JPS5990360A - Solid secondary battery - Google Patents

Solid secondary battery

Info

Publication number
JPS5990360A
JPS5990360A JP57200671A JP20067182A JPS5990360A JP S5990360 A JPS5990360 A JP S5990360A JP 57200671 A JP57200671 A JP 57200671A JP 20067182 A JP20067182 A JP 20067182A JP S5990360 A JPS5990360 A JP S5990360A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
negative electrode
solid electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200671A
Other languages
Japanese (ja)
Other versions
JPH0522348B2 (en
Inventor
Satoshi Sekido
聰 関戸
Tadashi Sotomura
外「むら」 正
Yoshito Ninomiya
二宮 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57200671A priority Critical patent/JPS5990360A/en
Publication of JPS5990360A publication Critical patent/JPS5990360A/en
Publication of JPH0522348B2 publication Critical patent/JPH0522348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a solid secondary battery having an excellent charge-and- discharge repeated characteristic by the combination of a positive electrode principally consisting of titanium dioxide, a reversible negative lithium electrode principally consisting of lithium metal and a lithium-ion-conducting solid electrolyte. CONSTITUTION:A positive mixture 1 is made of mixture consisting of 90- 70pts.wt. titanium dioxide (TiO2) and 10-30pts.wt. lithium-ion-conducting solid electrolyte. A lithium-ion-conducting solid electrolyte layer 2 is formed by using nLiI.C5H5N.C4H9I as electrolyte. A reversible negative lithium electrode 3 is made of a lithium-aluminum alloy plate represented by LixAl. A positive current collector 4 is made of an Fe-Cr ferrite-system stainless steel having a Cr content of over 30wt%. The positive current collector 4 and the negative current collector 5 of adjacent cells are connected electrically to connect the three cells in series. Owing to such constitution as above, a solid secondary battery having an excellent charge-and-discharge repeated characteristic and is suitably used as a memory back-up power source or the like, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属リチウムを主体とする負極を有する固体状
の二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid secondary battery having a negative electrode mainly composed of metallic lithium.

−ヘ−ジ 従来例の構成とその問題点 固体電解質を用いることによって特徴づけられる固体状
の電池で、現在もっばら提唱され、ま友実際に実用化さ
れている電池は、はとんどが−吹型池である。固体電解
質材料としては、リチウムイオン導電性の物質あるいは
銀イオン導電性の物質を用いることが提唱されている。
- Hage Structure of the conventional example and its problems A solid-state battery characterized by the use of a solid electrolyte. -It is a blowing pond. It has been proposed to use a lithium ion conductive substance or a silver ion conductive substance as the solid electrolyte material.

この中でもリチウムイオン導電性の固体電解質は、イオ
ン導電率が銀イオン導電性の固体電解質に較べると数桁
数倍高く、電池電圧の高い、すなわち高エネルギー密度
の電池が得られることから、近年、電子機器の低消費電
流化が進むにつれて、高エネルギー密度である特徴が増
々注目され、もっばらリチウムイオン導電性固体電解質
が選ばれ、これを用いたリチウム固体電池が一次電池と
して実用化されるに至っている。
Among these, lithium ion conductive solid electrolytes have an ionic conductivity that is several orders of magnitude higher than silver ion conductive solid electrolytes and can provide batteries with high battery voltage, that is, high energy density. As the current consumption of electronic devices continues to decrease, the feature of high energy density attracts more and more attention, and lithium-ion conductive solid electrolytes are being chosen, and lithium solid-state batteries using them are being put into practical use as primary batteries. It has been reached.

一方、このようなリチウム固体電池の電子機器への使わ
れ方は、半導体メモリ素子の発達により主電源が切れた
場合においてもメモリ保持を損なわないように、補助電
源として、いわゆるメモリバックアップ用の電源として
の使われ方が主流となってyている。補助電源として用
いられるのに好ましい電池特性としては、放電容届、放
電電流がいかに小さくても、小型で、すなわち半導体メ
モリ素子と同一プリント基板上に組み込め、さらには、
半導体メモリ素子と一緒に樹脂モールドパッケージされ
るくらいの小型さで、かつ、容量が尽きた場合において
も電池交換が不必要であること、すなわち、充電による
再生が可能であることが挙げられる。
On the other hand, due to the development of semiconductor memory elements, lithium solid-state batteries are being used in electronic devices as auxiliary power supplies, so-called memory backup power supplies, so that memory retention will not be impaired even if the main power supply is cut off. The mainstream usage is as follows. Preferred battery characteristics for use as an auxiliary power source include: no matter how small the discharge capacity and discharge current, it is small, and can be incorporated on the same printed circuit board as a semiconductor memory element;
It is small enough to be packaged in a resin mold together with a semiconductor memory element, and there is no need to replace the battery even when its capacity is exhausted, that is, it can be regenerated by charging.

このような必要性に対して現在は、有機電解液を用いる
リチウム二次電池が提唱されているが、液体を用いてい
るため、電池構成物を液密に保持しておく容器が必要で
あり、このため先に述べた小型化をはかるのは至難であ
った。
To meet this need, lithium secondary batteries that use organic electrolytes are currently being proposed, but because they use liquid, they require a container to keep the battery components liquid-tight. Therefore, it was extremely difficult to achieve the above-mentioned miniaturization.

そこで、このような小型化に対して、有機電解液を用い
る電池に対して決定的な優位さを持つ固体電解質を用い
た固体状二次電池の実用化が期待される。すなわち固体
状二次電池は、後に本発明の実施様態で詳しく説明する
が、電池構成物を特に別途定められた形状の容器に納め
る必要はなく樹脂等により発電要素を被覆するだけで良
く、小型化が容易にはかれるし、さらには、電池の構成
にあたっては、半導体プロセスで通常用いられている真
空蒸着法、スパッタリング法などの薄膜化技術を用いて
の小型化も容易に可能であるという優位さを持っている
Therefore, for such miniaturization, it is expected that solid secondary batteries using solid electrolytes, which have a decisive advantage over batteries using organic electrolytes, will be put to practical use. In other words, solid-state secondary batteries, which will be explained in detail later in the embodiments of the present invention, do not require the battery components to be housed in a container with a specially determined shape; it is sufficient to simply cover the power generating element with resin, etc., and the battery is small and compact. Furthermore, the battery structure can be easily miniaturized using thin film techniques such as vacuum evaporation and sputtering, which are commonly used in semiconductor processes. have.

しかし、以上のような決定的とも言われる優位さにもか
かわらず、固体二次電池の実用化がいまだなされていな
いのは、ひとつには電池の充放電に際してリチウムイオ
ンを可逆的に出し入れが可能な適当な正極活物質がいま
だ見い出されていないこと、!、りひとつには、充電に
際してリチウム負極側に、金属リチウムが霧状あるいは
樹枝状に析出するため、充放電がくり返し行われると、
ついには正極と負極とが金属リチウムでつながれ内部 部短絡生じるという問題があるためであった。
However, despite the so-called decisive advantages mentioned above, solid-state secondary batteries have not yet been put into practical use. One reason is that lithium ions can be reversibly put in and taken out when charging and discharging the battery. A suitable positive electrode active material has not yet been found! One reason is that metallic lithium is deposited in the form of mist or branches on the lithium negative electrode side during charging, so when charging and discharging are repeated,
This was due to the problem that the positive electrode and negative electrode were connected by metallic lithium, resulting in an internal short circuit.

八 発明の目的 本発明は、充・放電くり返し特性の優れ固体状のリチウ
ム二次電池を提供することを目的とする。
8. Object of the Invention The object of the present invention is to provide a solid-state lithium secondary battery with excellent repeated charging and discharging characteristics.

発明の構成 本発明の電池は、正極活物質として二酸化チタンを用い
、金属リチウムを主体とする可逆性のリチウム負極好適
にはりチウム−アルミニウム合金を主体とする負極リチ
ウムイオン導電性固体電解質より構成され、電池構成要
素がすべて固体の二次電池である。
Structure of the Invention The battery of the present invention uses titanium dioxide as a positive electrode active material, a reversible lithium negative electrode mainly composed of metallic lithium, and preferably a negative electrode lithium ion conductive solid electrolyte mainly composed of a lithium-aluminum alloy. , all battery components are solid-state secondary batteries.

本発明に正極活物質古して用いる二酸化チタンは酸化の
程度によりその結晶構造は層状構造を有し、互いにファ
ンデルワールス力で結合した反復層から成り立っている
。そして個々の層は、酸素原子のシート間にサンドイン
チされたチタン原子を含む少なくとも1つのシートから
成っている。
Titanium dioxide, which is used as a positive electrode active material in the present invention, has a layered crystal structure depending on the degree of oxidation, and is composed of repeated layers bonded to each other by van der Waals forces. Each layer then consists of at least one sheet containing titanium atoms sandwiched between sheets of oxygen atoms.

反復層間でリチウムイオンの出し入れが容易に起こるた
め、すなわち、各層を結合するファンデルワールス力の
弱さのため急速なリチウムイオンの拡散を容易にするの
で、電池の充・放電が可能と6    、。
Because lithium ions can easily be transferred in and out between repeated layers, in other words, the weak van der Waals force that binds each layer facilitates rapid lithium ion diffusion, making it possible to charge and discharge the battery6. .

ヘー。Heh.

なっている。!、り、負極は、可逆性のリチウム負極、
好適にはリチウム−アルミニウム合金負極であるので、
充電反応による霧状あるいは樹枝状のリチウム負極の成
長が生じ難く充・放電をくり返し行っても内部短絡が生
じることはない。
It has become. ! , the negative electrode is a reversible lithium negative electrode,
Since it is preferably a lithium-aluminum alloy negative electrode,
It is difficult for a mist-like or dendritic lithium negative electrode to grow due to the charging reaction, and no internal short circuit occurs even if charging and discharging are repeated.

また、リチウムイオン導電性固体電解質としては、nI
tI−C6H6N−C4H9I 、Li3N 、mLI
I@nLi25−P2O,など各種のものを用いること
ができる。
In addition, as a lithium ion conductive solid electrolyte, nI
tI-C6H6N-C4H9I, Li3N, mLI
Various materials such as I@nLi25-P2O can be used.

実施例の説明 実施例1 第1図は固体電解質二次電池の構成例を示す。Description of examples Example 1 FIG. 1 shows an example of the structure of a solid electrolyte secondary battery.

1は正極合剤で、活物質の二酸化チタン(T i02 
)の90〜70重量部とリチウムイオン導電性固体電解
質の10〜30重量部との混合物からなり、T 102
が約3ミリモルとなるように前記の混合物を秤量し、3
00MPaの圧力で直径18闘、厚さ0.4u程度の円
板状に成形したものである。なな、正極合剤中に特に導
電材の混合は件に必要としないが、大電流放電用途の場
合、カーボンなどの道電利を加えてもよい。
1 is a positive electrode mixture, which is an active material of titanium dioxide (T i02
) and 10 to 30 parts by weight of a lithium ion conductive solid electrolyte, T 102
Weigh out the above mixture so that it is about 3 mmol,
It was molded into a disk shape with a diameter of 18mm and a thickness of about 0.4μ under a pressure of 00MPa. Although it is not necessary to particularly mix a conductive material into the positive electrode mixture, in the case of a large current discharge application, a conductive material such as carbon may be added.

2はリチウムイオン導電性固体電解質層である。2 is a lithium ion conductive solid electrolyte layer.

この例では電解質として、nLiI・C5H5N・C4
H9工で表されるものを用いた。ここにn値としては4
〜6が好適に選ばれる。電解質層2は、上記の電解質粉
末を300 M P aの圧力で直径15w1.厚さ0
.4 M程度の円板状に成形したものである。
In this example, the electrolyte is nLiI・C5H5N・C4
The one represented by H9 was used. Here, the n value is 4
~6 is suitably selected. The electrolyte layer 2 is made of the above-mentioned electrolyte powder at a pressure of 300 MPa to form a diameter of 15 w1. Thickness 0
.. It is molded into a disk shape of about 4M.

3は可逆性リチウム負極で、LixAl で表されるリ
チウム−アルミニウム合金板よりなる直径18藺、厚さ
0.5 Mの円板状のものである。Xの値ヒしては0.
08〜0.9’iで目的に応じて変えられるが、本実施
例ではx−0,8のものを用いている。4は正極集電体
であり、Cr含量が30重重量風上のFe−Crフェラ
イト系ステンレス鋼よりなる厚さ0.1 mの円板であ
る。もちろん、正極集電体材料として、炭素、Au、P
d、Pt等を用いても良い。5は負極集電体である。隣
接するセルの負極集電体6と正極集電体4は、グラファ
イト導電ペイントにより電気的に結合されて3セルが直
列に接続されている。6.7は電極端子リードである。
Reference numeral 3 denotes a reversible lithium negative electrode, which is made of a lithium-aluminum alloy plate represented by LixAl and has a disc shape with a diameter of 18 mm and a thickness of 0.5 M. The value of X is 0.
Although it can be changed from 08 to 0.9'i depending on the purpose, in this embodiment, x-0.8 is used. 4 is a positive electrode current collector, which is a 0.1 m thick disk made of Fe-Cr ferritic stainless steel with a Cr content of 30 gw. Of course, carbon, Au, P
d, Pt, etc. may also be used. 5 is a negative electrode current collector. The negative electrode current collector 6 and the positive electrode current collector 4 of adjacent cells are electrically coupled by graphite conductive paint, and the three cells are connected in series. 6.7 is an electrode terminal lead.

8は樹脂被膜であり、エポキシ系の熱硬化性樹脂を被覆
して得たものである。もちろん光硬化性の樹脂等を用い
ても良い。
8 is a resin coating, which is obtained by coating with an epoxy thermosetting resin. Of course, a photocurable resin or the like may also be used.

第2図は、本実施例の電池を20Cで、電流30μAで
放電した際の放電容量と端子電圧の関係を示している。
FIG. 2 shows the relationship between the discharge capacity and the terminal voltage when the battery of this example was discharged at 20 C and a current of 30 μA.

第3図は、3oμAで3v−!、で放電し、同じ電流で
eveで充電する充放電のくり返しに伴う放電容量の変
化を示したものである。
Figure 3 shows 3v-! at 3oμA! This figure shows the change in discharge capacity due to repeated charging and discharging, in which the battery is discharged at , and charged at eve with the same current.

第3図中Aは、負極をリチウム−アルミニウム合金とし
たもの、Bはリチウム金属を用いた同様の構成を有する
電池についての充・放電特性を示している。
In FIG. 3, A shows the charge/discharge characteristics of a battery using a lithium-aluminum alloy as the negative electrode, and B shows the charge/discharge characteristics of a battery having a similar structure using lithium metal.

第2図から明らかなように本発明に従う固体二次電池の
放電時の端子電圧はきわめて平坦で、従透 来の固体−吹型池の放電電圧に較べても遊色は全くない
。第3図から明らかなように、充放電特性は、負極にリ
チウム−アルミニウム合金を用いたものは負極をリチウ
ムとした電池に較べ、放電容量が大きい。このことは、
充電時におけるリチウムの霧状あるいは樹枝状の析出に
よる内部短絡による自己放電が発生し難いことを示して
いる。
As is clear from FIG. 2, the terminal voltage during discharge of the solid state secondary battery according to the present invention is extremely flat, and there is no play of color at all compared to the discharge voltage of a conventional solid-state blown type battery. As is clear from FIG. 3, regarding the charge and discharge characteristics, the battery using a lithium-aluminum alloy for the negative electrode has a larger discharge capacity than the battery using lithium for the negative electrode. This means that
This indicates that self-discharge due to internal short circuit due to mist or dendritic precipitation of lithium during charging is unlikely to occur.

実施例2 実施例1のリチウムイオン導電性固体電M質層2の代わ
りに可逆性リチウム負極の表面に化学式0式% ポリ沃化ブチルピリジニウムを塗布し、乾燥雰囲気中に
おいて60[で24時間保持して形成したLiI を主
体とするリチウムイオン導電性固体電解質層を用いた電
池を構成した。
Example 2 In place of the lithium ion conductive solid electrolyte layer 2 of Example 1, polyiodide butylpyridinium having the chemical formula 0 was applied to the surface of the reversible lithium negative electrode and maintained at 60[deg.] for 24 hours in a dry atmosphere. A battery was constructed using a lithium ion conductive solid electrolyte layer mainly composed of LiI.

第4図はこの電池Cの放電電流密度と端子電圧の関係を
示している。Aは、実施例1に示した電池の特性を示し
ている。ポリ沃化ブチルピリジニウムを負極に塗布して
電解質を構成した電池Cはそうでない電池Aに較べ電池
内部抵抗が小さくなり、より大きな電流を取り出すこと
ができる。この理由については明らかでないが、負極表
面上で負極のリチウムと沃素との化学反応で固体電解質
層を形成することによって、単に固体電解質層と負極と
が圧力により接合されている実施例1の電10    
 、 ヘーン 池Aに較べ負極と固体電解質層との接合が良好にムを用
いても同様な効果が得られることは言うまでもない。
FIG. 4 shows the relationship between the discharge current density and the terminal voltage of this battery C. A shows the characteristics of the battery shown in Example 1. Battery C, in which the electrolyte is formed by coating the negative electrode with butyl pyridinium polyiodide, has a lower internal resistance than Battery A, which does not have this coating, and can draw a larger current. Although the reason for this is not clear, the electrode of Example 1 in which the solid electrolyte layer and the negative electrode are simply joined by pressure by forming a solid electrolyte layer on the surface of the negative electrode through a chemical reaction between lithium and iodine of the negative electrode. 10
, It goes without saying that the same effect can be obtained even if the bonding between the negative electrode and the solid electrolyte layer is better than that of Hoehn Pond A.

発明の効果 以上のように、本発明によれば、充放電のくり返し特性
に優れ、メモリーバックアップ用電源などとして好適な
固体状二次電池を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a solid secondary battery that has excellent repeatability of charging and discharging and is suitable as a memory backup power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の構成例を示す縦断面図、第
2図は放電時の端子電圧と放電容量の関係を示す図、第
3図は充放電回数と放電容量の関係を示す図、第4図は
放電電流密度と端子電圧の関係を示す。 1・・・・・・正極、2・・・・・・固体電解質、3・
・・・・・負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名Vに
・畷夙−ざ ら V市に 四ミ 寸り 鞍              塚 實v−b智田ミ
FIG. 1 is a longitudinal cross-sectional view showing an example of the configuration of a battery according to the present invention, FIG. 2 is a diagram showing the relationship between the terminal voltage during discharge and the discharge capacity, and FIG. 3 is a diagram showing the relationship between the number of charging and discharging times and the discharge capacity. , FIG. 4 shows the relationship between discharge current density and terminal voltage. 1...Positive electrode, 2...Solid electrolyte, 3.
...Negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person V-Nawasha-Zara V-ichi Shimizusamura Tsukamane v-b Chidami

Claims (3)

【特許請求の範囲】[Claims] (1)金属リチウムを主体とする可逆性リチウム負極と
二酸化チタンを主体とする正極及びリチウムイオン導電
性固体電解質より構成した固体状二次電池。
(1) A solid secondary battery composed of a reversible lithium negative electrode mainly composed of metallic lithium, a positive electrode mainly composed of titanium dioxide, and a lithium ion conductive solid electrolyte.
(2)可逆性リチウム負極が、リチウム−アルミニウム
合金である特許請求の範囲第1項記載の固体状二次電池
(2) The solid state secondary battery according to claim 1, wherein the reversible lithium negative electrode is a lithium-aluminum alloy.
(3)前記電解質層が、リチウム負極とポリ沃化1−ア
ルキルピリジニウムとの接触により形成される沃化リチ
ウムを主体とするりチウムイチン導電性固体電解質層で
ある特許請求の範囲第1項記載の固体状二次電池。
(3) The electrolyte layer is a lithium nitride conductive solid electrolyte layer mainly composed of lithium iodide formed by contacting a lithium negative electrode with 1-alkylpyridinium polyiodide. Solid state secondary battery.
JP57200671A 1982-11-15 1982-11-15 Solid secondary battery Granted JPS5990360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200671A JPS5990360A (en) 1982-11-15 1982-11-15 Solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200671A JPS5990360A (en) 1982-11-15 1982-11-15 Solid secondary battery

Publications (2)

Publication Number Publication Date
JPS5990360A true JPS5990360A (en) 1984-05-24
JPH0522348B2 JPH0522348B2 (en) 1993-03-29

Family

ID=16428294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200671A Granted JPS5990360A (en) 1982-11-15 1982-11-15 Solid secondary battery

Country Status (1)

Country Link
JP (1) JPS5990360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217828A (en) * 1989-05-01 1993-06-08 Brother Kogyo Kabushiki Kaisha Flexible thin film cell including packaging material
US5540742A (en) * 1989-05-01 1996-07-30 Brother Kogyo Kabushiki Kaisha Method of fabricating thin film cells and printed circuit boards containing thin film cells using a screen printing process
JP2014229502A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Manufacturing method of all-solid state lamination battery
JP2015146240A (en) * 2014-02-03 2015-08-13 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661771A (en) * 1979-10-23 1981-05-27 Nec Corp Battery
JPS5688265A (en) * 1979-12-19 1981-07-17 Citizen Watch Co Ltd Solid-electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661771A (en) * 1979-10-23 1981-05-27 Nec Corp Battery
JPS5688265A (en) * 1979-12-19 1981-07-17 Citizen Watch Co Ltd Solid-electrolyte battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217828A (en) * 1989-05-01 1993-06-08 Brother Kogyo Kabushiki Kaisha Flexible thin film cell including packaging material
US5540742A (en) * 1989-05-01 1996-07-30 Brother Kogyo Kabushiki Kaisha Method of fabricating thin film cells and printed circuit boards containing thin film cells using a screen printing process
JP2014229502A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Manufacturing method of all-solid state lamination battery
JP2015146240A (en) * 2014-02-03 2015-08-13 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery

Also Published As

Publication number Publication date
JPH0522348B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
US5811204A (en) Flexible thin layer open electrochemical cell
CA2177056A1 (en) A solid state battery using an ionic or protonic electrolyte
JP7154847B2 (en) Method for manufacturing all-solid-state battery
JP2007294111A (en) Compact battery
JP3007876B2 (en) Flexible primary battery
JP2001068149A (en) All solid lithium secondary battery
JPH04233170A (en) Capacitor integrated battery
JP4381176B2 (en) Thin film solid secondary battery
JPS5990360A (en) Solid secondary battery
CA2380954A1 (en) Supercapacitor device with extended capability
JP2511947B2 (en) Solid electrolyte molding
JPH0522349B2 (en)
JP2552352B2 (en) Sealed lead acid battery
JPS5990361A (en) Solid secondary battery
JPS5990363A (en) Solid secondary battery
JPS5990359A (en) Solid secondary battery
JPS6017867A (en) Solid electrolyte secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
JPS6142868A (en) Nonaqueous electrolyte battery
JP2552354B2 (en) Sealed lead acid battery
JP2695985B2 (en) Battery
US4060675A (en) Galvanic element with a negative electrode of light metal, a non-aqueous electrolyte and a positive electrode
JPS63126153A (en) Organic electrolyte cell
JPH03257758A (en) Organic solvent cell
JPH04104480A (en) Nonaqueous electrolyte secondary battery