JPS63245871A - Solid electrochemical element and manufacture thereof - Google Patents

Solid electrochemical element and manufacture thereof

Info

Publication number
JPS63245871A
JPS63245871A JP62263457A JP26345787A JPS63245871A JP S63245871 A JPS63245871 A JP S63245871A JP 62263457 A JP62263457 A JP 62263457A JP 26345787 A JP26345787 A JP 26345787A JP S63245871 A JPS63245871 A JP S63245871A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
electrode material
molded body
plastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62263457A
Other languages
Japanese (ja)
Other versions
JP2553588B2 (en
Inventor
Shigeo Kondo
繁雄 近藤
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPS63245871A publication Critical patent/JPS63245871A/en
Application granted granted Critical
Publication of JP2553588B2 publication Critical patent/JP2553588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To obtain a solid electrochemical element having flexibility sufficiently bearable to mechanical impact by using material consisting of solid electrolyte and electrode material enclosed by plastic resin as components. CONSTITUTION:Plastic resin 3 is dry- or wet-mixed with solid electrolyte grains 1 and electrode material grains 2 in a proper ratio respectively, and the surface of the grains 1, 2 is completely covered with the plastic resin 3. Then this mixture is pressure molded into a proper form by means of a press or the like while being heated if necessary. Molded bodies of electrode material A, C are pressure molded again with a thus molded solid electrolyte molded body B between them to be integrated with other components of an element such as current collecting bodies 4, etc., if necessary. By this, a solid electrochemical element having a mechanically strong flexibility which is less likely to be affected by oxygen, moisture, etc., can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、構成要素が全て固体物質である固体電解質電
池、固体電気二重層キャパシタ等の固体電気化学素子お
よびその製造≠に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to solid electrochemical devices such as solid electrolyte batteries and solid electric double layer capacitors whose constituent elements are all solid materials, and to the production thereof.

従来の技術 素子構成要素が全て固体物質である電気化学素子は、液
漏れがなく、小形薄形化が容易である利点を有している
。このような素子を構成する場合、素子内部でイオンを
動かすだめの固体状態の電解質、すなわち固体電解質が
必要となる。固体電解質は動くイオン種により区別され
ており、Li+イオン導電性固体電解質、Aq+イオン
導電性固体電解質、Cu+イオン導電性固体電解質、H
+イオン導電性固体電解質等がある。そしてこれら固体
電解質を適当な電極材料とを組み合わすことで固体電気
化学素子が構成されている。
Conventional electrochemical devices in which all of the device components are solid materials have the advantage of not leaking and can be easily made smaller and thinner. When constructing such an element, an electrolyte in a solid state, that is, a solid electrolyte, is required to move ions within the element. Solid electrolytes are distinguished by moving ionic species, including Li + ion conductive solid electrolytes, Aq + ion conductive solid electrolytes, Cu + ion conductive solid electrolytes, and H
+Ionic conductive solid electrolytes, etc. A solid electrochemical device is constructed by combining these solid electrolytes with appropriate electrode materials.

これらの固体電気化学素子は、構成要泰が全て固体物質
であることから、固体電解質を介してこの両側に粉末状
の電極材料を素子全体として三層となるように加圧プレ
スしてチップ状、ベレット状に組み立てられたたシ、ま
た、物理蒸着法や化学蒸着法を用いて基板上に薄膜形状
に組み立てられている。
Since these solid electrochemical devices are all composed of solid materials, powdered electrode materials are placed on both sides of the solid electrolyte and pressed under pressure to form three layers for the entire device to form a chip. It can be assembled into a pellet shape, or it can be assembled into a thin film shape on a substrate using physical vapor deposition or chemical vapor deposition.

液体電解質を用いる通常の電気化学素子では、電解質と
電極材料との電気的、イオン的接合は容易であるのに対
し、固体物質ですべて構成される素子では、固体電解質
同志、電極材料同志、さらには固体電解質と電極材料と
の電気的、イオン的接合は容易に得るのは難しい。この
ため、液体電解質を用いる素子では一般に電解質が電極
に浸透し過ぎて電極の形状が崩れるのを防ぐため結着剤
5・\−7 等の夾雑物を電極にあるいは電解質に混合することが通
例となっている。しかし、固体電気化学素子では、さら
に接合が悪くなることから夾雑物を出来うる限り用いな
いのが通例になっている。
In ordinary electrochemical devices that use liquid electrolytes, electrical and ionic bonding between the electrolyte and electrode materials is easy, whereas in devices that are made entirely of solid materials, the solid electrolytes are bonded to each other, the electrode materials are bonded to each other, and However, it is difficult to easily obtain electrical and ionic bonding between the solid electrolyte and the electrode material. For this reason, in devices using liquid electrolytes, impurities such as binders 5 and 7 are generally mixed into the electrodes or the electrolyte to prevent the electrolyte from penetrating too much into the electrodes and causing the electrodes to lose their shape. It becomes. However, in solid-state electrochemical devices, it is customary to avoid using contaminants as much as possible because they further deteriorate the bonding.

発明が解決しようとする問題点 このように固体電気化学素子では夾雑物を用いないこと
から、薄形大形の素子を構成しようとした場合、一般に
構成要素は弾性に欠けるものがおおく、機械的衝撃に対
して脆く、簡単に破損してしまうという問題がある。ま
た、固体電解質は一般に化学的に活性な1価のカチオン
が導電性となっており、大気中の酸累、水分に晒される
と変質をきたし2価のカチオンに酸化したり、酸化物と
なって結晶内に固定されてしまったりして導電の機能た
けたさなくなるという問題がある。
Problems to be Solved by the Invention As described above, since solid-state electrochemical devices do not use contaminants, when trying to construct a thin and large device, many of the constituent elements generally lack elasticity and mechanical The problem is that it is brittle against impact and easily breaks. In addition, solid electrolytes are generally conductive due to chemically active monovalent cations, and when exposed to acid accumulation and moisture in the atmosphere, they change in quality and oxidize into divalent cations or become oxides. There is a problem that the conductive function is lost due to the crystal becoming fixed within the crystal.

問題点を解決するだめの手段 本発明は、かかる問題点を、固体電解質、電極材料を可
塑性樹脂で包み込んだ材料を構成要素とすることで、粒
子間の電気的、イオン的接触を大きく損なうことなく、
機械的衝撃に対し十分耐え6・\−2 つる可とり性を有する固体電気化学素子およびその製造
法を提供するものである。さらに、このような材料を用
いることで、素子製造時あるいは製造後においても水分
、酸素の影響の受けにくい固体電気化学素子およびその
製造法を提供するものである。
Means to Solve the Problem The present invention solves this problem by using a material in which a solid electrolyte and an electrode material are wrapped in a plastic resin as a component, thereby significantly impairing electrical and ionic contact between particles. Without,
The present invention provides a solid electrochemical device that has sufficient resistance to mechanical shock and has 6.\-2 vine removability, and a method for manufacturing the same. Furthermore, by using such a material, it is possible to provide a solid electrochemical element that is less susceptible to the effects of moisture and oxygen during or after manufacturing the element, and a method for manufacturing the same.

作  用 本発明では、通常、固体電気化学素子では使用が避けら
れてた夾雑物を混合するものであり、すなわち可塑性樹
脂により包み込んだ構成要素を用いる。これにより、素
子組み立て時あるいは固体電解質成形体、電極成形体成
形時、可塑性樹脂は構成要素粒子間に押しやられ、粒子
間は直接接触されかつ全体として可塑性樹脂で包み込ま
れた集合体1bが形成される。従って、構成要素粒子は
集合体として形状を保つとともに相互に電気的。
Function: In the present invention, contaminants which are normally avoided in solid-state electrochemical devices are mixed, that is, constituent elements wrapped in a plastic resin are used. As a result, when assembling an element or molding a solid electrolyte molded body or an electrode molded body, the plastic resin is pushed between the component particles, and the particles are in direct contact with each other to form an aggregate 1b that is entirely wrapped in the plastic resin. Ru. Therefore, the component particles maintain their shape as an aggregate and are electrically connected to each other.

イオン的接続を確保し、また直接大気中の酸素。Ensures ionic connection and also direct atmospheric oxygen.

水分に晒されることはなく変質しにくくなる。It is not exposed to moisture and is less likely to deteriorate.

実施例 前述した問題点を解決するため、通常固体電気7 ・\
−7 化学1子では使用が避けられていた夾雑物の混合につい
て検討を重ねたところ、以外にも可塑性樹脂により包み
込んだ素子構成要素を用いることで前述の問題点が解決
できることを見いだした。
Example: In order to solve the above-mentioned problems, ordinary solid-state electricity 7 ・\
-7 After repeated studies on the mixing of contaminants that had been avoided in Chemistry 1, it was discovered that the above-mentioned problems could be solved by using element components wrapped in plastic resin.

可塑性樹脂を適当な割合で固体電解質粉粒体。Solid electrolyte powder containing plastic resin in an appropriate proportion.

電極材料粉粒体にそれぞれ乾式混合あるいは湿式混合す
ると、第1図の18あるいは第2図の2aに示すように
固体電解質粉粒体1あるいは電極材料粉粒体2の表面を
完全に可塑性樹脂により覆い尽くすことができる。そし
て、このようにして調整した混合物をプレス機等で、必
要に応じ加熱しながら適当な形状に加圧成形、すると、
この際これら粉粒体よりも機械変形の起こしやすい可塑
性樹脂は流動状態となり、第1図の1bあるいは第2図
の2bに示すように成形前に粉粒体表面を覆っていた樹
脂の一部は粉粒体と粉粒体とで作られる間隙に押しやら
れ粉粒体間が電気的、イオン的に接続されるようになる
。と同時に、間隙に押しやられた樹脂は粉粒体同志を有
効に結着するように作用する。このようにして成形され
た固体電解質成形体を介して電極材料成形体を、必要に
応じ集電体等の他の素子構成要素とを一体になるよう再
度加圧成形することで固体電気化学素子が得られる。固
体電解質素子の断面の一部を第3図に示す。
When the electrode material particles are dry-mixed or wet-mixed, the surface of the solid electrolyte powder 1 or the electrode material powder 2 is completely covered with plastic resin, as shown in 18 in FIG. 1 or 2a in FIG. It can be completely covered. Then, the mixture thus prepared is pressure-molded into an appropriate shape using a press or the like, heating as necessary.
At this time, the plastic resin, which is more susceptible to mechanical deformation than the powder, becomes fluid, and as shown in 1b in Figure 1 or 2b in Figure 2, part of the resin that covered the surface of the powder before molding becomes fluid. is pushed into the gap created between the powder and granules, and the particles become electrically and ionically connected. At the same time, the resin forced into the gap acts to effectively bind the powder particles together. The electrode material molded body is then pressure-molded again through the solid electrolyte molded body formed in this manner, and other element components such as a current collector are integrally formed as required, thereby forming a solid electrochemical device. is obtained. A part of the cross section of the solid electrolyte element is shown in FIG.

AおよびCは電極材料成形体、Bは固体電解質成形体、
4は集電体である。この際も、前述したのと同様に可塑
性樹脂の流動が起こり、前記成形体と加圧成形した際に
可塑性樹脂の充填が不十分であった粉粒体間にも樹脂が
押しやられ、その分粉粒体間の電気的、イオン的接続は
、樹脂により粉粒体が包み込まれた状態でさらに強固に
なり可とう性のある柔軟な固体電気化学素子となる。
A and C are electrode material molded bodies, B is solid electrolyte molded body,
4 is a current collector. At this time as well, the plastic resin flows in the same way as described above, and the resin is also pushed out between the powder particles that were not filled with plastic resin enough when pressure-molded with the molded body, and The electrical and ionic connections between the powder and granules become even stronger when the powder and granules are wrapped in resin, resulting in a flexible solid electrochemical element.

前述のように、あらかじめ固体電解質成形体。As mentioned above, pre-form solid electrolyte.

電極成形体を成形し、これらを一体に成形して素子とし
てもよいし、これら成形体を経ずに、樹脂との混合物を
直接素子に成形してもよい。
An electrode molded body may be molded and these may be integrally molded to form an element, or a mixture with a resin may be directly molded into an element without going through these molded bodies.

本発明においては、固体電解質粒子が可塑性樹脂で覆わ
れた固体電解質成形体が用いられるが、この固体電解質
成形体はこれが用いられる電気化学素子内にあっては、
その上下面に電極を配置し9 ・\−7 た形で用いられる。従って、これら電極に当接される固
体電解質成形体の上下部分は、電極との良好なイオン的
接続が得られるように、可塑性樹脂の被覆を極めて薄く
あるいは、実質上可塑性樹脂で覆われていない状態であ
らかじめ成形した固体電解質成形体を用いてもよい。
In the present invention, a solid electrolyte molded body in which solid electrolyte particles are covered with a plastic resin is used, but when this solid electrolyte molded body is in an electrochemical element in which it is used,
It is used with electrodes arranged on its upper and lower surfaces. Therefore, in order to obtain a good ionic connection with the electrodes, the upper and lower parts of the solid electrolyte molded body that come into contact with these electrodes are coated with a very thin plastic resin or are not substantially covered with the plastic resin. A solid electrolyte molded body previously molded in a state may be used.

まだ、特に化学的に活性なL i+、 Ag+、 Cu
” 。
Still especially chemically active Li+, Ag+, Cu
”.

H+等の1価のカチオンが導電イオンである固体電解質
粉粒体を、原料調整時においてその表面を可塑性樹脂で
覆うことでその後の素子の製造工程において酸素、水分
の影響を少なくすることができる。まだ、このようにし
て得られる粉粒体は、素子とした場合、粉粒体同志の電
気的、イオン的接続を与える部分を除いて可塑性樹脂で
覆われるため、直接大気中に置かれても実質的に各粉粒
体が直接酸緊あるいは水分と接触することはなくきわめ
て耐環境性にすぐれた固体電気化学素子となる。
By covering the surface of solid electrolyte particles, in which monovalent cations such as H+ are conductive ions, with plastic resin during raw material preparation, it is possible to reduce the influence of oxygen and moisture in the subsequent device manufacturing process. . However, when the powder and granules obtained in this way are used as devices, they are covered with plastic resin except for the parts that provide electrical and ionic connections between the powder and granules, so they cannot be placed directly in the atmosphere. Substantially, each powder does not come into direct contact with acid or moisture, resulting in a solid electrochemical element with extremely high environmental resistance.

次に実施例についてより具体的に述べる。Next, examples will be described in more detail.

本発明に従う可塑性樹脂としては市販の可塑性1o・\
−2 樹脂であればいずれでもよいが、これら可塑性樹脂のう
ち、特に、ポリエチレン、ポリプロピレン。
The plastic resin according to the present invention has a commercially available plasticity of 1o.\
-2 Any resin may be used, but among these plastic resins, polyethylene and polypropylene are particularly preferred.

スチレン・ブタジェンゴムあるいはネオプレンゴム等の
合成ゴム、シリコン樹脂、アクリル樹脂が好適に用いら
れる。
Synthetic rubbers such as styrene-butadiene rubber or neoprene rubber, silicone resins, and acrylic resins are preferably used.

ポリエチレン、ポリプロピレン、あるいはアクリル樹脂
を用いる場合は、これら樹脂の微粉末を用い、固体電解
質粉粒体、電極材料粉粒体等の素子構成材料粉粒体と乾
式混合を行う。樹脂の粒径は、これら各粉粒体の粒径に
対し1/1o ないし1 /10000  であること
が好ましい。混合中、粒子間で発生する静電気によりポ
リエチレン、ポリプロピレン、あるいはアクリル樹脂粒
子が素子構成材料粉粒体の周りを被覆した混合物が得ら
れる。
When polyethylene, polypropylene, or acrylic resin is used, fine powders of these resins are used and dry mixed with element constituent material powders such as solid electrolyte powders and electrode material powders. The particle size of the resin is preferably 1/10 to 1/10000 of the particle size of each of these powders. During mixing, static electricity generated between particles produces a mixture in which polyethylene, polypropylene, or acrylic resin particles coat the element constituent material powder.

スチレン・ブタジェンあるいはネオプレン等の合成ゴム
、シリコン樹脂、アクリル樹脂を用いる場合は、トルエ
ン、キシレン等の有機溶媒を用いて湿式混合を行う。合
成ゴム、アクリル樹脂あるいはシリコン樹脂を5〜2o
重量パーセント溶解11 ・・−/ した溶媒中に、累子構成材料粉粒体を加え混合し、スラ
リー状としたものを、フ、ソ累樹脂等の板上に塗布した
のち溶媒を減圧下、必要により加熱下で散逸することで
成膜することができるし、また、スラリーをそのまま減
圧下に置き溶媒を散逸させて得られる混合物を加圧成形
しても良い。
When using synthetic rubber such as styrene/butadiene or neoprene, silicone resin, or acrylic resin, wet mixing is performed using an organic solvent such as toluene or xylene. Synthetic rubber, acrylic resin or silicone resin at 5~2o
Weight percent dissolution 11...-/ Into the solvent, powder and granules of the component material were added and mixed to form a slurry, which was applied onto a plate of plastic resin, etc., and then the solvent was removed under reduced pressure. If necessary, the solvent can be dissipated under heating to form a film, or the slurry may be placed under reduced pressure to dissipate the solvent, and the resulting mixture may be pressure-molded.

本発明で用いられる固体電解質としては、LiI。The solid electrolyte used in the present invention is LiI.

Lil−H2O,L 1 s N 、 L x 4S 
104−L 13P O4等のLi+ イオン導電性固
体電解質、RbAg4I5゜A g 3S I 、 A
 g I A g 20− M o O3ガラヌ等のA
q+イオン導電性固体電解質、RbCu4 工1.75
”3.25Rbcu4 Ll、6 ”3.5 、RbC
u4工1.25 C13,75゜Ko、2Rb0.8C
u411.5Ce3.5.CuニーCu20− M o
 O3ガラス等のCu+ イオン導電性固体電解解、H
3M012PO4o・29H20,H3W12Po4o
・29HO等のH+イオン導電性固体電解質等かある。
Lil-H2O, L 1 s N, L x 4S
104-L 13P Li+ ion conductive solid electrolyte such as O4, RbAg4I5゜A g 3S I, A
g I A g 20- M o O3 Galanu et al.
q+ ion conductive solid electrolyte, RbCu4 engineering 1.75
"3.25Rbcu4 Ll, 6"3.5, RbC
u4 engineering 1.25 C13, 75゜Ko, 2Rb0.8C
u411.5Ce3.5. Cu knee Cu20- Mo
Cu+ ion conductive solid electrolyte such as O3 glass, H
3M012PO4o・29H20,H3W12Po4o
・There are H+ ion conductive solid electrolytes such as 29HO.

本発明に用いられる電極材料としては、黒鉛。The electrode material used in the present invention is graphite.

アセチレンプラ、ツク、活性炭等の炭素材料、硫化チタ
ン、硫化ニオブ、硫化銅、硫化銀、硫化鉛。
Carbon materials such as acetylene plastic, Tsuku, activated carbon, titanium sulfide, niobium sulfide, copper sulfide, silver sulfide, lead sulfide.

銀シェブレル(銀硫化モリブデン)、銅シェプレル(銅
硫化モリブデン)、硫化鉄等の硫化物、酸化タングステ
ン、酸化バナジウム、酸化クロム。
Sulfides such as silver chevrell (silver molybdenum sulfide), copper chevrell (copper molybdenum sulfide), iron sulfide, tungsten oxide, vanadium oxide, chromium oxide.

酸化モリブデン、酸化チタン、酸化鉄、酸化銀。Molybdenum oxide, titanium oxide, iron oxide, silver oxide.

酸化銅等の酸化物、塩化銀、沃化鉛等のハロゲン化物、
銅、銀、リチウム、金、白金、チタン、あるいはそれら
の合金等の金属材料等を用いることができる。固体電解
質とイオンの授受を行う電極材料、例えば二硫化チタン
等を用いると固体電解質電池を構成することができるし
、固体電解質とイオンの授受を行いそれに伴って光学的
変化をする電極材料、例えば酸化タングステンを用いる
と固体の電気化学表示累子(エレクトロクロミック累子
)を構成することができる。まだ、固体電解質とイオン
の授受は行わないが、固体電解質との界面で電気二重層
を形成する電極材料、例えば活性炭等を用いると固体の
電気二重層キャパシタを構成することができる。いずれ
の固体電気化学緊子も、本発明に従えば可とう性に富み
機械的衝撃に対して極めて強く、かつ耐環境性に優れた
もの13 ′\−ノ となる。
Oxides such as copper oxide, halides such as silver chloride and lead iodide,
Metal materials such as copper, silver, lithium, gold, platinum, titanium, or alloys thereof can be used. A solid electrolyte battery can be constructed by using an electrode material that exchanges ions with a solid electrolyte, such as titanium disulfide, and an electrode material that exchanges ions with a solid electrolyte and optically changes accordingly, such as titanium disulfide. When tungsten oxide is used, a solid electrochemical display element (electrochromic element) can be constructed. Although ions are not exchanged with the solid electrolyte yet, a solid electric double layer capacitor can be constructed by using an electrode material that forms an electric double layer at the interface with the solid electrolyte, such as activated carbon. According to the present invention, any solid electrochemical bond will be highly flexible, extremely strong against mechanical shock, and excellent in environmental resistance.

〔実施例1〕 固体電解質として平均粒径1oμの RbCu411.5C13,5で表されるCu”4オン
導電性固体電解質粉粒体100重量部と、平均粒径01
μのポリエチレン粉末20重量部とを乾燥窒累雰囲気下
で混合して得た混合物を、加圧プレス機で200にグ/
 cAの圧力で5 my X 20朋に成形し厚さ10
0μの固体電解質成形体を得た。次に、同様にして平均
粒径が15μのCuo、1NbS2で表される正極活物
質粉粒体50重量部と上記の固体電解質粉粒体50重量
部と上記ポリエチレン粉末15重量部より成る混合物よ
り大きさ5問×20問、厚さ200μの正極成形体を得
た。さらに、同じく、平均粒径が8μの金属銅よ構成る
負極活物質粉末5o重量部、上記固体電解質粉末50重
量部、上記ポリエチレン粉末25重量部より成る混合物
より大きさ5πm X 20 mm、厚さ120μの負
極成形体を得だ。このようにして得られた各成形体を2
50 K!7 / dの圧力で三層に加圧一体14・\
−7 成形してCu系固体電池Aを得た。
[Example 1] 100 parts by weight of Cu"4-on conductive solid electrolyte powder represented by RbCu411.5C13,5 with an average particle size of 1 μm and an average particle size of 0.1 μm as a solid electrolyte.
A mixture obtained by mixing 20 parts by weight of polyethylene powder of
Formed into a size of 5 my x 20 mm with a thickness of 10 mm using a pressure of cA.
A solid electrolyte molded body of 0μ was obtained. Next, a mixture of 50 parts by weight of a positive electrode active material powder represented by CuO, 1NbS2 having an average particle size of 15 μm, 50 parts by weight of the above solid electrolyte powder, and 15 parts by weight of the above polyethylene powder was prepared in the same manner. A positive electrode molded body having a size of 5×20 and a thickness of 200 μm was obtained. Further, from a mixture consisting of 50 parts by weight of a negative electrode active material powder made of metallic copper having an average particle size of 8 μ, 50 parts by weight of the solid electrolyte powder, and 25 parts by weight of the polyethylene powder, the size of the powder was 5πm x 20 mm, and the thickness was 50 mm. A 120 μm negative electrode molded body was obtained. Each molded body obtained in this way was
50K! Pressurize the three layers together with a pressure of 7/d 14・\
-7 A Cu-based solid state battery A was obtained by molding.

〔実施例2〕 ポリエチレン粉末の代りに平均粒径0.1μのポリプロ
ピレン粉末を用いた以外は実施例1と同様にしてCu系
固体電池Bを得た。
[Example 2] A Cu-based solid state battery B was obtained in the same manner as in Example 1, except that polypropylene powder with an average particle size of 0.1 μm was used instead of polyethylene powder.

〔比較例1〕 ポリエチレン粉末を混合しない以外は実施例1と同様に
してCu系固体電池Cを得た。
[Comparative Example 1] A Cu-based solid state battery C was obtained in the same manner as in Example 1 except that polyethylene powder was not mixed.

〔実施例3〕 固体電解質として平均粒径が8μのRbAg4I6で表
されるAq+イオン導電性固体電解質粉末、Aqo、1
NbS2で表される平均粒径が15μの正極活物質粉末
、平均粒径が8μの金属銀粉末を用いた以外は実施例1
と同様にしてAg系固体電池りを得た。
[Example 3] Aq+ ion conductive solid electrolyte powder represented by RbAg4I6 with an average particle size of 8μ as a solid electrolyte, Aqo, 1
Example 1 except that a positive electrode active material powder represented by NbS2 with an average particle size of 15μ and a metal silver powder with an average particle size of 8μ were used.
An Ag-based solid battery was obtained in the same manner as above.

〔比較例2〕 ポリエチレン粉末を混合しない以外は実施例3と同様に
してAq系固体電池Eを得た。
[Comparative Example 2] Aq-based solid battery E was obtained in the same manner as in Example 3 except that polyethylene powder was not mixed.

〔実施例4〕 固体電解質として平均粒径が15μのLiI で15 
・\−ン 表されるLi+イオン導電性固体電解質粉末、WO3で
表される平均粒径が12μの正極活物質粉末、平均粒径
が10μのLi1.5WO3で表される負極活物質粉末
を用いた以外は、実施例1と同様にしてLi系固体電池
Fを得た。
[Example 4] As a solid electrolyte, LiI with an average particle size of 15 μm was used as a solid electrolyte.
・Using Li + ion conductive solid electrolyte powder represented by \-, positive electrode active material powder represented by WO3 with an average particle size of 12μ, and negative electrode active material powder represented by Li1.5WO3 with an average particle size of 10μ. A Li-based solid state battery F was obtained in the same manner as in Example 1 except that

〔比11o例3〕 ポリエチレン粉末を混合しない以外は実施例4と同様に
してLL系固体電池Gを得た。
[Ratio 11o Example 3] A LL solid state battery G was obtained in the same manner as in Example 4 except that polyethylene powder was not mixed.

〔実施例5〕 固体電解質として平均粒径が20μのH3M012P0
 ・29H2oで表されるH+イオン導電性固4゜ 停電解質粉末、WO3で表される平均粒径が8μの正極
活物質粉末、平均粒径が8μのH′wo3 で表される
および負極粉末を用い、樹脂粉末としてポリエチレン粉
末に代えて平均粒径0.2μのアクリル樹脂粉末を用い
た以外は実施例1と同様にしてH光固体電池Hを得た。
[Example 5] H3M012P0 with an average particle size of 20μ as a solid electrolyte
・H+ ion conductive solid 4° blackout solute powder represented by 29H2o, positive electrode active material powder with an average particle size of 8μ represented by WO3, and negative electrode powder represented by H'wo3 with an average particle size of 8μ. An H photosolid battery H was obtained in the same manner as in Example 1, except that acrylic resin powder with an average particle size of 0.2 μm was used as the resin powder instead of polyethylene powder.

〔比較例4〕 アクリル樹脂粉末を混合しない以外は実施例5と同様に
してH光固体電池Iを得た。
[Comparative Example 4] H photosolid battery I was obtained in the same manner as in Example 5 except that acrylic resin powder was not mixed.

〔実施例6〕 固体電解質として平均粒径2μの RbCu411.75 C13,26で表されるCu+
イオン導電性固体電解質粉粒体100重量部を、スチレ
ン・ブタジェンゴムを1o重量%溶解したトルエン溶液
30重量部と混合し固体電解質スラリーを得た。該スラ
リーをフッ素樹脂平板上でバーコーターで乾燥厚みが2
0μとなるように展開し、これを1TorrO減厚下5
0℃で3時間真空加熱乾燥することで厚さ20μ、巾6
0mm、長さ800 tntnの固体電解質薄膜を得た
。次に、平均粒径が0.5μの黒鉛粉末50重量部、上
記固体電解質粉末5o重量部を上記トルエン溶液35重
量部と混合し正極スラリーを得、同様にして厚さ30μ
、巾60朋、畏さ800 mmの正極薄膜を得た。さら
に、同じく平均粒径が2μの金属銅粉末5o重量部。
[Example 6] Cu+ represented by RbCu411.75 C13,26 with an average particle size of 2μ as a solid electrolyte
100 parts by weight of ion conductive solid electrolyte powder was mixed with 30 parts by weight of a toluene solution in which 10% by weight of styrene-butadiene rubber was dissolved to obtain a solid electrolyte slurry. The slurry was dried on a fluororesin flat plate with a bar coater to a thickness of 2.
Develop it so that it becomes 0 μ, and then reduce the thickness by 1 TorrO.
By vacuum heating drying at 0℃ for 3 hours, the thickness is 20μ and the width is 6.
A solid electrolyte thin film with a thickness of 0 mm and a length of 800 tntn was obtained. Next, 50 parts by weight of graphite powder with an average particle size of 0.5 μm and 50 parts by weight of the above solid electrolyte powder were mixed with 35 parts by weight of the above toluene solution to obtain a positive electrode slurry, and in the same manner, a positive electrode slurry was obtained with a thickness of 30 μm.
A positive electrode thin film with a width of 60 mm and a height of 800 mm was obtained. Further, 50 parts by weight of metallic copper powder having an average particle size of 2 μm.

固体電解質粉末5o重量部、トルエン溶液18重量部よ
り負極スラリーを得、これを用いて厚さ2oμ、巾eo
mm、長さ800 mmの負極薄膜を得た。このように
して得た固体電解質薄膜の一方の17、X−7 面に正極薄膜を他方の面に負極薄膜を配置し、あらかじ
め130〜150”Cに加熱した加圧ローラにより20
 Kg / cmの圧力で三層一体となるように圧着成
形し巾65門、長さ1000 tnm、厚さ55〜60
μの薄膜状とし、これを5 my X 20 rxyn
に切断し固体電池■を得た。
A negative electrode slurry was obtained from 5 o parts by weight of solid electrolyte powder and 18 parts by weight of toluene solution, and this was used to form a negative electrode slurry with a thickness of 2 oμ and a width of eo.
A negative electrode thin film with a length of 800 mm and a length of 800 mm was obtained. A positive electrode thin film was placed on one side of the solid electrolyte thin film obtained in this manner, and a negative electrode thin film was placed on the other side.
Pressure-molded into three layers with a pressure of Kg/cm, width 65, length 1000 tnm, thickness 55-60
5 my x 20 rxyn
A solid battery ■ was obtained by cutting into pieces.

〔実施例7〕 スチレン・ブタジェンゴムに代えてシリコン樹脂を用い
た以外は実施例6と同様にして固体電池Kを得た。
[Example 7] A solid battery K was obtained in the same manner as in Example 6 except that silicone resin was used instead of styrene-butadiene rubber.

〔実施例8〕 スチレン・ブタジェンゴムに代えてアクリル樹脂を用い
た以外は実施例6と同様にして固体電池りを得だ。
[Example 8] A solid battery resin was obtained in the same manner as in Example 6 except that acrylic resin was used instead of styrene-butadiene rubber.

〔実施例9〕 実施例6と同様にして得た厚さ20μmの固体電解質薄
膜を介して、実施例6と同様にして得た黒鉛粉末と固体
電解質粉末とスチレン・ブタジェンゴムより成る厚さ3
oμの電極薄膜を上下に配置し、加圧ローラーにより2
0 Ky / cmの圧力で18 A 。
[Example 9] Thickness 3 consisting of graphite powder, solid electrolyte powder, and styrene-butadiene rubber obtained in the same manner as in Example 6 was passed through a solid electrolyte thin film with a thickness of 20 μm obtained in the same manner as in Example 6.
Oμ electrode thin films are placed on top and bottom, and 2
18 A at a pressure of 0 Ky/cm.

130〜150”Cで三層一体となるように圧着成形し
巾65酊、長さ1ooo朋、厚さ60〜65μの薄膜状
とし、これを5 ynm X 20 aに切断し固体電
気ニ重層キャパシタKを得た。
The three layers were pressure-molded at 130 to 150" C to form a thin film with a width of 65 mm, a length of 100 mm, and a thickness of 60 to 65 μm. This was cut into 5 nm x 20 mm to form a solid electrical double layer capacitor. I got K.

〔実施例1o〕 固体電解質として平均粒径が20/ImのH3M012
Po4゜・29H20で表されるH+イオン導電性固体
電解質粉末5o重量部と、平均粒径0.2μのアクリル
樹脂粉末20重量部と、平均粒径0.5μmの黒鉛粉末
とを実施例1と同様にして混合、成形し大きさ6mm×
20tnm、厚さ3Q11mの黒鉛電極を作った。この
電極と、実施例5と同様な方法で作ったWO3を含有す
る厚さ1oμm、大きさ5 my X 20 mmの表
示極と、H+イオン導電性固体電解質とアクリル樹脂と
からなる厚さ5゜μm、大きさ5 mm X 20 v
tmの固体電解質薄膜とを、該固体電解質薄膜を中間層
として三層一体に加圧して厚さ約85μm、大きさ6f
flllX20間の固体エレクトロクロミック素子りを
得た。
[Example 1o] H3M012 with an average particle size of 20/Im as a solid electrolyte
In Example 1, 50 parts by weight of H + ion conductive solid electrolyte powder represented by Po4°・29H20, 20 parts by weight of acrylic resin powder with an average particle size of 0.2 μm, and graphite powder with an average particle size of 0.5 μm. Mix and mold in the same way to size 6mm x
A graphite electrode with a thickness of 20 tnm and a thickness of 3Q11 m was made. This electrode, a display electrode with a thickness of 1 μm and a size of 5 my x 20 mm containing WO3 made in the same manner as in Example 5, and a display electrode with a thickness of 5° made of an H + ion conductive solid electrolyte and an acrylic resin. μm, size 5 mm x 20 v
tm solid electrolyte thin film and pressurized three layers together with the solid electrolyte thin film as an intermediate layer to a thickness of about 85 μm and a size of 6 f.
A solid electrochromic device between 1×20 was obtained.

このようにして得られた固体電池A〜11固体19 ・
\−ン 電気二重層キャパシタに、固体エレクトロクロミック1
子りについて裸の状態で、長手方向に3o0の角度のく
り返し折り曲げ試験を行った。切断が起こるまでの折り
曲げ回数を下表に示す。また、各電池、キャパシタ、エ
レクトロクロミ・ツク素子を45℃、湿度60%の大気
中に48時間放置した際の内部抵抗R1の初期内部抵抗
R0に対する比、R1/Roを同じく下表に示す。
Solid state batteries A to 11 obtained in this way solid state 19 ・
Solid electrochromic 1 in electric double layer capacitor
A repeated bending test at an angle of 3o0 in the longitudinal direction was conducted with the child in the bare state. The number of bends before breakage occurs is shown in the table below. The table below also shows the ratio of internal resistance R1 to initial internal resistance R0, R1/Ro, when each battery, capacitor, and electrochromic device were left in the atmosphere at 45° C. and 60% humidity for 48 hours.

なお、実施例においては、電解質材料として、  Li
”、Ag”、Cu+、H”、イオン導電性固体電解質材
料の代表的なものとして、LiI、RbAq4I6゜R
bCu411.5C43,5,H3M○12PO4゜・
29H20を用いたが、この他の電解質材料を用いても
同様な効果が得られることは言うまでもない。また、本
発明で言う固体電解質材料としては、代表的な上記のも
のの他にシリカゲル等に硫酸を保持させた材料等、液体
物質を固体材料に、固体の物理的形状を変化させない程
度に保持させた材料も含む。
In addition, in the examples, as the electrolyte material, Li
",Ag",Cu+,H", LiI, RbAq4I6゜R as representative ion conductive solid electrolyte materials.
bCu411.5C43,5,H3M○12PO4゜・
Although 29H20 was used, it goes without saying that similar effects can be obtained by using other electrolyte materials. In addition to the typical solid electrolyte materials mentioned above, examples of the solid electrolyte materials used in the present invention include materials in which sulfuric acid is retained in silica gel, etc., in which a liquid substance is retained in a solid material to the extent that the physical shape of the solid does not change. Also includes materials that have been used.

正極活物質、負極活物質材料についても同様である。The same applies to the positive electrode active material and the negative electrode active material.

21、、−7 発明の効果 以上、本発明に従えば、機械強度に優れた可撓性のある
、かつ酸素、水分等に影響されにくい固体電気化学1子
が得られる。
21,,-7 As described above, according to the present invention, a solid electrochemical monomer can be obtained which has excellent mechanical strength, is flexible, and is not easily affected by oxygen, moisture, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は可塑性樹脂で表面で覆われた固体電解質粉粒体
と、これら粉粒体を加圧成形することで得られる固体電
解質粉粒体の集合体を示す図、第2図は可塑性樹脂で表
面を覆われた固体電解質粉粒体および電極材料粉粒体と
、これら粉粒体を加圧成形することで得られる電極材料
粉粒体と固体電解質粉粒体との集合体を示す図、第3図
は固体電解質成形体Bと、電極材料成形体AおよびCに
より構成される固体電解質素子の断面の一部を示す図で
ある。 1・・・・・・固体電解質粉粒体、2・・・・・・電極
材料粉粒体、3・・・・・・可塑性樹脂。
Figure 1 shows a solid electrolyte powder whose surface is covered with plastic resin and an aggregate of solid electrolyte powder obtained by pressure molding these powders, and Figure 2 shows the plastic resin. A diagram showing a solid electrolyte powder and an electrode material powder whose surfaces are covered with , and an aggregate of the electrode material powder and solid electrolyte powder obtained by pressure-molding these powders. , FIG. 3 is a diagram showing a part of a cross section of a solid electrolyte element composed of a solid electrolyte molded body B and electrode material molded bodies A and C. 1... Solid electrolyte powder, 2... Electrode material powder, 3... Plastic resin.

Claims (9)

【特許請求の範囲】[Claims] (1)可塑性樹脂で被覆された固体電解質粒子の成形体
と、前記固体電解質粒子成形体の1組の対向面の各々に
電極材料成形体を配置し、前記固体電解質粒子成形体の
前記対向面間に前記固体電解質粒子同志の実質的接触に
よりイオン導電性の伝導路を形成し、前記固体電解質粒
子成形体の他の面は前記可塑性樹脂で被覆したものであ
ることを特徴とする固体電気化学素子。
(1) A molded body of solid electrolyte particles coated with a plastic resin and an electrode material molded body are disposed on each of a pair of opposing surfaces of the solid electrolyte particle molded body, and the opposed surface of the solid electrolyte particle molded body is disposed. Solid electrochemistry, characterized in that an ionic conductive path is formed by substantial contact between the solid electrolyte particles, and the other surface of the solid electrolyte particle molded body is coated with the plastic resin. element.
(2)電極材料成形体は電極材料粒子と固体電解質粒子
の混合物であることを特徴とする特許請求の範囲第1項
記載の固体電気化学素子。
(2) The solid electrochemical device according to claim 1, wherein the electrode material molded body is a mixture of electrode material particles and solid electrolyte particles.
(3)電極材料成形体の電極材料粒子および固体電解質
粒子の少なくとも一方は、可塑性樹脂で被覆されている
ことを特徴とする特許請求の範囲第1項あるいぱ第2項
記載の固体電気化学素子。
(3) The solid electrochemistry according to claim 1 or 2, wherein at least one of the electrode material particles and the solid electrolyte particles of the electrode material molded body is coated with a plastic resin. element.
(4)固体電解質粒子が、1価のカチオン導電性固体電
解質粒子であることを特徴とする特許請求の範囲第1項
記載の固体電気化学素子。
(4) The solid electrochemical device according to claim 1, wherein the solid electrolyte particles are monovalent cation conductive solid electrolyte particles.
(5)可塑性樹脂がポリエチレン、ポリプロピレン、ス
チレン・ブタジエンゴム、ネオプレンゴム等の合成ゴム
、シリコン樹脂、アクリル樹脂、あるいはそれらの混合
物より選ばれる熱可塑性樹脂であることを特徴とする特
許請求の範囲第1項記載の固体電気化学素子。
(5) The plastic resin is a thermoplastic resin selected from polyethylene, polypropylene, styrene-butadiene rubber, synthetic rubber such as neoprene rubber, silicone resin, acrylic resin, or a mixture thereof. The solid electrochemical device according to item 1.
(6)電極材料粒子、固体電解質粒子を一緒にあるいは
別々に、可塑性樹脂を含有する溶媒中に分散させ、前記
粒子表面に可塑性樹脂層を形成し、固体電解質成形体、
電極材料成形体を造り、これら成形体を一体に成形する
ことを特徴とする固体電気化学素子の製造法。
(6) Electrode material particles and solid electrolyte particles are dispersed together or separately in a solvent containing a plastic resin, a plastic resin layer is formed on the particle surface, and a solid electrolyte molded body is obtained.
A method for manufacturing a solid electrochemical device, characterized by making electrode material molded bodies and integrally molding these molded bodies.
(7)可塑性樹脂が、スチレン・ブタジエンゴム、ネオ
プレンゴム等の合成ゴム、シリコン樹脂、アクリル樹脂
あるいはそれらの混合物より選ばれる熱可塑性樹脂であ
ることを特徴とする特許請求の範囲第6項記載の固体電
気化学素子の製造法。
(7) The plastic resin is a thermoplastic resin selected from synthetic rubbers such as styrene-butadiene rubber and neoprene rubber, silicone resins, acrylic resins, or mixtures thereof. A method for manufacturing solid-state electrochemical devices.
(8)固体電解質粒子、電極材料粒子を一緒にある3ペ
ージ いは別々に、可塑性樹脂粉粒体と混合した混合物より造
った固体電解質成形体および電極材料成形体とを一体に
成形することを特徴とする固体電気化学素子の製造法。
(8) Solid electrolyte particles and electrode material particles can be molded together on three pages or separately, and a solid electrolyte molded body and an electrode material molded body made from a mixture of plastic resin powder and granules are molded together. Characteristic manufacturing method for solid-state electrochemical devices.
(9)可塑性樹脂粉粒体が、ポリエチレン、ポリプロピ
レンアクリル樹脂粉粒体より選ばれることを特徴とする
特許請求の範囲第8項記載の固体電気化学素子の製造法
(9) The method for producing a solid electrochemical device according to claim 8, wherein the plastic resin powder is selected from polyethylene and polypropylene acrylic resin powder.
JP62263457A 1986-11-05 1987-10-19 Solid-state electrochemical device and manufacturing method thereof Expired - Fee Related JP2553588B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-263408 1986-11-05
JP26340886 1986-11-05

Publications (2)

Publication Number Publication Date
JPS63245871A true JPS63245871A (en) 1988-10-12
JP2553588B2 JP2553588B2 (en) 1996-11-13

Family

ID=17389084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263457A Expired - Fee Related JP2553588B2 (en) 1986-11-05 1987-10-19 Solid-state electrochemical device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2553588B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433252A (en) * 1990-05-28 1992-02-04 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte composition material
JPH0433251A (en) * 1990-05-28 1992-02-04 Matsushita Electric Ind Co Ltd Manufacture of electrode composition material
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JP2000243658A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing film, film, film laminated body, and film component
JP2012094437A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
JP2014049204A (en) * 2012-08-29 2014-03-17 Idemitsu Kosan Co Ltd Secondary battery
JP2017520891A (en) * 2014-07-04 2017-07-27 エノセル リミテッドEnocell Limited battery
JP2018120831A (en) * 2017-01-27 2018-08-02 住友金属鉱山株式会社 Lithium tungstate, method for manufacturing lithium tungstate, device for manufacturing lithium tungstate, positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2020021826A (en) * 2018-07-31 2020-02-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Capacitor, manufacturing method of solid electrolyte particles for capacitor, and manufacturing method of capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839217C2 (en) 1998-08-28 2001-02-08 Fraunhofer Ges Forschung Pasty masses, layers and layer structures, cells and processes for their production
KR102003300B1 (en) 2015-10-30 2019-07-24 주식회사 엘지화학 Sulfide solid electrolyte, fabrication method thereof, and all-solid-state battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882468A (en) * 1981-11-11 1983-05-18 Nec Corp Positive pole substance for battey and manufacture thereof
JPS5887758A (en) * 1981-11-17 1983-05-25 Nec Corp Positive electrode for battery and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882468A (en) * 1981-11-11 1983-05-18 Nec Corp Positive pole substance for battey and manufacture thereof
JPS5887758A (en) * 1981-11-17 1983-05-25 Nec Corp Positive electrode for battery and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433252A (en) * 1990-05-28 1992-02-04 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte composition material
JPH0433251A (en) * 1990-05-28 1992-02-04 Matsushita Electric Ind Co Ltd Manufacture of electrode composition material
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JP2000243658A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing film, film, film laminated body, and film component
JP2012094437A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
JP2014049204A (en) * 2012-08-29 2014-03-17 Idemitsu Kosan Co Ltd Secondary battery
JP2017520891A (en) * 2014-07-04 2017-07-27 エノセル リミテッドEnocell Limited battery
JP2018120831A (en) * 2017-01-27 2018-08-02 住友金属鉱山株式会社 Lithium tungstate, method for manufacturing lithium tungstate, device for manufacturing lithium tungstate, positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2020021826A (en) * 2018-07-31 2020-02-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Capacitor, manufacturing method of solid electrolyte particles for capacitor, and manufacturing method of capacitor

Also Published As

Publication number Publication date
JP2553588B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
KR900007731B1 (en) Chemical elements of solid electricity and the manufacturing methods
EP0284104B1 (en) Structure suitable for solid electrochemical elements
CN105406033B (en) Anode mixture, positive pole, solid state battery and their manufacture method
EP1066656B1 (en) Ion conductive matrixes and their use
JPS63245871A (en) Solid electrochemical element and manufacture thereof
WO2017198626A1 (en) Lithium-ion-conducting composite material, comprising at least one polymer and lithium-ion-conducting particles
JPS62115706A (en) Cell of electric double-layer capacitor and manufacture of the same
DE102015108488A1 (en) Anode and anode composite material for a lithium-air battery and lithium-air battery
CN102169103A (en) Solid Ag/AgCl electrode core and preparation method and applications thereof
US2658935A (en) Cuprous chloride electrode
DE2349615C3 (en) Galvanic solid electrolyte cell P.R. Mallory & Co, Ine, Indiana®
JP2000311692A (en) Manufacture of electrochemical element
US2866840A (en) Polyelectrolytes in battery pastes
JPH01657A (en) solid state electrochemical device
JPH067496B2 (en) Solid electrochemical device
JPH04133209A (en) Lithium ion conductive solid electrolyte sheet and manufacture thereof
JPH01260765A (en) Electrochemical device
JPH0467577A (en) Fully solid-state electrochemical element
JP2016072078A (en) Method for manufacturing electrode complex, and method for manufacturing lithium battery
JPH0576138B2 (en)
JPS6351064A (en) Solid electrolyte secondary battery and production method
JPS6336485B2 (en)
JPS5990360A (en) Solid secondary battery
JPH02276164A (en) Solid electrolyte thin film
JPH04264369A (en) Manufacture of full solid voltage memorizing element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees