単位面積当たりの総開口部面積の割合で定養される。
Examples of the material for the mesh body used in the present invention include cellulose, nylon 6, nylon 66, polypropylene,
Non-conductive materials such as polyethylene, silica, alumina, glass, conductive carbon such as activated carbon, copper, nickel,
Examples include conductive materials such as titanium and stainless steel, and specific examples of the net-like body include woven fabrics and non-woven fabrics made of these materials. The aperture ratio of these net-like bodies is suitably in the range of 35 to 65%. The aperture ratio is determined by the ratio of the total aperture area per unit area of the reticular body.

開口率が35%未満であれば固体電解質層とした場合、
導電率が小さ(なり、電極層とした場合分極が大きくな
り、また開口率が65%を超えると層としての強度の維
持効果が得られず好ましくない。また、これらの網状体
の比表面積は50〜1000rrf/gの範囲が適当で
ある。さらに不織布の場合、目付けは5〜50 glc
dの範囲が適当である。網状体の厚みは、網状体自身の
強度および素子の薄形化を考慮して、非導電性網状体の
場合lO〜150μm、導電性網状体の場合30〜30
0μmの範囲が好ましく、1開口部当たりの平均面積は
1.6 X 10−3〜9 x 10−2ndおよび隣
接する開口部間の幅は20〜120μmが好ましい。
If the aperture ratio is less than 35%, if it is a solid electrolyte layer,
The electrical conductivity is small (the polarization becomes large when used as an electrode layer), and if the aperture ratio exceeds 65%, the strength cannot be maintained as a layer, which is undesirable. A range of 50 to 1000 rrf/g is appropriate.Furthermore, in the case of nonwoven fabric, the basis weight is 5 to 50 glc
A range of d is appropriate. The thickness of the network is 10 to 150 μm for a non-conductive network, and 30 to 30 μm for a conductive network, taking into account the strength of the network itself and the thinning of the device.
The range is preferably 0 μm, the average area per opening is preferably 1.6×10 −3 to 9×10 −2 nd, and the width between adjacent openings is preferably 20 to 120 μm.

前記固体電解質層用混合物または電極層用混合物を網状
体の開口部に充填する方法としては、例えば、混合物を
溶媒中に分散させたスラリー中に網状体を浸漬し、該網
状体に混合物を充分付着させた後、硬質ゴム、プラスチ
ック、金属等からなるブレード、ロール等により開口部
に充填するとともに過剰に付着している混合物を除去す
る方法があげられる。この際のスラリー中の混合物の固
形分濃度は、好ましくは50〜80重量%である。
As a method for filling the openings of the net-like body with the solid electrolyte layer mixture or the electrode layer mixture, for example, the net-like body is immersed in a slurry in which the mixture is dispersed in a solvent, and the mixture is sufficiently poured into the net-like body. After adhesion, a method of filling the opening with a blade, roll, or the like made of hard rubber, plastic, metal, etc. and removing excess adhesion of the mixture can be mentioned. The solid content concentration of the mixture in the slurry at this time is preferably 50 to 80% by weight.

このようにして網状体の開口部に混合物を充填した後、
例えば、20〜30℃で、好ましくは不活性ガス雰囲気
中で乾燥することにより本発明の固体電気化学素子に用
いられる固体電解質層、電極層が得られる。なお、これ
らの層は、網状体の開口部に固体電解質粉、電極材料粉
、高分子弾性体等の混合物を充填してなるものであるが
、電極層、固体電解質層、または引出し電極との密着性
および導電率、分極性、容量等を向上させるためには、
該網状体の上下両方または一方に各5〜25μmの該混
合物層を有することが好ましい。
After filling the openings of the net with the mixture in this way,
For example, the solid electrolyte layer and electrode layer used in the solid electrochemical device of the present invention can be obtained by drying at 20 to 30° C., preferably in an inert gas atmosphere. Note that these layers are formed by filling the openings of the mesh with a mixture of solid electrolyte powder, electrode material powder, polymeric elastomer, etc.; In order to improve adhesion, conductivity, polarizability, capacity, etc.
It is preferable that the mixture layer has a thickness of 5 to 25 μm on either or both the upper and lower sides of the net-like body.

上記方法によれば、網状体を母材とするために極めて厚
み精度の優れた固体電解質層または電極層を得ることが
でき、またこれらは連続的に製造することができるため
大面1iii層を容易に得ることができる。したがって
大面積で、薄形で、厚みの均一な固体電気化学素子が容
易に得られる。
According to the above method, it is possible to obtain a solid electrolyte layer or an electrode layer with extremely excellent thickness accuracy because the network is used as a base material, and since these can be manufactured continuously, a large-sized 1III layer can be obtained. can be obtained easily. Therefore, a solid electrochemical device with a large area, thin shape, and uniform thickness can be easily obtained.

また前記固体電解質層および電極層の厚みは、各々10
〜250μmが好ましい。
Further, the thickness of the solid electrolyte layer and the electrode layer is 10
~250 μm is preferred.

本発明の固体電解質層および電極層には、それぞれの層
との接着強度を増すために、例えば混合物中に変性ロジ
ン、ロジン誘導体、テルペン樹脂、クマロン−インデン
樹脂、フェノール変性クマロン−インデン樹脂等のロジ
ン系粘着付与剤、芳香族系粘着付与剤またはテルペン系
粘着付与剤を含有していてもよい。
For example, modified rosin, rosin derivative, terpene resin, coumaron-indene resin, phenol-modified coumaron-indene resin, etc. are added to the solid electrolyte layer and electrode layer of the present invention in order to increase the adhesive strength with each layer. It may contain a rosin tackifier, an aromatic tackifier or a terpene tackifier.

前記固体電解質層および電極層に含有される固体電解質
粉または高分子弾性体は、同じでも異なったものでもよ
いが、成型体の均質性、固体電解質層と電極層との接着
性等の面から同じものを用いることが好ましい。
The solid electrolyte powder or polymeric elastomer contained in the solid electrolyte layer and the electrode layer may be the same or different, but from the viewpoint of homogeneity of the molded body, adhesiveness between the solid electrolyte layer and the electrode layer, etc. It is preferable to use the same one.

本発明に用いられる引出し電極の材料は、特に限定され
るものではないが、電極層との接着性の点から、銅系の
電極層の場合は銅薄板が、銀糸の電極層の場合は銀薄板
が好適であるが、銅薄板にニッケルメッキもしくは金メ
ツキを施したもの、またはリン青銅等の合金でもよい。
The material of the extraction electrode used in the present invention is not particularly limited, but from the viewpoint of adhesion with the electrode layer, a thin copper plate is used in the case of a copper-based electrode layer, and a silver plate is used in the case of a silver thread electrode layer. A thin plate is preferred, but it may also be a thin copper plate plated with nickel or gold, or an alloy such as phosphor bronze.

本発明において電極層は、固体電解質層と接する面から
固体電解質粉と電極材料粉との混合比を段階的に変化せ
しめ、固体電解質層と接する面で固体電解質粉の比率が
太き(、引出し電極に近づくに従い、固体電解質粉の比
率が小さくなるように複数のシートが混合比の順に積層
され多層化された電極層とすることが好ましい。この場
合の電極層の多層化の程度は、特に限定されるものでは
なく2層でも効果を有するが、好ましくは3〜9層であ
る。ただし加工の煩雑さや厚型化を避ける意味から3〜
6層が適当である。このように電極層を多層化すること
により、電極−電解質間の界面抵抗を低減し、電流容量
を大きくする効果が得られる。
In the present invention, in the electrode layer, the mixing ratio of the solid electrolyte powder and the electrode material powder is gradually changed from the surface in contact with the solid electrolyte layer, and the ratio of solid electrolyte powder is thicker on the surface in contact with the solid electrolyte layer. It is preferable to form a multilayered electrode layer in which a plurality of sheets are laminated in the order of mixing ratio so that the ratio of solid electrolyte powder decreases as one approaches the electrode.In this case, the degree of multilayering of the electrode layer is particularly determined by Although there is no limitation and it is effective even with 2 layers, it is preferably 3 to 9 layers.However, from the viewpoint of avoiding complicated processing and thickening, 3 to 9 layers are effective.
Six layers is appropriate. By multilayering the electrode layer in this way, the effect of reducing the interfacial resistance between the electrode and the electrolyte and increasing the current capacity can be obtained.

本発明においては、前記固体電解質と、固体電解質と電
気化学的にイオンの授受を行なう電極材料、例えば二硫
化チタン、銅シユブレル等を組合わせることにより固体
2次電池とすることができ、また前記固体電解質と、固
体電解質と電気化学的にイオンの授受を行なって光学的
変化をする電極材料、例えば、酸化タングステンを用い
ることにより、固体の電気化学表示素子(エレクトロク
ロミックデスプレイ)とすることができる。さらに前記
固体電解質と、固体電解質とはイオンの授受は行なわな
いが固体電解質との界面で電気二重層を形成する電極材
料、例えば活性炭等を用いることにより固体の電気二重
キャパシタとすることができる。
In the present invention, a solid secondary battery can be obtained by combining the solid electrolyte with an electrode material that electrochemically exchanges ions with the solid electrolyte, such as titanium disulfide or copper shuvrel. By using a solid electrolyte and an electrode material that undergoes optical change by electrochemically transferring ions to and from the solid electrolyte, such as tungsten oxide, it is possible to create a solid electrochemical display element (electrochromic display). . Furthermore, a solid electric double capacitor can be formed by using the solid electrolyte and an electrode material such as activated carbon, which does not exchange ions with the solid electrolyte but forms an electric double layer at the interface with the solid electrolyte. .

このような固体電気化学素子も本発明によれば、柔軟性
に冨み機械的衝撃に対し極めて強い優れたものとなる。
According to the present invention, such a solid electrochemical element also has excellent flexibility and is extremely resistant to mechanical shock.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこれ
らに限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

実施例1 CuC1!、Cu IおよびRhCl1をモル比でCu
cl : Cu I : RbCjt=2.5 : 1
.5 : 1の割合となるように、それぞれ秤量した。
Example 1 CuC1! , CuI and RhCl1 in molar ratio Cu
cl:CuI:RbCjt=2.5:1
.. Each sample was weighed at a ratio of 5:1.

前記CuC1およびCuIを塩酸中で再結晶させ、これ
らをp2 o!I乾燥剤入りのデシケータ−中で真空乾
燥させ、一方、前記RbC1を100℃で真空乾燥させ
、これら成分塩を所定量混合し、130℃で17時間加
熱して完全に脱水し、これをパイレックスガラス管中に
真空封入し、融解させたのち室温まで除冷し、固化した
ものをトルエンを分散剤としてボールミルでよ(粉砕し
、粉砕した粉末を加圧成型し、これをN2中130℃で
17時間程度処理し、さらに得られた加圧成型物を再度
ボールミルで粉砕して、RbCu411.5CI135
粉末を得た。
The CuC1 and CuI were recrystallized in hydrochloric acid and were converted to p2 o! On the other hand, the above RbC1 was vacuum dried at 100°C, a predetermined amount of these component salts were mixed, heated at 130°C for 17 hours to completely dehydrate, and this was dried in Pyrex. Vacuum sealed in a glass tube, melted, cooled slowly to room temperature, and solidified using a ball mill using toluene as a dispersant. After processing for about 17 hours, the obtained pressure molded product was ground again in a ball mill to obtain RbCu411.5CI135.
A powder was obtained.

次に高分子弾性体としてスチレン−ブタジェン−スチレ
ンブロック共重合体(比重? 0.96、日本合成ゴム
社製、TR−2000)1部(重量部、以下同じ)をト
ルエン中に溶解させ高分子溶液を得、これに4.22部
の粒径200メツシユ以下のRb Cu411.5Cl
 3.5fJ・らなる固体電解質粉(比重:4.5)を
加えてボールミルにて2時間混練し、得られた混合物を
ポリエチレン製容器に移し、固形分濃度を79重量%に
調製した。一方、織布として厚み50μm、1開口部当
たりの平均面積5゜5XIQ−3mmおよび隣接する開
口部間の幅50μmのナイロン製織布を用い、この織布
をポリエチレン製容器中の混合物中に浸漬させ、織布表
面に混合物を充分に付着させた後、フッ素ゴム製のブレ
ードで織布を挟み、充分な挟持力を加えつつ、織布をブ
レードより引張り出し、混合物を織布の開口部に充填し
た。得られたシートを窒素気流中で充分に乾燥させ、ト
ルエンを除去し、混合物中の固体電解質粉の体積分率が
90%、厚み70μmの固体電解質シートを得た。
Next, 1 part (parts by weight, same hereinafter) of styrene-butadiene-styrene block copolymer (specific gravity: 0.96, manufactured by Japan Synthetic Rubber Co., Ltd., TR-2000) as a polymeric elastomer was dissolved in toluene to dissolve the polymer. A solution was obtained, and to this was added 4.22 parts of Rb Cu411.5Cl with a particle size of 200 mesh or less.
A solid electrolyte powder of 3.5 fJ· (specific gravity: 4.5) was added and kneaded in a ball mill for 2 hours, and the resulting mixture was transferred to a polyethylene container and the solid content concentration was adjusted to 79% by weight. On the other hand, a nylon woven fabric with a thickness of 50 μm, an average area per opening of 5°5XIQ-3 mm, and a width of 50 μm between adjacent openings was used as the woven fabric, and this woven fabric was immersed in the mixture in a polyethylene container. After applying the mixture to the surface of the woven fabric, the woven fabric is sandwiched between fluoro rubber blades, and while applying sufficient clamping force, the woven fabric is pulled out from the blade, and the mixture is applied to the opening of the woven fabric. Filled. The obtained sheet was sufficiently dried in a nitrogen stream to remove toluene, and a solid electrolyte sheet having a volume fraction of solid electrolyte powder in the mixture of 90% and a thickness of 70 μm was obtained.

次にCuの粉末、Cu2 Sの粉末およびRbCu 4
1 t、sc 13jからなる固体電解質粉を重量比で
Cu : Cu2 S : RbCu< It、5C1
3,s=2.9 :2.7:1の割合で混合し、ペレッ
ト状にプレス成型した後、ガラス管に真空封入し200
℃で17時間加熱し、このペレットを200メツシユ以
下の粉末に粉砕して負極用粉末を得た。この負極用粉末
と前記スチレン−ブタジェン−スチレンブロック共重合
体とを前記固体電解質シート作製の場合と同様の方法で
混練し、得られた混合物を引延し乾燥空気中にてトルエ
ンを蒸発させ、体積分率90%、厚み70μmの負極シ
ート(負の電極層)を得た。  。
Next, Cu powder, Cu2S powder and RbCu4
Solid electrolyte powder consisting of 1t, sc 13j in weight ratio Cu: Cu2 S: RbCu< It, 5C1
3. Mix at a ratio of s=2.9:2.7:1, press mold into a pellet, and vacuum seal in a glass tube.
The pellets were heated at .degree. C. for 17 hours and pulverized into a powder of 200 mesh or less to obtain a powder for a negative electrode. This negative electrode powder and the styrene-butadiene-styrene block copolymer are kneaded in the same manner as in the case of producing the solid electrolyte sheet, the resulting mixture is stretched, and the toluene is evaporated in dry air, A negative electrode sheet (negative electrode layer) having a volume fraction of 90% and a thickness of 70 μm was obtained. .

また、Cuの粉末とTiS2の粉末をモル比で0.15
:1の割合で混合してペレット状にプレス成型し、石英
管に真空封入して550℃で72時間加熱し、得られた
C u6.1zT i S 2ペレツトを200メツシ
ユ以下となるように粉砕し、この粉末とRbCu411
.5C13,Sからなる固体電解質粉を重量比で1:l
に混合し、正極用粉末を得た。この正極用粉末と上記ス
チレン−ブタジェン−スチレンブロック共重合体とを前
記負掘シート作製の場合と同様の方法で混練し、成型し
、体積分率90%、厚み70μmの正極シート(正の電
極層)を得た。
In addition, the molar ratio of Cu powder and TiS2 powder is 0.15.
: Mixed in a ratio of 1:1 and press-molded into pellets, vacuum sealed in a quartz tube and heated at 550°C for 72 hours, the resulting Cu6.1zT i S 2 pellets were crushed to a size of 200 mesh or less. This powder and RbCu411
.. Solid electrolyte powder consisting of 5C13,S in a weight ratio of 1:l
were mixed to obtain a positive electrode powder. This positive electrode powder and the above-mentioned styrene-butadiene-styrene block copolymer were kneaded and molded in the same manner as in the case of producing the negative excavation sheet, and a positive electrode sheet with a volume fraction of 90% and a thickness of 70 μm (positive electrode layer) was obtained.

得られた正極シート、固体電解質シート、負極シートを
順に積層し、引出し電極に銅薄板を用いて130℃でプ
レス成型し、周辺部をエポキシ樹脂で封止し、電池を作
製した。
The obtained positive electrode sheet, solid electrolyte sheet, and negative electrode sheet were laminated in order, press-molded at 130° C. using a copper thin plate as an extraction electrode, and the peripheral portion was sealed with epoxy resin to produce a battery.

第1図に得られた電池の断面図を示した。図中、lは固
体電解質シート、2は正極シート、3は負極シート、4
および5は引出し電極、6は封止材である。得られた電
池の厚みおよび全導電率、自己放電特性、充放電サイク
ル、低温特性、開路電圧の試験結果を第1表に示した。
FIG. 1 shows a cross-sectional view of the obtained battery. In the figure, l is a solid electrolyte sheet, 2 is a positive electrode sheet, 3 is a negative electrode sheet, 4
5 is an extraction electrode, and 6 is a sealing material. Table 1 shows the test results for the thickness, total conductivity, self-discharge characteristics, charge/discharge cycle, low-temperature characteristics, and open circuit voltage of the obtained battery.

さらに樹脂封止を行なう前の積層化した状態での耐屈曲
性も評価した。結果をあわせて第1表に示した。
Furthermore, the bending resistance in the laminated state before resin sealing was also evaluated. The results are also shown in Table 1.

なお、前記全導電率(S /am)は、交流lKH2で
のインピーダンスをLCRメータ(横河ヒューレットパ
ッカード社製、YHP427A)で評価し、その直流成
分より求めた。
The total conductivity (S 2 /am) was determined by evaluating the impedance at AC lKH2 using an LCR meter (YHP427A, manufactured by Yokogawa Hewlett-Packard) and from its DC component.

自己放電特性は、4 m A h / ccの充放電サ
イクル(2時間放電、1時間充電)での電池電圧の変化
より求めた。
The self-discharge characteristics were determined from the change in battery voltage during a charge/discharge cycle of 4 mAh/cc (discharged for 2 hours, charged for 1 hour).

充放電サイクルは、2.5 m A h / ccの充
放電サイクルで、放電電圧が0.35ボルト以下になる
サイクル数で示した。
The charge/discharge cycle was a charge/discharge cycle of 2.5 mAh/cc, and was expressed as the number of cycles at which the discharge voltage became 0.35 volt or less.

低温特性は、−10℃における充放電特性で示した。The low-temperature characteristics were shown as charge-discharge characteristics at -10°C.

耐屈曲性は半径80mm曲げ試験を行ない、シートのヒ
ビ割れないしは破断が発生した回数で評価した。
The bending resistance was evaluated by performing a bending test at a radius of 80 mm and counting the number of times the sheet cracked or broke.

実施例2 実施例1と同様の方法で固体電解質シート(混合物中の
固体電解質粉の体積分率90%、厚み70μm)を作製
した。負極シートとして、Cuの粉末、Cu2 Sの粉
末およびRb Cu 4 I 1.HC13、Eよりな
る固体電解質粉末を重量比で、Cu:Cu2 S : 
RbCu4 fJc13s=2.9 : 2.7 : 
3(負極シート(1)、厚み3 (lljm) 、2.
9 : 2.7 :2(負極シート(2)、厚み30μ
m)および2.9:2.7:1(負極シート(3)、厚
み30μm)の割合で混合したものを体積分率が90%
となるようにそれぞれ実施例1と同様の方法で作製した
。また正極用シートとして、Cu6.15T i S 
2の粉末とRbcu41i、sC7!3.5からなる固
体電解質粉を重量比でCuoasTis2 : RbC
u4 It、5C13,5=1=3 (正極シート(1
)、厚み30μm)、1:2(正極シート(2)、厚み
30μm)および1:1(正極シート(3)、厚み30
μm)の割合で混合したものを体積分率が90%となる
ようにそれぞれ実施例1と同様の方法で作製した。
Example 2 A solid electrolyte sheet (volume fraction of solid electrolyte powder in the mixture: 90%, thickness: 70 μm) was produced in the same manner as in Example 1. As the negative electrode sheet, Cu powder, Cu2S powder and Rb Cu4I 1. Solid electrolyte powder consisting of HC13 and E was prepared in a weight ratio of Cu:Cu2S:
RbCu4 fJc13s=2.9: 2.7:
3 (negative electrode sheet (1), thickness 3 (lljm), 2.
9:2.7:2 (negative electrode sheet (2), thickness 30μ
m) and 2.9:2.7:1 (negative electrode sheet (3), thickness 30 μm) with a volume fraction of 90%.
Each was produced in the same manner as in Example 1 so that the following results were obtained. In addition, as a positive electrode sheet, Cu6.15T i S
A solid electrolyte powder consisting of CuoasTis2 powder, Rbcu41i, and sC7!3.5 was prepared in a weight ratio of CuoasTis2:RbC
u4 It, 5C13,5=1=3 (positive electrode sheet (1
), thickness 30 μm), 1:2 (positive electrode sheet (2), thickness 30 μm) and 1:1 (positive electrode sheet (3), thickness 30 μm)
[mu]m) were mixed in the same manner as in Example 1 so that the volume fraction was 90%.

得られたシートを正極シート(3) /正極シート(2
)/正極シー[1)/固体電解質シート/負極シート(
1)/負極シート(2)/負極シート(3)の順で積層
7し、引出し電極に銅薄板を用い、実施例1と同様の方
法で電池を作製した。第2図に得られた電池の断面図を
示した。図中、2aは正極シー1− (1)、2bは正
極シート(2)、2Cは正極シート(3)、3aは負極
シート(1)、3bは負極シート(2)、3Cは負極シ
ーH3)である。得られた電池を実施例1と同様にして
試験を行ない、その結果を第1表に示した。
The obtained sheet was made into positive electrode sheet (3) / positive electrode sheet (2
)/Cathode sheet [1)/Solid electrolyte sheet/Negative electrode sheet (
A battery was produced in the same manner as in Example 1 by laminating 7 in the order of 1)/negative electrode sheet (2)/negative electrode sheet (3) and using a thin copper plate as the lead electrode. FIG. 2 shows a cross-sectional view of the obtained battery. In the figure, 2a is the positive electrode sheet 1- (1), 2b is the positive electrode sheet (2), 2C is the positive electrode sheet (3), 3a is the negative electrode sheet (1), 3b is the negative electrode sheet (2), 3C is the negative electrode sheet H3 ). The obtained battery was tested in the same manner as in Example 1, and the results are shown in Table 1.

第   1   表 実施例3 実施例1と同様にして得たRbCu411.q5Cff
i 3.25で表わされる銅イオン伝導性固体電解質粉
末を用い、高分子弾性体としてスチレン−エチレン−ブ
タジェン−スチレンブロック共重合体(SEBS)を用
いた以外は実施例1と同様にして固体電解質の体積分率
が90%の厚み80μmの固体電解質シートを得た。
Table 1 Example 3 RbCu411. obtained in the same manner as Example 1. q5Cff
A solid electrolyte was prepared in the same manner as in Example 1, except that a copper ion conductive solid electrolyte powder represented by i 3.25 was used and a styrene-ethylene-butadiene-styrene block copolymer (SEBS) was used as the polymeric elastomer. A solid electrolyte sheet with a thickness of 80 μm and a volume fraction of 90% was obtained.

次に電極材料としてCu2 Mo6 s?、?で表わさ
れる銅シユブレル化合物粉末(平均粒径=2μm)とR
bCu411.q5 Cl13.25からなる固体電解
質粉をM量比で1=1の混合物を固体電解質シートと同
様にして体積分率90%、厚み100μmの電極シート
を得た。
Next, use Cu2Mo6s as an electrode material. ,? Copper Shubrel compound powder (average particle size = 2 μm) represented by R
bCu411. An electrode sheet having a volume fraction of 90% and a thickness of 100 μm was obtained by using a mixture of solid electrolyte powder consisting of q5Cl13.25 with an M ratio of 1=1 in the same manner as the solid electrolyte sheet.

得られた電極シートと固体電解質シートとを、電極シー
、ト、固体電解質シート、電極シートの順に積層し、引
出し電極に厚さ10μmのステンレス鋼板を用いて13
0℃でプレス成型し、周辺部をエポキシ樹脂で封止し、
第1図に示す断面の構造を有する電池を作製した。
The obtained electrode sheet and solid electrolyte sheet were laminated in the order of electrode sheet, solid electrolyte sheet, and electrode sheet, and a stainless steel plate with a thickness of 10 μm was used as the extraction electrode.
Press molded at 0°C and sealed with epoxy resin around the periphery.
A battery having the cross-sectional structure shown in FIG. 1 was manufactured.

得られた電池を実施例1と同様にして試験を行ない、そ
の結果を第2表に示した。
The obtained battery was tested in the same manner as in Example 1, and the results are shown in Table 2.

実施例4 実施例1と同様にして得たRbCu4 If、25 C
f 3.’7gで表わされる銅イオン伝導性固体電解質
粉末と、高分子弾性体としてスチレン−エチレン−ブタ
ジェン−スチレンブロック共重合体(SEBS)とを用
い実施例1と同様にして混練し、得られた混合物を引延
し乾燥空気中にてトルエンを蒸発させ、体積分率が85
%の厚み65μmの固体電解質シートを得た。次に電極
材料としてCu2Mo6S7.gで表わされる銅シユブ
レル化合物粉末(平均粒径=2.um)とRbCu41
s、xs C5,qsからなる固体電解質粉を重量比で
・1:1の混合物を用い、目付けが10 g/cdの厚
み80μmのポリプロピレン製不織布を用いた以外は実
施例1の固体電解質シートと同様にして体積分率95%
、厚み100μmの正極シートを得た。さらに、電極材
料としてCu2Mo6S7で表わされる銅シユブレル化
合物粉末(平均粒径=2μm)を用いた以外は前記正極
シートと同様にして体積分率95%、厚み100μmの
負極シートを得た。得られた電極シートと固体電解質シ
ートとを、正極シート、固体電解質シート、負極シート
の順に積層し、引出し電極として正極側に厚さ10μm
のステンレス鋼板を、負極側に厚さ10μmの銅板を配
置して130℃でプレス成型し、周辺部をエポキシ樹脂
で封止し、第1図で示したのと同様の断面の構造を有す
る電池を作製した。得られた電池を実施例1と同様にし
て試験を行ない、その結果を第2表に示した。
Example 4 RbCu4If,25C obtained in the same manner as Example 1
f3. A mixture obtained by kneading copper ion conductive solid electrolyte powder represented by 7 g and styrene-ethylene-butadiene-styrene block copolymer (SEBS) as a polymeric elastomer in the same manner as in Example 1. was stretched and the toluene was evaporated in dry air until the volume fraction was 85.
A solid electrolyte sheet with a thickness of 65 μm was obtained. Next, Cu2Mo6S7. Copper Shubrel compound powder (average particle size = 2.um) expressed in g and RbCu41
The solid electrolyte sheet of Example 1 was used, except that a mixture of solid electrolyte powder consisting of s, xs C5, qs at a weight ratio of 1:1 was used, and a polypropylene nonwoven fabric with a thickness of 80 μm and a basis weight of 10 g/cd was used. Similarly, the volume fraction is 95%
A positive electrode sheet having a thickness of 100 μm was obtained. Further, a negative electrode sheet having a volume fraction of 95% and a thickness of 100 μm was obtained in the same manner as the positive electrode sheet except that a copper shuvrel compound powder represented by Cu2Mo6S7 (average particle size = 2 μm) was used as the electrode material. The obtained electrode sheet and solid electrolyte sheet were laminated in the order of positive electrode sheet, solid electrolyte sheet, and negative electrode sheet, and a thickness of 10 μm was formed on the positive electrode side as an extraction electrode.
A battery with a cross-sectional structure similar to that shown in Figure 1 was made by press-molding a stainless steel plate at 130°C with a 10 μm thick copper plate placed on the negative electrode side and sealing the periphery with epoxy resin. was created. The obtained battery was tested in the same manner as in Example 1, and the results are shown in Table 2.

実施例5 実施例1と同様にして得たR b Cu 411.sC
l 3.5で表わされる銅イオン伝導性固体電解質粉末
と、高分子弾性体としてスチレン−エチレン−ブタジェ
ン−スチレンブロック共重合体(SEBS)とを用い実
施例1と同様にして混練し、得られた混合物を引延し乾
燥空気中にてトルエンを蒸発させ、体積分率が75%の
厚み55μmの固体電解質シートを得た0次に前記混合
物を、電極材料を兼ねる導電性網状体である活性炭繊維
よりなる厚さ200、umの織布(、比表面積=900
rrr/g)の開口部に充填し、窒素気流中で充分に乾
燥させ、トルエンを除去し、乾燥シート中の固体電解質
粉の含有率が20重量%の厚さ250μmの電極シート
を得た。得られた電極シートと固体電解質シ−トとを、
電極シート、固体電解質シート、電極シートの順に積層
し、引出し電極として厚さ10μmのステンレス鋼板を
配置して130℃でプレス成型し、周辺部をエポキシ樹
脂で封止し、第1図で示したのと同様の断面の構造を有
する電気二重層キャパシタを作製した。得られた素子を
実施例1の電池と同様の方法で試験を行ない、その結果
を第2表に示した。ただし、自己放電特性は、充放電時
間を電池の場合の20分の1にし、0.2mA h /
 ccでの試験を行なった。充放電サイクルも同様に2
0分の1の0.125 m A h / ccで行なっ
た。
Example 5 R b Cu 411. obtained in the same manner as in Example 1. sC
A copper ion conductive solid electrolyte powder represented by l 3.5 and a styrene-ethylene-butadiene-styrene block copolymer (SEBS) as a polymeric elastomer were kneaded in the same manner as in Example 1 to obtain a The mixture was stretched and the toluene was evaporated in dry air to obtain a solid electrolyte sheet with a volume fraction of 75% and a thickness of 55 μm.Next, the mixture was spread over activated carbon, which is a conductive network that also serves as an electrode material. A woven fabric made of fibers with a thickness of 200 μm (specific surface area = 900
rrr/g) and was thoroughly dried in a nitrogen stream to remove toluene to obtain a 250 μm thick electrode sheet with a solid electrolyte powder content of 20% by weight in the dried sheet. The obtained electrode sheet and solid electrolyte sheet were
The electrode sheet, solid electrolyte sheet, and electrode sheet were laminated in this order, and a stainless steel plate with a thickness of 10 μm was placed as an extraction electrode, press-molded at 130°C, and the peripheral part was sealed with epoxy resin, as shown in Figure 1. An electric double layer capacitor with a cross-sectional structure similar to that of the above was fabricated. The obtained device was tested in the same manner as the battery of Example 1, and the results are shown in Table 2. However, the self-discharge characteristic is 0.2 mA h / 1/20th of the charging and discharging time of a battery.
A test was conducted at cc. The charge/discharge cycle is also 2
It was performed at 0.125 mA h/cc, which is 1/0.

実施例6 実施例1と同様にして得たR b Cu 41 s、s
C13,sで表わされる銅イオン伝導性固体電解質粉末
と、高分子弾性体としてスチレン−ブタジェン−スチレ
ンブロック共重合体(SBS)とを用い実施例1と同様
にして混練し、得られた混合物を引延し乾燥空気中にて
トルエンを蒸発させ、体積分率が70%の厚み55μm
の固体電解質シートを得た。
Example 6 R b Cu 41 s,s obtained in the same manner as Example 1
A copper ion conductive solid electrolyte powder represented by C13,s and a styrene-butadiene-styrene block copolymer (SBS) as a polymeric elastomer were kneaded in the same manner as in Example 1, and the resulting mixture was mixed. Stretch and evaporate toluene in dry air to a thickness of 55 μm with a volume fraction of 70%.
A solid electrolyte sheet was obtained.

次に前記混合物を、電極材料を兼ねる導電性網状体であ
る活性炭繊維よりなる厚さ200μmの織布(比表面積
=900m/g)の開口部に充填し、窒素気流中で充分
に乾燥させ、トルエンを除去し、乾燥シート中の固体電
解質粉の含有率が20重量%、厚さ250μmの正極シ
ートを得た。一方、電極材料としてCu4 Mo63B
で表わされる銅シユブレル化合物粉末(平均粒径=2μ
m)と、前記固体電解質粉末を重量比で1:1としたも
のとSBSとを実施例1と同様の方法により混練して得
た混合物を、厚みが100μmの200メツシユの銅ネ
ットの開口部に充填して、混合物中における固体電解質
粉と銅シュブレル粉の合計量の体積分率が95%の厚さ
が110μmの負極シートを得た。得られた電極シート
と固体電解質シートとを、正極シート2枚、固体電解質
シート、負極シートの順に積層し、引出し電極として正
極側には厚さ10μmのステンレス鋼板を、負極側には
厚さ10μmの真鍮板を配置して130℃でプレス成型
し、周辺部をエポキシ樹脂で封止し、第1図で示したの
と同様の断面の構造を有する電気二重層キャパシタを作
製した。得られた素子を実施例1の電池と同様の方法で
試験を行ない、その結果を第2表に示した。ただし、自
己放電特性は、充放電時間を電池の場合の5分の1にし
、0.8mA h / ccでの試験を行なった。充放
電サイクルも同様に5分の1の0.5 m A h /
 ccで行なった。
Next, the mixture is filled into the openings of a 200 μm thick woven fabric (specific surface area = 900 m/g) made of activated carbon fibers, which is a conductive network that also serves as an electrode material, and thoroughly dried in a nitrogen stream. Toluene was removed to obtain a positive electrode sheet having a solid electrolyte powder content of 20% by weight and a thickness of 250 μm in the dried sheet. On the other hand, Cu4Mo63B is used as an electrode material.
Copper Shubrel compound powder expressed as (average particle size = 2μ
m), the solid electrolyte powder in a weight ratio of 1:1, and SBS were kneaded in the same manner as in Example 1. A negative electrode sheet having a thickness of 110 μm and having a volume fraction of the total amount of solid electrolyte powder and copper Chevrel powder in the mixture of 95% was obtained. The obtained electrode sheet and solid electrolyte sheet were laminated in the order of two positive electrode sheets, a solid electrolyte sheet, and a negative electrode sheet, and a 10 μm thick stainless steel plate was used as an extraction electrode on the positive electrode side and a 10 μm thick stainless steel plate on the negative electrode side. Brass plates were arranged and press-molded at 130° C., and the periphery was sealed with epoxy resin to produce an electric double layer capacitor having a cross-sectional structure similar to that shown in FIG. The obtained device was tested in the same manner as the battery of Example 1, and the results are shown in Table 2. However, for self-discharge characteristics, the charging and discharging time was reduced to one-fifth of that of a battery, and a test was conducted at 0.8 mAh/cc. Similarly, the charge/discharge cycle is 1/5th of 0.5 mA h/
It was done in cc.

実施例7 固体電解質として平均粒径10μmのH3Mo12po
4o・29H20で表わされるH4イオン伝導性固体電
解質粉とスチレン−ブタジェン−スチレンブロック共重
合体(SBS)とを用い実施例1と同様にして混練し、
得られた混合物を実施例1と同様にしてナイロン製織布
に充填して固体電解質の体積分率が90%の厚み80μ
mの固体電解質シートを得た。次に前記混合物を、電極
材料を兼ねる導電性網状体である活性炭繊維よりなる厚
さ200μmの織布(比表面積=900rrr/g)の
開口部に充填し、窒素気流中で充分に乾燥させ、トルエ
ンを除去し、乾燥シート中の固体電解質粉の含有率が2
0M量%の厚さ250μmの対極シートを得た。一方、
表示材料として平均粒径が8μmの二酸化タングステン
(WO3)と前記固体電解質とを重量比がl:1となる
ように実施例1と同様にSBS中に分散し、混練し、得
られた混合物を引延し大気中でトルエンを蒸発させ固体
電解質粉とWO3粉の合計量の体積分率が85%の厚み
80μmの表示極シートを得た。
Example 7 H3Mo12po with an average particle size of 10 μm as a solid electrolyte
H4 ion conductive solid electrolyte powder represented by 4o.29H20 and styrene-butadiene-styrene block copolymer (SBS) were kneaded in the same manner as in Example 1,
The obtained mixture was filled in a nylon woven fabric in the same manner as in Example 1 to a thickness of 80 μm with a solid electrolyte volume fraction of 90%.
A solid electrolyte sheet of m was obtained. Next, the mixture is filled into the openings of a 200 μm thick woven fabric (specific surface area = 900 rrr/g) made of activated carbon fibers, which is a conductive network that also serves as an electrode material, and thoroughly dried in a nitrogen stream. Toluene is removed and the content of solid electrolyte powder in the dry sheet is reduced to 2.
A counter electrode sheet having a thickness of 250 μm and containing 0M amount % was obtained. on the other hand,
As a display material, tungsten dioxide (WO3) with an average particle size of 8 μm and the solid electrolyte were dispersed in SBS at a weight ratio of 1:1 and kneaded, and the resulting mixture was mixed. After stretching, toluene was evaporated in the atmosphere to obtain a display electrode sheet having a thickness of 80 μm and having a total volume fraction of solid electrolyte powder and WO3 powder of 85%.

得られた表示極シート、対極シート、固体電解質シート
とを、表示極シート、固体電解質シート、対極シートの
順に積層し、引出し電極として表示極側には厚さ50μ
mのポリエステル製シート上に厚さ0.3μmのITO
透明電極を設けたシートを、対極側には厚さ10μmの
ステンレス鋼板を配置して80℃でプレス成型し、周辺
部をエポキシ樹脂で封止し、第1図で示したのと同様の
断面の構造を有するエレクトロクロミック表示素子を得
た。得られた素子を実施例1の電池と同様の方法で試験
を行ない、その結果を第2表に示した。
The obtained display electrode sheet, counter electrode sheet, and solid electrolyte sheet were laminated in the order of display electrode sheet, solid electrolyte sheet, and counter electrode sheet, and a thickness of 50 μm was formed on the display electrode side as an extraction electrode.
ITO with a thickness of 0.3μm on a polyester sheet with a thickness of 0.3μm
A sheet provided with a transparent electrode was press-molded at 80°C with a 10 μm thick stainless steel plate placed on the counter electrode side, and the periphery was sealed with epoxy resin to form a cross section similar to that shown in Figure 1. An electrochromic display element having the structure was obtained. The obtained device was tested in the same manner as the battery of Example 1, and the results are shown in Table 2.

また、単位素子面積当たり20ミリクーロン(mC)で
の発色−消色サイクル試験を行なったところ10″1回
を超えてもほぼ初期と変わらない特性が得られた。
Further, when a coloring-decoloring cycle test was carried out at 20 millicoulombs (mC) per unit device area, characteristics almost unchanged from the initial state were obtained even after 10" cycles were carried out once.

第   2   表 以上、固体電解質として銅イオンあるいはプロトン伝導
性固体電解質を用いた場合について示したが、その他の
固体電解質、例えば銀イオン伝導性、リチウムイオン伝
導性、ナトリウムイオン伝導性等を用いても同様の効果
が得られることはいうまでもない。
Table 2 above shows cases in which a copper ion or proton conductive solid electrolyte is used as the solid electrolyte, but other solid electrolytes such as silver ion conductivity, lithium ion conductivity, sodium ion conductivity, etc. may also be used. Needless to say, similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の固体電気化学素子によれば、イオン伝導性が優
れ、また加工性、生産性、放置安定性および柔軟性に優
れ、かつ素子を製造する際の固体電解質層および電極層
間の密着性に優れ、素子の薄形化および大面積化を図る
ことができる。
According to the solid electrochemical device of the present invention, it has excellent ionic conductivity, and is also excellent in processability, productivity, storage stability, and flexibility, and has excellent adhesion between the solid electrolyte layer and the electrode layer when manufacturing the device. This makes it possible to make the device thinner and larger in area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1に係る固体電解質電池の断
面図、第2図は、本発明の実施例2に係る固体電解質電
池の断面図である。 l・・・固体電解質シート、2・・・正極シート、2a
・・・正極シート(1)、2b・・・正極シート(2)
、2c・・・正極シート(3)、3・・・負極シート、
3a・・・負極シート(1)、3b−・・負極シート(
2)、3 c−・・負極シート(3)、4および5・・
・引出し電極、6・・・封止材。 代理人 弁理士 川 北 武 長 1:固体電解質シート 2a:正極シート (1) 2b=正極シート (2)  ( 2C:正極シート (3)   。 ン代
FIG. 1 is a cross-sectional view of a solid electrolyte battery according to Example 1 of the present invention, and FIG. 2 is a cross-sectional view of a solid electrolyte battery according to Example 2 of the present invention. 1... Solid electrolyte sheet, 2... Positive electrode sheet, 2a
...Positive electrode sheet (1), 2b...Positive electrode sheet (2)
, 2c... Positive electrode sheet (3), 3... Negative electrode sheet,
3a... Negative electrode sheet (1), 3b-... Negative electrode sheet (
2), 3 c-...Negative electrode sheet (3), 4 and 5...
- Extraction electrode, 6... sealing material. Agent Patent Attorney Takeshi Kawakita 1: Solid electrolyte sheet 2a: Positive electrode sheet (1) 2b = Positive electrode sheet (2) (2C: Positive electrode sheet (3).

Claims (5)

【特許請求の範囲】[Claims] (1)固体電解質層と、該固体電解質層を介して上下面
に接合される少なくとも一対の電極層とを有する固体電
気化学素子において、前記固体電解質層および/または
電極層が、固体電解質粉および/または電極材料粉を高
分子弾性体中に分散させた該混合物を網状体の開口部に
充填してなるシート状成形体であることを特徴とする固
体電気化学素子。
(1) In a solid electrochemical device having a solid electrolyte layer and at least a pair of electrode layers joined to the upper and lower surfaces via the solid electrolyte layer, the solid electrolyte layer and/or the electrode layer are made of solid electrolyte powder and 1. A solid electrochemical device, characterized in that it is a sheet-like molded body formed by filling the openings of a mesh body with a mixture in which electrode material powder is dispersed in an elastic polymer body.
(2)固体電解質層が、固体電解質粉を高分子弾性体中
に体積分率55〜95%で分散させた混合物を、非導電
性網状体の開口部に充填してなるシート状成形体である
ことを特徴とする特許請求の範囲第1項記載の固体電気
化学素子。
(2) The solid electrolyte layer is a sheet-like molded body formed by filling the openings of a non-conductive network with a mixture in which solid electrolyte powder is dispersed in a polymer elastic body at a volume fraction of 55 to 95%. A solid electrochemical device according to claim 1, characterized in that:
(3)電極層が、電極材料粉と必要に応じ固体電解質粉
とを、高分子弾性体中に体積分率75〜95%で分散さ
せた混合物を、網状体の開口部に充填してなることを特
徴とする特許請求の範囲第1項または第2項記載の固体
電気化学素子。
(3) The electrode layer is formed by filling the openings of the network body with a mixture in which electrode material powder and solid electrolyte powder are dispersed at a volume fraction of 75 to 95% in an elastic polymer body. A solid electrochemical device according to claim 1 or 2, characterized in that:
(4)電極層が、固体電解質粉を高分子弾性体中に分散
せしめた混合物を、電極材料を兼ねる導電性網状体の開
口部に充填してなることを特徴とする特許請求の範囲第
1項または第2項記載の固体電気化学素子。
(4) Claim 1, characterized in that the electrode layer is formed by filling the openings of a conductive network that also serves as an electrode material with a mixture of solid electrolyte powder dispersed in an elastomer polymer. The solid electrochemical device according to item 1 or 2.
(5)電極層が、電極材料粉と固体電解質粉との混合比
を段階的に変化させた複数のシートを混合比の順に積層
させたものであり、固体電解質粉の混合割合の大きい電
極層面が固体電解質層と接合するようにしたことを特徴
とする特許請求の範囲第1項ないし第3項のいずれかに
記載の固体電気化学素子。
(5) The electrode layer is made by laminating a plurality of sheets in which the mixing ratio of electrode material powder and solid electrolyte powder is changed in stages, and the electrode layer side has a large mixing ratio of solid electrolyte powder. 4. The solid electrochemical device according to claim 1, wherein the solid electrochemical device is bonded to a solid electrolyte layer.
JP62279881A 1987-03-27 1987-11-05 Solid electrochemical device Expired - Lifetime JPH067496B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62279881A JPH067496B2 (en) 1987-03-27 1987-11-05 Solid electrochemical device
US07/172,166 US4810599A (en) 1987-03-27 1988-03-23 Structure suitable for solid electrochemical elements
EP88104873A EP0284104B1 (en) 1987-03-27 1988-03-25 Structure suitable for solid electrochemical elements
DE3852412T DE3852412T2 (en) 1987-03-27 1988-03-25 Structure, suitable for use in solid electrochemical elements.
KR1019880003331A KR970004137B1 (en) 1987-03-27 1988-03-26 Structure suitable for solid electro chemical elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7373087 1987-03-27
JP62-73730 1987-03-27
JP62279881A JPH067496B2 (en) 1987-03-27 1987-11-05 Solid electrochemical device

Publications (3)

Publication Number Publication Date
JPH01657A true JPH01657A (en) 1989-01-05
JPS64657A JPS64657A (en) 1989-01-05
JPH067496B2 JPH067496B2 (en) 1994-01-26

Family

ID=26414880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279881A Expired - Lifetime JPH067496B2 (en) 1987-03-27 1987-11-05 Solid electrochemical device

Country Status (1)

Country Link
JP (1) JPH067496B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564193B2 (en) * 1989-12-07 1996-12-18 日本合成ゴム株式会社 Method for manufacturing solid electrolyte battery element
JP4901189B2 (en) * 2004-11-19 2012-03-21 株式会社フコク Storage rubber and lithium battery using the same
WO2011086658A1 (en) * 2010-01-12 2011-07-21 トヨタ自動車株式会社 Solid-state battery and process for production thereof
JP2019016484A (en) * 2017-07-05 2019-01-31 日立造船株式会社 Negative electrode for all solid-state battery and all solid-state battery including the same
JP7115550B2 (en) * 2018-09-27 2022-08-09 株式会社村田製作所 yarn battery
WO2020067017A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Thread battery and thread battery with connector
WO2023140342A1 (en) * 2022-01-24 2023-07-27 パナソニックIpマネジメント株式会社 Power storage device, and method for manufacturing power storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3200757C1 (en) * 1982-01-13 1983-07-21 Fa. Carl Freudenberg, 6940 Weinheim Flexible electrolytic cell

Similar Documents

Publication Publication Date Title
US4810599A (en) Structure suitable for solid electrochemical elements
JP5277859B2 (en) Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery
US8895194B2 (en) Solid electrolyte material of conducting lithium ion, battery device using the solid electrolyte material and all-solid lithium secondary battery provided with the battery device
JP3655443B2 (en) Lithium battery
KR102608245B1 (en) Elctrically conductive hybrid membrane, making method thereof, secondary battery and electronic device comprising the same
JP5773080B2 (en) All solid state secondary battery
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
WO2019160810A1 (en) 3d printed battery and method of 3d printing a battery
JP2020155415A (en) All-solid type lithium ion battery electrode and all-solid type lithium ion battery
JPH02250264A (en) Lithium ion conductive solid electrolyte
JPH01657A (en) solid state electrochemical device
JP2001210374A (en) Solid electrolyte battery
WO2021200581A1 (en) Power storage device
JP2553588B2 (en) Solid-state electrochemical device and manufacturing method thereof
JPH067496B2 (en) Solid electrochemical device
JPH07320720A (en) Electrochemical element
JPH0482166A (en) Manufacture of solid electrolytic sheet
JPS6047372A (en) Solid battery
JPH03129603A (en) Solid electrolyte
KR20220073768A (en) Use of transition metal sulfide compounds in positive electrodes for solid state batteries
JPS63239775A (en) Solid electrolyte cell
JPH03179669A (en) Manufacture of solid electrolyte battery element
JP3235157B2 (en) Ion conductive polymer electrolyte
JPH02301972A (en) Solid electrolyte sheet and battery thereof
JPH01122567A (en) Manufacture of solid electrolyte sheet