JP4381176B2 - Thin film solid secondary battery - Google Patents

Thin film solid secondary battery Download PDF

Info

Publication number
JP4381176B2
JP4381176B2 JP2004056277A JP2004056277A JP4381176B2 JP 4381176 B2 JP4381176 B2 JP 4381176B2 JP 2004056277 A JP2004056277 A JP 2004056277A JP 2004056277 A JP2004056277 A JP 2004056277A JP 4381176 B2 JP4381176 B2 JP 4381176B2
Authority
JP
Japan
Prior art keywords
layer
secondary battery
positive electrode
active material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004056277A
Other languages
Japanese (ja)
Other versions
JP2005251417A (en
Inventor
弘実 中澤
公宏 佐野
守 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2004056277A priority Critical patent/JP4381176B2/en
Publication of JP2005251417A publication Critical patent/JP2005251417A/en
Application granted granted Critical
Publication of JP4381176B2 publication Critical patent/JP4381176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、薄膜固体二次電池に係り、特に、薄型化,小型化を図ることができる薄膜固体二次電池に関する。   The present invention relates to a thin film solid secondary battery, and more particularly to a thin film solid secondary battery that can be reduced in thickness and size.

現在、携帯機器等の電子機器を中心にリチウムイオン二次電池が広く用いられている。これはニッカド電池等と比較して、リチウムイオン二次電池は、高い電圧を有し、充放電容量が大きく、メモリ効果などの弊害がないことによる。
電子機器等はますます小型化・軽量化が進められており、この電子機器等に搭載するバッテリーとして、リチウムイオン二次電池もますます小型化・軽量化の開発が進められている。昨今では、ICカードや医療用小型機器等に搭載可能な薄型・小型のリチウムイオン二次電池の開発も進められている。そして、今後もより一層薄型化・小型化が求められることが予想される。
Currently, lithium ion secondary batteries are widely used mainly in electronic devices such as portable devices. This is because the lithium ion secondary battery has a high voltage, a large charge / discharge capacity, and no adverse effects such as a memory effect as compared with a nickel cadmium battery or the like.
Electronic devices and the like have been increasingly reduced in size and weight, and lithium-ion secondary batteries are also being developed to be further reduced in size and weight as batteries to be mounted on these electronic devices and the like. In recent years, development of a thin and small lithium ion secondary battery that can be mounted on an IC card, a small medical device, or the like is also in progress. It is expected that further reduction in thickness and size will be required in the future.

従来のリチウムイオン二次電池は、正電極および負電極に金属片または金属箔を用い、これらを電解液に浸積させて容器で覆って使用している。このため、薄型化や小型化には限界がある。現実的には、薄さ1mm、体積1cm程度が限界と考えられる。
しかし、最近ではさらに薄型化、小型化を可能とするために、電解液ではなく、ゲル状の電解質を用いるポリマー電池(例えば、特許文献1参照)や固体電解質を用いる薄膜固体二次電池(例えば、特許文献2参照)が開発されている。
特許文献1に記載のポリマー電池は、外装体内部に、正極集電体、内部に高分子固体電解質を含有する複合正極、イオン電導性高分子化合物からなる電解質層、内部に高分子固体電解質を含有する複合負極、負極集電体を順に配置したように構成されている。
ポリマー電池は、電解液を使う通常のリチウムイオン二次電池よりは薄型化、小型化が可能であるものの、ゲル状の電解質や接合剤、封口部材等を必要とするため、厚さとしては0.1mm程度が限界であり、より一層の薄型化、小型化を進めるには適当ではない。
A conventional lithium ion secondary battery uses a metal piece or a metal foil for a positive electrode and a negative electrode, is immersed in an electrolytic solution and covered with a container. For this reason, there is a limit to thinning and miniaturization. Actually, it is considered that the limit is about 1 mm in thickness and about 1 cm 3 in volume.
However, recently, in order to enable further reduction in thickness and size, a polymer battery using a gel electrolyte instead of an electrolytic solution (for example, see Patent Document 1) or a thin film solid secondary battery using a solid electrolyte (for example, Patent Document 2) has been developed.
The polymer battery described in Patent Document 1 has a positive electrode current collector inside an exterior body, a composite positive electrode containing a polymer solid electrolyte inside, an electrolyte layer made of an ion conductive polymer compound, and a polymer solid electrolyte inside. The composite negative electrode and the negative electrode current collector are sequentially arranged.
Although the polymer battery can be made thinner and smaller than a normal lithium ion secondary battery using an electrolytic solution, it requires a gel electrolyte, a bonding agent, a sealing member, etc. About 1 mm is the limit, and is not suitable for further thinning and miniaturization.

一方、薄膜固体二次電池の構成は、特許文献2に記載のように、基板上に集電体薄膜、負極活物質薄膜、固体電解質薄膜、正極活物質薄膜、集電体薄膜を順に積層した構成、または、基板上に上記層を逆の順で積層した構成である。
このような構成により、薄膜固体二次電池は、基板を除けば1μm程度の薄さにすることが可能である。また、基板の厚さを薄くしたり、薄膜化した固体電解質フィルムを基板の代わりに使用すれば、全体としてより薄型化、小型化を図ることが可能である。
On the other hand, as described in Patent Document 2, the thin film solid secondary battery has a structure in which a current collector thin film, a negative electrode active material thin film, a solid electrolyte thin film, a positive electrode active material thin film, and a current collector thin film are sequentially laminated on a substrate. A configuration or a configuration in which the above layers are stacked in the reverse order on a substrate.
With such a configuration, the thin-film solid secondary battery can be made as thin as about 1 μm except for the substrate. Further, if the thickness of the substrate is reduced or a thin solid electrolyte film is used instead of the substrate, the overall thickness can be reduced and the size can be reduced.

特開平10−74496号公報(第3−6頁、図1−2)Japanese Patent Laid-Open No. 10-74496 (page 3-6, FIG. 1-2) 特開平10−284130号公報(第3−4頁、図1−4)JP-A-10-284130 (page 3-4, FIG. 1-4)

以上のように、薄膜固体二次電池は薄型化、小型化が期待されるが、実際に電池として使用するためには、電気抵抗の高い負極活物質薄膜および正極活物質薄膜に、電気抵抗が低い金属等の集電体薄膜を積層させる必要がある。
このため、集電体薄膜を積層させる工程が必ず必要となり、製造時間と製造コストが余分にかかるという問題があった。
As described above, thin-film solid-state secondary batteries are expected to be thinner and smaller. However, in order to actually use the thin-film secondary batteries, the negative electrode active material thin film and the positive electrode active material thin film having high electric resistance have an electric resistance. It is necessary to stack a current collector thin film such as a low metal.
For this reason, the process of laminating | stacking a collector thin film is necessarily required, and there existed a problem that manufacturing time and manufacturing cost would be extra.

また、薄膜固体二次電池の負極活物質薄膜には、一般に電池性能の向上のために酸化バナジウム薄膜や酸化ニオブ薄膜が使用される。しかし、これらの物質は水分に弱いので、薄膜固体二次電池が大気にさらされる部分を窒化珪素等の水分防止薄膜で覆う必要がある。さらに酸化バナジウムは毒性があるという問題があった。このため、製造時間と製造コストが余分にかかるという問題があった。   Further, a vanadium oxide thin film or a niobium oxide thin film is generally used for the negative electrode active material thin film of the thin film solid secondary battery in order to improve battery performance. However, since these substances are vulnerable to moisture, it is necessary to cover a portion where the thin film solid secondary battery is exposed to the atmosphere with a moisture prevention thin film such as silicon nitride. Furthermore, vanadium oxide has a problem that it is toxic. For this reason, there was a problem that manufacturing time and manufacturing cost were excessive.

本発明の目的は、構成が簡単であって安全な物質を使用した電池性能が高い薄膜固体二次電池を提供することにある。   An object of the present invention is to provide a thin-film solid secondary battery having a simple structure and high battery performance using a safe substance.

前記課題は、本発明の薄膜固体二次電池によれば、基板上に、正極集電体層,正極活物質層,固体電解質層負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,がこの順に積層され、前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなることを特徴とする。
本発明では、負極側において酸化物導電膜層が、負極活物質層および負極集電体層を兼ねるものとすることができる。集電体層が取り出し電極として良好に機能するためには、集電体層はそのシート抵抗値が1kΩ/□程度以下であることが望ましい。したがって、薄膜固体二次電池の場合に、集電体層の膜厚を0.1μm程度以上に設定すると、集電体層に用いる物質の抵抗率は1×10−2Ω・cm程度以下である必要がある。
一方、従来の薄膜固体二次電池では、負極側に負極活物質層及び負極集電体層が積層されて形成されている。この負極活物質層に用いられている五酸化バナジウムや五酸化ニオブは、抵抗率が10Ω・cmのオーダーである。これらの物質は、このように抵抗値が非常に高くて殆ど導電性がなく絶縁体に近い。したがって、従来は負極活物質層が集電体層を兼ねることはできなかった。
しかし、本発明では、負極活物質層として機能する酸化物導電膜層に、抵抗率が1×10−2Ω・cm以下の物質を用いている。したがって、本発明の酸化物導電膜層は抵抗が低くなり、負極集電体層としても機能させることができる。このため、本発明では別途負極集電体層を設ける必要がなく、製造時間及び製造コストを低減することが可能である。
また、負極活物質層を別途独立して設けないので、有害な五酸化バナジウム等の毒性のある物質を用いることがないので好適である。
Anode active object is achieved, according to the thin-film solid secondary battery of the present invention, which on a substrate, comprising: a positive electrode collector layer, a positive electrode active material layer, a solid electrolyte layer, the function of the anode current collector layer an oxide conductive film layer serving as a material layer, but are stacked in this order, the oxide conductive film layer, the resistivity is characterized by comprising the following materials 1 × 10 -2 Ω · cm.
In the present invention, the oxide conductive film layer can also serve as the negative electrode active material layer and the negative electrode current collector layer on the negative electrode side. In order for the current collector layer to function well as an extraction electrode, the current collector layer preferably has a sheet resistance of about 1 kΩ / □ or less. Therefore, in the case of a thin film solid secondary battery, if the thickness of the current collector layer is set to about 0.1 μm or more, the resistivity of the substance used for the current collector layer is about 1 × 10 −2 Ω · cm or less. There must be.
On the other hand, in a conventional thin film solid secondary battery, a negative electrode active material layer and a negative electrode current collector layer are laminated on the negative electrode side. The vanadium pentoxide and niobium pentoxide used in this negative electrode active material layer have a resistivity on the order of 10 5 Ω · cm. These substances have a very high resistance value as described above, are hardly conductive, and are close to insulators. Therefore, conventionally, the negative electrode active material layer could not serve as the current collector layer.
However, in the present invention, a material having a resistivity of 1 × 10 −2 Ω · cm or less is used for the oxide conductive film layer functioning as the negative electrode active material layer. Therefore, the oxide conductive film layer of the present invention has low resistance and can function as a negative electrode current collector layer. For this reason, in this invention, it is not necessary to provide a negative electrode collector layer separately, and it is possible to reduce manufacturing time and manufacturing cost.
In addition, since the negative electrode active material layer is not separately provided, it is preferable that a toxic substance such as harmful vanadium pentoxide is not used.

また、基板上に、負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,固体電解質層と,正極活物質層と,正極集電体層と,がこの順に積層され、前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなる構成としてもよい。 Further, an oxide conductive film layer functioning as a negative electrode active material layer having a function of a negative electrode current collector layer , a solid electrolyte layer , a positive electrode active material layer, and a positive electrode current collector layer are formed on the substrate. The oxide conductive film layers may be sequentially stacked, and the oxide conductive film layer may have a resistivity of 1 × 10 −2 Ω · cm or less.

また、固体電解質フィルムの一方の面に、負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層が形成され、他方の面に正極活物質層、正極集電体層がこの順に積層され、前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなる構成としてもよい。
このように形成した薄膜固体二次電池を積層して、前記正極集電体層と前記酸化物導電膜層とが接触するようにして薄膜固体二次電池を構成してもよい。
また、前記正極集電体層同士及び前記酸化物導電膜層同士が接触するようにして薄膜固体二次電池を構成してもよい。
In addition, an oxide conductive film layer functioning as a negative electrode active material layer having a function of a negative electrode current collector layer is formed on one surface of the solid electrolyte film, and a positive electrode active material layer and a positive electrode current collector are formed on the other surface. The layers may be stacked in this order, and the oxide conductive film layer may be formed of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
The thin film solid secondary battery formed as described above may be stacked so that the positive electrode current collector layer and the oxide conductive film layer are in contact with each other.
Moreover, you may comprise a thin film solid secondary battery so that the said positive electrode collector layer and the said oxide electrically conductive film layers may contact.

また、基板上に、正極集電体層,正極活物質層,固体電解質層負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,がこの順に積層された二次電池セルを複数積層してなる薄膜固体二次電池であって、前記二次電池セルは、前記正極集電体層と前記酸化物導電膜層とが接触するように積層され、前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなるように構成してもよい。
また、上記二次電池セルを前記正極集電体層同士及び前記酸化物導電膜層同士が接触するように複数積層して薄膜固体二次電池を構成してもよい。
Also, on a substrate, a positive electrode collector layer, a positive electrode active material layer, a solid electrolyte layer, and the oxide conductive layer functioning as an anode active material layer having a function of a negative electrode collector layer, but this A thin-film solid secondary battery in which a plurality of secondary battery cells stacked in order are stacked, and the secondary battery cell is stacked so that the positive electrode current collector layer and the oxide conductive film layer are in contact with each other. The oxide conductive film layer may be made of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
In addition, a thin film solid secondary battery may be configured by stacking a plurality of the secondary battery cells such that the positive electrode current collector layers and the oxide conductive film layers are in contact with each other.

そして、前記酸化物導電膜層を形成する物質は、酸化インジウム,酸化スズ,酸化亜鉛のいずれか、又はこれらのいずれかを主成分とするものを選択することができる。前記酸化物導電膜層を上記物質とすることにより、水分防止効果を得ることができる。これにより、水分防止膜を別途設けることなく、電池特性を維持することができる。したがって、本発明の薄膜固体二次電池では、製造工程を省略することができ、製造コストを低減することが可能となる。
また、前記正極活物質層は、リチウムを含む金属酸化物を構成要素とする活物質層とすることができる。また、さらに水分防止膜が表面に積層されると好適である。
また、前記集電体層、前記正極活物質層、前記固体電解質層、前記酸化物導電膜層は、スパッタリング法により形成されれば好適である。
And the substance which forms the said oxide electrically conductive film layer can select any of indium oxide, tin oxide, zinc oxide, or the thing which has either of these as a main component. By using the oxide conductive film layer as the above substance, a moisture prevention effect can be obtained. Thereby, battery characteristics can be maintained without providing a moisture prevention film separately. Therefore, in the thin film solid secondary battery of the present invention, the manufacturing process can be omitted, and the manufacturing cost can be reduced.
Further, the positive electrode active material layer can be an active material layer having a metal oxide containing lithium as a constituent element. Further, it is preferable that a moisture prevention film is further laminated on the surface.
The current collector layer, the positive electrode active material layer, the solid electrolyte layer, and the oxide conductive film layer are preferably formed by a sputtering method.

本発明によれば下記記載の効果を奏する。
(1)本発明の第1の効果は、従来の薄膜固体二次電池よりも簡単な構成であるので、より少ない製造時間と工程で、充放電容量、放電開始電圧、サイクル特性等の電池特性が優れた薄膜固体二次電池を作製できる。
(2)本発明の第2の効果は、負極活物質として有害な五酸化バナジウム等の毒性のある物質を用いなくてすむ。これにより、手間を掛けずに作製することができる。
(3)本発明の第3の効果は、水分防止の効果がある酸化物導電膜を用いているので、水分による電池特性の劣化が少ない。
(4)本発明の第4の効果は、大気に露出する表面を水分防止効果のある水分防止膜で被覆することにより、性能の劣化をより押さえることができる。
The present invention has the following effects.
(1) Since the first effect of the present invention is a simpler structure than the conventional thin film solid state secondary battery, the battery characteristics such as the charge / discharge capacity, the discharge start voltage, and the cycle characteristics can be obtained with less production time and process. Can produce a thin-film solid-state secondary battery excellent in.
(2) The second effect of the present invention eliminates the use of a toxic substance such as vanadium pentoxide which is harmful as a negative electrode active material. Thereby, it can be produced without taking time and effort.
(3) According to the third effect of the present invention, since the oxide conductive film having the effect of preventing moisture is used, the battery characteristics are hardly deteriorated by moisture.
(4) According to the fourth effect of the present invention, it is possible to further suppress the deterioration of performance by covering the surface exposed to the atmosphere with a moisture preventing film having a moisture preventing effect.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下に説明する部材、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
図1乃至図3は本発明の実施例に係るものであり、図1,図2,図3はそれぞれ実施例1,2,3に係る薄膜固体二次電池の断面図である。図4乃至図6は比較例に係るものであり、図4,図5,図6はそれぞれ比較例1,2,3に係る薄膜固体二次電池の断面図である。図7は実施例の薄膜固体二次電池の充放電特性のグラフである。図8乃至図11はそれぞれ実施例7乃至10に係る薄膜固体二次電池の断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The members, arrangements, configurations, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
1 to 3 relate to an embodiment of the present invention, and FIGS. 1, 2 and 3 are sectional views of thin film solid state secondary batteries according to Embodiments 1, 2 and 3, respectively. 4 to 6 relate to a comparative example, and FIGS. 4, 5, and 6 are cross-sectional views of thin-film solid state secondary batteries according to comparative examples 1, 2, and 3, respectively. FIG. 7 is a graph of charge / discharge characteristics of the thin-film solid secondary battery of the example. 8 to 11 are sectional views of the thin film solid state secondary batteries according to Examples 7 to 10, respectively.

図1乃至図3は、本発明の薄膜固体二次電池1の構成を示す断面図である。
図1の実施形態では、薄膜固体二次電池1は、基板10上に、正極側の集電体層20、正極活物質層30、固体電解質層40、酸化物導電膜層50が順に積層されて形成されている。
また、図2の実施形態では、薄膜固体二次電池1は、基板10上に、酸化物導電膜層50、固体電解質層40、正極活物質層30、正極側の集電体層20が順に積層されて形成されている。図2の構成は、基板10上に積層する順番が図1とは逆となっている。
また、図3の実施形態では、固体電解質フィルム60の一方の面上に正極活物質層30、正極側の集電体層20が順に積層され、他方の面上に酸化物導電膜層50が積層されて形成されている。
図1乃至図3に示す本実施形態の薄膜固体二次電池1では、負極側の酸化物導電膜層50は、負極集電体層の機能を兼ね備えており、酸化物導電膜層50の表面には別途負極集電体層が設けられていない。
1 to 3 are cross-sectional views showing the configuration of the thin-film solid secondary battery 1 of the present invention.
In the embodiment of FIG. 1, in the thin film solid secondary battery 1, a current collector layer 20 on the positive electrode side, a positive electrode active material layer 30, a solid electrolyte layer 40, and an oxide conductive film layer 50 are sequentially stacked on a substrate 10. Is formed.
In the embodiment of FIG. 2, the thin film solid secondary battery 1 includes an oxide conductive film layer 50, a solid electrolyte layer 40, a positive electrode active material layer 30, and a current collector layer 20 on the positive electrode side in order on a substrate 10. It is formed by stacking. In the configuration of FIG. 2, the order of stacking on the substrate 10 is opposite to that of FIG.
In the embodiment of FIG. 3, the positive electrode active material layer 30 and the positive electrode current collector layer 20 are sequentially laminated on one surface of the solid electrolyte film 60, and the oxide conductive film layer 50 is formed on the other surface. It is formed by stacking.
In the thin-film solid secondary battery 1 of the present embodiment shown in FIGS. 1 to 3, the oxide conductive film layer 50 of the negative electrode side has both the function of the negative electrode current collector layer, the oxide conductive film layer 50 A separate negative electrode current collector layer is not provided on the surface.

基板10は、ガラス、半導体シリコン、セラミック、ステンレス、樹脂基板等を用いることができる。樹脂基板としては、ポリイミドやPET等を用いることができる。また、形が崩れずに取り扱いができるものであれば、基板10に折り曲げが可能な薄いフィルムを用いることができる。
集電体層20は、正極(正極活物質層30)および固体電解質層40との密着性がよく、電気抵抗が低い金属薄膜を用いることができる。集電体層20が取り出し電極として良好に機能するためには、そのシート抵抗が1kΩ/□以下であることが望ましい。集電体層20の膜厚を0.1μm程度以上に設定すると、集電体層20は抵抗率が1×10−2Ω・cm程度以下の物質によって形成する必要がある。このような物質として、例えば、バナジウム、アルミニウム、銅、ニッケル、金等を使用することができる。これらの物質によって集電体層20は、できるだけ薄くて電気抵抗も低くなる0.3μm程度の膜厚に形成することができる。
表1に各種物質の抵抗値、シート抵抗を示す。これらの値は、室温でスパッタリング法により成膜したものの実測値である。表1に示すように、バナジウムを0.3μmの膜厚に形成した場合、抵抗率は6×10−5Ω・cm、シート抵抗は2Ω/□となった。
As the substrate 10, glass, semiconductor silicon, ceramic, stainless steel, a resin substrate, or the like can be used. As the resin substrate, polyimide, PET, or the like can be used. In addition, a thin film that can be bent can be used for the substrate 10 as long as it can be handled without losing its shape.
The current collector layer 20 can be a metal thin film having good adhesion to the positive electrode (positive electrode active material layer 30) and the solid electrolyte layer 40 and having low electrical resistance. In order for the current collector layer 20 to function satisfactorily as an extraction electrode, the sheet resistance is desirably 1 kΩ / □ or less. When the film thickness of the current collector layer 20 is set to about 0.1 μm or more, the current collector layer 20 needs to be formed of a material having a resistivity of about 1 × 10 −2 Ω · cm or less. As such a substance, for example, vanadium, aluminum, copper, nickel, gold or the like can be used. With these materials, the current collector layer 20 can be formed to a thickness of about 0.3 μm that is as thin as possible and has a low electrical resistance.
Table 1 shows the resistance values and sheet resistances of various substances. These values are actually measured values of films formed by sputtering at room temperature. As shown in Table 1, when vanadium was formed to a thickness of 0.3 μm, the resistivity was 6 × 10 −5 Ω · cm, and the sheet resistance was 2Ω / □.

Figure 0004381176
Figure 0004381176

正極活物質層30は、リチウムイオンの離脱、吸着が可能な金属酸化物薄膜を用いることができる。例えば、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)等を使用することができる。正極活物質層30の膜厚は、できるだけ薄いことが望ましいが、充放電容量を確保できる1μm程度とするとよい。
固体電解質層40は、リチウムウオンの伝導性が良いリン酸リチウム(LiPO)やこれに窒素を添加した物質(LiPON)等を用いることができる。固体電解質層40の膜厚は、ピンホ−ルの発生が低減され且つできるだけ薄い1μm程度が好ましい。
As the positive electrode active material layer 30, a metal oxide thin film capable of detaching and adsorbing lithium ions can be used. For example, lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or the like can be used. The film thickness of the positive electrode active material layer 30 is desirably as thin as possible, but is preferably about 1 μm that can secure a charge / discharge capacity.
The solid electrolyte layer 40 may be made of lithium phosphate (Li 3 PO 4 ) having good lithium ionic conductivity, a substance obtained by adding nitrogen thereto (LiPON), or the like. The thickness of the solid electrolyte layer 40 is preferably about 1 μm, which is as thin as possible, with reduced generation of pinholes.

酸化物導電膜層50は、抵抗率が1×10−2Ω・cm以下になる物質であり、酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)や、これらを主成分として、スズ,アンチモン,フッ素,アルミニウム,ガリウム,ゲルマニウム,亜鉛等の不純物を添加してより抵抗値を下げた物質によって形成することができる。これらの例としては、スズを含む酸化インジウム(ITO)、アンチモンを含む酸化スズ(ATO)、フッ素を含む酸化スズ(FTO)、アルミニウムを含む酸化亜鉛(AZO)、ガリウムを含む酸化亜鉛(GZO)等を挙げることができる。
また、資源的に稀少ではあるが、より抵抗の低い酸化イリジウムや酸化ルテニウム等の導電性を持つ稀少金属の酸化物を用いても良い。
これらの酸化物導電膜は、リチウムイオンの吸蔵、離脱が可能であり、薄膜固体二次電池1の負極として機能する。また、これらの酸化物導電膜は、シート抵抗を1kΩ/□以下とすることが可能であるので集電体薄膜として機能することができる。このように、本発明の酸化物導電膜層50は、従来の負極活物質層と負極集電体層を兼ねるものである。したがって、本発明では別途、負極集電体層を形成する必要がなく、製造コスト・製造時間を低減することができる。
The oxide conductive film layer 50 is a substance having a resistivity of 1 × 10 −2 Ω · cm or less, such as indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), and the like. As a main component, tin, antimony, fluorine, aluminum, gallium, germanium, zinc and other impurities can be added to form a material having a lower resistance value. Examples include indium oxide containing tin (ITO), tin oxide containing antimony (ATO), tin oxide containing fluorine (FTO), zinc oxide containing aluminum (AZO), and zinc oxide containing gallium (GZO). Etc.
Further, although rare in terms of resources, an oxide of a rare metal having conductivity such as iridium oxide or ruthenium oxide having a lower resistance may be used.
These oxide conductive films can occlude and release lithium ions, and function as a negative electrode of the thin-film solid secondary battery 1. In addition, since these oxide conductive films can have a sheet resistance of 1 kΩ / □ or less, they can function as a current collector thin film. Thus, the oxide conductive film layer 50 of the present invention serves as both a conventional negative electrode active material layer and a negative electrode current collector layer. Therefore, in the present invention, it is not necessary to separately form a negative electrode current collector layer, and the manufacturing cost and the manufacturing time can be reduced.

酸化インジウム,酸化亜鉛,酸化スズ,ITO,ATO,FTO,AZO,GZO,酸化イリジウム,酸化ルテニウムのいずれかによって酸化物導電膜層50を形成する場合、充放電容量を確保するためには、膜厚を0.1μm以上とすることが望ましい。
また、酸化物導電膜50をスパッタリング法等により形成する場合には製造時間が短いことが好ましく、また、成膜後に剥れてしまう不都合を回避し良好な密着性を確保するためには、膜厚を10μm以下とするとよい。
したがって、酸化物導電膜層50の膜厚は、0.1μm〜10μmの範囲とするとよい。なお、塗布によって酸化導電膜層50を形成してもよい。
また、この範囲においてもより好ましくは、十分な充放電容量の確保、シート抵抗の低減、製造コスト・製造時間の低減を図ることができる0.5μm〜1μmの膜厚とするとよい。
When the oxide conductive film layer 50 is formed of any one of indium oxide, zinc oxide, tin oxide, ITO, ATO, FTO, AZO, GZO, iridium oxide, and ruthenium oxide, The thickness is preferably 0.1 μm or more.
In addition, when the oxide conductive film 50 is formed by a sputtering method or the like, it is preferable that the manufacturing time is short, and in order to avoid the inconvenience of peeling off after film formation and to ensure good adhesion, The thickness is preferably 10 μm or less.
Therefore, the thickness of the oxide conductive film layer 50 is preferably in the range of 0.1 μm to 10 μm. Note that the oxide conductive film layer 50 may be formed by coating.
Also in this range, it is more preferable that the film thickness be 0.5 μm to 1 μm, which can secure sufficient charge / discharge capacity, reduce sheet resistance, and reduce manufacturing cost and manufacturing time.

表1は、上記物質を膜厚0.5μmとした場合のシート抵抗を示しているが、すべて1kΩ/□以下となっている。また、これらの抵抗率は、1×10−2Ω・cm以下である。膜厚を0.1μm以上,シート抵抗を1kΩ/□以下とするために、抵抗率が1×10−2Ω・cm以下である物質によって酸化物導電膜50を形成する必要がある。
なお、従来負極活物質として用いられている五酸化バナジウムや五酸化ニオブは、抵抗率がそれぞれ5×10Ω・cm,5×10Ω・cmである。したがって、これらの物質では、薄膜を形成することによりシート抵抗を1kΩ/□以下とすることは実質上不可能であり、これらの物質による薄膜を取り出し電極として機能させることはできない。表1に示すように、これらの物質を0.3μmの膜厚に形成すると、シート抵抗は1010Ω/□のオーダーとなる。
Table 1 shows the sheet resistance when the above-mentioned substances have a film thickness of 0.5 μm, all of which are 1 kΩ / □ or less. Moreover, these resistivity is 1 * 10 <-2 > (omega | ohm) * cm or less. In order to set the film thickness to 0.1 μm or more and the sheet resistance to 1 kΩ / □ or less, it is necessary to form the oxide conductive film 50 with a material having a resistivity of 1 × 10 −2 Ω · cm or less.
Note that vanadium pentoxide and niobium pentoxide, which are conventionally used as negative electrode active materials, have resistivity of 5 × 10 5 Ω · cm and 5 × 10 5 Ω · cm, respectively. Therefore, with these materials, it is practically impossible to reduce the sheet resistance to 1 kΩ / □ or less by forming a thin film, and the thin film of these materials cannot function as an extraction electrode. As shown in Table 1, when these materials are formed to a thickness of 0.3 μm, the sheet resistance is on the order of 10 10 Ω / □.

固体電解質フィルム60は、リチウムイオン伝導性が高く、薄型化が可能なフィルムであれば特に限定はされない。例えば、リン酸リチウムと酸化チタンの粉を無機系のバインダーに混ぜてシート状に加工した、リチウムイオン伝導性が高いフィルム等を使用することができる。
また、薄膜固体二次電池1の大気に露出する表面は、水分防止効果のある水分防止膜70で被覆されている。このようにすると電池性能をより長く保つことができる。水分防止膜70としては、酸化珪素(SiO)や窒化珪素(SiN)等を使用することができる。水分防止膜70の膜厚は、できるだけ薄くて水分防止効果も高い0.4μm程度が好ましい。
The solid electrolyte film 60 is not particularly limited as long as it has high lithium ion conductivity and can be thinned. For example, it is possible to use a film having high lithium ion conductivity, in which powder of lithium phosphate and titanium oxide is mixed with an inorganic binder and processed into a sheet shape.
Further, the surface of the thin-film solid secondary battery 1 exposed to the atmosphere is covered with a moisture prevention film 70 having a moisture prevention effect. In this way, the battery performance can be kept longer. As the moisture prevention film 70, silicon oxide (SiO 2 ), silicon nitride (SiN x ), or the like can be used. The thickness of the moisture prevention film 70 is preferably about 0.4 μm which is as thin as possible and has a high moisture prevention effect.

上記の各薄膜の形成方法としては、スパッタリング法、電子ビーム蒸着法、加熱蒸着法等の真空成膜法や、塗布法等を用いることができる。好ましくは、より薄く均一に薄膜を形成できる真空成膜法を用いるのが良い。さらに好ましくは、蒸着物質との原子組成のずれが少なく、均一に成膜ができるスパッタリング法を用いるのが良い。   As a method for forming each thin film, a vacuum film forming method such as a sputtering method, an electron beam vapor deposition method, a heat vapor deposition method, a coating method, or the like can be used. It is preferable to use a vacuum film-forming method that can form a thin film more thinly and uniformly. More preferably, it is preferable to use a sputtering method in which there is little deviation in the atomic composition from the vapor deposition material and uniform film formation is possible.

上記の薄膜固体二次電池1は、充電を行うと、正極活物質層30からリチウムがイオンとなって離脱し、固体電解質層40または固体電解質フィルム60を介して酸化物導電膜層50に吸蔵される。このとき、正極活物質層30から外部へ電子が放出される。
また、放電時には、酸化物導電膜層50からリチウムがイオンとなって離脱し、固体電解質層40または固体電解質フィルム60を介して正極活物質層30に吸蔵される。このとき、酸化物導電膜層50から外部へ電子が放出される。
正極活物質層30は集電体層20によって導電性が確保されている。また、酸化物導電膜層50は電気抵抗が低いので導電性が確保される。
When the thin-film solid secondary battery 1 is charged, lithium is released from the positive electrode active material layer 30 as ions, and is stored in the oxide conductive film layer 50 through the solid electrolyte layer 40 or the solid electrolyte film 60. Is done. At this time, electrons are emitted from the positive electrode active material layer 30 to the outside.
At the time of discharge, lithium is separated from the oxide conductive film layer 50 as ions, and is inserted in the positive electrode active material layer 30 through the solid electrolyte layer 40 or the solid electrolyte film 60. At this time, electrons are emitted from the oxide conductive film layer 50 to the outside.
The positive electrode active material layer 30 has conductivity secured by the current collector layer 20. In addition, the oxide conductive film layer 50 has low electrical resistance, so that conductivity is ensured.

次に、図面を参照して、本発明の実施例、比較例について説明する。表2に、実施例1〜5,比較例1〜3の構成及び充放電特性の測定結果を示す。   Next, examples and comparative examples of the present invention will be described with reference to the drawings. In Table 2, the structure of Examples 1-5 and Comparative Examples 1-3 and the measurement result of charging / discharging characteristics are shown.

Figure 0004381176
Figure 0004381176

(実施例1)
実施例1では、図1の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、酸化物導電膜層50をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作製した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
集電体層20は、バナジウム金属ターゲットを用い、DCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、集電体層20として0.3μmのバナジウム薄膜を形成した。表1に示すように、このバナジウム薄膜のシート抵抗は2Ω/□、抵抗率は6×10−5Ω・cmであった。
Example 1
In Example 1, a current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, and an oxide conductive film layer 50 are formed in this order on a substrate 10 so as to have the configuration shown in FIG. A solid secondary battery 1 was produced.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
The current collector layer 20 was formed by a DC magnetron sputtering method using a vanadium metal target. The film was formed with a DC power of 1 KW and no heating. Thereby, a 0.3 μm vanadium thin film was formed as the current collector layer 20. As shown in Table 1, the vanadium thin film had a sheet resistance of 2Ω / □ and a resistivity of 6 × 10 −5 Ω · cm.

正極活物質層30は、マンガン酸リチウム(LiMn)の焼結体ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、1μmのマンガン酸リチウム薄膜を形成した。
固体電解質層40は、リン酸リチウム(LiPO)の焼結体ターゲットを用い、窒素ガスを導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、1μmのリン酸リチウム薄膜を形成した。
The positive electrode active material layer 30 was formed by RF magnetron sputtering using a sintered manganate (LiMn 2 O 4 ) sintered target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 1 μm lithium manganate thin film was formed.
The solid electrolyte layer 40 was formed by RF magnetron sputtering using a sintered phosphor target of lithium phosphate (Li 3 PO 4 ) and introducing nitrogen gas. The film was formed with an RF power of 1 KW and no heating. Thus, a 1 μm lithium phosphate thin film was formed.

酸化物導電膜層50は、スズを含む酸化インジウム(ITO)の焼結体ターゲットを用い、酸素を導入してDCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、0.5μmのITO薄膜を形成した。表1に示すように、このITO薄膜のシート抵抗は10Ω/□、抵抗率は5×10−4Ω・cmであった。
本実施例の薄膜固体二次電池1は、基板10を除くと、厚さは約3μmとなる。
The oxide conductive film layer 50 was formed by a DC magnetron sputtering method using an indium oxide (ITO) sintered body target containing tin and introducing oxygen. The film was formed with a DC power of 1 KW and no heating. Thereby, a 0.5 μm ITO thin film was formed. As shown in Table 1, this ITO thin film had a sheet resistance of 10Ω / □ and a resistivity of 5 × 10 −4 Ω · cm.
The thin-film solid secondary battery 1 of this example has a thickness of about 3 μm excluding the substrate 10.

以上のようにして得られた薄膜固体二次電池1の電池性能を評価するために、充放電測定器を用いて充放電特性を測定した。
測定条件は、充電および放電時の電流はいずれも400μA、充電および放電の打ち切りの電圧はそれぞれ3.5V、0.3Vとした。その結果、繰り返し充放電動作を示すことが確認できた。
表2に示すように、充放電動作が安定した10サイクル目の放電開始電圧は3.2V、充電容量,放電容量はそれぞれ958μAh,926μAhであった。図7に、安定して充放電動作を示した10サイクル目の充放電特性のグラフを示す。
本例では、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。
In order to evaluate the battery performance of the thin film solid secondary battery 1 obtained as described above, charge / discharge characteristics were measured using a charge / discharge measuring instrument.
Measurement conditions were such that the current during charging and discharging was 400 μA, and the voltage at which charging and discharging were terminated was 3.5 V and 0.3 V, respectively. As a result, it was confirmed that repeated charge / discharge operations were exhibited.
As shown in Table 2, the discharge start voltage at the 10th cycle in which the charge / discharge operation was stabilized was 3.2 V, and the charge capacity and the discharge capacity were 958 μAh and 926 μAh, respectively. FIG. 7 shows a graph of charge / discharge characteristics at the 10th cycle in which the charge / discharge operation is stably performed.
In this example, charge / discharge measurement was performed up to 100 cycles, but it was confirmed that a stable and substantially constant charge / discharge curve was exhibited.

(実施例2)
実施例2では、図2の構成をなすよう基板10上に、酸化物導電膜層50、固体電解質層40、正極活物質層30、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作製した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
また、他の各層の物質,成膜条件,厚さ等は、上記の実施例1と同じである。
以上のようにして得られた薄膜固体二次電池1の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は3.1V、充電容量,放電容量はそれぞれ966μAh,931μAhであった。
また、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。
(Example 2)
In Example 2, the oxide conductive film layer 50, the solid electrolyte layer 40, the positive electrode active material layer 30, and the current collector layer 20 are formed on the substrate 10 in this order by the sputtering method so as to form the structure of FIG. A solid secondary battery 1 was produced.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
The materials, film forming conditions, thicknesses, etc. of the other layers are the same as those in the first embodiment.
The battery performance of the thin film solid secondary battery 1 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 3.1 V, and the charge capacity and the discharge capacity were 966 μAh and 931 μAh, respectively.
Moreover, although charging / discharging measurement was performed to 100 cycles, it was confirmed that it shows a stable and substantially constant charging / discharging curve.

(実施例3)
実施例3では、図3の構成をなすよう厚さ50μmの固体電解質フィルム60を縦100mm、横100mmのサイズに切り出し、スパッタリング装置の中にセットして、まず片方の面に正極活物質層30、集電体層20の成膜を順に行った。各層の物質,成膜条件,厚さ等は、上記の実施例1と同じである。
次に、成膜装置から正極活物質層30及び集電体層20が成膜された固体電解質フィルム60を取り出し、裏返しにセットして酸化物導電膜層50の成膜を行った。各層に用いた物質,成膜条件,厚さ等は、上記の実施例1と同じである。
以上のようにして得られた薄膜固体二次電池1の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は2.9V、充電容量,放電容量はそれぞれ904μAh,899μAhであった。
また、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。
(Example 3)
In Example 3, a solid electrolyte film 60 having a thickness of 50 μm was cut into a size of 100 mm in length and 100 mm in width so as to form the configuration of FIG. 3, set in a sputtering apparatus, and first, the positive electrode active material layer 30 was formed on one surface. The current collector layer 20 was sequentially formed. The material, film forming conditions, thickness, and the like of each layer are the same as those in the first embodiment.
Next, the solid electrolyte film 60 on which the positive electrode active material layer 30 and the current collector layer 20 were formed was taken out from the film formation apparatus and set upside down to form the oxide conductive film layer 50. The materials, film forming conditions, thicknesses, etc. used for each layer are the same as those in the first embodiment.
The battery performance of the thin film solid secondary battery 1 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 2.9 V, and the charge capacity and the discharge capacity were 904 μAh and 899 μAh, respectively.
Moreover, although charging / discharging measurement was performed to 100 cycles, it was confirmed that it shows a stable and substantially constant charging / discharging curve.

(実施例4)
実施例4では、図1の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、酸化物導電膜層50をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作製した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
酸化物導電膜層50には、アルミニウムを含む酸化亜鉛(AZO)を用いた。AZOの成膜は実施例1のITO膜と同じ成膜条件で行い、0.5μmのAZO薄膜を形成した。表1に示すように、このAZO薄膜のシート抵抗は60Ω/□、抵抗率は3×10−3Ω・cmであった。
酸化物導電膜層50以外の各層の物質,成膜条件,厚さ等は、上記の実施例1と同じである。
以上のようにして得られた薄膜固体二次電池1の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は3.0V、充電容量,放電容量はそれぞれ921μAh,908μAhであった。
また、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。
(Example 4)
In Example 4, the current collector layer 20, the positive electrode active material layer 30, the solid electrolyte layer 40, and the oxide conductive film layer 50 are formed in this order on the substrate 10 so as to have the configuration shown in FIG. A solid secondary battery 1 was produced.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
For the oxide conductive film layer 50, zinc oxide (AZO) containing aluminum was used. The AZO film was formed under the same film formation conditions as the ITO film of Example 1 to form a 0.5 μm AZO thin film. As shown in Table 1, the sheet resistance of this AZO thin film was 60Ω / □, and the resistivity was 3 × 10 −3 Ω · cm.
The materials, film forming conditions, thicknesses, and the like of each layer other than the oxide conductive film layer 50 are the same as those in the first embodiment.
The battery performance of the thin film solid secondary battery 1 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 3.0 V, and the charge capacity and the discharge capacity were 921 μAh and 908 μAh, respectively.
Moreover, although charging / discharging measurement was performed to 100 cycles, it was confirmed that it shows a stable and substantially constant charging / discharging curve.

(実施例5)
実施例5では、図1の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、酸化物導電膜層50をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作製した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
酸化物導電膜層50には、アンチモンを含む酸化スズ(ATO)を用いた。ATOの成膜は実施例1のITO膜と同じ成膜条件で行い、0.5μmのATO薄膜を形成した。表1に示すように、このATO薄膜のシート抵抗は40Ω/□、抵抗率は2×10−3Ω・cmであった。
酸化物導電膜層50以外の各層の物質,成膜条件,厚さ等は、上記の実施例1と同じである。
以上のようにして得られた薄膜固体二次電池1の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は3.1V、充電容量,放電容量はそれぞれ945μAh,922μAhであった。
また、100サイクルまで充放電測定を行ったが、安定してほぼ一定の充放電曲線を示すことが確認された。
(Example 5)
In Example 5, a current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, and an oxide conductive film layer 50 are formed in this order on the substrate 10 so as to have the configuration shown in FIG. A solid secondary battery 1 was produced.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
For the oxide conductive film layer 50, tin oxide (ATO) containing antimony was used. The ATO film was formed under the same film forming conditions as those of the ITO film of Example 1 to form a 0.5 μm ATO thin film. As shown in Table 1, the sheet resistance of this ATO thin film was 40Ω / □, and the resistivity was 2 × 10 −3 Ω · cm.
The materials, film forming conditions, thicknesses, and the like of each layer other than the oxide conductive film layer 50 are the same as those in the first embodiment.
The battery performance of the thin film solid secondary battery 1 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 3.1 V, and the charge capacity and the discharge capacity were 945 μAh and 922 μAh, respectively.
Moreover, although charging / discharging measurement was performed to 100 cycles, it was confirmed that it shows a stable and substantially constant charging / discharging curve.

(比較例1)
次に比較例1として、図4に示すように基板10上に、集電体層20、正極活物質層30、固体電解質層40、負極活物質層80、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作製した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
負極活物質層80は、五酸化バナジウム(V)の焼結体ターゲットを用い、RFマグネトロンスパッタリング法にて形成した。1KWのRFパワー、無加熱で成膜した。これにより、0.25μmの五酸化バナジウム薄膜を形成した。表1に示すように、この五酸化バナジウム薄膜のシート抵抗は2×1010Ω/□、抵抗率は5×10Ω・cmであった。
負極活物質層80以外の各層の物質,成膜条件,厚さ等は、上記の実施例1と同じである。
(Comparative Example 1)
Next, as Comparative Example 1, a current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, a negative electrode active material layer 80, and a current collector layer 20 are sputtered in this order on a substrate 10 as shown in FIG. The thin film solid secondary battery 1 was produced by the method.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
The negative electrode active material layer 80 was formed by RF magnetron sputtering using a sintered target of vanadium pentoxide (V 2 O 5 ). The film was formed with 1 KW RF power and no heating. Thereby, a 0.25 μm vanadium pentoxide thin film was formed. As shown in Table 1, the vanadium pentoxide thin film had a sheet resistance of 2 × 10 10 Ω / □ and a resistivity of 5 × 10 5 Ω · cm.
The materials, film forming conditions, thicknesses, and the like of each layer other than the negative electrode active material layer 80 are the same as those in the first embodiment.

以上のようにして得られた薄膜固体二次電池101の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は3.2V、充電容量,放電容量はそれぞれ981μAh,931μAhであった。
また、100サイクルまで充放電測定を行った。
The battery performance of the thin film solid secondary battery 101 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 3.2 V, and the charge capacity and the discharge capacity were 981 μAh and 931 μAh, respectively.
Moreover, the charge / discharge measurement was performed up to 100 cycles.

(比較例2)
比較例2として、図5に示すように基板10上に、集電体層20、負極活物質層80、固体電解質層40、正極活物質層30、集電体層20をこの順にスパッタリング法により形成し、薄膜固体二次電池1を作製した。
基板10は、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。
各層の物質,成膜条件,厚さなどは、上記の比較例1と同じである。
以上のようにして得られた薄膜固体二次電池101の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は3.2V、充電容量,放電容量はそれぞれ955μAh,926μAhであった。
また、100サイクルまで充放電測定を行った。
(Comparative Example 2)
As Comparative Example 2, a current collector layer 20, a negative electrode active material layer 80, a solid electrolyte layer 40, a positive electrode active material layer 30, and a current collector layer 20 are formed in this order on a substrate 10 as shown in FIG. The thin film solid secondary battery 1 was formed.
As the substrate 10, soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
The material of each layer, film forming conditions, thickness, and the like are the same as in Comparative Example 1 above.
The battery performance of the thin film solid secondary battery 101 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 3.2 V, and the charge capacity and the discharge capacity were 955 μAh and 926 μAh, respectively.
Moreover, the charge / discharge measurement was performed up to 100 cycles.

(比較例3)
比較例3として、図6に示すように厚さ50μmの電解質フィルムを縦100mm、横100mmのサイズに切り出し、スパッタリング装置の中にセットして、片方の面に正極活物質層30、集電体層20を順に成膜し、次に、反対の面に負極活物質層80、集電体層20を順に成膜を行った。各層の物質,成膜条件,厚さ等は、上記の比較例1と同じである。
以上のようにして得られた薄膜固体二次電池101の電池性能を充放電測定により評価した。充放電測定の測定条件は上記の実施例1と同じである。
その結果、表2に示すように、10サイクル目の放電開始電圧は2.9V、充電容量,放電容量はそれぞれ912μAh,889μAhであった。
また、100サイクルまで充放電測定を行った。
(Comparative Example 3)
As Comparative Example 3, as shown in FIG. 6, an electrolyte film having a thickness of 50 μm was cut into a size of 100 mm in length and 100 mm in width, set in a sputtering apparatus, and on one side, a positive electrode active material layer 30 and a current collector The layer 20 was sequentially formed, and then the negative electrode active material layer 80 and the current collector layer 20 were sequentially formed on the opposite surface. The material of each layer, film forming conditions, thickness, and the like are the same as in Comparative Example 1 above.
The battery performance of the thin film solid secondary battery 101 obtained as described above was evaluated by charge / discharge measurement. The measurement conditions for the charge / discharge measurement are the same as in Example 1 above.
As a result, as shown in Table 2, the discharge start voltage at the 10th cycle was 2.9 V, and the charge capacity and the discharge capacity were 912 μAh and 889 μAh, respectively.
Moreover, the charge / discharge measurement was performed up to 100 cycles.

比較例1,2,3では負極側に負極活物質層80と集電体層20が積層して設けられている。これに対し、実施例1,2,3では負極側に負極活物質層80と集電体層20の代わりに酸化物導電膜層50のみが設けられている点が異なる。この点を除いて、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3は、それぞれ同様の膜構成を有する。
表2に示すように、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3をそれぞれ比較すると、いずれも同等の充放電容量、放電開始電圧を有しており、実施例1〜3の薄膜固体二次電池1は、二次電池として使用可能であることが分かる。
実施例1,4,5では、酸化物導電膜層50としてそれぞれITO薄膜,AZO薄膜,ATO薄膜を用いたが、いずれも同等の充放電容量、放電開始電圧を有しており、薄膜固体二次電池として使用可能であることが分かる。
また、上述のように実施例1〜5の薄膜固体二次電池1では100回の充放電を繰り返したが、比較例1〜3の薄膜固体二次電池101と同様に充放電容量、放電開始電圧が低下することがなく、繰り返し使用も可能であることが分かった。
In Comparative Examples 1, 2, and 3, the negative electrode active material layer 80 and the current collector layer 20 are laminated on the negative electrode side. In contrast, the first, second, and third embodiments are different in that only the oxide conductive film layer 50 is provided on the negative electrode side instead of the negative electrode active material layer 80 and the current collector layer 20. Except this point, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3 have the same film configuration.
As shown in Table 2, when Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 are respectively compared, both have the same charge / discharge capacity and discharge start voltage. And it turns out that the thin film solid secondary battery 1 of Examples 1-3 can be used as a secondary battery.
In Examples 1, 4 and 5, an ITO thin film, an AZO thin film, and an ATO thin film were used as the oxide conductive film layer 50, respectively, but all had the same charge / discharge capacity and discharge start voltage. It can be seen that it can be used as a secondary battery.
Moreover, in the thin film solid secondary battery 1 of Examples 1-5 as mentioned above, charging / discharging was repeated 100 times, but charge / discharge capacity and discharge start were performed similarly to the thin film solid secondary battery 101 of Comparative Examples 1-3. It was found that the voltage does not decrease and can be used repeatedly.

以上のように、本実施例の薄膜固体二次電池1は、比較例の薄膜固体二次電池101の構成と異なり、負極活物質層80及び集電体層20を設ける代わりに、酸化物導電膜層50を設けた構成とした。これにより、構成が簡単となり、より少ない製造時間と工程で作製することができ、製造コストを低減することが可能となる。
また、本実施例の薄膜固体二次電池1は、比較例の薄膜固体二次電池101と同等の充放電容量,放電開始電圧,繰り返し使用特性を有することが分かった。
また、本実施例の薄膜固体二次電池1は、五酸化バナジウムを用いずに作製することができる。
As described above, the thin film solid secondary battery 1 of the present example is different from the configuration of the thin film solid secondary battery 101 of the comparative example in that instead of providing the negative electrode active material layer 80 and the current collector layer 20, oxide conductive The film layer 50 was provided. This simplifies the configuration, enables production with less production time and processes, and reduces production costs.
Moreover, it turned out that the thin film solid secondary battery 1 of a present Example has the charging / discharging capacity | capacitance, discharge start voltage, and repeated use characteristic equivalent to the thin film solid secondary battery 101 of a comparative example.
Moreover, the thin film solid secondary battery 1 of a present Example can be produced without using vanadium pentoxide.

(実施例6)
実施例6では、実施例1乃至実施例5の薄膜固体二次電池1、比較例1乃至比較3の薄膜固体二次電池101の大気に露出する表面に、水分防止効果のある水分防止膜70としての窒化珪素薄膜をスパッタリング法によりそれぞれ形成した。
すなわち実施例1、4、5では、図1に示すように酸化物導電膜層50の露出面に水分防止膜70を形成した。実施例2では、図2に示すように集電体層20の露出面に水分防止膜70を形成した。実施例3では、図3に示すように集電体層20及び酸化物導電膜層50の露出面に水分防止膜70を形成した。
また、比較例1,2では、それぞれ図4,5に示すように集電体層20の露出面に水分防止膜70を形成した。比較例3では、図6に示すように両側の集電体層20の露出面に水分防止膜70を形成した。
水分防止膜70の成膜は、Si半導体ターゲットを用い、RFマグネトロンスパッタリング法により窒素ガスを導入して行った。RFパワーは1KW、無加熱で成膜した。これにより、0.4μmの窒化珪素薄膜を形成した。
(Example 6)
In Example 6, a moisture prevention film 70 having a moisture prevention effect on the surfaces of the thin film solid secondary battery 1 of Examples 1 to 5 and the thin film solid secondary battery 101 of Comparative Examples 1 to 3 exposed to the atmosphere. Each of the silicon nitride thin films was formed by sputtering.
That is, in Examples 1, 4, and 5, the moisture prevention film 70 was formed on the exposed surface of the oxide conductive film layer 50 as shown in FIG. In Example 2, a moisture prevention film 70 was formed on the exposed surface of the current collector layer 20 as shown in FIG. In Example 3, the moisture prevention film 70 was formed on the exposed surfaces of the current collector layer 20 and the oxide conductive film layer 50 as shown in FIG.
In Comparative Examples 1 and 2, a moisture prevention film 70 was formed on the exposed surface of the current collector layer 20 as shown in FIGS. In Comparative Example 3, as shown in FIG. 6, the moisture prevention film 70 was formed on the exposed surfaces of the current collector layers 20 on both sides.
The moisture prevention film 70 was formed by introducing a nitrogen gas by an RF magnetron sputtering method using a Si semiconductor target. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.4 μm silicon nitride thin film was formed.

以上のようにして得られた水分防止膜70を被覆した薄膜固体二次電池1,101の充放電特性を作製後すぐに測定したところ、上記実施例1乃至実施例5、比較例1乃至比較例3の水分防止膜70を被覆していない薄膜固体二次電池1,101と同等の充放電電圧、充放電容量が得られた。   When the charge / discharge characteristics of the thin-film solid secondary batteries 1 and 101 coated with the moisture prevention film 70 obtained as described above were measured immediately after the production, the above Examples 1 to 5 and Comparative Examples 1 to 1 were compared. The charge / discharge voltage and charge / discharge capacity equivalent to those of the thin-film solid secondary battery 1,101 not coated with the moisture prevention film 70 of Example 3 were obtained.

実施例1乃至実施例5の薄膜固体二次電池1、比較例1乃至比較例3の薄膜固体二次電池101について、約1か月後に再び充放電特性を測定した。
水分防止膜70を被覆していない比較例1乃至比較例3の薄膜固体二次電池101では、表2に示すように放電容量がいずれも25%程度低下した。
これに対し、水分防止膜70を被覆していない実施例1乃至実施例5の薄膜固体二次電池1では、表2に示すように放電容量は2〜4%の低下にとどまった。
また、水分防止膜70を被覆した薄膜固体二次電池1,101では、1ヶ月後の測定で充放電容量の低下が見られなかった。
About the thin film solid secondary battery 1 of Example 1 thru | or Example 5, and the thin film solid secondary battery 101 of Comparative Example 1 thru | or Comparative Example 3, the charging / discharging characteristic was measured again about one month later.
In the thin-film solid secondary batteries 101 of Comparative Examples 1 to 3 that were not covered with the moisture prevention film 70, as shown in Table 2, the discharge capacity was reduced by about 25%.
On the other hand, in the thin-film solid secondary battery 1 of Examples 1 to 5 that did not cover the moisture prevention film 70, the discharge capacity was only reduced by 2 to 4% as shown in Table 2.
In addition, in the thin-film solid secondary battery 1,101 coated with the moisture prevention film 70, no decrease in charge / discharge capacity was observed in the measurement after one month.

以上のように、水分防止膜70を被覆していない薄膜固体二次電池101では、負極活物質層80に用いた五酸化バナジウムが大気中の水分を吸うことによって、電池特性が劣化した。これに対し、水分防止膜70を被覆していない薄膜固体二次電池1では、負極活物質と集電体を兼ねた酸化物導電膜層50としてITO,AZO,ATOを用いることによって、水分防止膜70を被覆しなくても電池特性の劣化が大幅に低減され、水分防止効果があることが分かる。
また、水分防止膜70を被覆した薄膜固体二次電池1,101は、水分防止の効果が大きく、電池特性の劣化が少ない。
以上のように、本実施例の薄膜固体二次電池1は、比較例の薄膜固体二次電池101と比べて、空気中の水分に対する耐久性を有しており、電池特性が劣化しにくいことが分かる。したがって、本実施例の薄膜固体二次電池1には、必ずしも水分防止効果のある水分防止膜70をコートする必要がない。
As described above, in the thin-film solid secondary battery 101 that does not cover the moisture prevention film 70, the battery characteristics deteriorated because the vanadium pentoxide used for the negative electrode active material layer 80 absorbs moisture in the atmosphere. On the other hand, in the thin-film solid secondary battery 1 that does not cover the moisture prevention film 70, moisture prevention is achieved by using ITO, AZO, and ATO as the oxide conductive film layer 50 that also serves as the negative electrode active material and the current collector. It can be seen that even without coating the film 70, the deterioration of the battery characteristics is greatly reduced, and there is a moisture prevention effect.
Further, the thin-film solid secondary batteries 1 and 101 coated with the moisture prevention film 70 have a large effect of preventing moisture and have little deterioration in battery characteristics.
As described above, the thin film solid secondary battery 1 of this example has durability against moisture in the air and the battery characteristics are not easily deteriorated as compared with the thin film solid secondary battery 101 of the comparative example. I understand. Therefore, the thin film solid secondary battery 1 of the present embodiment does not necessarily need to be coated with the moisture preventing film 70 having a moisture preventing effect.

(実施例7)
実施例7では、実施例3のフィルム状の薄膜固体二次電池1を5枚作製した。そして、これら5枚のフィルム状の薄膜固体二次電池1を異性極が接触するように重ねてラミネート機で熱圧着し、図8に示す直列積層型構造の薄膜固体二次電池2を作製した。つまり、5枚の薄膜固体二次電池1は、隣合う薄膜固体二次電池1との間で、正極側の集電体層20と酸化物導電膜層50とが接触するように積層されている。また、薄膜固体二次電池2の最外層には、さらに水分防止膜70を形成した。
以上のようにして作製した図8に示す薄膜固体二次電池2について、銅からなる導電性テープを引き出し電極として最表面の正極の集電体層20及び負極の酸化物導電膜層50にそれぞれ貼り付けて電池性能を充放電測定により評価した。
その結果、実施例3と比較すると、充電容量及び放電容量は略同等で、放電開始電圧が約5倍程度となっており、直列接続の効果がみられた。
(Example 7)
In Example 7, five film-shaped thin film solid secondary batteries 1 of Example 3 were produced. Then, these five film-like thin film solid secondary batteries 1 were stacked so that the opposite poles were in contact with each other and thermocompression bonded with a laminating machine to produce a thin film solid secondary battery 2 having a serial stacked structure shown in FIG. . That is, the five thin film solid secondary batteries 1 are laminated so that the positive electrode current collector layer 20 and the oxide conductive film layer 50 are in contact with the adjacent thin film solid secondary battery 1. Yes. Further, a moisture prevention film 70 was further formed on the outermost layer of the thin film solid secondary battery 2.
For the thin-film solid secondary battery 2 shown in FIG. 8 produced as described above, a conductive tape made of copper is used as a lead electrode for the positive electrode current collector layer 20 and the negative oxide conductive film layer 50, respectively. The battery performance was evaluated by charge / discharge measurement.
As a result, compared with Example 3, the charge capacity and the discharge capacity were substantially the same, the discharge start voltage was about 5 times, and the effect of series connection was observed.

(実施例8)
実施例8では、実施例3のフィルム状の薄膜固体二次電池1を5枚作製した。そして、これら5枚のフィルム状の薄膜固体二次電池1を同一極が接触するように重ねてラミネート機で熱圧着し、図9に示す並列積層型構造の薄膜固体二次電池3を作製した。つまり、5枚の薄膜固体二次電池1は、隣合う薄膜固体二次電池1との間で、正極側の集電体層20同士、又は酸化物導電膜層50同士が接触するように積層されている。また、薄膜固体二次電池2の最外層には、さらに水分防止膜70を形成した。その際、銅からなる導電性テープを各フィルム状の薄膜固体二次電池1の間と最表面の正極の集電体層20及び負極の酸化物導電膜層50にそれぞれ貼り付けて、並列接続用の引き出し電極とした。
以上のようにして作製した図9に示す薄膜固体二次電池3について、同極間を接続して電池性能を充放電測定により評価した。
その結果、実施例3と比較すると、放電開始電圧は略同等で、充電容量及び放電容量が約5倍程度となっており、並列接続の効果がみられた。
なお、実施例7、8では、5枚のフィルム状の薄膜固体二次電池1を積層した構成としたが、これに限らず、複数枚を積層した構成とすることができる。
(Example 8)
In Example 8, five film-form thin film solid secondary batteries 1 of Example 3 were produced. Then, these five film-like thin film solid secondary batteries 1 were stacked so that the same poles were in contact with each other, and thermocompression bonded with a laminating machine to produce a thin film solid secondary battery 3 having a parallel stacked structure shown in FIG. . That is, the five thin-film solid secondary batteries 1 are stacked so that the current collector layers 20 on the positive electrode side or the oxide conductive film layers 50 are in contact with the adjacent thin-film solid secondary battery 1. Has been. Further, a moisture prevention film 70 was further formed on the outermost layer of the thin film solid secondary battery 2. At that time, a conductive tape made of copper is attached between each film-like thin film solid secondary battery 1 and the outermost positive electrode current collector layer 20 and the negative electrode oxide conductive film layer 50, respectively. The lead electrode was used.
For the thin-film solid secondary battery 3 shown in FIG. 9 produced as described above, the same polarity was connected and the battery performance was evaluated by charge / discharge measurement.
As a result, compared with Example 3, the discharge start voltage was substantially the same, the charge capacity and the discharge capacity were about 5 times, and the effect of parallel connection was seen.
In addition, in Example 7, 8, although it was set as the structure which laminated | stacked the five film-form thin film solid secondary batteries 1, it can be set as the structure which laminated | stacked not only this but two or more sheets.

(実施例9)
実施例9では、図10の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、酸化物導電膜層50をこの順に積層してなる二次電池セル5をさらに複数層積層して、直列積層型構造の薄膜固体二次電池2を作製した。
集電体層20,正極活物質層30,固体電解質層40,酸化物導電膜層50の物質,成膜条件,厚さ等は、上記の実施例1と同じである。各層は、スパッタリング法にて順次積層して形成した。また、最外層には水分防止膜70を形成した。本実施例では、基板10上に二次電池セル5を5層積層した構成とした。
つまり、この直列積層型構造の薄膜固体二次電池2では、隣合う二次電池セル5は、一方の正極側の集電体層20と他方の酸化物導電膜層50が接触するようにして積層されている。
以上のようにして作製した図10に示す薄膜固体二次電池2について、銅からなる導電性テープを引き出し電極として最表面の負極の酸化物導電膜層50と基板10側の正極の集電体層20にそれぞれ貼り付けて電池性能を充放電測定により評価した。なお、基板10に直接積層された集電体層20は、その一部分が露出するように形成し、この露出部分に導電性テープを貼り付けた。また、最表面の負極の酸化物導電膜層50にも外部に露出する部分を設け、導電性テープを貼り付けた。
その結果、実施例1と比較すると、充電容量及び放電容量は略同等で、放電開始電圧が約5倍程度となっており、直列接続の効果がみられた。
また、図示しないが、基板10上に、酸化物導電膜層50、固体電解質層40、正極活物質層30、集電体層20の順に積層してなる二次電池セルをさらに複数層積層して形成した直列積層型構造の薄膜固体二次電池2についても、同様に実施例1と比較して、充電容量及び放電容量は略同等で、放電開始電圧が約5倍程度であり、直列接続の効果がみられた。
Example 9
In Example 9, a secondary battery in which a current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, and an oxide conductive film layer 50 are laminated in this order on a substrate 10 having the configuration of FIG. A plurality of cells 5 were further laminated to produce a thin film solid secondary battery 2 having a serially laminated structure.
The materials, film formation conditions, thickness, and the like of the current collector layer 20, the positive electrode active material layer 30, the solid electrolyte layer 40, and the oxide conductive film layer 50 are the same as those in the first embodiment. Each layer was formed by sequentially laminating by a sputtering method. In addition, a moisture prevention film 70 was formed as the outermost layer. In this embodiment, the secondary battery cell 5 is laminated on the substrate 10 in five layers.
That is, in the thin film solid secondary battery 2 having the serial stacked structure, the adjacent secondary battery cells 5 are arranged so that the current collector layer 20 on one positive electrode side and the oxide conductive film layer 50 on the other side are in contact with each other. Are stacked.
For the thin-film solid secondary battery 2 shown in FIG. 10 manufactured as described above, a conductive film made of copper is used as a lead electrode, and the negative electrode oxide conductive film layer 50 and the positive electrode current collector on the substrate 10 side. The battery performance was evaluated by charge / discharge measurement by pasting each layer 20. The current collector layer 20 directly laminated on the substrate 10 was formed so that a part of the current collector layer 20 was exposed, and a conductive tape was attached to the exposed part. Further, a portion exposed to the outside was also provided on the oxide conductive film layer 50 of the outermost negative electrode, and a conductive tape was attached.
As a result, compared with Example 1, the charge capacity and the discharge capacity were substantially the same, the discharge start voltage was about 5 times, and the effect of series connection was seen.
Although not shown, a plurality of secondary battery cells in which the oxide conductive film layer 50, the solid electrolyte layer 40, the positive electrode active material layer 30, and the current collector layer 20 are stacked in this order are stacked on the substrate 10. Similarly, the thin film solid-state secondary battery 2 having a serial stacked structure formed in the same manner has substantially the same charge capacity and discharge capacity as the first embodiment, and the discharge start voltage is about five times higher. The effect of was seen.

(実施例10)
実施例10では、図11の構成をなすよう基板10上に、集電体層20、正極活物質層30、固体電解質層40、酸化物導電膜層50をこの順に積層してなる二次電池セル5を形成し、さらにこの二次電池セル5上に酸化物導電膜層50、固体電解質層40、正極活物質層30、集電体層20をこの順に積層してなる二次電池セル6を形成し、さらにこの上に二次電池セル5、二次電池セル6、・・・と順に積層して並列積層型構造の薄膜固体二次電池3を作製した。集電体層20,正極活物質層30,固体電解質層40,酸化物導電膜層50の物質,成膜条件,厚さ等は、上記の実施例1と同じである。各層は、スパッタリング法にて順次積層して形成した。また、最外層には水分防止膜70を形成した。本実施例では、基板10上に二次電池セル5,6,5,6,5と5層積層した。
つまり、この並列積層型構造の薄膜固体二次電池3では、隣合う二次電池セル5,6は、負極の酸化物導電膜層50同士、正極の集電体層20同士が接触するようにして積層されている。
(Example 10)
In Example 10, a secondary battery in which a current collector layer 20, a positive electrode active material layer 30, a solid electrolyte layer 40, and an oxide conductive film layer 50 are stacked in this order on a substrate 10 to have the configuration of FIG. The secondary battery cell 6 is formed by forming the cell 5 and further laminating the oxide conductive film layer 50, the solid electrolyte layer 40, the positive electrode active material layer 30, and the current collector layer 20 in this order on the secondary battery cell 5. And a secondary battery cell 5, a secondary battery cell 6,... In this order were stacked in this order to produce a thin film solid secondary battery 3 having a parallel stacked structure. The materials, film formation conditions, thickness, and the like of the current collector layer 20, the positive electrode active material layer 30, the solid electrolyte layer 40, and the oxide conductive film layer 50 are the same as those in the first embodiment. Each layer was formed by sequentially laminating by a sputtering method. In addition, a moisture prevention film 70 was formed as the outermost layer. In this example, five layers of secondary battery cells 5, 6, 5, 6, and 5 were stacked on the substrate 10.
That is, in the thin film solid secondary battery 3 having the parallel stacked structure, the adjacent secondary battery cells 5 and 6 are arranged such that the negative electrode conductive film layers 50 and the positive electrode current collector layers 20 are in contact with each other. Are stacked.

また、二次電池セル5,6が接触する酸化物導電膜層50及び集電体層20では、一部にさらには薄膜を積層しない露出部分を設け、この露出部分に引き出し電極を接続した。そして、各二次電池セル5,6の集電体層20を接続して一方の引き出し電極とすると共に、各二次電池セル5,6の酸化物導電膜層50を接続して他方の引き出し電極とした。
以上のようにして作製した図11に示す薄膜固体二次電池3について、同極間を接続して電池性能を充放電測定により評価した。
その結果、実施例1と比較すると、放電開始電圧は略同等で、充電容量及び放電容量が約5倍程度となっており、並列接続の効果がみられた。
また、図示しないが、基板10上にまず二次電池セル6を積層し、この上に二次電池セル5を積層し、さらにこの上に二次電池セル6、二次電池セル5、・・・と順に積層して並列積層型構造の薄膜固体二次電池3したが、図11の構成の並列積層型構造の薄膜固体二次電池3と同程度の性能であることが確かめられた。
なお、実施例9、10では、5層構成としたが、これに限らず、複数層の二次電池セル5,6を積層した構成とすることができる。
また、図11の実施例では、二次電池セル5,6は、酸化物導電膜層50同士または集電体層20同士が接触するように形成されている。つまり、酸化物導電膜層50及び集電体層20が連続して形成されている。本発明では、二次電池セル5,6を積層することには、それぞれの二次電池セル5,6で個別に酸化物導電膜層50及び集電体層20を形成すること、及び連続して積層すべき酸化物導電膜層50,集電体層20をそれぞれまとめて一層に形成することの両方が含まれる。
また、実施例9、10では、隣合う二次電池セル5および二次電池セル6間に、電極引き出し用の電極膜を別途形成して、二次電池セル5,二次電池セル6を順次積層してもよい。
Further, in the oxide conductive film layer 50 and the current collector layer 20 with which the secondary battery cells 5 and 6 are in contact, an exposed portion where a thin film is not further laminated is provided in part, and a lead electrode is connected to the exposed portion. Then, the current collector layer 20 of each secondary battery cell 5, 6 is connected to form one lead electrode, and the oxide conductive film layer 50 of each secondary battery cell 5, 6 is connected to the other lead electrode. An electrode was obtained.
With respect to the thin-film solid secondary battery 3 shown in FIG. 11 manufactured as described above, the same polarity was connected and the battery performance was evaluated by charge / discharge measurement.
As a result, compared with Example 1, the discharge start voltage was substantially the same, the charge capacity and the discharge capacity were about 5 times, and the effect of parallel connection was seen.
Although not shown, the secondary battery cell 6 is first laminated on the substrate 10, the secondary battery cell 5 is laminated thereon, and the secondary battery cell 6, the secondary battery cell 5,. The thin film solid secondary battery 3 having the parallel stacked structure was stacked in order, and it was confirmed that the performance was the same as that of the thin film solid secondary battery 3 having the parallel stacked structure having the configuration shown in FIG.
In addition, in Example 9, 10, although it was set as the 5 layer structure, it can be set as the structure which laminated | stacked the secondary battery cell 5 and 6 of multiple layers not only in this.
In the embodiment of FIG. 11, the secondary battery cells 5 and 6 are formed so that the oxide conductive film layers 50 or the current collector layers 20 are in contact with each other. That is, the oxide conductive film layer 50 and the current collector layer 20 are continuously formed. In the present invention, the secondary battery cells 5 and 6 are laminated by forming the oxide conductive film layer 50 and the current collector layer 20 individually in each of the secondary battery cells 5 and 6, and continuously. In other words, both the oxide conductive film layer 50 and the current collector layer 20 to be laminated are formed in one layer.
In Examples 9 and 10, an electrode film for electrode drawing is separately formed between the adjacent secondary battery cell 5 and secondary battery cell 6, and the secondary battery cell 5 and the secondary battery cell 6 are sequentially formed. You may laminate.

実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example. 実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example. 実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example. 比較例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on a comparative example. 比較例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on a comparative example. 比較例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on a comparative example. 実施例に係る薄膜固体二次電池の充放電特性のグラフである。It is a graph of the charging / discharging characteristic of the thin film solid secondary battery which concerns on an Example. 実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example. 実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example. 実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example. 実施例に係る薄膜固体二次電池の断面図である。It is sectional drawing of the thin film solid secondary battery which concerns on an Example.

符号の説明Explanation of symbols

1,2,3,101 薄膜固体二次電池、5,6 二次電池セル、10 基板、20 集電体層、30 正極活物質層、40 固体電解質層、50 酸化物導電膜層、60 固体電解質フィルム、70 水分防止膜、80 負極活物質層 1, 2, 3, 101 Thin-film solid secondary battery, 5, 6 Secondary battery cell, 10 Substrate, 20 Current collector layer, 30 Positive electrode active material layer, 40 Solid electrolyte layer, 50 Oxide conductive film layer, 60 Solid Electrolyte film, 70 moisture prevention film, 80 negative electrode active material layer

Claims (11)

基板上に、正極集電体層,正極活物質層,固体電解質層負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,がこの順に積層され、
前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなることを特徴とする薄膜固体二次電池。
On a substrate laminated, and the positive electrode collector layer, a positive electrode active material layer, a solid electrolyte layer, and the oxide conductive layer functioning as an anode active material layer having a function of a negative electrode collector layer, but in this order And
The oxide conductive film layer is made of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
基板上に、負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,固体電解質層と,正極活物質層と,正極集電体層と,がこの順に積層され、
前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなることを特徴とする薄膜固体二次電池。
On a substrate, laminating an oxide conductive film layer serving as a negative electrode active material layer having a function of a negative electrode collector layer, a solid electrolyte layer, a cathode active material layer, and the positive electrode collector layer, but in this order And
The oxide conductive film layer is made of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
固体電解質フィルムの一方の面に、負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層が形成され、他方の面に正極活物質層、正極集電体層がこの順に積層され、
前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなることを特徴とする薄膜固体二次電池。
An oxide conductive film layer functioning as a negative electrode active material layer having the function of a negative electrode current collector layer is formed on one surface of the solid electrolyte film, and a positive electrode active material layer and a positive electrode current collector layer are formed on the other surface. Laminated in this order,
The oxide conductive film layer is made of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
請求項3に記載の薄膜固体二次電池を積層してなり、前記正極集電体層と前記酸化物導電膜層とが接触するように積層してなることを特徴とする薄膜固体二次電池。   A thin-film solid secondary battery comprising the thin-film solid secondary battery according to claim 3 laminated so that the positive electrode current collector layer and the oxide conductive film layer are in contact with each other. . 請求項3に記載の薄膜固体二次電池を積層してなり、前記正極集電体層同士及び前記酸化物導電膜層同士が接触するように積層してなることを特徴とする薄膜固体二次電池。   The thin film solid secondary battery according to claim 3, wherein the thin film solid secondary battery is stacked so that the positive electrode current collector layers and the oxide conductive film layers are in contact with each other. battery. 基板上に、正極集電体層,正極活物質層,固体電解質層負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,がこの順に積層された二次電池セルを複数積層してなる薄膜固体二次電池であって、
前記二次電池セルは、前記正極集電体層と前記酸化物導電膜層とが接触するように積層され、
前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなることを特徴とする薄膜固体二次電池。
On a substrate laminated, and the positive electrode collector layer, a positive electrode active material layer, a solid electrolyte layer, and the oxide conductive layer functioning as an anode active material layer having a function of a negative electrode collector layer, but in this order A thin film solid secondary battery in which a plurality of secondary battery cells are stacked,
The secondary battery cell is laminated so that the positive electrode current collector layer and the oxide conductive film layer are in contact with each other,
The oxide conductive film layer is made of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
基板上に、正極集電体層,正極活物質層,固体電解質層負極集電体層の機能を備えた負極活物質層として機能する酸化物導電膜層と,がこの順に積層された二次電池セルを複数積層してなる薄膜固体二次電池であって、
前記二次電池セルは、前記正極集電体層同士及び前記酸化物導電膜層同士が接触するように積層され、
前記酸化物導電膜層は、抵抗率が1×10−2Ω・cm以下の物質からなることを特徴とする薄膜固体二次電池。
On a substrate laminated, and the positive electrode collector layer, a positive electrode active material layer, a solid electrolyte layer, and the oxide conductive layer functioning as an anode active material layer having a function of a negative electrode collector layer, but in this order A thin film solid secondary battery in which a plurality of secondary battery cells are stacked,
The secondary battery cells are stacked such that the positive electrode current collector layers and the oxide conductive film layers are in contact with each other,
The oxide conductive film layer is made of a material having a resistivity of 1 × 10 −2 Ω · cm or less.
前記正極活物質層は、リチウムを含む金属酸化物を構成要素とする活物質層であることを特徴とする請求項1乃至7のいずれか一項に記載の薄膜固体二次電池。   The thin film solid state secondary battery according to claim 1, wherein the positive electrode active material layer is an active material layer including a metal oxide containing lithium as a constituent element. 前記酸化物導電膜層を形成する物質は、酸化インジウム,酸化スズ,酸化亜鉛のいずれか、又はこれらのいずれかを主成分とするものであることを特徴とする請求項1乃至7のいずれか一項に記載の薄膜固体二次電池。   The material forming the oxide conductive film layer is any one of indium oxide, tin oxide, and zinc oxide, or any of them as a main component. The thin film solid secondary battery according to one item. 水分防止膜が表面に積層されてなることを特徴とする請求項1乃至7のいずれか一項に記載の薄膜固体二次電池。   The thin film solid secondary battery according to any one of claims 1 to 7, wherein a moisture prevention film is laminated on the surface. 前記正極集電体層、前記正極活物質層、前記固体電解質層、前記酸化物導電膜層は、スパッタリング法により形成されたことを特徴とする請求項1乃至7のいずれか一項に記載の薄膜固体二次電池。   The said positive electrode collector layer, the said positive electrode active material layer, the said solid electrolyte layer, and the said oxide electrically conductive film layer were formed by sputtering method, The Claim 1 characterized by the above-mentioned. Thin film solid secondary battery.
JP2004056277A 2004-03-01 2004-03-01 Thin film solid secondary battery Expired - Fee Related JP4381176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056277A JP4381176B2 (en) 2004-03-01 2004-03-01 Thin film solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056277A JP4381176B2 (en) 2004-03-01 2004-03-01 Thin film solid secondary battery

Publications (2)

Publication Number Publication Date
JP2005251417A JP2005251417A (en) 2005-09-15
JP4381176B2 true JP4381176B2 (en) 2009-12-09

Family

ID=35031704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056277A Expired - Fee Related JP4381176B2 (en) 2004-03-01 2004-03-01 Thin film solid secondary battery

Country Status (1)

Country Link
JP (1) JP4381176B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381273B2 (en) 2004-10-01 2009-12-09 株式会社東芝 Secondary battery and method for manufacturing secondary battery
JP5194255B2 (en) * 2006-03-02 2013-05-08 国立大学法人岩手大学 Secondary battery and method and system for manufacturing the same
JP2008011696A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Capacitor device and mobile electronic equipment provided with the same
EP2048262B1 (en) * 2006-07-27 2018-09-12 JX Nippon Mining & Metals Corporation Lithium-containing transition metal oxide target, process for producing the same and method for producing lithium ion thin-film secondary battery
US8044813B1 (en) 2006-11-16 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Radio field intensity measurement device, and radio field intensity detector and game console using the same
JP5099407B2 (en) 2006-11-30 2012-12-19 住友電気工業株式会社 battery
JP5164369B2 (en) * 2006-12-08 2013-03-21 日本合成化学工業株式会社 Secondary battery
JP5217195B2 (en) * 2007-03-14 2013-06-19 ジオマテック株式会社 Thin-film solid lithium ion secondary battery and composite device including the same
JP4843582B2 (en) * 2007-08-17 2011-12-21 株式会社アルバック Method for producing lithium phosphate sintered body and sputtering target
JP2009179867A (en) * 2008-01-31 2009-08-13 Ulvac Japan Ltd Parallel flat plate type magnetron sputtering apparatus, method for producing solid electrolyte thin film, and method for producing thin film solid lithium ion secondary battery
JP7015673B2 (en) * 2017-10-27 2022-02-03 株式会社日本マイクロニクス Power storage device

Also Published As

Publication number Publication date
JP2005251417A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
TWI796295B (en) Energy storage device having an interlayer between electrode and electrolyte layer
US8951675B2 (en) Graphene current collectors in batteries for portable electronic devices
US6805999B2 (en) Buried anode lithium thin film battery and process for forming the same
JP5304796B2 (en) Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, battery-mounted device, and method for producing positive electrode plate for lithium ion secondary battery
JP5217195B2 (en) Thin-film solid lithium ion secondary battery and composite device including the same
KR100982468B1 (en) High capacity thin film battery module and the method for preparing the same
JP2005063958A (en) Thin-film solid lithium secondary battery and its manufacturing method
JP5157005B2 (en) Negative electrode active material for thin film solid lithium ion secondary battery, thin film solid lithium ion secondary battery using the same, and method for producing the same
US20100330411A1 (en) Thin film battery and method of connecting electrode terminal of thin film battery
CN110581316B (en) Laminated battery
WO2006082846A1 (en) Thin-film solid secondary cell
CN101395744A (en) Secondary battery, manufacturing method thereof and system thereof
JP4381176B2 (en) Thin film solid secondary battery
CN111712946A (en) Electrode assembly having improved connection structure between electrode tab and current collector and method of manufacturing the same
JP2004127743A (en) Thin film battery
US10381627B2 (en) Battery structure and method of manufacturing the same
JP5217074B2 (en) Thin-film solid lithium ion secondary battery
JP2001015152A (en) Fully solid layer built cell
WO2018181662A1 (en) All-solid-state lithium ion secondary battery
JP5008960B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
US11251483B2 (en) Method of preparing an electrochemical cell
JP6926910B2 (en) Rechargeable battery
JP2012038433A (en) Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery
JP2009211920A (en) All solid lithium secondary battery and method of manufacturing the same
US11302967B2 (en) Low-voltage microbattery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees