JP2553588B2 - Solid-state electrochemical device and manufacturing method thereof - Google Patents

Solid-state electrochemical device and manufacturing method thereof

Info

Publication number
JP2553588B2
JP2553588B2 JP62263457A JP26345787A JP2553588B2 JP 2553588 B2 JP2553588 B2 JP 2553588B2 JP 62263457 A JP62263457 A JP 62263457A JP 26345787 A JP26345787 A JP 26345787A JP 2553588 B2 JP2553588 B2 JP 2553588B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
electrode material
particles
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62263457A
Other languages
Japanese (ja)
Other versions
JPS63245871A (en
Inventor
繁雄 近藤
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPS63245871A publication Critical patent/JPS63245871A/en
Application granted granted Critical
Publication of JP2553588B2 publication Critical patent/JP2553588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、構成要素が全て固体物質である固体電解質
電池,固体電気二重層キャパシタ等の固体電気化学素子
およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state electrochemical device such as a solid electrolyte battery or a solid electric double layer capacitor in which all constituent elements are solid substances, and a method for producing the same.

従来の技術 素子構成要素が全て固体物質である電気化学素子は、
液漏れがなく、小形薄形化が容易である利点を有してい
る。このような素子を構成する場合、素子内部でイオン
を動かすための固体状態の電解質、すなわち固体電解質
が必要となる。固体電解質は動くイオン種により区別さ
れており、Li+イオン導電性固体電解質、Ag+イオン導電
性固体電解質、Cu+イオン導電性固体電解質、H+イオン
導電性固体電解質等がある。そしてこれら固体電解質と
適当な電極材料とを組み合わすことで固体電気化学素子
が構成されている。
Prior art Electrochemical devices, whose device components are all solid substances,
It has the advantages of no liquid leakage and easy miniaturization and thinning. When configuring such an element, a solid-state electrolyte for moving ions inside the element, that is, a solid electrolyte is required. Solid electrolytes are distinguished by moving ionic species, and include Li + ion conductive solid electrolytes, Ag + ion conductive solid electrolytes, Cu + ion conductive solid electrolytes, H + ion conductive solid electrolytes, and the like. A solid electrochemical element is constructed by combining these solid electrolytes and an appropriate electrode material.

これらの固体電気化学素子は、構成要素が全て固体物
質であることから、固体電解質を介してこの両側に粉末
状の電極材料を素子全体として三層となるように加圧プ
レスしてチップ状,ペレット状に組み立てられたり、ま
た、物理蒸着法や化学蒸着法を用いて基板上に薄膜形状
に組み立てられている。
Since these solid-state electrochemical elements are all solid substances, a powder-like electrode material is pressed through both sides of the solid electrolyte so as to form three layers as a whole into chips, It is assembled in a pellet form, or is formed in a thin film form on a substrate by using a physical vapor deposition method or a chemical vapor deposition method.

液体電解質を用いる通常の電気化学素子では、電解質
と電極材料との電気的,イオン的接合は容易であるのに
対し、固体物質ですべて構成される素子では、固体電解
質同士,電極材料同士、さらには固体電解質と電極材料
との電気的,イオン的接合は容易に得るのは難しい。こ
のため、液体電解質を用いる素子では一般に電解質が電
極に浸透し過ぎて電極の形状が崩れるのを防ぐため結着
剤等の夾雑物を電極にあるいは電解質に混合することが
通例となっている。しかし、固体電気化学素子では、さ
らに接合が悪くなることから夾雑物を出来うる限り用い
ないのが通例になっている。
In a normal electrochemical device using a liquid electrolyte, electrical and ionic bonding between the electrolyte and the electrode material is easy, whereas in a device composed entirely of solid substances, solid electrolytes, electrode materials, and It is difficult to easily obtain electrical and ionic bonding between the solid electrolyte and the electrode material. For this reason, in an element using a liquid electrolyte, it is generally customary to mix impurities such as a binder with the electrode or the electrolyte in order to prevent the electrolyte from penetrating into the electrode too much and causing the shape of the electrode to collapse. However, in solid-state electrochemical devices, it is customary not to use impurities as much as possible because the bonding will be worse.

発明が解決しようとする問題点 このように固体電気化学素子では夾雑物を用いないこ
とから、薄形大形の素子を構成しようとした場合、一般
に構成要素は弾性に欠けるものがおおく、機械的衝撃に
対して脆く、簡単に破損してしまうという問題がある。
また、固体電解質は一般に化学的に活性な1価のカチオ
ンが導電性となっており、大気中の酸素,水分に晒され
ると変質をきたし2価のカチオンに酸化したり、酸化物
となって結晶内に固定されてしまったりして導電の機能
を果たさなくなるという問題がある。
Problems to be Solved by the Invention As described above, since impurities are not used in the solid-state electrochemical device, when attempting to construct a thin and large-sized device, generally, the components are lacking in elasticity. There is a problem that it is brittle against impact and easily broken.
In addition, in the solid electrolyte, a chemically active monovalent cation is generally conductive, and when exposed to oxygen and moisture in the atmosphere, the solid electrolyte is deteriorated to be oxidized into a divalent cation or becomes an oxide. There is a problem that it may be fixed in the crystal and may not function as a conductor.

問題点を解決するための手段 本発明の固体電気化学素子は、可塑性樹脂で被覆され
た固体電解質粒子の成形体と、前記固体電解質粒子成形
体の1組の対向面の各々に配置された電極材料成形体よ
り構成されるもので、前記固体電解質粒子成形体が前記
1組の対向面間に固体電解質粒子同士の接触により形成
されるイオン導電性の伝導路を有している。
Means for Solving the Problems A solid electrochemical device of the present invention is a molded body of solid electrolyte particles coated with a plastic resin, and electrodes arranged on each of a pair of facing surfaces of the molded body of solid electrolyte particles. The solid electrolyte particle compact has an ion conductive conduction path formed by contact between solid electrolyte particles between the pair of facing surfaces.

本発明の固体電気化学素子の製造法は、電極材料粒子
あるいは電極材料粒子と固体電解質粒子とを可塑性樹脂
を含有する溶媒中に分散し、これら粒子表面に可塑性樹
脂層を形成した後電極材料成形体を造る工程、固体電解
質粒子を可塑性樹脂を含有する溶媒中に分散し、固体電
解質粒子表面に可塑性樹脂層を形成した後固体電解質成
形体を造る工程、および前記固体電解質成形体の1組の
対向面の一方に前記電極材料成形体、他方に他の電極材
料成形体をそれぞれ配置して一体に成形する工程によ
り、前記固体電解質成形体の前記1組の対向面間に固体
電解質粒子同士の接触によるイオン導電性の伝導路を形
成することを特徴とする。
The method for producing a solid electrochemical device of the present invention comprises electrode material particles or electrode material particles and solid electrolyte particles dispersed in a solvent containing a plastic resin, and after forming a plastic resin layer on the surface of these particles, molding of the electrode material. A step of producing a body, a step of dispersing the solid electrolyte particles in a solvent containing a plastic resin, forming a plastic resin layer on the surface of the solid electrolyte particles, and then producing a solid electrolyte molded body, and a set of the solid electrolyte molded body By the step of disposing the electrode material molded body on one of the facing surfaces and the other electrode material molded body on the other side and integrally molding, the solid electrolyte particles are separated from each other between the pair of facing surfaces of the solid electrolyte molded body. It is characterized in that an ion conductive conduction path is formed by contact.

また、本発明の固体電気化学素子の製造法は、電極材
料粒子あるいは電極材料粒子と固体電解質粒子との混合
物と可塑性樹脂粉粒体とを混合し成形して電極材料成形
体を得る工程、固体電解質粒子と可塑性樹脂粉粒体とを
混合し成形して固体電解質粒子成形体を得る工程、およ
び前記固体電解質粒子成形体の1組の対向面の一方に前
記電極材料成形体、他方に他の電極材料成形体をそれぞ
れ配置して一体に成形する工程により、前記固体電解質
粒子成形体の前記1組の対向面間に固体電解質粒子同志
の接触によるイオン導電性の伝導路を形成することを特
徴とする。
Further, the method for producing a solid electrochemical device of the present invention comprises a step of obtaining an electrode material molded body by mixing and molding a mixture of electrode material particles or a mixture of electrode material particles and solid electrolyte particles and a plastic resin powder, A step of mixing and molding the electrolyte particles and the plastic resin powder particles to obtain a solid electrolyte particle molded body; and a pair of facing surfaces of the solid electrolyte particle molded body, wherein the electrode material molded body is on one side and the other is on the other side. The step of arranging the electrode material molded bodies and molding them integrally forms an ion conductive conduction path between the solid electrolyte particle molded bodies by contacting the solid electrolyte particles with each other. And

作用 本発明では、通常、固体電気化学素子では使用が避け
られていた夾雑物を混合するものであり、すなわち可塑
性樹脂により包み込んだ構成要素を用いる。これによ
り、素子組み立て時あるいは固体電解質成形体,電極成
形体成形時、可塑性樹脂は構成要素粒子間に押しやら
れ、粒子間は直接接触されかつ全体として可塑性樹脂で
包み込まれた集合体が形成される。従って、構成要素粒
子は集合体として形状を保つとともに相互に電気的,イ
オン的接続を確保し、また直接大気中の酸素,水分に晒
されることはなく変質しにくくなる。
Action In the present invention, a contaminant, which is usually avoided in a solid-state electrochemical device, is mixed, that is, a component wrapped with a plastic resin is used. As a result, when the element is assembled or when the solid electrolyte molded body or the electrode molded body is molded, the plastic resin is pushed between the constituent particles, and the particles are directly contacted with each other, and an aggregate surrounded by the plastic resin is formed as a whole. . Therefore, the constituent particles maintain their shape as an aggregate, ensure electrical and ionic connection with each other, and are not directly exposed to oxygen and moisture in the atmosphere, and are unlikely to deteriorate.

実 施 例 前述した問題点を解決するため、通常固体電気化学素
子では使用が避けられていた夾雑物の混合について検討
を重ねたところ、以外にも可塑性樹脂により包み込んだ
素子構成要素を用いることで前述の問題点が解決できる
ことを見いだした。
Example In order to solve the above-mentioned problems, we continued to study the mixing of contaminants that were normally avoided in solid-state electrochemical devices.In addition to the above, by using device components wrapped with a plastic resin, I have found that the above problems can be solved.

可塑性樹脂を適当な割合で固体電解質粉粒体,電極材
料粉粒体にそれぞれ乾式混合あるいは湿式混合すると、
第1図の1aあるいは第2図の2aに示すように固体電解質
粉粒体1あるいは電極材料粉粒体2の表面を完全に可塑
性樹脂により覆い尽くすことができる。そして、このよ
うにして調製した混合物をプレス機等で、必要に応じ加
熱しながら適当な形状に加圧成形すると、この際これら
粉粒体よりも機械変形の起こしやすい可塑性樹脂は流動
状態となり、第1図の1bあるいは第2図の2bに示すよう
に成形前に粉粒体表面を覆っていた樹脂の一部は粉粒体
と粉粒体とで作られる間隙に押しやられ粉粒体間が電気
的,イオン的に接続されるようになる。と同時に、間隙
に押しやられた樹脂は粉粒体同志を有効に結着するよう
に作用する。このようにして成形された固体電解質成形
体を介して電極材料成形体を、必要に応じ集電体等の他
の素子構成要素とを一体になるよう再度加圧成形するこ
とで固体電気化学素子が得られる。固体電解質素子の断
面の一部を第3図に示す。AおよびCは電極材料成形
体、Bは固体電解質成形体、4は集電体である。この際
も、前述したのと同様に可塑性樹脂の流動が起こり、前
記成形体と加圧成形した際に可塑性樹脂の充填が不十分
であった粉粒体間にも樹脂が押しやられ、その分粉粒体
間の電気的,イオン的接続は、樹脂により粉粒体が包み
込まれた状態でさらに強固になり可とう性のある柔軟な
固体電気化学素子となる。
When the plastic resin is mixed with the solid electrolyte powder and the electrode material powder in an appropriate ratio by dry mixing or wet mixing, respectively,
As shown in 1a of FIG. 1 or 2a of FIG. 2, the surface of the solid electrolyte granular material 1 or the electrode material granular material 2 can be completely covered with the plastic resin. Then, the mixture prepared in this manner is pressed into a suitable shape while being heated if necessary with a pressing machine or the like, and at this time, the plastic resin, which is more likely to undergo mechanical deformation than these powders, is in a fluid state, As shown in 1b in Fig. 1 or 2b in Fig. 2, a part of the resin that covered the surface of the granular material before molding was pushed into the gap created by the granular material and the granular material. Are electrically and ionically connected. At the same time, the resin pushed into the gap acts to effectively bind the particles together. A solid electrochemical element is obtained by pressing the electrode material molded body through the solid electrolyte molded body molded in this way again so as to be integrated with other element constituent elements such as a current collector if necessary. Is obtained. FIG. 3 shows a part of the cross section of the solid electrolyte element. A and C are electrode material molded bodies, B is a solid electrolyte molded body, and 4 is a current collector. Also in this case, the flow of the plastic resin occurs in the same manner as described above, and the resin is pushed between the molded body and the granular material which was insufficiently filled with the plastic resin at the time of pressure molding, and the amount thereof is reduced. The electrical and ionic connections between the particles become stronger and more flexible when the particles are encapsulated by the resin, resulting in a flexible and flexible solid electrochemical element.

前述のように、あらかじめ固体電解質成形体,電極成
形体を成形し、これらを一体に成形して素子としてもよ
いし、これら成形体を経ずに、樹脂との混合物を直接素
子に成形してもよい。
As described above, the solid electrolyte molded body and the electrode molded body may be molded in advance, and these may be integrally molded to form an element. Alternatively, the mixture with the resin may be directly molded into the element without passing through these molded bodies. Good.

本発明においては、固体電解質粒子が可塑性樹脂で覆
われた固体電解質成形体が用いられるが、この固体電解
質成形体はこれが用いられる電気化学素子内にあって
は、その上下面に電極を配置した形で用いられる。従っ
て、これら電極に当接される固体電解質成形体の上下部
分は、電極との良好なイオン的接続が得られるように、
可塑性樹脂の被覆を極めて薄くあるいは、実質上可塑性
樹脂で覆われていない状態であらかじめ成形した固体電
解質成形体を用いてもよい。
In the present invention, a solid electrolyte molded body in which solid electrolyte particles are covered with a plastic resin is used, and in the electrochemical element in which this solid electrolyte molded body is used, electrodes are arranged on the upper and lower surfaces thereof. Used in the form. Therefore, the upper and lower parts of the solid electrolyte molded body which are brought into contact with these electrodes, in order to obtain a good ionic connection with the electrodes,
It is also possible to use a solid electrolyte molded body which is molded beforehand in a state where the coating of the plastic resin is extremely thin or is substantially not covered with the plastic resin.

また、特に化学的に活性なLi+,Ag+,Cu+,H+等の1価の
カチオンが導電イオンである固体電解質粉粒体を、原料
調整時においてその表面を可塑性樹脂で覆うことでその
後の素子の製造工程において酸素,水分の影響を少なく
することができる。また、このようにして得られる粉粒
体は、素子とした場合、粉粒体同志の電気的,イオン的
接続を与える部分を除いて可塑性樹脂で覆われるため、
直接大気中に置かれても実質的に各粉粒体が直接酸素あ
るいは水分と接触することはなくきわめて耐環境性にす
ぐれた固体電気化学素子となる。
In addition, by coating the surface of the solid electrolyte powder in which monovalent cations such as Li + , Ag + , Cu + , H +, which are chemically active, as conductive ions, with a plastic resin during raw material preparation. The influence of oxygen and moisture can be reduced in the subsequent element manufacturing process. Further, since the powder and granules obtained in this manner are covered with a plastic resin, except for a part which provides electrical and ionic connection between the powder and granules, when used as an element,
Even if it is directly placed in the atmosphere, each powder or granular material does not come into direct contact with oxygen or moisture, and it becomes a solid electrochemical element having excellent environmental resistance.

次に実施例についてより具体的に述べる。 Next, examples will be described more specifically.

本発明に従う可塑性樹脂としては市販の可塑性樹脂で
あればいずれでもよいが、これら可塑性樹脂のうち、特
に、ポリエチレン,ポリプロピレン,スチレン・ブタジ
エンゴムあるいはネオプレンゴム等の合成ゴム,シリコ
ン樹脂,アクリル樹脂が好適に用いられる。
The plastic resin according to the present invention may be any commercially available plastic resin, and among these plastic resins, synthetic rubber such as polyethylene, polypropylene, styrene-butadiene rubber or neoprene rubber, silicone resin, acrylic resin are particularly preferable. Used for.

ポリエチレン,ポリプロピレン、あるいはアクリル樹
脂を用いる場合は、これら樹脂の微粉末を用い、固体電
解質粉粒体,電極材料粉粒体等の素子構成材料各粉粒体
と乾式混合を行う。樹脂の粒径は、これら各粉粒体の粒
径に対し1/10ないし1/10000であることが好ましい。混
合中、粒子間で発生する静電気によりポリエチレン,ポ
リプロピレン、あるいはアクリル樹脂粒子が素子構成材
料粉粒体の周りを被覆した混合物が得られる。
When polyethylene, polypropylene, or acrylic resin is used, fine powders of these resins are used, and dry mixing is performed with each powder of the element constituting material such as the solid electrolyte powder or the electrode material powder. The particle size of the resin is preferably 1/10 to 1/10000 of the particle size of each of these powders. During the mixing, a mixture in which polyethylene, polypropylene, or acrylic resin particles are coated around the element-constituting material powder particles due to static electricity generated between the particles is obtained.

スチレン・ブタジエンあるいはネオプレン等の合成ゴ
ム,シリコン樹脂,アクリル樹脂を用いる場合は、トル
エン,キシレン等の有機溶媒を用いて湿式混合を行う。
合成ゴム,アクリル樹脂あるいはシリコン樹脂を5〜20
重量パーセント溶解した溶媒中に、素子構成材料粉粒体
を加え混合し、スラリー状としたものを、フッ素樹脂等
の板上に塗布したのち溶媒を減圧下、必要により加熱下
で散逸することで成膜することができるし、また、スラ
リーをそのまま減圧下に置き溶媒を散逸させて得られる
混合物を加圧成形しても良い。
When a synthetic rubber such as styrene / butadiene or neoprene, a silicone resin, or an acrylic resin is used, wet mixing is performed using an organic solvent such as toluene or xylene.
5-20 synthetic rubber, acrylic resin or silicone resin
By adding powders of element constituent material powder to a solvent dissolved in weight percent and mixing it into a slurry, apply it on a plate such as fluororesin and then disperse the solvent under reduced pressure, if necessary with heating. A film can be formed, or the mixture obtained by allowing the slurry to stand under reduced pressure to dissipate the solvent may be subjected to pressure molding.

本発明で用いられる固体電解質としては、LiI,LiI・H
2O,Li3N,Li4SiO4−Li3PO4等のLi+イオン導電性固体電解
質、RbAg4I5,Ag3SI,AgI−Ag2O−MoO3ガラス等のAg+イオ
ン導電性固体電解質、RbCu4I1.75Cl3.25RbCu4I
1.53.5,RbCu4I1.25Cl3.75,K0.2Rb0.8Cu4I1.5Cl3.5,Cu
I−Cu2O−MoO3ガラス等のCu+イオン導電性固体電解解、
H3Mo12PO40・29H2O,H3W12PO40・29H2O等のH+イオン導電
性固体電解質等がある。
As the solid electrolyte used in the present invention, LiI, LiIH
2 O, Li 3 N, Li 4 SiO 4 -Li 3 PO 4 etc.Li + ion conductive solid electrolyte, RbAg 4 I 5 ,, Ag 3 SI, AgI-Ag 2 O-MoO 3 Glass etc Ag + ion conductive Solid electrolyte, RbCu 4 I 1.75 Cl 3.25 RbCu 4 I
1.5 C 3.5 , RbCu 4 I 1.25 Cl 3.75 , K 0.2 Rb 0.8 Cu 4 I 1.5 Cl 3.5 , Cu
I-Cu 2 O-MoO 3 Cu + ion conductive solid electrolyte solutions such as glass,
There are H + ion conductive solid electrolytes such as H 3 Mo 12 PO 40・ 29H 2 O and H 3 W 12 PO 40・ 29H 2 O.

本発明に用いられる電極材料としては、黒鉛,アセチ
レンブラック,活性炭等の炭素材料,硫化チタン,硫化
ニオブ,硫化銅,硫化銀,硫化鉛,銀シェブレル(銀硫
化モリブデン),銅シェブレル(銅硫化モリブデン),
硫化鉄等の硫化物,酸化タングステン,酸化バナジウ
ム,酸化クロム,酸化モリブデン,酸化チタン,酸化
鉄,酸化銀,酸化銅等の酸化物,塩化銀,沃化鉛等のハ
ロゲン化物,銅,銀,リチウム,金,白金,チタン、あ
るいはそれらの合金等の金属材料等を用いることができ
る。固体電解質とイオンの授受を行う電極材料、例えば
二硫化チタン等を用いると固体電解質電池を構成するこ
とができるし、固体電解質とイオンの授受を行いそれに
伴って光学的変化をする電極材料、例えば酸化タングス
テンを用いると固体の電気化学表示素子(エレクトロク
ロミック素子)を構成することができる。また、固体電
解質とイオンの授受は行わないが、固体電解質との界面
で電気二重層を形成する電極材料、例えば活性炭等を用
いると固体の電気二重層キャパシタを構成することがで
きる。いずれの固体電気化学素子も、本発明に従えば可
とう性に富み機械的衝撃に対して極めて強く、かつ耐環
境性に優れたものとなる。
Examples of the electrode material used in the present invention include carbon materials such as graphite, acetylene black, activated carbon, titanium sulfide, niobium sulfide, copper sulfide, silver sulfide, lead sulfide, silver chevrel (silver molybdenum sulfide), and copper chevrel (copper molybdenum sulfide). ),
Sulfides such as iron sulfide, tungsten oxide, vanadium oxide, chromium oxide, molybdenum oxide, titanium oxide, iron oxide, silver oxide, oxides such as copper oxide, silver chloride, halides such as lead iodide, copper, silver, A metal material such as lithium, gold, platinum, titanium, or an alloy thereof can be used. An electrode material that exchanges ions with a solid electrolyte, such as titanium disulfide, can be used to form a solid electrolyte battery, and an electrode material that exchanges ions with the solid electrolyte and undergoes an optical change with it, for example, When tungsten oxide is used, a solid electrochemical display element (electrochromic element) can be formed. Although the ion exchange is not performed with the solid electrolyte, a solid electric double layer capacitor can be formed by using an electrode material that forms an electric double layer at the interface with the solid electrolyte, such as activated carbon. According to the present invention, any of the solid-state electrochemical devices will be highly flexible, extremely strong against mechanical shock, and excellent in environmental resistance.

〔実施例1〕 固体電解質として平均粒径10μのRbCu4I1.5Cl3.5で表
されるCu+イオン導電性固体電解質粉粒体100重量部と、
平均粒径0.1μmのポリエチレン粉末200重量部とを乾燥
窒素雰囲気下で混合して得た混合物を、加圧プレス機で
200Kg/cm2の圧力で5mm×20mmに成形し厚さ100μの固体
電解質成形体を得た。次に、同様にして平均粒径が15μ
mのCu0.1NbS2で表される正極活物質粉粒体50重量部と
上記の固体電解質粉粒体50重量部と上記ポリエチレン粉
末15重量部より成る混合物より大きさ5mm×20mm,厚さ20
0μmの正極成形体を得た。さらに、同じく、平均粒径
が8μmの金属銅より成る負極活物質粉末50重量部、上
記固体電解質粉末50重量部、上記ポリエチレン粉末25重
量部より成る混合物より大きさ5mm×20mm、厚さ120μm
の負極成形体を得た。このようにして得られた各成形体
を250Kg/cm2の圧力で三層に加圧一体成形してCu系固体
電池Aを得た。
Example 1 100 parts by weight of Cu + ion conductive solid electrolyte powder particles represented by RbCu 4 I 1.5 Cl 3.5 having an average particle size of 10 μ as a solid electrolyte,
A mixture obtained by mixing 200 parts by weight of polyethylene powder having an average particle diameter of 0.1 μm in a dry nitrogen atmosphere was prepared by using a press machine.
The solid electrolyte molded body having a thickness of 100 μ was obtained by molding at a pressure of 200 Kg / cm 2 into 5 mm × 20 mm. Next, in the same way, the average particle size is 15μ
m of Cu 0.1 NbS 2 50 parts by weight of the positive electrode active material powder, 50 parts by weight of the solid electrolyte powder and 15 parts by weight of the polyethylene powder, the size of which is 5 mm × 20 mm and the thickness is 20 mm.
A positive electrode molded body of 0 μm was obtained. Similarly, a mixture of 50 parts by weight of the negative electrode active material powder made of metallic copper having an average particle size of 8 μm, 50 parts by weight of the solid electrolyte powder, and 25 parts by weight of the polyethylene powder having a size of 5 mm × 20 mm and a thickness of 120 μm.
A negative electrode molded body of was obtained. Each of the thus-obtained compacts was press-molded into three layers under a pressure of 250 Kg / cm 2 to obtain a Cu-based solid battery A.

〔実施例2〕 ポリエチレン粉末の代りに平均粒径0.1μmのポリプ
ロピレン粉末を用いた以外は実施例1と同様にしてCu系
固体電池Bを得た。
Example 2 A Cu-based solid battery B was obtained in the same manner as in Example 1 except that polypropylene powder having an average particle size of 0.1 μm was used instead of polyethylene powder.

〔比較例1〕 ポリエチレン粉末を混合しない以外は実施例1と同様
にしてCu系固体電池Cを得た。
[Comparative Example 1] A Cu-based solid battery C was obtained in the same manner as in Example 1 except that polyethylene powder was not mixed.

〔実施例3〕 固体電解質として平均粒径が8μのRbAg4I5で表され
るAg+イオン導電性固体電解質粉末、Ag0.1NbS2で表され
る平均粒径が15μmの正極活物質粉末,平均粒径が8μ
mの金属銀粉末を用いた以外は実施例1と同様にしてAg
系固体電池Dを得た。
Example 3 Ag + ion conductive solid electrolyte powder represented by RbAg 4 I 5 having an average particle size of 8 μ as a solid electrolyte, positive electrode active material powder having an average particle size of 15 μm represented by Ag 0.1 NbS 2 , Average particle size is 8μ
Ag in the same manner as in Example 1 except that the metallic silver powder of m was used.
A solid-state battery D was obtained.

〔比較例2〕 ポリエチレン粉末を混合しない以外は実施例3と同様
にしてAg系固体電池Eを得た。
[Comparative Example 2] An Ag-based solid battery E was obtained in the same manner as in Example 3 except that polyethylene powder was not mixed.

〔実施例4〕 固体電解質として平均粒径が15μmのLiIで表されるL
i+イオン導電性固体電解質粉末、WO3で表される平均粒
径が12μの正極活物質粉末、平均粒径が10μmのLi1.5W
O3で表される負極活物質粉末を用いた以外は、実施例1
と同様にしてLi系固体電池Fを得た。
Example 4 L represented by LiI having an average particle size of 15 μm as a solid electrolyte
i + ion-conductive solid electrolyte powder, positive electrode active material powder represented by WO 3 having an average particle size of 12 μ, Li 1.5 W having an average particle size of 10 μm
Example 1 except that a negative electrode active material powder represented by O 3 was used
A Li-based solid battery F was obtained in the same manner as in.

〔比較例3〕 ポリエチレン粉末を混合しない以外は実施例4と同様
にしてLi系固体電池Gを得た。
[Comparative Example 3] A Li-based solid battery G was obtained in the same manner as in Example 4 except that polyethylene powder was not mixed.

〔実施例5〕 固体電解質として平均粒径が20μのH3Mo12PO40・29H2
Oで表されるH+イオン導電性固体電解質粉末、WO3で表さ
れる平均粒径が8μmの正極活性物質粉末、平均粒径が
8μmのHWO3で表されるおよび負極粉末を用い、樹脂粉
末としてポリエチレン粉末に代えて平均粒径0.2μmの
アクリル樹脂粉末を用いた以外は実施例1と同様にして
H系固体電池Hを得た。
Example 5 H 3 Mo 12 PO 40 / 29H 2 having a mean particle size of 20 μ as a solid electrolyte
H + ion-conductive solid electrolyte powder represented by O, positive electrode active material powder represented by WO 3 having an average particle size of 8 μm, HWO 3 represented by OWO having an average particle size of 8 μm and negative electrode powder An H-based solid battery H was obtained in the same manner as in Example 1 except that acrylic resin powder having an average particle size of 0.2 μm was used instead of polyethylene powder.

〔比較例4〕 アクリル樹脂粉末を混合しない以外は実施例5と同様
にしてH系固体電池Iを得た。
[Comparative Example 4] An H-based solid battery I was obtained in the same manner as in Example 5, except that the acrylic resin powder was not mixed.

〔実施例6〕 固体電解質として平均粒径2μmのRbCu4I1.75Cl3.25
で表されるCu+イオン導電性固体電解質粉粒体100重量部
を、スチレン・ブタジエンゴムを10重量%溶解したトル
エン溶液30重量部と混合し固体電解質スラリーを得た。
該スラリーをフッ素樹脂平板上でバーコーターで乾燥厚
みが20μmとなるように展開し、これを1Torrの減厚下5
0℃で3時間真空加熱乾燥することで厚さ20μm,巾60m
m、長さ800mmの固体電解質薄膜を得た。次に、平均粒径
が0.5μmの黒鉛粉末50重量部、上記固体電解質粉末50
重量部を上記トルエン溶液35重量部と混合し正極スラリ
ーを得、同様にして厚さ30μm,巾60mm,長さ800mmの正極
薄膜を得た。さらに、同じく平均粒径2μmの金属銅粉
末50重量部,固体電解質粉末50重量部,トルエン溶液18
重量部より負極スラリーを得、これを用いて厚さ20μm,
巾60mm,長さ800mmの負極薄膜を得た。このようにして得
た固体電解質薄膜の一方の面に正極薄膜を他方の面に負
極薄膜を配置し、あるかじめ130〜150℃に加熱した加圧
ローラにより20Kg/cm2の圧力で三層一体となるように圧
着成形し巾65mm、長さ1000mm、厚さ55〜60μmの薄膜状
とし、これを5mm×20mmに切断し固体電池Jを得た。
Example 6 RbCu 4 I 1.75 Cl 3.25 having an average particle size of 2 μm as a solid electrolyte
100 parts by weight of the Cu + ion conductive solid electrolyte powder represented by the following was mixed with 30 parts by weight of a toluene solution containing 10% by weight of styrene-butadiene rubber to obtain a solid electrolyte slurry.
The slurry was spread on a fluororesin flat plate with a bar coater to a dry thickness of 20 μm, which was reduced to 1 Torr.
20μm thickness and 60m width by vacuum drying at 0 ℃ for 3 hours
A solid electrolyte thin film of m and 800 mm in length was obtained. Next, 50 parts by weight of graphite powder having an average particle size of 0.5 μm and the above solid electrolyte powder 50
By mixing 35 parts by weight of the above toluene solution, a positive electrode slurry was obtained, and a positive electrode thin film having a thickness of 30 μm, a width of 60 mm and a length of 800 mm was similarly obtained. Further, similarly 50 parts by weight of metallic copper powder having an average particle size of 2 μm, 50 parts by weight of solid electrolyte powder, toluene solution 18
Anode slurry was obtained from parts by weight, and using this, a thickness of 20 μm,
A negative electrode thin film with a width of 60 mm and a length of 800 mm was obtained. The positive electrode thin film is arranged on one surface of the solid electrolyte thin film thus obtained, and the negative electrode thin film is arranged on the other surface thereof, and a three-layer structure is formed at a pressure of 20 Kg / cm 2 by a pressure roller heated to 130-150 ° C. A solid battery J was obtained by pressure-bonding so as to form an integral body, forming a thin film having a width of 65 mm, a length of 1000 mm, and a thickness of 55 to 60 μm, and cutting the thin film into 5 mm × 20 mm.

〔実施例7〕 スチレン・ブタジエンゴムに代えてシリコン樹脂を用い
た以外は実施例6と同様にして固体電池Kを得た。
[Example 7] A solid battery K was obtained in the same manner as in Example 6 except that a silicone resin was used instead of the styrene-butadiene rubber.

〔実施例8〕 スチレン・ブタジエンゴムに代えてアクリル樹脂を用
いた以外は実施例6と同様にして固体電池Lを得た。
Example 8 A solid battery L was obtained in the same manner as in Example 6 except that acrylic resin was used instead of styrene / butadiene rubber.

〔実施例9〕 実施例6と同様にして得た厚さ20μmの固体電解質薄
膜を介して、実施例6と同様にして得た黒鉛粉末と固体
電解質粉末とスチレン・ブタジエンゴムより成る厚さ30
μmの電極薄膜を上下に配置し、加圧ローラーにより20
Kg/cm2の圧力で130〜150℃で三層一体となるように圧着
形成し巾65mm、長さ1000mm、厚さ60〜65μmの薄膜状と
し、これを5mm×20mmに切断し固体電気二重層キャパシ
タKを得た。
Example 9 A graphite powder, a solid electrolyte powder, and a styrene-butadiene rubber having a thickness of 30 μm obtained in the same manner as in Example 6 through a solid electrolyte thin film having a thickness of 20 μm obtained in the same manner as in Example 6 were used.
Electrode thin film of μm is placed on top and bottom, and 20
It is pressure-bonded at a pressure of Kg / cm 2 at 130 to 150 ° C so that the three layers are integrated to form a thin film with a width of 65 mm, a length of 1000 mm, and a thickness of 60 to 65 μm, which is cut into 5 mm x 20 mm solid electric electrodes. A multilayer capacitor K was obtained.

〔実施例10〕 固体電解質として平均粒径が20μmのH3Mo12PO40・29
H2Oで表されるH+イオン導電性固体電解質粉末50重量部
と、平均粒径0.2μmのアクリル樹脂粉末20重量部と、
平均粒径0.5μmの黒鉛粉末とを実施例1と同様にして
混合,成形し大きさ5mm×20mm、厚さ30μmの黒鉛電極
を作った。この電極と、実施例5と同様な方法で作った
WO3を含有する厚さ10μm、大きさ5mm×20mmの表示極
と、H+イオン導電性固体電解質とアクリル樹脂とからな
る厚さ50μm、大きさ5mm×20mmの固体電解質薄膜と
を、該固体電解質薄膜を中間層として三層一体に加圧し
て厚さ約85μm、大きさ5mm×20mmの固体エレクトロク
ロミック素子Lを得た。
Example 10 H 3 Mo 12 PO 40 · 29 having an average particle size of 20 μm as a solid electrolyte
50 parts by weight of H + ion conductive solid electrolyte powder represented by H 2 O, 20 parts by weight of acrylic resin powder having an average particle size of 0.2 μm,
Graphite powder having an average particle size of 0.5 μm was mixed and molded in the same manner as in Example 1 to form a graphite electrode having a size of 5 mm × 20 mm and a thickness of 30 μm. This electrode and the same method as in Example 5 were used.
A display electrode having a thickness of 10 μm and a size of 5 mm × 20 mm containing WO 3, and a solid electrolyte thin film having a thickness of 50 μm and a size of 5 mm × 20 mm made of an H + ion conductive solid electrolyte and an acrylic resin are used. The electrolyte thin film was used as an intermediate layer, and three layers were pressed together to obtain a solid electrochromic device L having a thickness of about 85 μm and a size of 5 mm × 20 mm.

このようにして得られた固体電池A〜J、固体電気二
重層キャパシタK、固体エレクトロクロミック素子Lに
ついて裸の状態で、長手方向に30゜の角度のくり返し折
り曲げ試験を行った。切断が起こるまでの折り曲げ回数
を下表に示す。また、各電池,キャパシタ,エレクトロ
クロミック素子を45℃、湿度60%の大気中に48時間放置
した際の内部抵抗R1の初期内部抵抗R0に対する比、R1/R
0を同じく下表に示す。
The solid state batteries A to J, the solid state electric double layer capacitor K, and the solid state electrochromic element L thus obtained were subjected to a repeated bending test at an angle of 30 ° in the longitudinal direction in a bare state. The table below shows the number of folds before cutting occurs. The ratio of the internal resistance R 1 to the initial internal resistance R 0 when each battery, capacitor, and electrochromic device is left in the atmosphere of 45 ° C and 60% humidity for 48 hours, R 1 / R
0 is also shown in the table below.

なお、実施例においては、電解質材料としてLi+,Ag+,
Cu+,H+,イオン導電性固体電解質材料の代表的なものと
して、LiI,RbAg4I5,RbCu4I1.5Cl3.5,H3MO12PO40・29H2O
を用いたが、この他の電解質材料を用いても同様な効果
が得られることは言うまでもない。また、本発明で言う
固体電解質材料としては、代表的な上記のものの他にシ
リカゲル等に硫酸を保持させた材料等、液体物質を固体
材料に、固体の物理的形状を変化させない程度に保持さ
せた材料も含む。正極活物質,負極活物質材料について
も同様である。
In the examples, as the electrolyte material, Li + , Ag + ,
Typical Cu + , H + , ion conductive solid electrolyte materials are LiI, RbAg 4 I 5 ,, RbCu 4 I 1.5 Cl 3.5 , H 3 MO 12 PO 40・ 29H 2 O
However, it is needless to say that the same effect can be obtained by using other electrolyte materials. As the solid electrolyte material referred to in the present invention, in addition to the above-mentioned typical ones, a material in which sulfuric acid is retained in silica gel or the like, a liquid substance is retained in a solid material to an extent that does not change the physical shape of the solid. Including materials. The same applies to the positive electrode active material and the negative electrode active material.

発明の効果 以上、本発明に従えば、機械強度に優れた可撓性のあ
る、かつ酸素,水分等に影響されにくい固体電気化学素
子が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain a flexible solid electrochemical element having excellent mechanical strength and being hardly affected by oxygen, moisture and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は可塑性樹脂で表面を覆われた固体電解質粉粒体
と、これら粉粒体を加圧成形することで得られる固体電
解質粉粒体の集合体を示す図、第2図は可塑性樹脂で表
面を覆われた固体電解質粉粒体および電極材料粉粒体
と、これら粉粒体を加圧成形することで得られる電極材
料粉粒体と固体電解質粉粒体との集合体を示す図、第3
図は固体電解質成形体Bと、電極材料成形体AおよびC
により構成される固体電解質素子の断面の一部を示す図
である。 1……固体電解質粉粒体、2……電極材料粉粒体、3…
…可塑性樹脂。
FIG. 1 is a diagram showing a solid electrolyte powder granule whose surface is covered with a plastic resin and an aggregate of the solid electrolyte powder granules obtained by press-molding these powder granules, and FIG. 2 is a plastic resin A diagram showing a solid electrolyte granular material and an electrode material granular material whose surface is covered with, and an aggregate of the electrode material granular material and the solid electrolyte granular material obtained by press-molding these granular materials. , Third
The figure shows a solid electrolyte molded body B and electrode material molded bodies A and C.
It is a figure which shows a part of cross section of the solid electrolyte element comprised by. 1 ... Solid electrolyte powder, 2 ... Electrode material powder, 3 ...
… Plastic resin.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可塑性樹脂で被覆された固体電解質粒子の
成形体と、前記固体電解質粒子成形体の1組の対向面の
各々に配置された電極材料成形体より構成される固体電
気化学素子であって、前記固体電解質粒子成形体が前記
1組の対向面間に固体電解質粒子同士の接触により形成
されるイオン導電性の伝導路を有している固体電気化学
素子。
1. A solid electrochemical device comprising a molded body of solid electrolyte particles coated with a plastic resin, and a molded body of electrode material arranged on each of a pair of facing surfaces of the molded body of solid electrolyte particles. A solid electrochemical element in which the solid electrolyte particle compact has an ionically conductive path formed by contact between solid electrolyte particles between the pair of facing surfaces.
【請求項2】電極材料成形体は、電極材料粒子と固体電
解質粒子の混合物である特許請求の範囲第1項記載の固
体電気化学素子。
2. The solid electrochemical element according to claim 1, wherein the molded electrode material is a mixture of electrode material particles and solid electrolyte particles.
【請求項3】電極材料成形体の電極材料粒子および固体
電解質粒子の少なくとも一方は、可塑性樹脂で被覆され
ている特許請求の範囲第1項記載の固体電気化学素子。
3. The solid electrochemical device according to claim 1, wherein at least one of the electrode material particles and the solid electrolyte particles of the electrode material molded body is coated with a plastic resin.
【請求項4】固体電解質粒子が、1価のカチオン導電性
固体電解質粒子である特許請求の範囲第1項記載の固体
電気化学素子。
4. The solid electrochemical device according to claim 1, wherein the solid electrolyte particles are monovalent cation conductive solid electrolyte particles.
【請求項5】可塑性樹脂が、スチレン・ブタジエンゴ
ム、ネオプレンゴム等の合成ゴム、ポリエチレン、ポリ
プロピレン、シリコン樹脂、アクリル樹脂、あるいはそ
れらの混合物より選ばれる熱可塑性樹脂である特許請求
の範囲第1項記載の固体電気化学素子。
5. The thermoplastic resin is a thermoplastic resin selected from synthetic rubbers such as styrene-butadiene rubber and neoprene rubber, polyethylene, polypropylene, silicone resin, acrylic resin, or a mixture thereof. The solid-state electrochemical device described.
【請求項6】電極材料粒子あるいは電極材料粒子と固体
電解質粒子とを可塑性樹脂を含有する溶媒中に分散し、
これら粒子表面に可塑性樹脂層を形成した後電極材料成
形体を造る工程、固体電解質粒子を可塑性樹脂を含有す
る溶媒中に分散し、固体電解質粒子表面に可塑性樹脂層
を形成した後固体電解質成形体を造る工程、および前記
固体電解質成形体の1組の対向面の一方に前記電極材料
成形体、他方に他の電極材料成形体をそれぞれ配置して
一体に成形する工程により、前記固体電解質成形体の前
記1組の対向面間に固体電解質粒子同士の接触によるイ
オン導電性の伝導路を形成することを特徴とする固体電
気化学素子の製造法。
6. Electrode material particles or electrode material particles and solid electrolyte particles are dispersed in a solvent containing a plastic resin,
After forming a plastic resin layer on the surface of these particles, a step of producing an electrode material molded body, dispersing solid electrolyte particles in a solvent containing a plastic resin, and forming a plastic resin layer on the surface of the solid electrolyte particles, then forming a solid electrolyte molded body. And a step of forming the electrode material molded body on one of a pair of opposing surfaces of the solid electrolyte molded body and another electrode material molded body on the other side to integrally mold the solid electrolyte molded body. 2. A method for producing a solid electrochemical element, comprising forming an ionically conductive conduction path by contacting solid electrolyte particles with each other between the pair of opposed surfaces.
【請求項7】可塑性樹脂が、スチレン・ブタジエンゴ
ム、ネオプレンゴム等の合成ゴム、シリコン樹脂、アク
リル樹脂あるいはそれらの混合物より選ばれる熱可塑性
樹脂である特許請求の範囲第6項記載の固体電気化学素
子の製造法。
7. The solid-state electrochemical according to claim 6, wherein the plastic resin is a thermoplastic resin selected from synthetic rubber such as styrene-butadiene rubber and neoprene rubber, silicon resin, acrylic resin or a mixture thereof. Device manufacturing method.
【請求項8】電極材料粒子あるいは電極材料粒子と固体
電解質粒子との混合物と可塑性樹脂粉粒体とを混合し成
形して電極材料成形体を得る工程、固体電解質粒子と可
塑性樹脂粉粒体とを混合し成形して固体電解質粒子成形
体を得る工程、および前記固体電解質粒子成形体の1組
の対向面の一方に前記電極材料成形体、他方に他の電極
材料成形体をそれぞれ配置して一体に成形する工程によ
り、前記固体電解質粒子成形体の前記1組の対向面間に
固体電解質粒子同士の接触によるイオン導電性の伝導路
を形成することを特徴とする固体電気化学素子の製造
法。
8. A step of mixing and molding electrode material particles or a mixture of electrode material particles and solid electrolyte particles and a plastic resin powder to obtain an electrode material molded body, solid electrolyte particles and a plastic resin powder. And molding to obtain a solid electrolyte particle compact, and disposing the electrode material compact on one of a pair of opposing surfaces of the solid electrolyte particle compact, and the other electrode material compact on the other side. A method for producing a solid electrochemical element, characterized in that an ionically conductive path is formed between the solid electrolyte particles by contacting each other between the pair of facing surfaces of the solid electrolyte particle formed body by the integrally forming step. .
【請求項9】可塑性樹脂が、ポリエチレン、ポリプロピ
レン、アクリル樹脂あるいはそれらの混合物より選ばれ
る熱可塑性樹脂である特許請求の範囲第8項記載の固体
電気化学素子の製造法。
9. The method for producing a solid electrochemical element according to claim 8, wherein the plastic resin is a thermoplastic resin selected from polyethylene, polypropylene, acrylic resins and mixtures thereof.
JP62263457A 1986-11-05 1987-10-19 Solid-state electrochemical device and manufacturing method thereof Expired - Fee Related JP2553588B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-263408 1986-11-05
JP26340886 1986-11-05

Publications (2)

Publication Number Publication Date
JPS63245871A JPS63245871A (en) 1988-10-12
JP2553588B2 true JP2553588B2 (en) 1996-11-13

Family

ID=17389084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263457A Expired - Fee Related JP2553588B2 (en) 1986-11-05 1987-10-19 Solid-state electrochemical device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2553588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528849A (en) 1998-08-28 2002-09-03 フラオンホッファー−ゲゼルシャフト ツーァ フェルデルング デーァ アンゲヴァンテン フォルシュング エー.ファオ. Paste mass for electrochemical element, layer body and electrochemical device obtained from the paste mass
KR20170050562A (en) 2015-10-30 2017-05-11 주식회사 엘지화학 Sulfide solid electrolyte, fabrication method thereof, and all-solid-state battery comprising the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433252A (en) * 1990-05-28 1992-02-04 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte composition material
JPH0433251A (en) * 1990-05-28 1992-02-04 Matsushita Electric Ind Co Ltd Manufacture of electrode composition material
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JP3705567B2 (en) * 1999-02-19 2005-10-12 松下電器産業株式会社 Thin film manufacturing method and apparatus, thin film, thin film laminate, and thin film component
JP2012094437A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
JP6144469B2 (en) * 2012-08-29 2017-06-07 出光興産株式会社 Secondary battery
GB201411985D0 (en) * 2014-07-04 2014-08-20 Enocell Ltd Battery
JP7159535B2 (en) * 2017-01-27 2022-10-25 住友金属鉱山株式会社 Lithium tungstate, method for producing lithium tungstate, apparatus for producing lithium tungstate, positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7151048B2 (en) * 2018-07-31 2022-10-12 サムソン エレクトロ-メカニックス カンパニーリミテッド. Capacitor, method for producing solid electrolyte particles for capacitor, and method for producing capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882468A (en) * 1981-11-11 1983-05-18 Nec Corp Positive pole substance for battey and manufacture thereof
JPS5887758A (en) * 1981-11-17 1983-05-25 Nec Corp Positive electrode for battery and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528849A (en) 1998-08-28 2002-09-03 フラオンホッファー−ゲゼルシャフト ツーァ フェルデルング デーァ アンゲヴァンテン フォルシュング エー.ファオ. Paste mass for electrochemical element, layer body and electrochemical device obtained from the paste mass
KR20170050562A (en) 2015-10-30 2017-05-11 주식회사 엘지화학 Sulfide solid electrolyte, fabrication method thereof, and all-solid-state battery comprising the same

Also Published As

Publication number Publication date
JPS63245871A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
KR900007731B1 (en) Chemical elements of solid electricity and the manufacturing methods
EP0284104B1 (en) Structure suitable for solid electrochemical elements
JP2553588B2 (en) Solid-state electrochemical device and manufacturing method thereof
JPS62115706A (en) Cell of electric double-layer capacitor and manufacture of the same
US4808496A (en) Electrode construction for solid state electrochemical cell
JPH05109429A (en) Laminated body having electron conductor layer and ion conductor layer and its manufacture
US4478920A (en) Lithium cell having a solid electrolyte constituted by a conductive vitreous compound
US2689876A (en) Solid ion electrolyte battery
EP0039409B1 (en) Solid state rechargeable battery
JP2015220102A (en) Battery mounting substrate
JP2000311692A (en) Manufacture of electrochemical element
US4166887A (en) Lithium halogen cell including activated charcoal
JP2511947B2 (en) Solid electrolyte molding
JPH0352187B2 (en)
JPH07192763A (en) High polymer solid electrolyte secondary battery
JPH067496B2 (en) Solid electrochemical device
JPH0337971A (en) Thin battery
JP2900426B2 (en) Manufacturing method of electric double layer capacitor
JPH01260765A (en) Electrochemical device
JP2654675B2 (en) Positive electrode for non-aqueous electrolyte secondary batteries
JPH0467577A (en) Fully solid-state electrochemical element
JP3446393B2 (en) Electric double layer capacitor and method of manufacturing the same
JPH0576138B2 (en)
JP3273997B2 (en) Polymer solid electrolyte battery and method of manufacturing the same
JPS6336485B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees