JP2012038433A - Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery - Google Patents

Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery Download PDF

Info

Publication number
JP2012038433A
JP2012038433A JP2010174733A JP2010174733A JP2012038433A JP 2012038433 A JP2012038433 A JP 2012038433A JP 2010174733 A JP2010174733 A JP 2010174733A JP 2010174733 A JP2010174733 A JP 2010174733A JP 2012038433 A JP2012038433 A JP 2012038433A
Authority
JP
Japan
Prior art keywords
lower electrode
active material
current collector
electrode active
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010174733A
Other languages
Japanese (ja)
Inventor
Ryuichi Kamiyama
竜一 神山
Kimihiro Sano
公宏 佐野
Kentaro Nakajima
健太郎 中島
Takuo Ito
卓雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2010174733A priority Critical patent/JP2012038433A/en
Publication of JP2012038433A publication Critical patent/JP2012038433A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a thin-film solid secondary battery that is good in yield, and a method of manufacturing the thin-film solid secondary battery.SOLUTION: A thin-film solid secondary battery 10 includes a lower electrode active material 11a which comes into surface contact with a solid electrolyte 12, a lower electrode collector 11b which comes into surface contact with the lower electrode active material 11a, a terminal part 11c comprising an exposed surface electrically connecting with the lower electrode collector 11b and extended to a position where it does not come into surface contact with the lower electrode active material 11a to be exposed, or an exposed surface formed by exposing at least a part of the lower electrode collector 11b, an upper electrode active material 13a which comes into surface contact with the solid electrolyte 12, and an upper electrode collector 13b which comes into surface contact with the upper electrode active material 13a. The lower electrode active material 11a, solid electrolyte 12, upper electrode active material 13a, and upper electrode collector 13b are laminated in substantially the same shape in plan view, and an outer periphery of a contact surface between the lower electrode collector 11b and lower electrode active material 11a is formed inside an outer periphery of a lower surface of the lower electrode active material 11a.

Description

本発明は、薄膜固体二次電池及び薄膜固体二次電池の製造方法に係り、特に、マスクを使用した製造工程の簡略化を図り、歩留まりの良い薄膜固体二次電池及び薄膜固体二次電池の製造方法に関する。   The present invention relates to a thin film solid secondary battery and a method for manufacturing a thin film solid secondary battery, and more particularly, to simplify a manufacturing process using a mask, and to provide a thin film solid secondary battery and a thin film solid secondary battery with high yield. It relates to a manufacturing method.

ICカード、携帯電話をはじめとする小型携帯機器は広く普及し、より小型、軽量、多機能化が進んでいる。それに伴い、それらの機器を駆動させるために必要な電池も、より小型でエネルギー密度が高いことが求められている。リチウムイオン二次電池は、他の電池と比べてエネルギー密度が高いため広い用途で用いることが可能で、現在、最も広く普及している。   Small portable devices such as IC cards and mobile phones are widely used, and are becoming smaller, lighter and more multifunctional. Accordingly, batteries required for driving these devices are also required to be smaller and have higher energy density. Lithium ion secondary batteries have a higher energy density than other batteries and can be used in a wide range of applications, and are currently most widely used.

また、小型携帯機器以外にも、医療機器、センサー機器、小型機能ロボット等、各種小型デバイスにおいても、小型でエネルギー密度が高い電池が求められている。
しかしながら、電池の小型化や薄型化に関し、電解液を用いる従来の電池では容器の厚さなどから限界がある。これに対し、溶液ではなく、ゲル状の電解質や固体電解質を用いる全固体型の電池が知られており、例えば固体電解質を用いる薄膜固体二次電池(例えば、特許文献1参照)が提案されている。
In addition to small portable devices, small and high energy density batteries are required for various small devices such as medical devices, sensor devices, and small functional robots.
However, with respect to miniaturization and thinning of the battery, conventional batteries using an electrolytic solution have limitations due to the thickness of the container. On the other hand, an all-solid battery using a gel electrolyte or a solid electrolyte instead of a solution is known. For example, a thin-film solid secondary battery using a solid electrolyte (for example, see Patent Document 1) has been proposed. Yes.

薄膜固体二次電池の構成は、特許文献1に記載のように、基板上に負極集電体薄膜、負極活物質薄膜、固体電解質薄膜、正極活物質薄膜、正極集電体薄膜を順に積層した構成、又は基板上に上記層を逆の順で積層した構成である。このような構成により、薄膜固体二次電池は、基板を除けば1μm程度の薄さにすることが可能である。また、基板の厚さを薄くしたり、薄膜化した固体電解質フィルムを基板の代わりに使用したりすれば、全体としてより薄型化、小型化を図ることが可能である。さらに、全固体型の薄膜固体二次電池であるため、液漏れ等の不都合もなく、高い安全性を備えたものとすることができる。   As described in Patent Document 1, a thin film solid secondary battery has a structure in which a negative electrode current collector thin film, a negative electrode active material thin film, a solid electrolyte thin film, a positive electrode active material thin film, and a positive electrode current collector thin film are sequentially laminated on a substrate. A configuration or a configuration in which the above layers are stacked in the reverse order on a substrate. With such a configuration, the thin-film solid secondary battery can be made as thin as about 1 μm except for the substrate. Further, if the thickness of the substrate is reduced or a thin solid electrolyte film is used instead of the substrate, the overall thickness can be reduced and the size can be reduced. Furthermore, since it is an all-solid-state thin film solid secondary battery, it can be provided with high safety without inconvenience such as liquid leakage.

薄膜固体二次電池の製造技術に関しては、薄膜固体二次電池(例えば薄膜固体リチウム二次電池)の各層を積層させる際、スパッタリング技術、真空蒸着技術等のドライプロセスによりその材料及び成膜技術に関して、種々の材料及び技術が提案されている。その中でも、スパッタリングによる成膜技術は、近年の技術進歩に伴い、様々なターゲットによる成膜が可能となってきているだけでなく、装置の小型化、成膜工程の簡略化、及びそれに伴うコストダウンも可能であることから、薄膜固体二次電池の製造技術において非常に重要とされる技術である。   Regarding the manufacturing technology of a thin film solid secondary battery, when laminating each layer of a thin film solid secondary battery (for example, a thin film solid lithium secondary battery), the material and the film forming technique are applied by a dry process such as a sputtering technique and a vacuum deposition technique. Various materials and techniques have been proposed. Among them, the film formation technology by sputtering is not only capable of forming a film with various targets in accordance with recent technological advances, but also downsizing the apparatus, simplifying the film formation process, and the costs associated therewith. This is a technology that is very important in the manufacturing technology of thin film solid state secondary batteries because it can be down.

スパッタリング技術における成膜面積の制御方法としては、基板にマスクを装着して基板成膜面側を部分的に覆い隠し、マスクの開口部分のみに成膜する方法が一般に用いられている。基本的に、薄膜固体二次電池を構成する5層の成膜においては、それぞれ任意の二次元形状に成膜するために、マスクを積層プロセスごとに交換する必要がある。しかしながら、このマスク交換時においては、技術的な問題により僅かな「ずれ」が生じ、この「ずれ」に伴い、正極膜(正極集電体層及び正極活物質層)と負極膜(負極集電体層及び負極活物質層)とが、それぞれ膜の端部において接触して短絡が起きるという問題点がある。したがって、スパッタリング技術により高性能な薄膜固体リチウム二次電池を製造できるにもかかわらず、上記問題点により、不良品が発生し、歩留まりが悪いという不都合があった。   As a method for controlling the film formation area in the sputtering technique, a method is generally used in which a mask is attached to a substrate, the substrate film formation surface side is partially covered, and the film is formed only on the opening portion of the mask. Basically, in the film formation of the five layers constituting the thin film solid state secondary battery, it is necessary to exchange the mask for each lamination process in order to form each film in an arbitrary two-dimensional shape. However, when this mask is replaced, a slight “deviation” occurs due to technical problems. Along with this “deviation”, the positive electrode film (positive electrode current collector layer and positive electrode active material layer) and negative electrode film (negative electrode current collector). The body layer and the negative electrode active material layer) are in contact with each other at the end of the film, causing a short circuit. Therefore, despite the fact that a high-performance thin-film solid lithium secondary battery can be manufactured by the sputtering technique, there is a disadvantage that defective products are generated due to the above-described problems, and the yield is poor.

これに対し、特許文献2では、正極膜と負極膜の短絡を防止するため、電池を構成する各層の成膜面積を基板側から順に小さくし、各層が互いに平面上で重ならないように形成された薄膜固体二次電池が開示されている。
また、特許文献3では、箔の上に各層が積層され、最上層である負極活物質層のみを他の層と比較して面積が小さくなるように形成された薄膜固体二次電池が開示されている。
On the other hand, in Patent Document 2, in order to prevent a short circuit between the positive electrode film and the negative electrode film, the film formation area of each layer constituting the battery is sequentially reduced from the substrate side so that the layers do not overlap each other on a plane. A thin film solid secondary battery is disclosed.
Patent Document 3 discloses a thin-film solid-state secondary battery in which each layer is laminated on a foil and only the uppermost negative electrode active material layer is formed to have a smaller area than other layers. ing.

特許文献2,3に開示された構成のように、下方に形成された層に対し、上方に形成された層の面積を小さく形成することにより、上方に形成された層は下方に形成された層の周縁において互いに接触することが無く、短絡の発生を抑制することができる。   As in the configurations disclosed in Patent Documents 2 and 3, by forming the area of the upper layer smaller than the lower layer, the upper layer is formed below. The occurrence of a short circuit can be suppressed without contact with each other at the periphery of the layer.

また、特許文献4では、集電体層の上に面積の小さな負極活物質層を形成し、さらにこの負極活物質層の周縁を覆うように、面積の大きな電解質層を積層した薄膜固体二次電池が開示されている。そしてさらに電解質層の上層に、面積の小さな正極活物質層を形成し、この正極活物質層の上層に面積の大きな集電体層を形成することにより、正極活物質層の周縁を覆うこともまた開示されている。
このような構成とすると、負極活物質層と、正極活物質層及び集電体層とが接触することがない。
In Patent Document 4, a thin-film solid secondary in which a negative electrode active material layer having a small area is formed on a current collector layer, and an electrolyte layer having a large area is laminated so as to cover the periphery of the negative electrode active material layer. A battery is disclosed. Further, a positive electrode active material layer having a small area is formed on the electrolyte layer, and a current collector layer having a large area is formed on the positive electrode active material layer, thereby covering the periphery of the positive electrode active material layer. Also disclosed.
With such a configuration, the negative electrode active material layer, the positive electrode active material layer, and the current collector layer do not come into contact with each other.

特許第3531866号公報Japanese Patent No. 3531866 特許第3116857号公報Japanese Patent No. 3116857 国際公開第2007/102433号International Publication No. 2007/102433 特開2008−112635号公報JP 2008-112635 A

特許文献2,3のように、薄膜固体二次電池を構成する各層について、上方に積層する層の面積を、下方に積層する面積よりも小さく形成した構成や、特許文献4のように、活物質層の上層に形成する層の面積を大きくし、活物質層の周縁を覆う構成とすると、各層が互いに周縁部で接触することなく、その結果、短絡を防止することができる。   As described in Patent Documents 2 and 3, for each layer constituting the thin-film solid state secondary battery, the area of the layer stacked above is formed smaller than the area stacked below, or as disclosed in Patent Document 4 When the area of the layer formed over the material layer is increased to cover the periphery of the active material layer, the layers do not contact each other at the periphery, and as a result, a short circuit can be prevented.

このように、各層の面積が異なる各層を備えた薄膜固体二次電池をスパッタリングにより作製する際、面積の異なる各層を成膜するためにはマスクを交換する必要がある。そして、マスクを交換する際には、スパッタリング装置内を一旦大気開放する必要がある。したがってマスク交換時、各層の表面が大気中に曝されるため、各層における表面の酸化、水分による変質が伴う。そしてその結果、電池性能(例えば、電池の寿命)が低下する虞が生じる。   As described above, when a thin film solid-state secondary battery including each layer having a different area is formed by sputtering, it is necessary to replace the mask in order to form each layer having a different area. When replacing the mask, the inside of the sputtering apparatus needs to be once opened to the atmosphere. Therefore, when the mask is replaced, the surface of each layer is exposed to the atmosphere, so that the surface of each layer is oxidized and altered by moisture. As a result, battery performance (for example, battery life) may be reduced.

したがって、特許文献2乃至4に開示された技術においては、マスク交換回数が多いため電池性能の劣化が生じ、薄膜固体二次電池の製造において、歩留まりが低下するという問題点があった。さらに、各層毎にマスクを交換すると製造工程が煩雑となるとともにコストがかかるという問題点があった。   Therefore, the techniques disclosed in Patent Documents 2 to 4 have a problem that the performance of the battery is deteriorated due to the large number of mask replacements, and the yield is lowered in the manufacture of the thin film solid secondary battery. Furthermore, if the mask is replaced for each layer, there is a problem that the manufacturing process becomes complicated and costs increase.

本発明の目的は、薄膜固体二次電池の上下電極間で起こる短絡の削減を図り、歩留まりの良い薄膜固体二次電池及び薄膜固体二次電池の製造方法を提供することにある。
また、本発明の他の目的は、薄膜固体二次電池を構成する各層の成膜において、マスク交換回数を削減して製造工程の簡略化を図り、電池性能の良い薄膜固体二次電池及び薄膜固体二次電池の製造方法を提供することにある。
An object of the present invention is to reduce a short circuit occurring between upper and lower electrodes of a thin film solid secondary battery, and to provide a thin film solid secondary battery having a high yield and a method for manufacturing the thin film solid secondary battery.
Another object of the present invention is to simplify the manufacturing process by reducing the number of mask exchanges in the formation of each layer constituting a thin film solid secondary battery, and to provide a thin film solid secondary battery and a thin film with good battery performance. It is providing the manufacturing method of a solid secondary battery.

前記課題は、本発明に係る薄膜固体二次電池によれば、正負いずれか一方の極性の下部電極と、固体電解質と、他方の極性の上部電極とがこの順に形成されてなる薄膜固体二次電池であって、前記下部電極は、前記固体電解質の下面に面接触する下部電極活物質と、該下部電極活物質の下面に面接触する下部電極集電体と、該下部電極集電体と導通すると共に前記下部電極活物質と面接触しない位置まで延設され露出した露出面、又は前記下部電極集電体の少なくとも一部が露出した露出面からなる端子部とを備え、前記上部電極は、前記固体電解質の上面に面接触する上部電極活物質と、該上部電極活物質の上面に面接触する上部電極集電体とを備え、前記下部電極活物質と、前記固体電解質と、前記上部電極活物質と、前記上部電極集電体とは、平面視略同一形状で積層され、前記下部電極集電体と前記下部電極活物質との接触面の外周は、前記下部電極活物質の下面の外周よりも内側に形成されてなること、により解決される。   According to the thin-film solid secondary battery of the present invention, the subject is a thin-film solid secondary in which a positive electrode of either positive or negative polarity, a solid electrolyte, and an upper electrode of the other polarity are formed in this order. The lower electrode includes a lower electrode active material that is in surface contact with the lower surface of the solid electrolyte, a lower electrode current collector that is in surface contact with the lower surface of the lower electrode active material, and the lower electrode current collector, An exposed surface extending and exposed to a position not conducting surface contact with the lower electrode active material, or an exposed surface from which at least a part of the lower electrode current collector is exposed, and the upper electrode comprises: An upper electrode active material in surface contact with the upper surface of the solid electrolyte, and an upper electrode current collector in surface contact with the upper surface of the upper electrode active material, the lower electrode active material, the solid electrolyte, and the upper electrode Electrode active material and upper electrode current collector Are laminated in substantially the same shape in plan view, and the outer periphery of the contact surface between the lower electrode current collector and the lower electrode active material is formed inside the outer periphery of the lower surface of the lower electrode active material. It is solved by.

このように、本発明の薄膜固体二次電池において、下部電極集電体と、その上方に配設される下部電極活物質との接触面の外周は、下部電極活物質の下面の外周よりも内側に形成されている。すなわち、この構成により、下部電極集電体の端部を、その上方に配設される下部電極活物質で覆うことにより、下部電極集電体が上部電極集電体と接触することがない。したがって、確実に短絡を防止することができるだけでなく、歩留まりの良い薄膜固体二次電池を提供することができる。
そして、薄膜固体二次電池を構成する下部電極集電体、下部電極活物質、固体電解質、上部電極活物質、上部電極集電体は、基板上に、真空成膜装置内でマスクを用いることにより形成されるのが一般的であるが、下部電極活物質から上部電極集電体までが平面視略同一形状として構成されるため、これら各層の薄膜形成時、すべて同一マスクを用いて成膜することができる。一般に、各層の形状が異なる構成とするとマスク交換が必要となり、マスク交換を行う際、真空成膜装置内の大気開放を伴い、その結果、薄膜を汚染することがある。これに対し、本発明の薄膜固体二次電池は平面視略同一形状であるため、各層の形成時にマスク交換を伴わず、一括で下部電極活物質から上部電極集電体までを成膜することにより、マスク交換に起因する各層の汚染を防止することができる。その結果、電池性能の良い薄膜固体二次電池とすることができる。
さらに、本発明の薄膜固体二次電池は、上記構成により下部電極活物質を形成した後、マスク交換を行う必要がない。したがって、本発明の薄膜固体二次電池は、特に下部電極を正極とした場合、電池性能に特に大きく関係するリチウムを含有した活物質の成膜時、真空成膜装置内の大気開放を行う必要が無く、その結果、活物質を汚染しないため、良好な電池性能を備えた薄膜固体二次電池とすることができる。
Thus, in the thin film solid secondary battery of the present invention, the outer periphery of the contact surface between the lower electrode current collector and the lower electrode active material disposed above the lower electrode active material is more than the outer periphery of the lower surface of the lower electrode active material. It is formed inside. That is, with this configuration, the lower electrode current collector is not brought into contact with the upper electrode current collector by covering the end portion of the lower electrode current collector with the lower electrode active material disposed above the lower electrode current collector. Therefore, it is possible to provide a thin film solid-state secondary battery that not only can reliably prevent a short circuit but also has a high yield.
Then, the lower electrode current collector, the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector constituting the thin film solid secondary battery use a mask in a vacuum film forming apparatus on the substrate. However, since the structure from the lower electrode active material to the upper electrode current collector is substantially the same shape in plan view, all these layers are formed using the same mask. can do. In general, if each layer has a different shape, it is necessary to replace the mask. When the mask is replaced, the atmosphere in the vacuum film forming apparatus is released, and as a result, the thin film may be contaminated. On the other hand, since the thin-film solid state secondary battery of the present invention has substantially the same shape in plan view, it is possible to form a film from the lower electrode active material to the upper electrode current collector in a lump without replacing the mask when forming each layer. Thus, contamination of each layer due to mask replacement can be prevented. As a result, a thin film solid secondary battery with good battery performance can be obtained.
Furthermore, the thin film solid secondary battery of the present invention does not require mask exchange after the lower electrode active material is formed by the above-described configuration. Therefore, the thin-film solid secondary battery of the present invention needs to be opened to the atmosphere in the vacuum film-forming apparatus when forming an active material containing lithium, which is particularly related to battery performance, particularly when the lower electrode is a positive electrode. As a result, since the active material is not contaminated, a thin film solid secondary battery having good battery performance can be obtained.

このとき、前記下部電極集電体及び前記端子部は、可撓性を備えた薄板状の絶縁性基板上に形成された導体膜パターンであると好適である。
このように、フィルム等を含む薄板状の絶縁性基板を用いることにより、本発明の薄膜個体二次電池は、可撓性を備えた薄膜固体二次電池とすることも可能である。したがって、薄膜固体二次電池が搭載される電子機器において、その設置箇所、設置形態を限定することなく、さまざまな電子機器に搭載可能である。さらに、薄板状又はフィルム状の薄膜固体二次電池は軽量であるため、運搬費用も抑制することができる。
At this time, it is preferable that the lower electrode current collector and the terminal portion are conductor film patterns formed on a thin plate-like insulating substrate having flexibility.
Thus, by using a thin plate-like insulating substrate including a film or the like, the thin film solid secondary battery of the present invention can be a thin film solid secondary battery having flexibility. Therefore, the electronic device on which the thin film solid secondary battery is mounted can be mounted on various electronic devices without limiting the installation location and the installation form. Furthermore, since a thin plate-like or film-like thin film solid secondary battery is lightweight, transportation costs can be reduced.

また、前記端子部は、前記下部電極集電体の外周方向外側に延設されてなると好ましい。
このように、下部電極集電体の外周方向外側に延設されることにより、基板上において、端子部は下部電極集電体が積層された側と同じ側に形成される。その結果、外部接続用に用いられる各種ケーブルは、この端子部と、上部電極集電体とに接続されるため、同一面上に正極、負極の端子を備えた薄膜固体二次電池とすることができる。したがって、薄膜固体二次電池が電子機器等に搭載される際、その配線が簡素化される。
Moreover, it is preferable that the said terminal part is extended in the outer peripheral direction outer side of the said lower electrode electrical power collector.
Thus, by extending outward in the outer peripheral direction of the lower electrode current collector, the terminal portion is formed on the same side as the side on which the lower electrode current collector is laminated on the substrate. As a result, since various cables used for external connection are connected to this terminal part and the upper electrode current collector, a thin-film solid secondary battery having positive and negative terminals on the same surface is used. Can do. Therefore, when the thin-film solid secondary battery is mounted on an electronic device or the like, the wiring is simplified.

さらにまた、前記下部電極集電体は、導電性基板からなり、該導電性基板上には、開口部を有する絶縁膜が形成され、該絶縁膜の開口部の外周は、前記下部電極活物質の外周よりも内側に形成された構成であっても良い。
このように、導電性基板を用いることにより、導電性基板を下部電極集電体として機能させることができる。その結果、絶縁性の基板を用いる場合と比較してその構成が簡素化される。また、下部電極集電体を別途成膜により形成する工程を省略することができるため、薄膜固体二次電池の製造工程を簡略化することができる。
Furthermore, the lower electrode current collector is made of a conductive substrate, and an insulating film having an opening is formed on the conductive substrate, and an outer periphery of the opening of the insulating film is formed by the lower electrode active material. The structure formed inside the outer periphery of may be sufficient.
Thus, by using a conductive substrate, the conductive substrate can function as a lower electrode current collector. As a result, the configuration is simplified compared to the case where an insulating substrate is used. Further, since the step of separately forming the lower electrode current collector by film formation can be omitted, the manufacturing process of the thin film solid secondary battery can be simplified.

このとき、前記下部電極活物質がリチウムを含む材料からなり、前記固体電解質が、リン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライド(LiPON)、又は遷移金属及びLiとNを含む複合酸化物から選ばれるいずれか一つであると好ましい。
このように、下部電極を正極とし、下部電極活物質にリチウムを含む材料を用い、さらにリチウムイオンの伝導性が良好なこれらの化合物を固体電解質に含有することで、良好な充放電特性を備えた薄膜固体リチウムイオン二次電池を提供することができる。
At this time, the lower electrode active material is made of a material containing lithium, and the solid electrolyte includes lithium phosphate (Li 3 PO 4 ), lithium phosphate oxynitride in which oxygen of lithium phosphate is partially substituted with nitrogen ( LiPON) or a transition metal and a composite oxide containing Li and N is preferable.
Thus, using a material containing lithium as the lower electrode active material as the lower electrode active material and further containing these compounds with good lithium ion conductivity in the solid electrolyte, it has good charge / discharge characteristics. A thin film solid lithium ion secondary battery can be provided.

前記課題は、本発明に係る薄膜固体二次電池の製造方法によれば、正負いずれか一方の極性の下部電極を構成する下部電極集電体、端子部及び下部電極活物質と、固体電解質と、他方の極性の上部電極を構成する上部電極活物質及び上部電極集電体がこの順に形成されてなる薄膜固体二次電池の製造方法であって、絶縁性基板上に、前記下部電極集電体及び該下部電極集電体と導通すると共に少なくとも一部が露出した前記端子部を構成する導体膜パターンを形成する工程と、薄膜形成領域を区画する枠状のマスクを、前記薄膜形成領域の外周が前記下部電極集電体の外周よりも外側であって且つ前記端子部の一部が前記薄膜形成領域に含まれない位置で、前記絶縁性基板上の前記導体膜パターンが形成された側に配設する工程と、前記マスクの前記薄膜形成領域内に、前記下部電極活物質と、前記固体電解質と、前記上部電極活物質と、前記上部電極集電体とを連続してこの順に成膜する工程と、を備えてなること、により解決される。   According to the method for manufacturing a thin-film solid secondary battery according to the present invention, the subject is a lower electrode current collector, a terminal portion and a lower electrode active material that constitute a lower electrode of either positive or negative polarity, a solid electrolyte, A method of manufacturing a thin-film solid secondary battery in which an upper electrode active material and an upper electrode current collector constituting an upper electrode of the other polarity are formed in this order, wherein the lower electrode current collector is formed on an insulating substrate Forming a conductor film pattern that constitutes the terminal portion that is electrically connected to the body and the lower electrode current collector and is exposed at least partially, and a frame-like mask that defines the thin film formation region, The side on which the conductor film pattern on the insulating substrate is formed at a position where the outer periphery is outside the outer periphery of the lower electrode current collector and a part of the terminal portion is not included in the thin film formation region And the step of arranging the mass Forming the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector in this order in the thin film formation region. That is solved.

このとき、下部電極活物質、固体電解質、上部電極活物質、上部電極集電体の各層が平面視略同一形状に形成され、これら各層は、マスク交換を伴うことなく連続成膜される。これにより、マスク交換時に伴う真空成膜装置内の大気開放及び真空成膜装置の排気を省略する事ができ、その結果、電池セルの作製時間が大幅に短縮され、製造原価の低減を図ることができる。
また、マスク交換を伴わずに連続成膜することにより、大気中での作業を少なくすることができるため、電池セルを構成する薄膜の劣化を防止することが可能となる。さらに、製造過程において複数の担当者が関わった場合であっても、担当者間の作業効率の差に依存して、電池性能に差が出る可能性を低減することができる。したがって、歩留まりが向上すると共に、均一な品質の薄膜固体二次電池を製造することができる。
さらにまた、絶縁性基板上に形成される下部電極集電体と上部電極集電体とが接触しにくく、その結果、短絡の防止効果が高い薄膜固体二次電池を製造することができる。
At this time, the layers of the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector are formed in substantially the same shape in plan view, and these layers are continuously formed without mask replacement. As a result, it is possible to omit the opening of the atmosphere in the vacuum film forming apparatus and the exhaust of the vacuum film forming apparatus when the mask is replaced. As a result, the battery cell production time is greatly shortened and the manufacturing cost is reduced. Can do.
In addition, by performing continuous film formation without exchanging the mask, work in the air can be reduced, so that it is possible to prevent deterioration of the thin film constituting the battery cell. Furthermore, even when a plurality of persons in charge are involved in the manufacturing process, it is possible to reduce the possibility of a difference in battery performance depending on the difference in work efficiency between persons in charge. Therefore, the yield is improved and a thin film solid secondary battery with uniform quality can be manufactured.
Furthermore, the lower electrode current collector and the upper electrode current collector formed on the insulating substrate are unlikely to come into contact with each other, and as a result, a thin film solid secondary battery having a high short-circuit prevention effect can be manufactured.

また、前記課題は、本発明に係る薄膜固体二次電池の製造方法によれば、正負いずれか一方の極性の下部電極を構成する下部電極集電体、端子部及び下部電極活物質と、固体電解質と、他方の極性の上部電極を構成する上部電極活物質及び上部電極集電体がこの順に形成されてなる薄膜固体二次電池の製造方法であって、前記下部電極集電体を構成する導電性基板の表面に、開口部を備えた絶縁膜を成膜する工程と、薄膜形成領域を区画する枠状のマスクを、前記薄膜形成領域の外周が前記開口部の外周よりも外側となる位置で、前記導電性基板上の前記絶縁膜が形成された側に配設する工程と、前記マスクの前記薄膜形成領域内に、前記下部電極活物質と、前記固体電解質と、前記上部電極活物質と、前記上部電極集電体とを連続してこの順に成膜する工程と、を備えてなること、により解決される。   In addition, according to the method of manufacturing a thin film solid secondary battery according to the present invention, the problem is that the lower electrode current collector, the terminal portion and the lower electrode active material constituting the lower electrode of either positive or negative polarity, and the solid A method of manufacturing a thin-film solid secondary battery in which an electrolyte, an upper electrode active material constituting an upper electrode of the other polarity, and an upper electrode current collector are formed in this order, and the lower electrode current collector is constituted Forming an insulating film having an opening on the surface of the conductive substrate and a frame-shaped mask for partitioning the thin film formation region, the outer periphery of the thin film formation region is outside the outer periphery of the opening A position on the conductive substrate on the side where the insulating film is formed, and in the thin film formation region of the mask, the lower electrode active material, the solid electrolyte, and the upper electrode active Material and the upper electrode current collector in succession. Be provided with a step of forming a film on, it is solved by.

このとき、下部電極活物質、固体電解質、上部電極活物質、上部電極集電体の各層を、マスク交換を伴わずに連続成膜することができる。これにより、マスク交換に伴う大気開放を必要とせず、真空成膜装置の排気時間を省略する事ができ、その結果、電池セルの作製時間を短縮することができ、製造原価の低減を図ることができる。
また、導電性基板を用いた際、その表面に開口部を備えた絶縁膜を形成することにより、導電性基板によって構成される下部電極集電体と、その上方に形成される上部電極集電体とが接触しにくく、その結果、短絡の防止効果が高い薄膜固体二次電池を製造することができる。このとき、下部電極集電体として機能する導電性基板を用いることにより、下部電極集電体を別途成膜する必要がないため、製造工程を簡略化することができる。
At this time, each layer of the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector can be continuously formed without mask replacement. This eliminates the need for opening the atmosphere to replace the mask and eliminates the time required for evacuating the vacuum film forming apparatus. As a result, the battery cell manufacturing time can be shortened and the manufacturing cost can be reduced. Can do.
In addition, when a conductive substrate is used, an insulating film having an opening on the surface thereof is formed, so that a lower electrode current collector constituted by the conductive substrate and an upper electrode current collector formed thereabove are formed. As a result, it is possible to manufacture a thin-film solid secondary battery that is less likely to come into contact with the body and has a high short-circuit prevention effect. At this time, by using a conductive substrate functioning as a lower electrode current collector, it is not necessary to form a separate film for the lower electrode current collector, so that the manufacturing process can be simplified.

このとき、前記下部電極活物質は、リチウムを含む材料からなり、前記固体電解質は、リン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライド(LiPON)、又は遷移金属及びLiとNを含む複合酸化物から選ばれるいずれか一つであると好ましい。
このように、下部電極活物質の成膜時、リチウムを含む材料を用いて成膜し、さらにリチウムイオンの伝導性が良好なこれらの化合物を用いて固体電解質を成膜することで、良好な充放電特性を備えた薄膜固体リチウムイオン二次電池を製造することができる。
At this time, the lower electrode active material is made of a material containing lithium, and the solid electrolyte is lithium phosphate (Li 3 PO 4 ), lithium phosphate oxynitride in which oxygen of lithium phosphate is partially substituted with nitrogen (LiPON) or any one selected from a transition metal and a composite oxide containing Li and N is preferable.
As described above, when the lower electrode active material is formed, a film containing a lithium-containing material is formed, and further, a solid electrolyte is formed using these compounds having good lithium ion conductivity. A thin film solid lithium ion secondary battery having charge / discharge characteristics can be manufactured.

本発明の薄膜固体二次電池によれば、下部電極集電体と下部電極活物質との接触面の外周が、下部電極活物質の下面の外周よりも内側に形成されてなることにより、下部電極と上部電極の各集電体が接触することによる短絡を効果的に防止することができ、その結果、歩留まりの良い薄膜固体二次電池を提供することができる。さらに、下部電極活物質、固体電解質、上部電極活物質、上部電極集電体の各層は、平面視略同一形状としているためマスク交換を伴わずに連続成膜することができると共に、電池効率に特に影響する活物質層を汚染することなく成膜することができ、薄膜固体二次電池の電池性能が向上する。
また、本発明の薄膜固体二次電池の製造方法によれば、下部電極活物質から上方に配設される各層を、マスク交換を伴わずに連続成膜することができるため、製造工程を簡略化し、大幅な製造時間の短縮化を図ることができ、薄膜固体二次電池の製造に伴う費用を抑えることができる。
According to the thin film solid secondary battery of the present invention, the outer periphery of the contact surface between the lower electrode current collector and the lower electrode active material is formed on the inner side of the outer periphery of the lower surface of the lower electrode active material. A short circuit due to contact between the current collectors of the electrode and the upper electrode can be effectively prevented, and as a result, a thin film solid secondary battery with a high yield can be provided. Furthermore, each layer of the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector has substantially the same shape in plan view, so that it can be continuously formed without replacing the mask, and the battery efficiency is improved. In particular, it is possible to form a film without contaminating the affected active material layer, and the battery performance of the thin film solid secondary battery is improved.
In addition, according to the method for manufacturing a thin film solid secondary battery of the present invention, each layer disposed upward from the lower electrode active material can be continuously formed without mask replacement, thereby simplifying the manufacturing process. The manufacturing time can be greatly shortened, and the costs associated with the manufacture of the thin film solid secondary battery can be reduced.

本発明の実施形態1に係る薄膜固体二次電池の概略斜視図である。1 is a schematic perspective view of a thin-film solid secondary battery according to Embodiment 1 of the present invention. 本発明の実施形態1に係る薄膜固体二次電池の平面図である。It is a top view of the thin film solid secondary battery which concerns on Embodiment 1 of this invention. 図1のA−A線に相当する概略断面図である。It is a schematic sectional drawing equivalent to the AA line of FIG. 比較例の実施形態に係る薄膜固体二次電池の平面図である。It is a top view of the thin film solid secondary battery which concerns on embodiment of a comparative example. 比較例の実施形態に係る薄膜固体二次電池の概略断面図である。It is a schematic sectional drawing of the thin film solid secondary battery which concerns on embodiment of a comparative example. 本発明の実施例及び比較例に係る薄膜固体二次電池の放電曲線のグラフ図である。It is a graph of the discharge curve of the thin film solid secondary battery which concerns on the Example and comparative example of this invention. 本発明の実施形態2に係る薄膜固体二次電池の概略斜視図である。It is a schematic perspective view of the thin film solid secondary battery which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る薄膜固体二次電池の平面図である。It is a top view of the thin film solid secondary battery which concerns on Embodiment 2 of this invention. 図7のB−B線に相当する概略断面図である。It is a schematic sectional drawing equivalent to the BB line of FIG. 本発明の実施形態3に係る薄膜固体二次電池の概略断面図である。It is a schematic sectional drawing of the thin film solid secondary battery which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る薄膜固体二次電池の概略断面図である。It is a schematic sectional drawing of the thin film solid secondary battery which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る薄膜固体二次電池の概略断面図である。It is a schematic sectional drawing of the thin film solid secondary battery which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る薄膜固体二次電池の概略断面図である。It is a schematic sectional drawing of the thin film solid secondary battery which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る薄膜固体二次電池の平面図である。It is a top view of the thin film solid secondary battery which concerns on Embodiment 7 of this invention.

本発明の実施形態に係る薄膜固体二次電池及び薄膜固体二次電池の製造方法を図面に基づいて説明する。なお、以下に説明する材料、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。   A thin film solid secondary battery and a method for manufacturing a thin film solid secondary battery according to an embodiment of the present invention will be described with reference to the drawings. The materials, arrangements, configurations, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.

図1乃至3は本発明の実施形態1に係るもので、図1は薄膜固体二次電池の概略斜視図、図2は薄膜固体二次電池の平面図、図3は図1のA−A線に相当する概略断面図であり、図4及び図5は比較例に係るもので、図4は薄膜固体二次電池の平面図、図5は薄膜固体二次電池の概略断面図であり、図6は本発明の実施例及び比較例に係る薄膜固体二次電池の放電曲線のグラフ図であり、図7乃至9は本発明の実施形態2に係るもので、図7は薄膜固体二次電池の概略斜視図、図8は薄膜固体二次電池の平面図、図9は図7のB−B線に相当する概略断面図であり、図10は本発明の実施形態3に係る薄膜固体二次電池の概略断面図であり、図11は本発明の実施形態4に係る薄膜固体二次電池の概略断面図であり、図12は本発明の実施形態5に係る薄膜固体二次電池の概略断面図であり、図13は本発明の実施形態6に係る薄膜固体二次電池の概略断面図であり、図14は本発明の実施形態7に係る薄膜固体二次電池の平面図である。なお、薄膜固体二次電池を構成する各層は、説明のため実際よりも厚みを強調して描いてある。   1 to 3 relate to Embodiment 1 of the present invention. FIG. 1 is a schematic perspective view of a thin film solid secondary battery, FIG. 2 is a plan view of the thin film solid secondary battery, and FIG. 4 and 5 relate to a comparative example, FIG. 4 is a plan view of a thin film solid secondary battery, FIG. 5 is a schematic cross sectional view of a thin film solid secondary battery, FIG. 6 is a graph of discharge curves of thin film solid state secondary batteries according to examples and comparative examples of the present invention. FIGS. 7 to 9 relate to Embodiment 2 of the present invention, and FIG. 7 is a thin film solid state secondary battery. 8 is a schematic perspective view of the battery, FIG. 8 is a plan view of the thin-film solid secondary battery, FIG. 9 is a schematic cross-sectional view corresponding to the line BB of FIG. 7, and FIG. 10 is a thin-film solid according to Embodiment 3 of the present invention. FIG. 11 is a schematic sectional view of a secondary battery, FIG. 11 is a schematic sectional view of a thin film solid secondary battery according to Embodiment 4 of the present invention, and FIG. 12 is an embodiment of the present invention. FIG. 13 is a schematic sectional view of a thin film solid secondary battery according to Embodiment 6 of the present invention, and FIG. 14 is a thin film according to Embodiment 7 of the present invention. It is a top view of a solid secondary battery. In addition, each layer which comprises a thin film solid secondary battery is drawn with emphasis on thickness rather than actuality for description.

[実施形態1]
本発明の実施形態1に係る薄膜固体二次電池10は、図1、図3に示すように、正負いずれか一方の極性の下部電極11と、固体電解質層12と、他方の極性の上部電極13とがこの順に形成されている。下部電極11と、固体電解質層12と、上部電極13は、絶縁性基板S上に順に積層され、下部電極11は、下部電極活物質層11a、下部電極集電体層11b、第1の端子部11cによって構成されており、上部電極13は、上部電極活物質層13a、上部電極集電体層13bによって構成されている。
なお、本実施形態1において、下部電極活物質層11aは特許請求の範囲の「下部電極活物質」、下部電極集電体層11bは特許請求の範囲の「下部電極集電体」、上部電極活物質層13aは特許請求の範囲の「上部電極活物質」、上部電極集電体層13bは特許請求の範囲の「上部電極集電体」に相当する。
[Embodiment 1]
As shown in FIGS. 1 and 3, the thin-film solid secondary battery 10 according to Embodiment 1 of the present invention includes a lower electrode 11 having either positive or negative polarity, a solid electrolyte layer 12, and an upper electrode having the other polarity. 13 are formed in this order. The lower electrode 11, the solid electrolyte layer 12, and the upper electrode 13 are sequentially stacked on the insulating substrate S. The lower electrode 11 includes a lower electrode active material layer 11a, a lower electrode current collector layer 11b, and a first terminal. The upper electrode 13 includes an upper electrode active material layer 13a and an upper electrode current collector layer 13b.
In the first embodiment, the lower electrode active material layer 11a is the “lower electrode active material” in the claims, the lower electrode current collector layer 11b is the “lower electrode current collector” in the claims, the upper electrode The active material layer 13a corresponds to the “upper electrode active material” in the claims, and the upper electrode current collector layer 13b corresponds to the “upper electrode current collector” in the claims.

下部電極11は、絶縁性基板S上から順に下部電極集電体層11bと、下部電極活物質層11aとが積層されることによって形成されている。そして、下部電極11は、下部電極活物質層11aと接触しない位置まで延設され露出した露出面からなる第1の端子部11c、すなわち、下部電極集電体層11bの外周方向外側に延設された略矩形状の第1の端子部11cを備えている。(図2、図3では、説明のため、下部電極集電体層11bと、第1の端子部11cとが点線で隔てられて描かれているが、実際には連続した薄膜状に形成される。)第1の端子部11cは、外部接続用の各種ケーブル等に接続されるために形成され、下部電極集電体層11bと導通すると共に、その一部が露出した構成となっている。なお、本実施形態1において、第1の端子部11cは、特許請求の範囲の「端子部」に相当し、外部接続用のケーブルが接続される。   The lower electrode 11 is formed by laminating a lower electrode current collector layer 11b and a lower electrode active material layer 11a in order from the top of the insulating substrate S. The lower electrode 11 extends to a position where the lower electrode active material layer 11a is not in contact with the first terminal portion 11c including the exposed exposed surface, that is, the outer side in the outer peripheral direction of the lower electrode current collector layer 11b. The first terminal portion 11c having a substantially rectangular shape is provided. (In FIGS. 2 and 3, for the sake of explanation, the lower electrode current collector layer 11b and the first terminal portion 11c are drawn separated by a dotted line, but they are actually formed in a continuous thin film shape. The first terminal portion 11c is formed so as to be connected to various cables for external connection, etc., and is electrically connected to the lower electrode current collector layer 11b and partially exposed. . In the first embodiment, the first terminal portion 11c corresponds to a “terminal portion” in the claims, and is connected to a cable for external connection.

第1の端子部11cと各種ケーブルとの接続方法は公知の技術が用いられ、例えば、異方性導電体(ACF)、フレキシブルフラットケーブルをこの順に重ねた状態で加熱して熱圧着することにより接続される。なお、ACFを用いて接続するだけでなく、はんだ接続等の他の接続方法で接続するものであっても良く、フレキシブルフラットケーブルの代わりに金属導線を用いても良い。金属導線を用いる場合は、その接続方法をワイヤボンディング、はんだ、レーザー溶接などとすることができる。   A known technique is used to connect the first terminal portion 11c and various cables, for example, by heating and thermocompression bonding with an anisotropic conductor (ACF) and a flexible flat cable stacked in this order. Connected. In addition, it may connect not only using ACF but other connection methods, such as a solder connection, and may use a metal conducting wire instead of a flexible flat cable. When using a metal lead, the connection method can be wire bonding, solder, laser welding, or the like.

一方、図3に示すように、下部電極活物質層11aの上面は、下部電極11上に形成される固体電解質層12の下面(底面)に面接触するように積層して形成されていると共に、下部電極活物質層11aの下面は、下部電極集電体層11bの上面に面接触するように積層して形成されている。   On the other hand, as shown in FIG. 3, the upper surface of the lower electrode active material layer 11 a is formed so as to be in surface contact with the lower surface (bottom surface) of the solid electrolyte layer 12 formed on the lower electrode 11. The lower surface of the lower electrode active material layer 11a is formed so as to be in surface contact with the upper surface of the lower electrode current collector layer 11b.

上記下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13bは、平面視略同一形状(本実施形態1では略矩形状)で積層されている。したがって、下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13bの各層を形成する際、マスクを交換する必要が無い。マスク交換の際は真空成膜装置内の大気開放を伴うが、下部電極活物質層11aから上部電極集電体層13bまでの成膜時、同一マスクを使用可能であるため、下部電極活物質層11aから上部電極集電体層13bまでが大気開放による影響をうけることなく、電池性能の良い薄膜固体二次電池10を提供することができる。   The lower electrode active material layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b are laminated in substantially the same shape in plan view (substantially rectangular in the first embodiment). ing. Therefore, it is not necessary to replace the mask when forming the lower electrode active material layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b. When the mask is exchanged, the vacuum film forming apparatus is opened to the atmosphere. However, since the same mask can be used for film formation from the lower electrode active material layer 11a to the upper electrode current collector layer 13b, the lower electrode active material is used. The thin film solid secondary battery 10 with good battery performance can be provided without the influence from the atmosphere being released from the layer 11a to the upper electrode current collector layer 13b.

下部電極活物質層11aから上部電極集電体13bまでを成膜する際に使用するマスクは、図1、図2から示されるように略矩形状であっても良いし、他の形状としても良い。また、本実施形態1では、各種ケーブルとの接続用に、略矩形状の下部電極活物質層11a、固体電解質層12、上部電極活物質層13a、上部電極集電体層13bの各層から第2の端子部14が同一形状で突出して形成された構成としている。(図2では、説明のため、上部電極集電体層13bと、第2の端子部14とが点線で隔てられて描かれているが、実際には連続した薄膜状に形成される。)第2の端子部14は、第1の端子部11cと対称となる位置に形成されていると好ましい。なお、上記方法により、上部電極集電体層13bに対して直接各種ケーブルを接続可能であるから、第2の端子部14は本実施形態1のように上部電極集電体層13bから突出して延設されていなくても良い。   The mask used for forming the film from the lower electrode active material layer 11a to the upper electrode current collector 13b may be a substantially rectangular shape as shown in FIGS. 1 and 2, or other shapes. good. Further, in the first embodiment, for connection with various cables, the first electrode is formed from each of the substantially rectangular lower electrode active material layer 11a, solid electrolyte layer 12, upper electrode active material layer 13a, and upper electrode current collector layer 13b. The two terminal portions 14 are formed to protrude in the same shape. (In FIG. 2, for the sake of explanation, the upper electrode current collector layer 13b and the second terminal portion 14 are drawn separated by a dotted line, but they are actually formed as a continuous thin film.) The second terminal portion 14 is preferably formed at a position symmetrical to the first terminal portion 11c. Since various cables can be directly connected to the upper electrode current collector layer 13b by the above method, the second terminal portion 14 protrudes from the upper electrode current collector layer 13b as in the first embodiment. It does not have to be extended.

そして、下部電極集電体層11bと下部電極活物質層11aとの接触面、すなわち、下部電極集電体層11bの上面の外周は、下部電極活物質層11aの外周よりも内側に形成されている。図2に示すように、本実施形態1の薄膜固体二次電池10において、下部電極集電体層11bの外周は略矩形状に形成されており、その外周から、外側に向かって第1の端子部11cが延設されている。   The contact surface between the lower electrode current collector layer 11b and the lower electrode active material layer 11a, that is, the outer periphery of the upper surface of the lower electrode current collector layer 11b is formed inside the outer periphery of the lower electrode active material layer 11a. ing. As shown in FIG. 2, in the thin-film solid secondary battery 10 of Embodiment 1, the outer periphery of the lower electrode current collector layer 11 b is formed in a substantially rectangular shape, and the first outward from the outer periphery toward the outer side. A terminal portion 11c is extended.

下部電極集電体層11bは、下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13bと比較して小さい面積となるように形成されており、下部電極集電体層11bの上面は、下部電極活物質層11aによって包含されている。すなわち、下部電極集電体層11bは、下部電極活物質層11aにその全面が覆われると共に、さらにその外周端部が他の層(固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13b)に接触することがないように、配設されている。したがって、下部電極集電体層11b(より詳細には、下部電極集電体層11bと下部電極活物質層11aの接触面)の外周端部は、少なくとも下部電極活物質層11aの外周端部に対して内側に配設された構成となっている(図3を参照)。   The lower electrode current collector layer 11b is formed to have a smaller area than the lower electrode active material layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b. The upper surface of the lower electrode current collector layer 11b is encompassed by the lower electrode active material layer 11a. That is, the lower electrode current collector layer 11b is entirely covered with the lower electrode active material layer 11a, and further, the outer peripheral end portion thereof is another layer (solid electrolyte layer 12, upper electrode active material layer 13a, upper The electrode current collector layer 13b) is disposed so as not to contact the electrode current collector layer 13b). Therefore, the outer peripheral end of the lower electrode current collector layer 11b (more specifically, the contact surface between the lower electrode current collector layer 11b and the lower electrode active material layer 11a) is at least the outer peripheral end of the lower electrode active material layer 11a. It is the structure arrange | positioned inside with respect to (refer FIG. 3).

このように、下部電極集電体層11bの外周端部が、少なくとも下部電極活物質層11aの外周端部よりも内側となる構成とすると、下部電極集電体層11bが、下部電極活物質層11aに完全に覆われる形状となるため、下部電極集電体層11bが、固体電解質層12よりも上に形成される層に接触することがない。したがって、短絡を防止することができ、その結果、歩留まりの良い薄膜固体二次電池10とすることができる。   As described above, when the outer peripheral end portion of the lower electrode current collector layer 11b is at least inside the outer peripheral end portion of the lower electrode active material layer 11a, the lower electrode current collector layer 11b becomes lower electrode active material. Since the shape is completely covered by the layer 11a, the lower electrode current collector layer 11b does not come into contact with the layer formed above the solid electrolyte layer 12. Therefore, a short circuit can be prevented, and as a result, the thin film solid secondary battery 10 with a high yield can be obtained.

一方、下部電極集電体層11bから延設された第1の端子部11cは、少なくともその一部が露出するように形成されており、図2に示すように、一部は下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13bの外周よりも内側に形成されているが、一部は下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13bの外周の外側まで延設されている。このように、下部電極集電体層11bから延設された第1の端子部11cを備え、この第1の端子部11cが、下部電極集電体層11bよりも上方に形成された各層(下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13b)と積層されていない露出部を備えることにより、本発明の薄膜固体二次電池10は、各種ケーブルに容易に接続することができる。   On the other hand, the first terminal portion 11c extending from the lower electrode current collector layer 11b is formed so that at least a part thereof is exposed, and as shown in FIG. The layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b are formed on the inner side of the outer periphery, but a part of the lower electrode active material layer 11a and the solid electrolyte are formed. The layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b are extended to the outside of the outer periphery. As described above, the first terminal portion 11c extending from the lower electrode current collector layer 11b is provided, and each of the first terminal portions 11c formed above the lower electrode current collector layer 11b ( The thin-film solid secondary battery of the present invention includes an exposed portion that is not laminated with the lower electrode active material layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b). 10 can be easily connected to various cables.

なお、上記構成の薄膜固体二次電池10の第1の端子部11cの露出部及び、第2の端子部14以外の部分を被覆する保護膜(不図示)が設けられる。また、上記のように、第2の端子部14を特別に形成することなく、上部電極集電体層13b上の一部において保護膜を備えない構成とし、その部分に各種ケーブルを接続する構成としても良い。   A protective film (not shown) is provided to cover the exposed portion of the first terminal portion 11c and the portion other than the second terminal portion 14 of the thin-film solid secondary battery 10 having the above configuration. In addition, as described above, the second terminal portion 14 is not specially formed, and the protective film is not provided in part on the upper electrode current collector layer 13b, and various cables are connected to the part. It is also good.

以下、下部電極11を正極、上部電極13を負極とした薄膜固体リチウムイオン二次電池を例に挙げ、各層の構成について説明する。なお、下部電極11が負極、上部電極13が正極であっても良いのは勿論である。ただし、後述のように、リチウムを含んでいる正極活物質の表面を保護するため、下部電極11を正極とし、その上に固体電解質層12、負極となる上部電極13を積層させた構成とすると、正極活物質に含まれるリチウムが成膜中に負極活物質層に移動するのを防ぎ、電池特性の低下を抑制することができる。   Hereinafter, a configuration of each layer will be described by taking a thin film solid lithium ion secondary battery using the lower electrode 11 as a positive electrode and the upper electrode 13 as a negative electrode as an example. Of course, the lower electrode 11 may be a negative electrode and the upper electrode 13 may be a positive electrode. However, as will be described later, in order to protect the surface of the positive electrode active material containing lithium, the lower electrode 11 is used as a positive electrode, and the solid electrolyte layer 12 and the upper electrode 13 serving as a negative electrode are stacked thereon. Further, lithium contained in the positive electrode active material can be prevented from moving to the negative electrode active material layer during film formation, and deterioration of battery characteristics can be suppressed.

絶縁性基板Sは、ガラス、樹脂基板等を用いることができる。樹脂基板としては、ポリイミドやPET等を用いることができる。また、破損することなく取り扱いができるものであれば、薄板状に形成されると共に可撓性を備え、折り曲げが可能な薄板状のフィルムを用いることができる。このように、フィルム等の薄板状に形成された可撓性を備えた絶縁性基板Sを用いると共に、各層を数μm〜数十μm程度の薄膜によって構成することにより、電池全体として可撓性を備えた薄膜固体二次電池10を提供することができる。
また、これらの絶縁性基板Sには、例えば透明性を増したり、Naなどのアルカリ元素の拡散を防止したり、耐熱性を増したり、ガスバリア性を持たせるなどの付加特性が備わっていればより好ましい。
As the insulating substrate S, glass, a resin substrate, or the like can be used. As the resin substrate, polyimide, PET, or the like can be used. In addition, as long as it can be handled without breakage, a thin plate-like film that is formed into a thin plate shape and has flexibility and can be bent can be used. Thus, while using the flexible insulating substrate S formed in a thin plate shape such as a film, each layer is constituted by a thin film of about several μm to several tens of μm, so that the battery as a whole is flexible. It is possible to provide a thin-film solid secondary battery 10 including
In addition, these insulating substrates S have additional characteristics such as increasing transparency, preventing diffusion of alkali elements such as Na, increasing heat resistance, and providing gas barrier properties. More preferred.

正極集電体層として機能する下部電極集電体層11b及び第1の端子部11cは、絶縁性基板Sとの密着性がよく、電気抵抗が低い金属膜によって構成される。下部電極集電体層11bは、正極活物質層としての下部電極活物質層11aとの密着性がよく、電気抵抗が低い導電膜を用いることができる。   The lower electrode current collector layer 11b and the first terminal portion 11c functioning as the positive electrode current collector layer are formed of a metal film having good adhesion to the insulating substrate S and having low electric resistance. For the lower electrode current collector layer 11b, a conductive film having good adhesion to the lower electrode active material layer 11a as the positive electrode active material layer and having a low electric resistance can be used.

第1の端子部11cが取り出し電極として良好に機能するためには、そのシート抵抗が1kΩ/□以下であることが望ましい。第1の端子部11cの膜厚を0.1μm以上に設定すると、第1の端子部11cは抵抗率が1×10−2Ω・cm以下の物質によって形成する必要がある。このような物質として、例えば、バナジウム、チタン、ニオブ、アルミニウム、銅、ニッケル、金等を使用することができる。これらの物質によって第1の端子部11cは、できるだけ薄くて電気抵抗も低くなる0.05〜1μm程度の膜厚に形成することができる。 In order for the first terminal portion 11c to function satisfactorily as an extraction electrode, the sheet resistance is desirably 1 kΩ / □ or less. When the film thickness of the first terminal portion 11c is set to 0.1 μm or more, the first terminal portion 11c needs to be formed of a substance having a resistivity of 1 × 10 −2 Ω · cm or less. As such a substance, for example, vanadium, titanium, niobium, aluminum, copper, nickel, gold or the like can be used. With these materials, the first terminal portion 11c can be formed to a thickness of about 0.05 to 1 μm, which is as thin as possible and has a low electrical resistance.

そして、下部電極集電体層11bは、第1の端子部11cと同様にバナジウム、チタン、ニオブ、アルミニウム、銅、ニッケル、金等を使用することができる。下部電極集電体層11bと第1の端子部11cを同一の材料、且つ同一のマスクを用いて形成すると、電池セルの製造工程を簡略化することができ、好適である。   The lower electrode current collector layer 11b can use vanadium, titanium, niobium, aluminum, copper, nickel, gold, or the like, as in the first terminal portion 11c. When the lower electrode current collector layer 11b and the first terminal portion 11c are formed using the same material and the same mask, the manufacturing process of the battery cell can be simplified, which is preferable.

正極活物質層として機能する下部電極活物質層11aは、リチウムを含み、リチウムイオンの離脱、吸蔵が可能である物質であればよく、特に限定はないが、好ましくは、遷移金属であるマンガン、コバルト、ニッケルのうちのいずれか一つ以上とリチウムを含む金属酸化物薄膜を用いると好適である。例えば、リチウム−マンガン酸化物(LiMn,LiMn等),リチウム−コバルト酸化物(LiCoO,LiCo等),リチウム−ニッケル酸化物(LiNiO,LiNi等),リチウム−マンガン−コバルト酸化物(LiMnCoO,LiMnCoO等),リチウム−チタン酸化物(LiTi12,LiTi等)等を使用することができる。下部電極活物質層11aの膜厚は、できるだけ薄いことが望ましいが、充放電容量を確保できる0.05〜5μm程度とすると良い。 The lower electrode active material layer 11a functioning as the positive electrode active material layer is not particularly limited as long as it contains lithium and can release and occlude lithium ions. Preferably, manganese, which is a transition metal, It is preferable to use a metal oxide thin film containing at least one of cobalt and nickel and lithium. For example, lithium-manganese oxide (LiMn 2 O 4 , Li 2 Mn 2 O 4, etc.), lithium-cobalt oxide (LiCoO 2 , LiCo 2 O 4, etc.), lithium-nickel oxide (LiNiO 2 , LiNi 2 O, etc.) 4 ), lithium-manganese-cobalt oxide (LiMnCoO 4 , Li 2 MnCoO 4 etc.), lithium-titanium oxide (Li 4 Ti 5 O 12 , LiTi 2 O 4 etc.), etc. can be used. The film thickness of the lower electrode active material layer 11a is desirably as thin as possible, but is preferably about 0.05 to 5 μm that can secure charge / discharge capacity.

固体電解質層12は、リチウムイオンの伝導性が良いリン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライドガラス(LiPON)、又はTaとNbのいずれか一つ以上の遷移金属及びLiとNを含む複合酸化物等を用いることができる。固体電解質層12の膜厚は、ピンホ−ルの発生が低減され且つできるだけ薄い0.05〜1μm程度が好ましい。 The solid electrolyte layer 12 is composed of lithium phosphate (Li 3 PO 4 ) having good lithium ion conductivity, lithium phosphate oxynitride glass (LiPON) in which oxygen of the lithium phosphate is partially substituted with nitrogen, or Ta and Nb. Any one or more transition metals and composite oxides containing Li and N can be used. The thickness of the solid electrolyte layer 12 is preferably about 0.05 to 1 [mu] m, where generation of pinholes is reduced and as thin as possible.

負極活物質層として機能する上部電極活物質層13aは、リチウムイオンの離脱、吸蔵が可能である物質であればよく、特に限定はないが、好ましくは、シリコン−マンガン合金(Si−Mn),シリコン−コバルト合金(Si−Co),シリコン−ニッケル合金(Si−Ni),リチウム−チタン酸化物(LiTi,LiTi12等)、五酸化ニオブ(Nb),酸化チタン(TiO),酸化インジウム(In),酸化亜鉛(ZnO),酸化スズ(SnO)、酸化ニッケル(NiO)、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)等を用いると好適である。 The upper electrode active material layer 13a functioning as the negative electrode active material layer is not particularly limited as long as it is a material capable of detaching and occluding lithium ions, and is preferably a silicon-manganese alloy (Si-Mn), silicon - cobalt alloy (Si-Co), silicon - nickel alloy (Si-Ni), lithium - titanium oxide (LiTi 2 O 4, Li 4 Ti 5 O 12 , etc.), niobium pentoxide (Nb 2 O 5), Titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), nickel oxide (NiO), tin-added indium oxide (ITO), aluminum added Zinc oxide (AZO), gallium-added zinc oxide (GZO), antimony-added tin oxide (ATO), fluorine-added acid Tin (FTO), it is preferable to use such nickel oxide lithium is added (NiO-Li).

負極集電体層として機能する上部電極集電体層13bは、負極活物質層としての上部電極活物質層13aとの密着性がよく、電気抵抗が低い導電膜を用いることができる。
下部電極集電体層11bと第1の端子部11cと同様にバナジウム、チタン、ニオブ、アルミニウム、銅、ニッケル、金等を使用することができる。
The upper electrode current collector layer 13b functioning as the negative electrode current collector layer can be formed using a conductive film having good adhesion to the upper electrode active material layer 13a as the negative electrode active material layer and having low electric resistance.
Vanadium, titanium, niobium, aluminum, copper, nickel, gold, or the like can be used similarly to the lower electrode current collector layer 11b and the first terminal portion 11c.

また、負極活物質として、ニオブ酸化物(Nb)を用いた場合、負極集電体をニオブとすることにより、同一のニオブ金属ターゲットを用いてスパッタリング成膜時の酸素ガス流量を調節して作製する事ができる。これにより、電池セルを作製する際に、必要なターゲット数と電源数を少なくする事ができ、装置の小型化を実現でき、原価を削減することができる。 Also, when niobium oxide (Nb 2 O 5 ) is used as the negative electrode active material, the negative electrode current collector is niobium, so that the oxygen gas flow rate during sputtering film formation is adjusted using the same niobium metal target. Can be produced. Thereby, when manufacturing a battery cell, the number of required targets and the number of power supplies can be reduced, the apparatus can be reduced in size, and the cost can be reduced.

上記の薄膜固体二次電池10は、充電を行うと、正極活物質層としての下部電極活物質層11aからリチウムがイオンとなって離脱し、固体電解質層12を介して負極活物質層としての上部電極活物質層13aに吸蔵される。このとき、正極活物質層としての下部電極活物質層11aから外部へ電子が放出される。
また、放電時には、負極活物質層としての上部電極活物質層13aからリチウムがイオンとなって離脱し、固体電解質層12を介して正極活物質層としての下部電極活物質層11aに吸蔵される。このとき、負極活物質層としての上部電極活物質層13aから外部へ電子が放出される。
When the thin-film solid secondary battery 10 is charged, lithium is released as ions from the lower electrode active material layer 11a serving as the positive electrode active material layer, and the thin film solid secondary battery 10 serves as the negative electrode active material layer via the solid electrolyte layer 12. The upper electrode active material layer 13a is occluded. At this time, electrons are emitted from the lower electrode active material layer 11a as the positive electrode active material layer to the outside.
Further, during discharge, lithium is released as ions from the upper electrode active material layer 13a serving as the negative electrode active material layer, and is inserted into the lower electrode active material layer 11a serving as the positive electrode active material layer via the solid electrolyte layer 12. . At this time, electrons are emitted from the upper electrode active material layer 13a as the negative electrode active material layer to the outside.

従来から、正極及び負極活物質層を他の層よりも面積が小さくなるように形成し、活物質層が覆われるような構成とすることにより、電子の授受に関連するリチウムを含む活物質層が保護され、電池性能を向上させることができる。しかし、活物質層を完全に覆うようにその上層を形成するためにはマスクの交換が必要であり、マスク交換時、作製途中の薄膜固体リチウムイオン二次電池は大気に曝され、汚染される可能性が高く、その結果、電池性能が低下する可能性がある。   Conventionally, an active material layer containing lithium related to the transfer of electrons is formed by forming a positive electrode and a negative electrode active material layer to have a smaller area than other layers and covering the active material layer. Is protected and battery performance can be improved. However, in order to form the upper layer so as to completely cover the active material layer, it is necessary to replace the mask. At the time of replacing the mask, the thin-film solid lithium ion secondary battery being manufactured is exposed to the atmosphere and contaminated. There is a high probability that battery performance may be reduced as a result.

これに対し、電子の授受に関連するリチウムを含む下部電極集電体層11bを成膜した後、マスクを交換し、下部電極活物質層11aよりも上層の各膜を下部電極集電体層11bよりも面積が大きな層となるように同一マスクを用い、連続して真空状態を保ったまま形成することにより、下部電極活物質層11aが汚染されることない。その結果、良好な電池性能の薄膜固体二次電池10を提供することができる。   On the other hand, after forming the lower electrode current collector layer 11b containing lithium related to the exchange of electrons, the mask is exchanged, and each film above the lower electrode active material layer 11a is replaced with the lower electrode current collector layer. The lower electrode active material layer 11a is not contaminated by using the same mask so as to be a layer having a larger area than 11b and continuously forming a vacuum state. As a result, the thin film solid secondary battery 10 with good battery performance can be provided.

次に、本発明の実施形態1に係る薄膜固体二次電池10に関し、その製造方法を具体的に説明する。本発明の薄膜固体二次電池10の製造方法は、正負いずれか一方の極性の下部電極11を構成する下部電極集電体層11b、第1の端子部11c及び下部電極活物質11aと、固体電解質層12と、他方の極性の上部電極13を構成する上部電極活物質層13a及び上部電極集電体層13bがこの順に形成されてなる薄膜固体二次電池10の製造方法であって、少なくとも、絶縁性基板S上にマスクを用い、導電性を備えた導体膜によって導体膜パターン(下部電極集電体層11b及び第1の端子部11c)を形成する導体膜パターン形成工程と、薄膜形成領域を区画する枠状のマスクを、薄膜形成領域の外周が下部電極集電体層11bの外周よりも外側であって且つ第1の端子部11cの一部が薄膜形成領域に含まれない位置で、絶縁性基板S上の導体膜パターンが形成された側に配設するマスク交換工程と、交換後のマスクの薄膜形成領域内に下部電極活物質層11aと、固体電解質層12と、上部電極活物質層13aと、上部電極集電体層13bとを連続してこの順に成膜する成膜工程と、を順に備えている。以下、各工程について詳細に説明する。   Next, a manufacturing method for the thin-film solid secondary battery 10 according to Embodiment 1 of the present invention will be specifically described. The manufacturing method of the thin film solid secondary battery 10 of the present invention includes a lower electrode current collector layer 11b, a first terminal portion 11c and a lower electrode active material 11a constituting a lower electrode 11 of either positive or negative polarity, A method for manufacturing a thin-film solid secondary battery 10 in which an electrolyte layer 12 and an upper electrode active material layer 13a and an upper electrode current collector layer 13b constituting an upper electrode 13 of the other polarity are formed in this order, Conductive film pattern forming step of forming a conductive film pattern (lower electrode current collector layer 11b and first terminal portion 11c) with a conductive conductive film using a mask on insulating substrate S, and forming a thin film The frame-shaped mask that divides the region is a position where the outer periphery of the thin film forming region is outside the outer periphery of the lower electrode current collector layer 11b and a part of the first terminal portion 11c is not included in the thin film forming region. Insulating group A mask exchange step disposed on the side on which the conductor film pattern on S is formed, and a lower electrode active material layer 11a, a solid electrolyte layer 12, and an upper electrode active material layer 13a in the thin film formation region of the mask after the exchange. And a film forming step for successively forming the upper electrode current collector layer 13b in this order. Hereinafter, each step will be described in detail.

(1.導体膜パターン形成工程)
本発明の薄膜固体二次電池10の製造方法では、まず、絶縁性基板Sの上に、下部電極集電体層11b及び第1の端子部11cが連続して一体となる島状の導体膜パターンを形成する。このとき、下部電極集電体層11b及び第1の端子部11cを構成する上記材料のターゲットを用い、下部電極集電体層11b及び下部電極集電体層11bに連続して形成される第1の端子部11cの形状を区画するマスクを用いてスパッタリング法により成膜される。なお、このとき、一枚の絶縁性基板S上において一カ所に島状の導体膜パターンを形成するのではなく、多数の導体膜パターンを形成し、各導体膜パターンの上方にその他の各層を積層した後、絶縁性基板Sごと分割することにより、少ない成膜回数で多数の薄膜固体二次電池10を作製することができる。
(1. Conductive film pattern forming process)
In the method of manufacturing the thin film solid secondary battery 10 of the present invention, first, an island-shaped conductor film in which the lower electrode current collector layer 11b and the first terminal portion 11c are continuously integrated on the insulating substrate S. Form a pattern. At this time, the target of the above-mentioned material constituting the lower electrode current collector layer 11b and the first terminal portion 11c is used, and the first electrode formed continuously to the lower electrode current collector layer 11b and the lower electrode current collector layer 11b. A film is formed by a sputtering method using a mask that partitions the shape of one terminal portion 11c. At this time, rather than forming an island-shaped conductor film pattern on one insulating substrate S, a large number of conductor film patterns are formed, and other layers are formed above each conductor film pattern. After the lamination, by dividing the insulating substrate S together, a large number of thin film solid secondary batteries 10 can be manufactured with a small number of film formations.

(2.マスク交換工程)
上記導体膜パターン形成工程を行った後、真空成膜装置内を大気開放し、下部電極集電体層11b及び第1の端子部11cを含む導体膜パターンを形成するために使用したマスクを取り外す。その後、下部電極集電体層11bの外周端部よりも、外側に薄膜形成領域の外周端部が配設される枠状のマスクを設置する。このとき、絶縁性基板S上において、下部電極集電体層11b及び第1の端子部11cが形成された側に薄膜形成領域を区画するマスクが配設される。なお、このマスクは第1の端子部11cの露出部(すなわち、各種ケーブルと接触する部分、ケーブル接続部)を形成するため、第1の端子部11c上において、下部電極集電体層11bとの接続部とは反対側の端部を被覆するように形成されている(図2参照)。
(2. Mask exchange process)
After performing the conductor film pattern forming step, the vacuum film forming apparatus is opened to the atmosphere, and the mask used to form the conductor film pattern including the lower electrode current collector layer 11b and the first terminal portion 11c is removed. . Thereafter, a frame-like mask in which the outer peripheral end portion of the thin film forming region is disposed outside the outer peripheral end portion of the lower electrode current collector layer 11b. At this time, on the insulating substrate S, a mask for partitioning the thin film formation region is disposed on the side where the lower electrode current collector layer 11b and the first terminal portion 11c are formed. In addition, since this mask forms the exposed part (namely, part which contacts various cables, a cable connection part) of the 1st terminal part 11c, on the 1st terminal part 11c, lower electrode collector layer 11b and It forms so that the edge part on the opposite side to a connection part may be covered (refer FIG. 2).

(3.成膜工程)
上記マスク交換工程を行った後、下部電極活物質層11a、固体電解質層12、上部電極活物質層13a、上部電極集電体層13bを、この順で各層が所定の膜厚になるまで同一マスクを用いて連続して成膜する。
(3. Film formation process)
After performing the mask exchange step, the lower electrode active material layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b are identical until each layer has a predetermined thickness in this order. Films are continuously formed using a mask.

リチウム二次電池の構成材料であるリチウム含有酸化物は、水分及び酸化によって劣化しやすい事が一般に知られている。その対策としてドライルーム、グローブボックス等が必要となるが、本発明により電池セルを構成する下部電極活物質層11aから上部電極集電体層13bまでを連続して、真空成膜装置内で作製できるので、リチウム二次電池の作製方法として好適である。   It is generally known that a lithium-containing oxide that is a constituent material of a lithium secondary battery is easily deteriorated by moisture and oxidation. As a countermeasure, a dry room, a glove box, etc. are required. According to the present invention, the lower electrode active material layer 11a to the upper electrode current collector layer 13b constituting the battery cell are continuously produced in a vacuum film forming apparatus. Therefore, it is suitable as a method for manufacturing a lithium secondary battery.

また、下部電極集電体層11bから上部電極集電体層13bまでの各層の形成方法としては、スパッタリング法、電子ビーム蒸着法、加熱蒸着法等の真空成膜法や、塗布法等を用いることができる。好ましくは、より薄く均一に薄膜を形成できる真空成膜法を用いるのが良い。さらに好ましくは、蒸着物質との原子組成のずれが少なく、均一に成膜ができるスパッタリング法を用いるのが良い。   In addition, as a method for forming each layer from the lower electrode current collector layer 11b to the upper electrode current collector layer 13b, a vacuum film forming method such as a sputtering method, an electron beam vapor deposition method, a heat vapor deposition method, a coating method, or the like is used. be able to. It is preferable to use a vacuum film-forming method that can form a thin film more thinly and uniformly. More preferably, it is preferable to use a sputtering method in which there is little deviation in the atomic composition from the vapor deposition material and uniform film formation is possible.

このように、下部電極集電体層11bの外周に対し、下部電極活物質層11aから上の各層の外周が外側になるようにマスクを構成し、下部電極活物質層11a以降の各層を一括で形成することにより、下部電極集電体層11bと上部電極集電体層13bの外周端部が離間して配設される。したがって、マスクの「ずれ」等により下部電極集電体層11bが上部電極集電体層13bに接触することによる短絡を防止することができる。さらに、下部電極活物質層11aを成膜した後、固体電解質層12の成膜前にマスク交換を必要としないため、下部電極活物質層11aの汚染を防止することができ、電池性能の向上を図ることができると共に、製造工程の簡略化を図ることができる。   Thus, the mask is configured so that the outer periphery of each layer above the lower electrode active material layer 11a is outside the outer periphery of the lower electrode current collector layer 11b, and the layers after the lower electrode active material layer 11a are collectively As a result, the outer peripheral ends of the lower electrode current collector layer 11b and the upper electrode current collector layer 13b are spaced apart. Accordingly, it is possible to prevent a short circuit due to the lower electrode current collector layer 11b coming into contact with the upper electrode current collector layer 13b due to a “shift” of the mask or the like. Furthermore, after the lower electrode active material layer 11a is formed, it is not necessary to replace the mask before the formation of the solid electrolyte layer 12, so that the contamination of the lower electrode active material layer 11a can be prevented and the battery performance is improved. In addition, the manufacturing process can be simplified.

なお、本実施形態1では、下部電極集電体層11b又は上部電極集電体層13bにおいて、いずれかを負極集電体層とし、負極集電体をニオブとし、さらに下部電極活物質層11a又は上部電極活物質層13aのうちいずれかを負極活物質層とし、負極活物質をニオブ酸化物(Nb)とした場合、DCスパッタリング法によって成膜することができるため、RFスパッタリング法に比して、成膜速度の向上が促され、成膜時間の短縮が可能となり、生産効率が向上し、製造原価を削減することができる。 In the first embodiment, either the lower electrode current collector layer 11b or the upper electrode current collector layer 13b is a negative electrode current collector layer, the negative electrode current collector is niobium, and the lower electrode active material layer 11a. Alternatively, when any one of the upper electrode active material layers 13a is a negative electrode active material layer and the negative electrode active material is niobium oxide (Nb 2 O 5 ), a film can be formed by a DC sputtering method. Compared to the above, the film formation speed is improved, the film formation time can be shortened, the production efficiency is improved, and the manufacturing cost can be reduced.

なお、本実施形態1においては薄膜固体リチウムイオン二次電池を例に挙げて説明したが、上記構成を持つ様々な動作原理、種類の薄膜固体型の二次電池が作製可能であると考えられる。その中で、エネルギー密度等の電池特性が優れている点と、構成材料の薄膜化が比較的容易である点から、実用的には薄膜固体型のリチウム二次電池が好適であると考えられる。   In the first embodiment, a thin film solid lithium ion secondary battery has been described as an example. However, it is considered that various thin film solid type secondary batteries having the above-described configuration can be manufactured. . Among them, a thin-film solid-state lithium secondary battery is considered to be suitable from the viewpoint of excellent battery characteristics such as energy density and relatively easy thinning of the constituent materials. .

次に、図面を参照して、本発明の実施形態1に係る実施例と、それに対する比較例について説明する。
(実施例)
図1乃至図3の構成となるように絶縁性基板S上、正極集電体層である下部電極集電体層11b、正極活物質層である下部電極活物質層11a、固体電解質層12、負極活物質層である上部電極活物質層13a、負極集電体層である上部電極集電体層13bをこの順にスパッタリング法により形成し、薄膜固体二次電池10を作製した。このとき、上記のように、絶縁性基板S上に予め第1の端子部11c及び下部電極集電体層11bを成膜した後、大気開放を伴うマスク交換を行い、その後、下部電極活物質層11a、固体電解質層12、上部電極活物質層13a、上部電極集電体層13bを連続的に成膜した。
Next, examples according to the first embodiment of the present invention and comparative examples for the same will be described with reference to the drawings.
(Example)
1 to FIG. 3, on the insulating substrate S, a lower electrode current collector layer 11b that is a positive electrode current collector layer, a lower electrode active material layer 11a that is a positive electrode active material layer, a solid electrolyte layer 12, The upper electrode active material layer 13a, which is a negative electrode active material layer, and the upper electrode current collector layer 13b, which is a negative electrode current collector layer, were formed in this order by sputtering, and the thin film solid secondary battery 10 was produced. At this time, as described above, after the first terminal portion 11c and the lower electrode current collector layer 11b are formed in advance on the insulating substrate S, the mask is exchanged with the air released, and then the lower electrode active material is formed. The layer 11a, the solid electrolyte layer 12, the upper electrode active material layer 13a, and the upper electrode current collector layer 13b were continuously formed.

絶縁性基板Sは、縦50mm、横50mm、厚さ1mmのホウケイ酸塩ガラスを用いた。
下部電極集電体層11b及び第1の端子部11cはチタン(Ti)ターゲットを用いてDCマグネトロンスパッタリング法により形成した。このとき、DCパワーは1KW、無加熱で成膜した。これにより、下部電極集電体層11b及び第1の端子部11cを一体に連続した島状の導体膜パターンとして、厚さが0.1μmのチタン薄膜を形成した。
As the insulating substrate S, borosilicate glass having a length of 50 mm, a width of 50 mm, and a thickness of 1 mm was used.
The lower electrode current collector layer 11b and the first terminal portion 11c were formed by a DC magnetron sputtering method using a titanium (Ti) target. At this time, the film was formed with a DC power of 1 KW and no heating. As a result, a titanium thin film having a thickness of 0.1 μm was formed as an island-shaped conductor film pattern in which the lower electrode current collector layer 11b and the first terminal portion 11c were integrally continuous.

下部電極活物質層11aは、マンガン酸リチウム(LiMn)ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、厚さが0.2μmのLiMn薄膜を形成した。
さらに、固体電解質層12は、リン酸リチウム(LiPO)の焼結体ターゲットを用い、窒素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、厚さが0.1μmのリン酸リチウムオキシナイトライドガラス(LiPON)薄膜を形成した。
The lower electrode active material layer 11a was formed by RF magnetron sputtering using a lithium manganate (LiMn 2 O 4 ) target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a LiMn 2 O 4 thin film having a thickness of 0.2 μm was formed.
Further, the solid electrolyte layer 12 was formed by RF magnetron sputtering using a sintered phosphor target of lithium phosphate (Li 3 PO 4 ) and introducing nitrogen. The film was formed with an RF power of 1 KW and no heating. Thereby, a lithium phosphate oxynitride glass (LiPON) thin film having a thickness of 0.1 μm was formed.

また、上部電極活物質層13aはニオブ(Nb)ターゲットを用い、酸素を導入してDCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、0.1μmの酸化ニオブ(Nb)薄膜を形成した。
上部電極集電体層13bは下部電極集電体層11b及び第1の端子部11cと同様にチタン(Ti)ターゲットを用い、DCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、厚さが0.1μmのチタン薄膜を形成した。
The upper electrode active material layer 13a was formed by DC magnetron sputtering using a niobium (Nb) target and introducing oxygen. The film was formed with a DC power of 1 KW and no heating. This formed a 0.1 μm niobium oxide (Nb 2 O 5 ) thin film.
The upper electrode current collector layer 13b was formed by a DC magnetron sputtering method using a titanium (Ti) target in the same manner as the lower electrode current collector layer 11b and the first terminal portion 11c. The film was formed with a DC power of 1 KW and no heating. Thereby, a titanium thin film having a thickness of 0.1 μm was formed.

(比較例)
比較例の実施形態に係る薄膜固体二次電池100に関し、図面に基づき説明する。
図4は比較例の実施形態に係る薄膜固体二次電池100の平面図、図5は比較例の実施形態に係る薄膜固体二次電池100の概略断面図である。
(Comparative example)
A thin film solid secondary battery 100 according to an embodiment of a comparative example will be described with reference to the drawings.
FIG. 4 is a plan view of the thin-film solid secondary battery 100 according to the embodiment of the comparative example, and FIG. 5 is a schematic cross-sectional view of the thin-film solid secondary battery 100 according to the embodiment of the comparative example.

比較例の薄膜固体二次電池100は、下部電極集電体層11bの外周が、下部電極活物質層11aの外周よりも内側に形成された構成、すなわち、下部電極集電体層11bが露出しないように下部電極活物質層11aに覆われている上記実施形態1(図1乃至図3を参照)の薄膜固体二次電池10とは異なり、下部電極集電体層110bの外周が、下部電極活物質層110aから上に形成される各層の外周よりも外側に形成されていることを特徴としている。   The thin film solid state secondary battery 100 of the comparative example has a configuration in which the outer periphery of the lower electrode current collector layer 11b is formed inside the outer periphery of the lower electrode active material layer 11a, that is, the lower electrode current collector layer 11b is exposed. Unlike the thin-film solid secondary battery 10 of Embodiment 1 (see FIGS. 1 to 3) covered with the lower electrode active material layer 11a, the outer periphery of the lower electrode current collector layer 110b is lower It is characterized by being formed outside the outer periphery of each layer formed above the electrode active material layer 110a.

以下、比較例の実施形態に係る薄膜固体二次電池100の構成について説明する。
図4、図5に示すように、比較例の実施形態に係る薄膜固体二次電池100は、絶縁性基板S上に、第1の端子部110c、下部電極集電体層110b、下部電極活物質層110a、固体電解質層120、上部電極活物質層130a、上部電極集電体層130bの薄膜が順に積層されて形成されている。
Hereinafter, the configuration of the thin film solid secondary battery 100 according to the embodiment of the comparative example will be described.
As shown in FIGS. 4 and 5, the thin-film solid secondary battery 100 according to the comparative example includes a first terminal part 110 c, a lower electrode current collector layer 110 b, a lower electrode active part on an insulating substrate S. The material layer 110a, the solid electrolyte layer 120, the upper electrode active material layer 130a, and the upper electrode current collector layer 130b are sequentially stacked.

そして、絶縁性基板S上に形成される下部電極集電体層110bの外周からは第1の端子部110cが同一平面上で延設されており、下部電極集電体層110bは、他の各層よりもその面積が広く形成されている。下部電極集電体層110b及び第1の端子部110cは、薄膜形成領域を区画するマスクを用いて一括で形成され、その後、マスク交換を行い、下部電極活物質層110a、固体電解質層120、上部電極活物質層130a、上部電極集電体層130bを、この順で各層が所定の膜厚になるまで同一マスクを用いて連続して成膜する。なお、この時に使用されるマスクは、下部電極集電体層110bの外周に対して、区画される薄膜形成領域の外周が内側に配設されるように形成されている。   And from the outer periphery of the lower electrode collector layer 110b formed on the insulating substrate S, the first terminal portion 110c extends on the same plane, and the lower electrode collector layer 110b The area is wider than each layer. The lower electrode current collector layer 110b and the first terminal portion 110c are formed in a lump using a mask that partitions the thin film formation region, and then the mask is exchanged so that the lower electrode active material layer 110a, the solid electrolyte layer 120, The upper electrode active material layer 130a and the upper electrode current collector layer 130b are successively formed in this order using the same mask until each layer has a predetermined thickness. Note that the mask used at this time is formed such that the outer periphery of the thin film forming region partitioned is disposed on the inner side with respect to the outer periphery of the lower electrode current collector layer 110b.

したがって、上記実施形態1の薄膜固体二次電池10と比較して、比較例の薄膜固体二次電池100は、下部電極集電体層110bの外周位置、すなわち、下部電極活物質層110aとの面積比が異なっているのみであり、マスクの形状が異なる点以外は、構成材料、各製造工程が同様であるため、その説明を省略する。   Therefore, as compared with the thin-film solid secondary battery 10 of Embodiment 1 described above, the thin-film solid secondary battery 100 of the comparative example has an outer peripheral position of the lower electrode current collector layer 110b, that is, the lower electrode active material layer 110a. The constituent materials and the respective manufacturing steps are the same except that the area ratio is different and the shape of the mask is different. Therefore, the description thereof is omitted.

図4、図5の構成となるように絶縁性基板S上、正極集電体層である下部電極集電体層110b、正極活物質層である下部電極活物質層110a、固体電解質層120、負極活物質層である上部電極活物質層130a、負極集電体層である上部電極集電体層130bをこの順にスパッタリング法により形成し、薄膜固体二次電池100を作製した。なお、上記薄膜固体二次電池10の実施例と比較して、下部電極活物質層110aよりも上の層を形成するためのマスク形状が異なる点以外は、同様の材料及び製造工程を経て、薄膜固体二次電池100を作製した。   4 and 5, on the insulating substrate S, a lower electrode current collector layer 110b that is a positive electrode current collector layer, a lower electrode active material layer 110a that is a positive electrode active material layer, a solid electrolyte layer 120, The upper electrode active material layer 130a that is the negative electrode active material layer and the upper electrode current collector layer 130b that is the negative electrode current collector layer were formed in this order by the sputtering method, and the thin film solid secondary battery 100 was manufactured. In addition, compared with the Example of the said thin film solid secondary battery 10, through the same material and manufacturing process except the point that the mask shape for forming the layer above the lower electrode active material layer 110a differs, A thin film solid secondary battery 100 was produced.

上述のようにして得られた薄膜固体二次電池10及び薄膜固体二次電池100について、歩留まり、エネルギー効率(充電電流容量に対する放電電流容量の割合)等の結果を表1にまとめた。実施例及び比較例の結果を以下の表1に示す。   Table 1 summarizes the results of yield, energy efficiency (ratio of discharge current capacity to charge current capacity), etc., for the thin film solid secondary battery 10 and the thin film solid secondary battery 100 obtained as described above. The results of Examples and Comparative Examples are shown in Table 1 below.

Figure 2012038433
Figure 2012038433

測定は充放電測定器により、
充電電流=0.06mA、充電終了電圧=3.5V
放電電流=0.06mA、放電終了電圧=0.3V
の条件で行い、電池動作が確認できたものを良品として歩留まりを算出した。
Measurement is done with a charge / discharge meter.
Charging current = 0.06mA, charging end voltage = 3.5V
Discharge current = 0.06 mA, discharge end voltage = 0.3 V
The yield was calculated assuming that the battery operation was confirmed as a non-defective product.

その結果、本発明の実施例である薄膜固体二次電池10は、歩留まり及びエネルギー効率の点で、比較例の薄膜固体二次電池100よりも良好な結果が得られた。
歩留まりに関し、本発明の実施例の薄膜固体二次電池10は100%(測定個数216個、可動数216個)であったのに対し、比較例の薄膜固体二次電池100は73.8%(測定個数648個、可動数478個)であり、本発明の薄膜固体二次電池10の歩留まりが極めて高いことが示された。さらにエネルギー効率に関し、本発明の薄膜固体二次電池10は、86.2%であったのに対し、比較例の薄膜固体二次電池100は43.0%であり、本発明の薄膜固体二次電池10のエネルギー効率が極めて高いことが示された。すなわち、本発明の薄膜固体二次電池10は、充電電流容量に対して放電電流容量の保持率が極めて高いことが示されている。
As a result, the thin-film solid secondary battery 10 which is an example of the present invention was better than the thin-film solid secondary battery 100 of the comparative example in terms of yield and energy efficiency.
Regarding the yield, the thin-film solid secondary battery 10 of the example of the present invention was 100% (measured number 216, movable number 216), whereas the thin-film solid secondary battery 100 of the comparative example was 73.8%. (Measured number 648, movable number 478), indicating that the yield of the thin-film solid secondary battery 10 of the present invention is extremely high. Furthermore, regarding the energy efficiency, the thin-film solid secondary battery 10 of the present invention was 86.2%, whereas the thin-film solid secondary battery 100 of the comparative example was 43.0%. It was shown that the energy efficiency of the secondary battery 10 is extremely high. That is, it is shown that the thin film solid secondary battery 10 of the present invention has a very high discharge current capacity retention rate with respect to the charge current capacity.

また、薄膜固体二次電池10及び薄膜固体二次電池100について、放電特性を評価した。実施例及び比較例の結果を図6に示す。測定は、上記記載の条件で行った。   Further, the discharge characteristics of the thin film solid secondary battery 10 and the thin film solid secondary battery 100 were evaluated. The results of Examples and Comparative Examples are shown in FIG. The measurement was performed under the conditions described above.

その結果、等しい電池容量においては、本発明の実施例である薄膜固体二次電池10の方が、放電時に高い電池電圧を維持できることが示された。例えば電池電圧が0.5V以上を維持できる電池容量を比較すると、実施例の薄膜固体二次電池10は、比較例である薄膜固体二次電池100の約1.1倍の電池容量を備えている。   As a result, it was shown that the thin film solid secondary battery 10 which is an example of the present invention can maintain a higher battery voltage during discharging at the same battery capacity. For example, when comparing battery capacities that can maintain a battery voltage of 0.5 V or more, the thin film solid secondary battery 10 of the example has a battery capacity about 1.1 times that of the thin film solid secondary battery 100 of the comparative example. Yes.

したがって上記比較により、下部電極集電体層11bの上面を下部電極活物質層11aによって覆い、下部電極活物質層11aよりも上に積層される各層を一括で成膜することにより、電池性能及び歩留まりが大きく向上することが示された。   Therefore, according to the above comparison, the upper surface of the lower electrode current collector layer 11b is covered with the lower electrode active material layer 11a, and the layers stacked above the lower electrode active material layer 11a are collectively formed, so that the battery performance and It was shown that the yield was greatly improved.

さらに、本発明の実施形態2について図面を参照して説明する。図7〜図9は、本発明の実施形態2に係るもので、図7は薄膜固体二次電池20の概略斜視図、図8薄膜固体二次電池20の平面図、図9は、図7のB−B線に相当する断面図である。   Furthermore, Embodiment 2 of the present invention will be described with reference to the drawings. 7 to 9 relate to Embodiment 2 of the present invention. FIG. 7 is a schematic perspective view of the thin film solid secondary battery 20, FIG. 8 is a plan view of the thin film solid secondary battery 20, and FIG. It is sectional drawing equivalent to a BB line.

[実施形態2]
本発明の実施形態2に係る薄膜固体二次電池20は、図7、図9に示すように、正負いずれか一方の極性の下部電極21と、固体電解質層22と、他方の極性の上部電極23とがこの順に形成されている。下部電極21は、下部電極活物質層21a、下部電極集電体21b、第1の端子部21cを備えており、上部電極23は、上部電極活物質層23a、上部電極集電体層23bを備えている。
なお、本実施形態2において、下部電極活物質層21aは特許請求の範囲の「下部電極活物質」、下部電極集電体21bは特許請求の範囲の「下部電極集電体」、上部電極活物質層23aは特許請求の範囲の「上部電極活物質」、上部電極集電体層23bは特許請求の範囲の「上部電極集電体」に相当する。
[Embodiment 2]
As shown in FIGS. 7 and 9, the thin-film solid secondary battery 20 according to Embodiment 2 of the present invention includes a lower electrode 21 having either positive or negative polarity, a solid electrolyte layer 22, and an upper electrode having the other polarity. 23 are formed in this order. The lower electrode 21 includes a lower electrode active material layer 21a, a lower electrode current collector 21b, and a first terminal portion 21c. The upper electrode 23 includes an upper electrode active material layer 23a and an upper electrode current collector layer 23b. I have.
In the second embodiment, the lower electrode active material layer 21a is the “lower electrode active material” in the claims, and the lower electrode current collector 21b is the “lower electrode current collector”, the upper electrode active in the claims. The material layer 23a corresponds to “upper electrode active material” in the claims, and the upper electrode current collector layer 23b corresponds to “upper electrode current collector” in the claims.

下部電極21は、導電性基板からなる下部電極集電体21b上に、開口部25a及び切り欠き部25bを有する絶縁膜25と、下部電極活物質層21aとが順に積層されることによって形成されている。枠状の絶縁膜25に形成された開口部25a及び切り欠き部25bは、図8に示すように、絶縁膜25の内側が略矩形状に切除された形状に形成されている。   The lower electrode 21 is formed by sequentially laminating an insulating film 25 having an opening 25a and a notch 25b and a lower electrode active material layer 21a on a lower electrode current collector 21b made of a conductive substrate. ing. As shown in FIG. 8, the opening 25a and the notch 25b formed in the frame-like insulating film 25 are formed in a shape in which the inside of the insulating film 25 is cut out in a substantially rectangular shape.

そして、下部電極21は、下部電極活物質層21aと接触しない位置まで延設され露出した露出面からなる第1の端子部21c、すなわち、下部電極集電体21bと導通すると共にその表面が露出した略矩形状の第1の端子部21cを備えており、第1の端子部21cは、切り欠き部25bを介して導電性基板(すなわち、下部電極集電体21b)と電気的に接続されている。なお、本実施形態2において、第1の端子部21cは、特許請求の範囲の「端子部」に相当する。   The lower electrode 21 is electrically connected to the first terminal portion 21c having an exposed surface extending to a position where the lower electrode active material layer 21a is not in contact with the lower electrode active material layer 21a, that is, the lower electrode current collector 21b, and the surface thereof is exposed. The first terminal portion 21c having a substantially rectangular shape is electrically connected to the conductive substrate (that is, the lower electrode current collector 21b) through the notch portion 25b. ing. In the second embodiment, the first terminal portion 21c corresponds to a “terminal portion” in the claims.

第1の端子部21cは、外部接続用の各種ケーブル等に接続されるために形成され、下部電極集電体21bの外周方向外側において、絶縁膜25の一部を切除して切り欠き部25bを形成すると共に、切り欠き部25bに導電性部材を重ねて積層することによって第1の端子部21cが形成される。なお、本実施形態2において、絶縁膜25に形成された切り欠き部25bにおいて導電性基板の一部が露出するため、図9のように導電性部材を備えた構成ではなく、切り欠き部25bを介して各種ケーブルを接続する構成としても良い。   The first terminal portion 21c is formed to be connected to various cables for external connection and the like, and a part of the insulating film 25 is cut out on the outer side in the outer peripheral direction of the lower electrode current collector 21b to form a cutout portion 25b. And the first terminal portion 21c is formed by stacking the conductive member on the notch 25b. In the second embodiment, since a part of the conductive substrate is exposed at the notch 25b formed in the insulating film 25, the notch 25b is not a configuration having a conductive member as shown in FIG. It is good also as a structure which connects various cables via this.

さらに、第1の端子部21cは、図9のように略矩形状の切り欠き部25bによって区画されている必要はない。少なくとも、下部電極集電体21bと導通性を保持すると共にその一部が露出した構成であれば良い。
ただし、上記のように、下部電極集電体21bの外周方向外側に離間した位置であって、且つ導電性基板上において、絶縁膜25、下部電極活物質層21a、固体電解質層22、上部電極活物質層23a、上部電極集電体層23bが設けられる側と同じ側に切り欠き部25bを形成すると、もう一方の極性端子、すなわち上部電極集電体層23bと同一平面で各種ケーブルを接続することができる。したがって、同一面上に正極、負極の端子を備えた薄膜固体二次電池20とすることができる。
Furthermore, the first terminal portion 21c does not need to be partitioned by the substantially rectangular cutout portion 25b as shown in FIG. It is only necessary to have at least a configuration that maintains electrical conductivity with the lower electrode current collector 21b and a part thereof is exposed.
However, as described above, the insulating film 25, the lower electrode active material layer 21 a, the solid electrolyte layer 22, and the upper electrode are located on the outer peripheral direction outside of the lower electrode current collector 21 b and on the conductive substrate. When the notch 25b is formed on the same side as the side on which the active material layer 23a and the upper electrode current collector layer 23b are provided, various cables are connected in the same plane as the other polarity terminal, that is, the upper electrode current collector layer 23b. can do. Therefore, the thin-film solid secondary battery 20 having positive and negative terminals on the same surface can be obtained.

また、絶縁膜25の開口部25a及び切り欠き部25bは、マスクによって区画されて形成されても良いし、絶縁膜25に対してエッチングを行うことにより形成されていても良い。   Further, the opening 25 a and the notch 25 b of the insulating film 25 may be formed by being partitioned by a mask, or may be formed by etching the insulating film 25.

そして、下部電極21を構成する下部電極活物質層21aの上面は、下部電極21上に形成される固体電解質層22の下面(底面)に面接触するように積層して形成されていると共に、下部電極活物質層21aの下面は、絶縁膜25に形成された開口部25を介して下部電極集電体21bの上面に面接触するように積層して形成されている。   The upper surface of the lower electrode active material layer 21a constituting the lower electrode 21 is formed so as to be in surface contact with the lower surface (bottom surface) of the solid electrolyte layer 22 formed on the lower electrode 21, The lower surface of the lower electrode active material layer 21 a is formed by being laminated so as to be in surface contact with the upper surface of the lower electrode current collector 21 b through the opening 25 formed in the insulating film 25.

上記下部電極活物質層21aと、固体電解質層22と、上部電極活物質層23aと、上部電極集電体層23bは、平面視略同一形状(本実施形態2では略矩形状)で積層されている。したがって、下部電極活物質層21aと、固体電解質層22と、上部電極活物質層23aと、上部電極集電体層23bの各層を形成する際、マスクを交換する必要が無い。マスク交換の際は真空成膜装置内の大気開放を伴うが、下部電極活物質層21aから上部電極集電体層23bまでの成膜時、同一マスクを使用可能であるため、下部電極活物質層21aから上部電極集電体層23bまでが大気開放による影響をうけることなく、電池性能の良い薄膜固体二次電池20を提供することができる。   The lower electrode active material layer 21a, the solid electrolyte layer 22, the upper electrode active material layer 23a, and the upper electrode current collector layer 23b are laminated in substantially the same shape in plan view (substantially rectangular in the second embodiment). ing. Therefore, it is not necessary to replace the mask when forming the lower electrode active material layer 21a, the solid electrolyte layer 22, the upper electrode active material layer 23a, and the upper electrode current collector layer 23b. When the mask is exchanged, the vacuum film forming apparatus is opened to the atmosphere. However, since the same mask can be used when forming the film from the lower electrode active material layer 21a to the upper electrode current collector layer 23b, the lower electrode active material is used. The thin film solid state secondary battery 20 with good battery performance can be provided without being affected by the release of the atmosphere from the layer 21a to the upper electrode current collector layer 23b.

下部電極活物質層21aから上部電極集電体23bまでを成膜する際に使用するマスクは、図7、図8から示されるように略矩形状であっても良いし、他の形状としても良い。また、本実施形態2では、各種ケーブルとの接続用に、略矩形状の下部電極活物質層21a、固体電解質層22、上部電極活物質層23a、上部電極集電体層23bの各層から第2の端子部24が同一形状で突出して形成された構成としている。なお、上記方法により、上部電極集電体層23bに対して直接各種ケーブルを接続可能であるから、第2の端子部24は本実施形態2のように上部電極集電体層23bから突出して延設されていなくても良い。   The mask used when forming the film from the lower electrode active material layer 21a to the upper electrode current collector 23b may be substantially rectangular as shown in FIGS. 7 and 8, or other shapes may be used. good. Further, in the second embodiment, for connection with various cables, the first electrode layer is formed from the substantially rectangular lower electrode active material layer 21a, solid electrolyte layer 22, upper electrode active material layer 23a, and upper electrode current collector layer 23b. Two terminal portions 24 are formed to protrude in the same shape. Since various cables can be directly connected to the upper electrode current collector layer 23b by the above method, the second terminal portion 24 protrudes from the upper electrode current collector layer 23b as in the second embodiment. It does not have to be extended.

そして、下部電極集電体21bと下部電極活物質層21aとの接触面、(すなわち、下部電極集電体21bにおいて絶縁膜25の開口部25aによって区画される部分)の外周は、下部電極活物質層21aの下面の外周よりも内側に形成されている。図9に示すように、本実施形態2の薄膜固体二次電池20において、下部電極集電体21bは、絶縁膜25の開口部25aを介して下部電極活物質層21aと面接触している。   The outer periphery of the contact surface between the lower electrode current collector 21b and the lower electrode active material layer 21a (that is, the portion defined by the opening 25a of the insulating film 25 in the lower electrode current collector 21b) is lower electrode active. It is formed inside the outer periphery of the lower surface of the material layer 21a. As shown in FIG. 9, in the thin-film solid secondary battery 20 of Embodiment 2, the lower electrode current collector 21b is in surface contact with the lower electrode active material layer 21a through the opening 25a of the insulating film 25. .

図8に示すように、下部電極集電体21bと下部電極活物質層21aとの接触面(開口部25a)は、下部電極活物質層21aと、固体電解質層22と、上部電極活物質層23aと、上部電極集電体層23bと比較して小さい面積となるように形成されており、開口部25aによって区画される下部電極集電体21bの上面は、下部電極活物質層21aによって包含されている。すなわち、下部電極集電体21bと下部電極活物質層21aとの接触面(開口部25a)は、下部電極活物質層21aによってその全面が覆われるとともに、さらに開口部25aの外周端部が他の層(固体電解質層22と、上部電極活物質層23aと、上部電極集電体層23b)に接触することがないように、少なくとも下部電極活物質層21aの外周端部と比較して内側に開口部25aの外周端部が配設された構成となっている(図8を参照)。   As shown in FIG. 8, the contact surface (opening 25a) between the lower electrode current collector 21b and the lower electrode active material layer 21a includes the lower electrode active material layer 21a, the solid electrolyte layer 22, and the upper electrode active material layer. 23a and the upper electrode current collector layer 23b are formed to have a smaller area, and the upper surface of the lower electrode current collector 21b defined by the opening 25a is covered by the lower electrode active material layer 21a. Has been. That is, the entire surface of the contact surface (opening 25a) between the lower electrode current collector 21b and the lower electrode active material layer 21a is covered with the lower electrode active material layer 21a, and the outer peripheral end of the opening 25a is other. In comparison with at least the outer peripheral edge of the lower electrode active material layer 21a, the inner electrode layer (solid electrolyte layer 22, upper electrode active material layer 23a, and upper electrode current collector layer 23b) In this configuration, the outer peripheral end of the opening 25a is disposed (see FIG. 8).

このように、下部電極集電体21bと下部電極活物質層21aとの接触面の外周端部が、少なくとも下部電極活物質層21aの外周端部よりも内側となる構成とすると、下部電極集電体21bと下部電極活物質層21aとの接触面の端部が、下部電極活物質層21a及び絶縁膜25によって完全に覆われる形状となる。したがって、下部電極集電体21bが、固体電解質層22よりも上に形成される層に接触することがない。その結果、短絡を防止することができ、歩留まりの良い薄膜固体二次電池20とすることができる。   Thus, when the outer peripheral end portion of the contact surface between the lower electrode current collector 21b and the lower electrode active material layer 21a is at least inside the outer peripheral end portion of the lower electrode active material layer 21a, the lower electrode current collector is formed. The end portion of the contact surface between the electric body 21b and the lower electrode active material layer 21a is completely covered with the lower electrode active material layer 21a and the insulating film 25. Therefore, the lower electrode current collector 21b does not contact a layer formed above the solid electrolyte layer 22. As a result, a short circuit can be prevented, and the thin film solid secondary battery 20 with a high yield can be obtained.

本実施形態2の薄膜固体二次電池20を構成する各層の材料に関し、上記実施形態1の薄膜固体二次電池10と同様であるものは、その説明を省略する。   Regarding the material of each layer constituting the thin-film solid secondary battery 20 of the second embodiment, the description of the same materials as those of the thin-film solid secondary battery 10 of the first embodiment is omitted.

下部電極集電体21bとしての機能を備える導電性基板の材料としては、導電性ガラスセラミックス、導電性ポリマー等が好適に用いられる。
また、導電性基板として、フィルム等の薄板状に形成され、可撓性を備えた導電性基板を用いると共に、各層を数μm〜数十μm程度の薄膜によって構成することにより、電池全体として可撓性を備えた薄膜固体二次電池20を提供することができる。
As a material of the conductive substrate having a function as the lower electrode current collector 21b, conductive glass ceramics, conductive polymer, and the like are preferably used.
In addition, as a conductive substrate, a flexible conductive substrate formed in a thin plate shape such as a film is used, and each layer is formed of a thin film of about several μm to several tens μm. A thin film solid secondary battery 20 having flexibility can be provided.

導電性基板上に形成される絶縁膜25の材料としては、SiO、Alなどを蒸着法、スパッタリング法、ディッピング法等により形成した薄膜、スクリーン印刷法により形成したポリイミドフィルムなどが用いられる。 The material of the insulating film 25 formed on the conductive substrate, evaporation method, or the like SiO 2, Al 2 O 3, a sputtering method, a thin film was formed by a dipping method or the like, such as a polyimide film formed by a screen printing method is used It is done.

なお、上記構成の薄膜固体二次電池20の第1の端子部21cの露出部及び、第2の端子部24以外の部分を被覆する保護膜(不図示)が設けられる。また、上記のように、第2の端子部24を特別に形成することなく、上部電極集電体層23b上の一部において保護膜を備えない構成とし、その部分に各種ケーブルを接続する構成としても良い。   A protective film (not shown) is provided to cover the exposed portion of the first terminal portion 21c and the portion other than the second terminal portion 24 of the thin-film solid secondary battery 20 having the above configuration. Further, as described above, the second terminal portion 24 is not specially formed, and the protective film is not provided in part on the upper electrode current collector layer 23b, and various cables are connected to the part. It is also good.

次に、本発明の実施形態2に係る薄膜固体二次電池20に関し、その製造方法を具体的に説明する。本発明の薄膜固体二次電池20の製造方法は、正負いずれか一方の極性の下部電極21を構成する下部電極集電体21b、第1の端子部21c及び下部電極活物質層21aと、固体電解質層22と、他方の極性の上部電極23を構成する上部電極活物質層23a及び上部電極集電体層23bがこの順に形成されてなる薄膜固体二次電池20の製造方法であって、少なくとも、導電性基板からなる下部電極集電体21b上に、開口部を備えた絶縁膜25を成膜する絶縁膜形成工程と、薄膜形成領域を区画する枠状のマスクを、薄膜形成領域の外周が絶縁膜25の開口部25aの外周よりも外側となる位置で、導電性基板上の絶縁膜25が形成された側に配設するマスク設置工程と、マスクの薄膜形成領域内に、下部電極活物質層21aと、固体電解質層22と、上部電極活物質層23aと、上部電極集電体層23bとを連続してこの順に成膜する成膜工程と、を順に備えている。以下、各工程について詳細に説明する。   Next, a manufacturing method for the thin-film solid secondary battery 20 according to Embodiment 2 of the present invention will be specifically described. The method for manufacturing the thin-film solid secondary battery 20 of the present invention includes a lower electrode current collector 21b, a first terminal portion 21c, a lower electrode active material layer 21a, and a solid electrode. A method of manufacturing a thin-film solid secondary battery 20 in which an electrolyte layer 22 and an upper electrode active material layer 23a and an upper electrode current collector layer 23b constituting the upper electrode 23 of the other polarity are formed in this order, An insulating film forming step for forming an insulating film 25 having an opening on the lower electrode current collector 21b made of a conductive substrate, and a frame-shaped mask for partitioning the thin film forming region are arranged on the outer periphery of the thin film forming region. Is disposed outside the outer periphery of the opening 25a of the insulating film 25 at a position where the insulating film 25 is formed on the conductive substrate, and a lower electrode is provided in the thin film formation region of the mask. Active material layer 21a and solid A solution electrolyte layer 22, and an upper electrode active material layer 23a, a film forming step of forming in this order in succession and the upper electrode collector layer 23b, in this order. Hereinafter, each step will be described in detail.

(1.絶縁膜形成工程)
本発明の薄膜固体二次電池20の製造方法では、まず、下部電極集電体21bを構成する絶縁性基板の表面に絶縁膜25を形成する。このとき絶縁膜25は、開口部25a及び切り欠き部25bに相当する部分が切除された構成となるように形成されたマスクを用いてスパッタリング法により形成されると好ましい。また、導電性基板上の全面に絶縁膜25を形成し、エッチングにより開口部25a及び切り欠き部25bを形成しても良い。開口部25a、切り欠き部25bを形成できる方法であれば、絶縁膜25の成膜方法は公知の如何なる方法を用いても良い。なお、このとき、一枚の導電性基板上において一カ所に開口部25a、切り欠き部25bを形成するのではなく、多数の開口部25a、切り欠き部25bを形成し、各開口部25aの上方にその他の各層を積層した後、導電性基板ごと分割することにより、少ない成膜回数で多数の薄膜固体二次電池20を作製することができる。
(1. Insulating film formation process)
In the method for manufacturing the thin film solid secondary battery 20 of the present invention, first, the insulating film 25 is formed on the surface of the insulating substrate constituting the lower electrode current collector 21b. At this time, the insulating film 25 is preferably formed by a sputtering method using a mask formed so that portions corresponding to the opening 25a and the notch 25b are cut off. Alternatively, the insulating film 25 may be formed on the entire surface of the conductive substrate, and the opening 25a and the notch 25b may be formed by etching. Any known method may be used for forming the insulating film 25 as long as the opening 25a and the notch 25b can be formed. At this time, instead of forming the openings 25a and notches 25b in one place on a single conductive substrate, a large number of openings 25a and notches 25b are formed. After laminating the other layers above, and dividing the entire conductive substrate, a large number of thin-film solid secondary batteries 20 can be manufactured with a small number of film formations.

(2.マスク設置工程)
スパッタリング法により上記絶縁膜形成工程を行った後は、真空成膜装置内を大気開放し絶縁膜25を形成するために使用したマスクを取り外す。エッチングにより絶縁膜25に対して開口部25a、切り欠き部25bを設けた場合は、真空成膜装置内に導電性基板を設置する。なお、エッチング工程を経た場合は、絶縁膜25を備えた導電性基板を乾燥させてから真空成膜装置内に設置すると良い。その後、開口部25aの外周端部よりも、外側に薄膜形成領域の外周端部が配設される枠状のマスクを設置する(図8参照)。
(2. Mask installation process)
After the insulating film forming step is performed by the sputtering method, the inside of the vacuum film forming apparatus is opened to the atmosphere, and the mask used for forming the insulating film 25 is removed. When the opening 25a and the notch 25b are provided in the insulating film 25 by etching, a conductive substrate is set in the vacuum film forming apparatus. Note that in the case where the etching process is performed, the conductive substrate including the insulating film 25 is preferably dried and then installed in the vacuum film forming apparatus. Thereafter, a frame-like mask in which the outer peripheral end portion of the thin film forming region is disposed outside the outer peripheral end portion of the opening 25a (see FIG. 8).

(3.成膜工程)
上記マスク設置工程を行った後、下部電極活物質層21a、固体電解質層22、上部電極活物質層23a、上部電極集電体層23bを、この順で各層が所定の膜厚になるまで同一マスクを用いて連続して成膜する。
なお、上記成膜工程を行った後、絶縁膜25の切り欠き部25bに重なるようにして端子部21cを成膜しても良いし、又は、上記絶縁膜成膜工程を行った後、下部電極活物質層21a、固体電解質層22、上部電極活物質層23a、上部電極集電体層23bを成膜する前に端子部21cを形成しても良い。
(3. Film formation process)
After the mask installation step, the lower electrode active material layer 21a, the solid electrolyte layer 22, the upper electrode active material layer 23a, and the upper electrode current collector layer 23b are the same until each layer has a predetermined thickness in this order. Films are continuously formed using a mask.
In addition, after performing the said film-forming process, you may form the terminal part 21c so that it may overlap with the notch part 25b of the insulating film 25, or after performing the said insulating film film-forming process, The terminal portion 21c may be formed before forming the electrode active material layer 21a, the solid electrolyte layer 22, the upper electrode active material layer 23a, and the upper electrode current collector layer 23b.

リチウム二次電池の構成材料であるリチウム含有酸化物は、水分及び酸化によって劣化しやすい事が一般に知られている。その対策としてドライルーム、グローブボックス等が必要となるが、本発明により電池セルを構成する下部電極活物質層11aから上部電極集電体層13bまでを連続して、真空成膜装置内で作製できるので、リチウム二次電池の作製方法として好適である。   It is generally known that a lithium-containing oxide that is a constituent material of a lithium secondary battery is easily deteriorated by moisture and oxidation. As a countermeasure, a dry room, a glove box, etc. are required. According to the present invention, the lower electrode active material layer 11a to the upper electrode current collector layer 13b constituting the battery cell are continuously produced in a vacuum film forming apparatus. Therefore, it is suitable as a method for manufacturing a lithium secondary battery.

このように、導電性基板上に開口部25aを備えることにより、下部電極集電体21bと下部電極活物質層21aの接触面の外周に対し、下部電極活物質層21aから上の各層の外周が離間して外側になるようにマスクを構成し、下部電極活物質層21a以降の各層を一括で形成することにより、下部電極集電体21bと上部電極集電体層23bの外周端部が離間して配設される。したがって、マスクの「ずれ」等により下部電極集電体21bが上部電極集電体層23bに接触することによる短絡を防止することができる。さらに、下部電極活物質層21aを成膜した後、固体電解質層22の成膜前にマスク交換を必要としないため、下部電極活物質層21aの汚染を防止することができ、電池性能の向上を図ることができると共に、製造工程の簡略化を図ることができる。さらにまた、導電性基板が下部電極集電体21bとしての機能も兼ねているため、その構成が簡単な薄膜固体二次電池20を提供することができる。   Thus, by providing the opening 25a on the conductive substrate, the outer periphery of each layer above the lower electrode active material layer 21a with respect to the outer periphery of the contact surface between the lower electrode current collector 21b and the lower electrode active material layer 21a. Are formed so as to be separated from each other, and the layers after the lower electrode active material layer 21a are formed in a lump so that the outer peripheral end portions of the lower electrode current collector 21b and the upper electrode current collector layer 23b are formed. They are spaced apart. Accordingly, it is possible to prevent a short circuit due to the lower electrode current collector 21b coming into contact with the upper electrode current collector layer 23b due to “shift” of the mask or the like. Furthermore, after the lower electrode active material layer 21a is formed, it is not necessary to replace the mask before the solid electrolyte layer 22 is formed. Therefore, contamination of the lower electrode active material layer 21a can be prevented, and battery performance is improved. In addition, the manufacturing process can be simplified. Furthermore, since the conductive substrate also functions as the lower electrode current collector 21b, the thin film solid secondary battery 20 having a simple configuration can be provided.

[実施形態3]
本発明の実施形態3に係る薄膜固体二次電池30は、図10に示すように、正負いずれか一方の極性の下部電極31と、固体電解質層32と、他方の極性の上部電極33とがこの順に形成されている。下部電極31は、下部電極活物質層31a、下部電極集電体層31b、第1の端子部31cを備えており、上部電極33は、上部電極活物質層33a、上部電極集電体層33bを備えている。
なお、本実施形態3において、下部電極活物質層31aは特許請求の範囲の「下部電極活物質」、下部電極集電体層31bは特許請求の範囲の「下部電極集電体」、上部電極活物質層33aは特許請求の範囲の「上部電極活物質」、上部電極集電体層33bは特許請求の範囲の「上部電極集電体」に相当する。
なお、第1の端子部31c(特許請求の範囲の「端子部」に相当する)以外の構成は、上記実施形態1の薄膜固体二次電池10と同様の構成であるため、その説明を省略する。
[Embodiment 3]
As shown in FIG. 10, the thin film solid secondary battery 30 according to Embodiment 3 of the present invention includes a lower electrode 31 having either positive or negative polarity, a solid electrolyte layer 32, and an upper electrode 33 having the other polarity. They are formed in this order. The lower electrode 31 includes a lower electrode active material layer 31a, a lower electrode current collector layer 31b, and a first terminal portion 31c. The upper electrode 33 includes an upper electrode active material layer 33a and an upper electrode current collector layer 33b. It has.
In the third embodiment, the lower electrode active material layer 31a is the “lower electrode active material” in the claims, the lower electrode current collector layer 31b is the “lower electrode current collector” in the claims, the upper electrode The active material layer 33a corresponds to the “upper electrode active material” in the claims, and the upper electrode current collector layer 33b corresponds to the “upper electrode current collector” in the claims.
Since the configuration other than the first terminal portion 31c (corresponding to the “terminal portion” in the claims) is the same as the configuration of the thin-film solid secondary battery 10 of the first embodiment, description thereof is omitted. To do.

下部電極31は、下部電極活物質層31aと接触しない位置まで延設され露出した露出面からなる第1の端子部31c、すなわち、下部電極集電体層31bと導通すると共にその表面が露出した略矩形状の第1の端子部31cを備えており、第1の端子部31cは、下部電極集電体層31bと電気的に接続されている。
第1の端子部31cは、外部接続用の各種ケーブル等に接続されるために形成され、絶縁性基板Sにおいて下部電極集電体層31bが形成された側とは反対側に設けられる。すなわち、第1の端子部31cと下部電極集電体層31bを接続する導電性部材は、下部電極集電体層31bから、絶縁性基板Sを貫通し、導通性を保って裏面側へ延設されている。このように、本発明の薄膜固体二次電池30は、絶縁性基板Sにおいて各層が設けられた側とは反対側に各種ケーブルを接続するための第1の端子部31cが備えられていても良い。
The lower electrode 31 is electrically connected to the first terminal portion 31c formed of an exposed surface extending to a position where it does not contact the lower electrode active material layer 31a, that is, the lower electrode current collector layer 31b, and its surface is exposed. The first terminal portion 31c having a substantially rectangular shape is provided, and the first terminal portion 31c is electrically connected to the lower electrode current collector layer 31b.
The first terminal portion 31c is formed so as to be connected to various cables for external connection, and is provided on the insulating substrate S on the side opposite to the side on which the lower electrode current collector layer 31b is formed. That is, the conductive member that connects the first terminal portion 31c and the lower electrode current collector layer 31b extends from the lower electrode current collector layer 31b to the back surface side through the insulating substrate S while maintaining conductivity. It is installed. Thus, even if the thin film solid secondary battery 30 of the present invention is provided with the first terminal portion 31c for connecting various cables to the side opposite to the side where each layer is provided in the insulating substrate S. good.

このように、各層に対して裏面に第1の端子部31cを形成する場合、予め絶縁性基板Sを貫通する孔を設けておき、その孔を埋めるように導電性部材を流し込むことにより、下部電極集電体層31bに対して導通するとともに露出した第1の端子部31cを形成することができる。   As described above, when the first terminal portion 31c is formed on the back surface for each layer, a hole penetrating the insulating substrate S is provided in advance, and a conductive member is poured so as to fill the hole. The first terminal portion 31c that is conductive and exposed to the electrode current collector layer 31b can be formed.

[実施形態4]
本発明の実施形態4に係る薄膜固体二次電池40は、図11に示すように、正負いずれか一方の極性の下部電極41と、固体電解質層42と、他方の極性の上部電極43とがこの順に形成されている。下部電極41は、下部電極活物質層41a、下部電極集電体層41b、第1の端子部41cを備えており、上部電極43は、上部電極活物質層43a、上部電極集電体層43bを備えている。
なお、本実施形態4において、下部電極活物質層41aは特許請求の範囲の「下部電極活物質」、下部電極集電体層41bは特許請求の範囲の「下部電極集電体」、上部電極活物質層43aは特許請求の範囲の「上部電極活物質」、上部電極集電体層43bは特許請求の範囲の「上部電極集電体」に相当する。
なお、第1の端子部41c(特許請求の範囲の「端子部」に相当する)以外の構成は、上記実施形態1の薄膜固体二次電池10と同様の構成であるため、その説明を省略する。
[Embodiment 4]
As shown in FIG. 11, the thin-film solid secondary battery 40 according to Embodiment 4 of the present invention includes a lower electrode 41 having either positive or negative polarity, a solid electrolyte layer 42, and an upper electrode 43 having the other polarity. They are formed in this order. The lower electrode 41 includes a lower electrode active material layer 41a, a lower electrode current collector layer 41b, and a first terminal portion 41c. The upper electrode 43 includes an upper electrode active material layer 43a and an upper electrode current collector layer 43b. It has.
In the fourth embodiment, the lower electrode active material layer 41a is the “lower electrode active material” in the claims, the lower electrode current collector layer 41b is the “lower electrode current collector” in the claims, the upper electrode The active material layer 43a corresponds to the “upper electrode active material” in the claims, and the upper electrode current collector layer 43b corresponds to the “upper electrode current collector” in the claims.
Since the configuration other than the first terminal portion 41c (corresponding to the “terminal portion” in the claims) is the same as the configuration of the thin-film solid secondary battery 10 of Embodiment 1, the description thereof is omitted. To do.

下部電極41は、下部電極活物質層41aと接触しない位置まで延設され露出した露出面からなる第1の端子部41c、すなわち、下部電極集電体層41bと導通すると共にその表面が露出した略矩形状の第1の端子部41cを備えており、第1の端子部41cは、下部電極集電体層41bと電気的に接続されている。
第1の端子部41cは、外部接続用の各種ケーブル等に接続されるために形成され、絶縁性基板Sにおいて下部電極集電体層41bが形成された側と反対側を導電性部材が経由した後、各層と同じ側に設けられる。すなわち、第1の端子部41cと下部電極集電体層41bを接続する導電性部材は、下部電極集電体層41bから、絶縁性基板Sを貫通し、導通性を保って裏面側へ延設され、さらにもう一度絶縁性基板Sを貫通し、表面側に第1の端子部41cが形成される。このように、本発明の薄膜固体二次電池40は、絶縁性基板Sにおいて各層が設けられた側とは反対側に導電性部材を経由させた後、絶縁性基板Sの表側に第1の端子部41cが備えられた構成としても良い。
The lower electrode 41 is electrically connected to the first terminal portion 41c formed of an exposed surface extending to a position where it does not contact the lower electrode active material layer 41a, that is, the lower electrode current collector layer 41b, and its surface is exposed. A first terminal portion 41c having a substantially rectangular shape is provided, and the first terminal portion 41c is electrically connected to the lower electrode current collector layer 41b.
The first terminal portion 41c is formed to be connected to various cables for external connection, and the conductive member passes through the side opposite to the side on which the lower electrode current collector layer 41b is formed in the insulating substrate S. And then provided on the same side as each layer. That is, the conductive member that connects the first terminal portion 41c and the lower electrode current collector layer 41b extends from the lower electrode current collector layer 41b to the back surface side through the insulating substrate S while maintaining conductivity. The first terminal portion 41c is formed on the surface side through the insulating substrate S once again. As described above, the thin-film solid secondary battery 40 of the present invention passes through the conductive member on the side opposite to the side where each layer is provided in the insulating substrate S, and then the first side on the front side of the insulating substrate S. It is good also as a structure provided with the terminal part 41c.

このように、各層に対して裏面に第1の端子部41cを形成する場合、予め絶縁性基板Sを貫通する孔を二カ所に設けておき、その孔を埋めるように導電性部材を流し込むと共に、その二カ所の穴を接続するように、絶縁性基板Sの裏側に導電性部材を成膜することにより、下部電極集電体層41bに対して導通するとともに露出した第1の端子部41cを形成することができる。   Thus, when forming the 1st terminal part 41c in the back surface with respect to each layer, while providing the hole which penetrates the insulating board | substrate S beforehand and pouring a conductive member so that the hole may be filled, By forming a conductive member on the back side of the insulating substrate S so as to connect the two holes, the first terminal portion 41c that is electrically connected to the lower electrode current collector layer 41b and exposed. Can be formed.

[実施形態5]
本発明の実施形態5に係る薄膜固体二次電池50は、図12に示すように、正負いずれか一方の極性の下部電極51と、固体電解質層52と、他方の極性の上部電極53とがこの順に形成されている。下部電極51は、下部電極活物質層51a、下部電極集電体51b、第1の端子部51cを備えており、上部電極53は、上部電極活物質層53a、上部電極集電体層53bを備えている。
なお、本実施形態5において、下部電極活物質層51aは特許請求の範囲の「下部電極活物質」、下部電極集電体51bは特許請求の範囲の「下部電極集電体」、上部電極活物質層53aは特許請求の範囲の「上部電極活物質」、上部電極集電体層53bは特許請求の範囲の「上部電極集電体」に相当する。
[Embodiment 5]
As shown in FIG. 12, the thin film solid secondary battery 50 according to the fifth embodiment of the present invention includes a lower electrode 51 having one of positive and negative polarities, a solid electrolyte layer 52, and an upper electrode 53 having the other polarity. They are formed in this order. The lower electrode 51 includes a lower electrode active material layer 51a, a lower electrode current collector 51b, and a first terminal portion 51c. The upper electrode 53 includes an upper electrode active material layer 53a and an upper electrode current collector layer 53b. I have.
In the fifth embodiment, the lower electrode active material layer 51a is the “lower electrode active material” in the claims, and the lower electrode current collector 51b is the “lower electrode current collector” in the claims. The material layer 53a corresponds to “upper electrode active material” in the claims, and the upper electrode current collector layer 53b corresponds to “upper electrode current collector” in the claims.

下部電極51は、導電性基板からなる下部電極集電体51b上に、開口部55aを有する絶縁膜55と、下部電極活物質層51aとが順に積層されることによって形成されている。枠状の絶縁膜55に形成された開口部55aは、上記実施形態2と同様、絶縁膜55の内側が略矩形状に切除された形状に形成されている。   The lower electrode 51 is formed by sequentially laminating an insulating film 55 having an opening 55a and a lower electrode active material layer 51a on a lower electrode current collector 51b made of a conductive substrate. The opening 55a formed in the frame-like insulating film 55 is formed in a shape in which the inner side of the insulating film 55 is cut into a substantially rectangular shape, as in the second embodiment.

そして、下部電極51は、下部電極集電体51bと導通すると共にその表面が露出した略矩形状の第1の端子部51cを、導電性基板の裏側(各層が形成されていない側)に備えており、第1の端子部51cは、導電性基板(すなわち、下部電極集電体51b)の裏側表面に設けられる。なお、本実施形態5において、第1の端子部51cは、特許請求の範囲の「端子部」に相当する。
第1の端子部51cは、下部電極集電体51bの少なくとも一部が露出した露出面によって構成される。下部電極集電体51bを構成する導電性基板の裏面に各種ケーブルを接続することが可能であれば、第1の端子部51cは、少なくとも、下部電極集電体51bと導通性を保持すると共にその一部が露出した構成であれば良い。したがって、第1の端子部51cの位置に関し、下部電極集電体51bを構成する導電性基板の裏面上であれば、その位置は限定されない。例えば導電性基板の裏側を保護膜で覆い、該保護膜の一部を切除することによって第1の端子部51cを形成しても良い。
The lower electrode 51 is provided with a substantially rectangular first terminal portion 51c which is electrically connected to the lower electrode current collector 51b and whose surface is exposed on the back side (side where each layer is not formed) of the conductive substrate. The first terminal portion 51c is provided on the back surface of the conductive substrate (that is, the lower electrode current collector 51b). In the fifth embodiment, the first terminal portion 51c corresponds to a “terminal portion” in the claims.
The first terminal portion 51c is configured by an exposed surface from which at least a part of the lower electrode current collector 51b is exposed. If various cables can be connected to the back surface of the conductive substrate constituting the lower electrode current collector 51b, the first terminal portion 51c is at least electrically conductive with the lower electrode current collector 51b. Any part of the structure may be exposed. Accordingly, the position of the first terminal portion 51c is not limited as long as it is on the back surface of the conductive substrate constituting the lower electrode current collector 51b. For example, the first terminal portion 51c may be formed by covering the back side of the conductive substrate with a protective film and cutting away a part of the protective film.

このように、本実施形態5の薄膜固体二次電池50は、導電性基板によって下部電極集電体51bが構成され、さらに導電性基板上に設けた絶縁膜55により、下部電極集電体51bと下部電極活物質層51aとの接触面が調整されているため、下部電極集電体51bと上部電極集電体層53bとが接触することがない。さらに、本実施形態5の構成によると、薄膜固体二次電池50は、導電性基板の裏面側であれば、各種ケーブルの接続位置に関し、自由度の高い接続を可能にすると共に、その構成が単純であり、極めて製造効率の良い薄膜固体二次電池50を提供することができる。   As described above, in the thin-film solid secondary battery 50 of Embodiment 5, the lower electrode current collector 51b is configured by the conductive substrate, and the lower electrode current collector 51b is further formed by the insulating film 55 provided on the conductive substrate. Since the contact surface between the lower electrode active material layer 51a and the lower electrode active material layer 51a is adjusted, the lower electrode current collector 51b and the upper electrode current collector layer 53b do not contact each other. Furthermore, according to the configuration of the fifth embodiment, the thin-film solid secondary battery 50 can be connected with a high degree of freedom with respect to the connection position of various cables as long as it is on the back side of the conductive substrate. A thin film solid secondary battery 50 that is simple and extremely efficient in production can be provided.

[実施形態6]
上記実施形態1〜5では、セルが1層の単セルの場合を例示して説明したが、薄膜固体二次電池10,20,30,40,50は、直列に積層させた構成、並列に接続された構成であっても良い。
本発明の実施形態6に係る薄膜固体二次電池60は、図13に示すように、薄膜固体二次電池を二段積層した例である。薄膜固体二次電池60は、正負いずれか一方の極性の下部電極61と、固体電解質層62と、他方の極性の上部電極63と、がこの順に形成されており、さらにその上層に、下部電極活物質層61a’と、固体電解質層62’と、上部電極63’とを備えている。そして、基板S側に形成される下部電極61は、下部電極活物質層61a、下部電極集電体層61b、第1の端子部61cを備えており、上部電極63は、上部電極活物質層63a、上部電極集電体層63bを備えている。また、上方に積層された上部電極63’は、上部電極活物質層63a’、上部電極集電体層63b’を備えている。
なお、本実施形態6において、下部電極活物質層61a,61a’は特許請求の範囲の「下部電極活物質」、下部電極集電体61bは特許請求の範囲の「下部電極集電体」、上部電極活物質層63a,63a’は特許請求の範囲の「上部電極活物質」、上部電極集電体層63b,63a’は特許請求の範囲の「上部電極集電体」に相当する。
[Embodiment 6]
In the first to fifth embodiments, the case where the cell is a single-layer single cell has been described as an example. However, the thin-film solid secondary batteries 10, 20, 30, 40, and 50 are arranged in series, in parallel. A connected configuration may be used.
A thin film solid secondary battery 60 according to Embodiment 6 of the present invention is an example in which two thin film solid secondary batteries are stacked as shown in FIG. The thin film solid secondary battery 60 includes a lower electrode 61 having one of positive and negative polarities, a solid electrolyte layer 62, and an upper electrode 63 having the other polarity, which are formed in this order. An active material layer 61a ′, a solid electrolyte layer 62 ′, and an upper electrode 63 ′ are provided. The lower electrode 61 formed on the substrate S side includes a lower electrode active material layer 61a, a lower electrode current collector layer 61b, and a first terminal portion 61c. The upper electrode 63 includes an upper electrode active material layer. 63a, and an upper electrode current collector layer 63b. Further, the upper electrode 63 ′ stacked above includes an upper electrode active material layer 63a ′ and an upper electrode current collector layer 63b ′.
In the sixth embodiment, the lower electrode active material layers 61a and 61a ′ are “lower electrode active material” in the claims, and the lower electrode current collector 61b is “lower electrode current collector” in the claims, The upper electrode active material layers 63a and 63a ′ correspond to “upper electrode active material” in the claims, and the upper electrode current collector layers 63b and 63a ′ correspond to “upper electrode current collectors” in the claims.

そして、図13に示すように、下部電極集電体層61aの端部をその上方に配設される下部電極活物質層61a’で覆う(すなわち、下部電極集電体層61aと下部電極活物質層61a’との接触面の外周は、下部電極活物質層61a’の下面の外周よりも内側に形成されている)ことにより、下部電極集電体層61aと、上部電極集電体層63b’は互いに接触することがない。したがって、本発明の薄膜固体二次電池60において、下部電極集電体層61aと上部電極集電体層63b’との導通を防ぐ構成であり、複数の薄膜固体二次電池を多段に積層することにも適用することができる。   And as shown in FIG. 13, the edge part of the lower electrode collector layer 61a is covered with lower electrode active material layer 61a 'arrange | positioned upwards (that is, lower electrode collector layer 61a and lower electrode active material layer). The outer periphery of the contact surface with the material layer 61a ′ is formed inside the outer periphery of the lower surface of the lower electrode active material layer 61a ′), so that the lower electrode current collector layer 61a and the upper electrode current collector layer are formed. 63b 'do not contact each other. Therefore, the thin film solid secondary battery 60 of the present invention is configured to prevent conduction between the lower electrode current collector layer 61a and the upper electrode current collector layer 63b ′, and a plurality of thin film solid secondary batteries are stacked in multiple stages. Can also be applied.

本実施形態6の薄膜固体二次電池60の製造方法は、上記実施形態1(図3)の製造方法において、上部電極集電体層13bの成膜終了時、開口部が一回り大きいマスクに交換する工程をさらに備えている。そして、マスク交換後、二段目(上方)の下部電極活物質層61a’、固体電解質層62’、上部電極活物質層63a’、上部電極集電体層63b’の順に積層して成膜する。なお、二段目の下部電極活物質層61a’が正極、上部電極63’(上部電極活物質層63a’、上部電極集電体層63b’)が負極となるように積層すると、薄膜固体二次電池が直列に接続された構成となる。したがって、最上段(本実施形態では二段目)に設けられる薄膜固体二次電池を構成する最上層、すなわち、上部電極集電体層63b’が第2の端子部(不図示)を構成していればよい。   The manufacturing method of the thin film solid secondary battery 60 of the sixth embodiment is the same as that of the manufacturing method of the first embodiment (FIG. 3), with the mask having a slightly larger opening at the end of film formation of the upper electrode current collector layer 13b. It further has a process of exchanging. After the mask replacement, the second (upper) lower electrode active material layer 61a ′, solid electrolyte layer 62 ′, upper electrode active material layer 63a ′, and upper electrode current collector layer 63b ′ are stacked in this order. To do. When the second lower electrode active material layer 61a ′ is a positive electrode and the upper electrode 63 ′ (upper electrode active material layer 63a ′, upper electrode current collector layer 63b ′) is a negative electrode, the thin film solid secondary layer is obtained. The battery is connected in series. Therefore, the uppermost layer constituting the thin film solid-state secondary battery provided in the uppermost stage (second stage in the present embodiment), that is, the upper electrode current collector layer 63b ′ constitutes the second terminal portion (not shown). It only has to be.

[実施形態7]
また、第1の端子部11c,21c,31c,41c,51c,61c及び第2の端子部14,24の形状、配設位置は上記実施形態に限定されず、各集電体と導通すると共に各種ケーブルを接続可能なように露出した構成であれば、如何なる形状、位置に形成されていても良い。
[Embodiment 7]
Moreover, the shape and arrangement position of the first terminal portions 11c, 21c, 31c, 41c, 51c, 61c and the second terminal portions 14, 24 are not limited to the above embodiment, and are electrically connected to each current collector. It may be formed in any shape and position as long as it is exposed so that various cables can be connected.

したがって、本発明の実施形態7に係る薄膜固体二次電池70は、図14に示すように、下部電極集電体層71b、下部電極活物質層71a、固体電解質層72、上部電極活物質層73a、上部電極集電体層73bを平面視略矩形状に積層して形成し、一つの頂点部分には露出した第1の端子部71cを、他の頂点部分には第2の端子部74を設けた構成としても良い。第1の端子部71cは、下部電極活物質層71a、固体電解質層72、上部電極活物質層73a、上部電極集電体層73bの頂点部分が欠けた形状とすることにより、大気に露出する構成となる。また、第2の端子部74は、下部電極集電体層71bの頂点部分が欠けた形状とすることにより、下部電極集電体層71bの外側に延出して配設される。そして、下部電極集電体層71bの外周端部は、下部電極活物質層71aの外周端部よりも内側になるように成膜されている。なお、各層の積層順は薄膜固体二次電池10と同様である。   Therefore, as shown in FIG. 14, the thin film solid secondary battery 70 according to Embodiment 7 of the present invention includes a lower electrode current collector layer 71b, a lower electrode active material layer 71a, a solid electrolyte layer 72, and an upper electrode active material layer. 73a and an upper electrode current collector layer 73b are stacked in a substantially rectangular shape in plan view, and the first terminal portion 71c exposed at one apex portion and the second terminal portion 74 at the other apex portion are formed. It is good also as a structure which provided. The first terminal portion 71c is exposed to the atmosphere by having a shape in which the apex portions of the lower electrode active material layer 71a, the solid electrolyte layer 72, the upper electrode active material layer 73a, and the upper electrode current collector layer 73b are missing. It becomes composition. Further, the second terminal portion 74 has a shape in which the apex portion of the lower electrode current collector layer 71b is missing, and is disposed so as to extend outside the lower electrode current collector layer 71b. And it forms into the film so that the outer peripheral edge part of the lower electrode collector layer 71b may become inside the outer peripheral edge part of the lower electrode active material layer 71a. Note that the stacking order of the layers is the same as that of the thin film solid secondary battery 10.

なお、複数段積層された薄膜固体二次電池を接続する構成に関して実施形態6を例に挙げて説明したが、接続形式はこれに限定されず、他の様々な形態をとることができる。例えば、一段目の薄膜固体二次電池を正極から積層し、継いで二段目を負極から、さらに三段目を正極から、となるように極性が交互に変わるような構成で各薄膜固体二次電池を積層して、並列接続となるようにしてもよい。このとき、各段の薄膜固体二次電池の正極端子部、負極端子部は、それぞれ積層された段ごとに配設され、直下(又は直上)に積層された薄膜固体二次電池の同一極性の端子とそれぞれ導通するように形成される。
さらに、電池を構成する各層に関し、上記実施形態1乃至7のように、必ずしも矩形状とする必要はなく、一定の面積を備えた薄膜によって形成されていれば良い。
In addition, although Embodiment 6 was mentioned as an example regarding the structure which connects the thin film solid secondary battery laminated | stacked in multiple steps, the connection form is not limited to this, Various other forms can be taken. For example, each thin film solid state secondary battery is configured in such a manner that the first stage thin film solid state secondary battery is laminated from the positive electrode, the polarity is alternately changed so that the second stage is from the negative electrode, and the third stage is from the positive electrode. Secondary batteries may be stacked so that they are connected in parallel. At this time, the positive electrode terminal portion and the negative electrode terminal portion of the thin-film solid secondary battery at each stage are arranged for each stacked stage, and have the same polarity as the thin-film solid secondary battery stacked immediately below (or directly above). Each of the terminals is formed to be conductive.
Further, each layer constituting the battery does not necessarily have to be rectangular as in the first to seventh embodiments, and may be formed of a thin film having a certain area.

本発明により製造された薄膜固体二次電池は、デバイスを備えた複合型機器の電源として用いられることにより、安定的かつ長時間にわたってデバイスを駆動することができる。このようなデバイスとして、たとえば、携帯電話、ノートパソコン、デジタルカメラ、携帯型ゲーム等のモバイル機器が挙げられる。   The thin-film solid-state secondary battery manufactured according to the present invention can be used as a power source for a composite apparatus equipped with a device, thereby driving the device stably for a long time. Examples of such devices include mobile devices such as mobile phones, notebook computers, digital cameras, and portable games.

S 絶縁性基板
10,20,30,40,50,60,70 薄膜固体二次電池
11,21,31,41,51,61 下部電極
11a,21a,31a,41a,51a,61a,61a’,71a 下部電極活物質層(下部電極活物質)
11b,31b,41b,61b,71b 下部電極集電体層(下部電極集電体)
21b,51b 下部電極集電体(導電性基板)
11c,21c,31c,41c,51c,61c,71c 第1の端子部(端子部)
12,22,32,42,52,62,62’,72 固体電解質層(固体電解質)
13,23,33,43,53,63,63’ 上部電極
13a,23a,33a,43a,53a,63a,63a’,73a 上部電極活物質層(上部電極活物質)
13b,23b,33b,43b,53b,63b,63b’,73b 上部電極集電体層(上部電極活物質)
14,24,74 第2の端子部
25,55 絶縁膜
25a,55a 開口部
25b 切り欠き部
100 薄膜固体二次電池(比較例)
110 下部電極
110a 下部電極活物質層
110b 下部電極集電体層
110c 第1の端子部
120 固体電解質層
130 上部電極
130a 上部電極活物質層
130b 上部電極集電体層
S Insulating substrate 10, 20, 30, 40, 50, 60, 70 Thin film solid secondary battery 11, 21, 31, 41, 51, 61 Lower electrode 11a, 21a, 31a, 41a, 51a, 61a, 61a ', 71a Lower electrode active material layer (lower electrode active material)
11b, 31b, 41b, 61b, 71b Lower electrode current collector layer (lower electrode current collector)
21b, 51b Lower electrode current collector (conductive substrate)
11c, 21c, 31c, 41c, 51c, 61c, 71c First terminal portion (terminal portion)
12, 22, 32, 42, 52, 62, 62 ', 72 Solid electrolyte layer (solid electrolyte)
13, 23, 33, 43, 53, 63, 63 'Upper electrode 13a, 23a, 33a, 43a, 53a, 63a, 63a', 73a Upper electrode active material layer (upper electrode active material)
13b, 23b, 33b, 43b, 53b, 63b, 63b ′, 73b Upper electrode current collector layer (upper electrode active material)
14, 24, 74 Second terminal portion 25, 55 Insulating film 25a, 55a Opening portion 25b Notch portion 100 Thin-film solid secondary battery (comparative example)
110 Lower electrode 110a Lower electrode active material layer 110b Lower electrode current collector layer 110c First terminal portion 120 Solid electrolyte layer 130 Upper electrode 130a Upper electrode active material layer 130b Upper electrode current collector layer

Claims (8)

正負いずれか一方の極性の下部電極と、固体電解質と、他方の極性の上部電極とがこの順に形成されてなる薄膜固体二次電池であって、
前記下部電極は、前記固体電解質の下面に面接触する下部電極活物質と、該下部電極活物質の下面に面接触する下部電極集電体と、該下部電極集電体と導通すると共に前記下部電極活物質と面接触しない位置まで延設され露出した露出面、又は前記下部電極集電体の少なくとも一部が露出した露出面からなる端子部と、を備え、
前記上部電極は、前記固体電解質の上面に面接触する上部電極活物質と、該上部電極活物質の上面に面接触する上部電極集電体とを備え、
前記下部電極活物質と、前記固体電解質と、前記上部電極活物質と、前記上部電極集電体とは、平面視略同一形状で積層され、
前記下部電極集電体と前記下部電極活物質との接触面の外周は、前記下部電極活物質の下面の外周よりも内側に形成されてなることを特徴とする薄膜固体二次電池。
A thin-film solid secondary battery in which a lower electrode of either positive or negative polarity, a solid electrolyte, and an upper electrode of the other polarity are formed in this order,
The lower electrode includes a lower electrode active material in surface contact with the lower surface of the solid electrolyte, a lower electrode current collector in surface contact with the lower surface of the lower electrode active material, and the lower electrode current collector and the lower electrode current collector. An exposed surface that is extended and exposed to a position not in surface contact with the electrode active material, or a terminal portion that is an exposed surface where at least a part of the lower electrode current collector is exposed, and
The upper electrode comprises an upper electrode active material in surface contact with the upper surface of the solid electrolyte, and an upper electrode current collector in surface contact with the upper surface of the upper electrode active material,
The lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector are laminated in substantially the same shape in plan view,
A thin-film solid secondary battery, wherein an outer periphery of a contact surface between the lower electrode current collector and the lower electrode active material is formed inside an outer periphery of a lower surface of the lower electrode active material.
前記下部電極集電体及び前記端子部は、可撓性を備えた薄板状の絶縁性基板上に形成された導体膜パターンであることを特徴とする請求項1に記載の薄膜固体二次電池。   2. The thin film solid state secondary battery according to claim 1, wherein the lower electrode current collector and the terminal portion are conductor film patterns formed on a thin plate-like insulating substrate having flexibility. . 前記端子部は、前記下部電極集電体の外周方向外側に延設されてなることを特徴とする請求項1又は2に記載の薄膜固体二次電池。   3. The thin film solid state secondary battery according to claim 1, wherein the terminal portion extends outward in the outer circumferential direction of the lower electrode current collector. 前記下部電極集電体は、導電性基板からなり、
該導電性基板上には、開口部を有する絶縁膜が形成され、
該絶縁膜の開口部の外周は、前記下部電極活物質の外周よりも内側に形成されてなることを特徴とする請求項1に記載の薄膜固体二次電池。
The lower electrode current collector is made of a conductive substrate,
An insulating film having an opening is formed on the conductive substrate,
The thin film solid secondary battery according to claim 1, wherein an outer periphery of the opening of the insulating film is formed inside an outer periphery of the lower electrode active material.
前記下部電極活物質がリチウムを含む材料からなり、
前記固体電解質が、リン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライド(LiPON)、又は遷移金属及びLiとNを含む複合酸化物から選ばれるいずれか一つであることを特徴とする請求項1乃至4のいずれか一項に記載の薄膜固体二次電池。
The lower electrode active material is made of a material containing lithium,
The solid electrolyte is composed of lithium phosphate (Li 3 PO 4 ), lithium phosphate oxynitride (LiPON) obtained by partially replacing oxygen of lithium phosphate with nitrogen, or a composite oxide containing a transition metal and Li and N 5. The thin film solid secondary battery according to claim 1, wherein the thin film solid secondary battery is any one selected.
正負いずれか一方の極性の下部電極を構成する下部電極集電体、端子部及び下部電極活物質と、固体電解質と、他方の極性の上部電極を構成する上部電極活物質及び上部電極集電体がこの順に形成されてなる薄膜固体二次電池の製造方法であって、
絶縁性基板上に、前記下部電極集電体及び該下部電極集電体と導通すると共に少なくとも一部が露出した前記端子部を構成する導体膜パターンを形成する工程と、
薄膜形成領域を区画する枠状のマスクを、前記薄膜形成領域の外周が前記下部電極集電体の外周よりも外側であって且つ前記端子部の一部が前記薄膜形成領域に含まれない位置で、前記絶縁性基板上の前記導体膜パターンが形成された側に配設する工程と、
前記マスクの前記薄膜形成領域内に、前記下部電極活物質と、前記固体電解質と、前記上部電極活物質と、前記上部電極集電体とを連続してこの順に成膜する工程と、
を備えてなることを特徴とする薄膜固体二次電池の製造方法。
Lower electrode current collector, terminal portion and lower electrode active material constituting the lower electrode of either positive or negative polarity, solid electrolyte, upper electrode active material and upper electrode current collector constituting the other polarity upper electrode Is a method of manufacturing a thin film solid secondary battery formed in this order,
On the insulating substrate, forming a conductive film pattern that constitutes the lower electrode current collector and the terminal portion that is electrically connected to the lower electrode current collector and at least partially exposed;
A frame-shaped mask that partitions the thin film formation region, wherein the outer periphery of the thin film formation region is outside the outer periphery of the lower electrode current collector and a part of the terminal portion is not included in the thin film formation region A step of disposing the conductive film pattern on the insulating substrate on the side where the conductive film pattern is formed;
Depositing the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector in this order in the thin film formation region of the mask;
A method for producing a thin-film solid secondary battery, comprising:
正負いずれか一方の極性の下部電極を構成する下部電極集電体、端子部及び下部電極活物質と、固体電解質と、他方の極性の上部電極を構成する上部電極活物質及び上部電極集電体がこの順に形成されてなる薄膜固体二次電池の製造方法であって、
前記下部電極集電体を構成する導電性基板の表面に、開口部を備えた絶縁膜を成膜する工程と、
薄膜形成領域を区画する枠状のマスクを、前記薄膜形成領域の外周が前記開口部の外周よりも外側となる位置で、前記導電性基板上の前記絶縁膜が形成された側に配設する工程と、
前記マスクの前記薄膜形成領域内に、前記下部電極活物質と、前記固体電解質と、前記上部電極活物質と、前記上部電極集電体とを連続してこの順に成膜する工程と、
を備えてなることを特徴とする薄膜固体二次電池の製造方法。
Lower electrode current collector, terminal portion and lower electrode active material constituting the lower electrode of either positive or negative polarity, solid electrolyte, upper electrode active material and upper electrode current collector constituting the other polarity upper electrode Is a method of manufacturing a thin film solid secondary battery formed in this order,
Forming an insulating film having an opening on the surface of the conductive substrate constituting the lower electrode current collector; and
A frame-shaped mask that partitions the thin film formation region is disposed on the side of the conductive substrate on which the insulating film is formed at a position where the outer periphery of the thin film formation region is outside the outer periphery of the opening. Process,
Depositing the lower electrode active material, the solid electrolyte, the upper electrode active material, and the upper electrode current collector in this order in the thin film formation region of the mask;
A method for producing a thin-film solid secondary battery, comprising:
前記下部電極活物質は、リチウムを含む材料からなり、
前記固体電解質は、リン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライド(LiPON)、又は遷移金属及びLiとNを含む複合酸化物から選ばれるいずれか一つであることを特徴とする請求項6又は7に記載の薄膜固体二次電池の製造方法。
The lower electrode active material is made of a material containing lithium,
The solid electrolyte is composed of lithium phosphate (Li 3 PO 4 ), lithium phosphate oxynitride (LiPON) obtained by partially replacing oxygen of lithium phosphate with nitrogen, or a composite oxide containing a transition metal and Li and N. The method for producing a thin-film solid secondary battery according to claim 6, wherein the method is any one selected.
JP2010174733A 2010-08-03 2010-08-03 Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery Withdrawn JP2012038433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174733A JP2012038433A (en) 2010-08-03 2010-08-03 Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174733A JP2012038433A (en) 2010-08-03 2010-08-03 Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery

Publications (1)

Publication Number Publication Date
JP2012038433A true JP2012038433A (en) 2012-02-23

Family

ID=45850257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174733A Withdrawn JP2012038433A (en) 2010-08-03 2010-08-03 Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery

Country Status (1)

Country Link
JP (1) JP2012038433A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190537A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
JP2019175668A (en) * 2018-03-28 2019-10-10 中松 義郎 High-performance, safe all-solid battery that can be readily produced in large quantities
WO2021131095A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Method for manufacturing battery
JPWO2020203620A1 (en) * 2019-03-29 2021-11-04 株式会社村田製作所 Solid state battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190537A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
JP7009772B2 (en) 2017-04-28 2022-01-26 トヨタ自動車株式会社 Laminated battery and manufacturing method of laminated battery
JP2019175668A (en) * 2018-03-28 2019-10-10 中松 義郎 High-performance, safe all-solid battery that can be readily produced in large quantities
JP2022046664A (en) * 2018-03-28 2022-03-23 義郎 中松 High-performance safety Easy mass production All-solid-state battery
JP7382656B2 (en) 2018-03-28 2023-11-17 義郎 中松 High-performance, safe, easy-to-mass-produce all-solid-state battery
JPWO2020203620A1 (en) * 2019-03-29 2021-11-04 株式会社村田製作所 Solid state battery
JP7207524B2 (en) 2019-03-29 2023-01-18 株式会社村田製作所 solid state battery
WO2021131095A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Method for manufacturing battery

Similar Documents

Publication Publication Date Title
JP5515307B2 (en) Thin-film solid lithium ion secondary battery
JP5515308B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP2007103129A (en) Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
JP5640587B2 (en) Solid electrolyte battery
WO2018154989A1 (en) Secondary battery and method for producing same
JP2004273436A (en) All solid thin film laminated battery
JP7326923B2 (en) solid state battery
JP2008226728A (en) Thin-film solid secondary battery and complex type apparatus equipped with this
JP7047934B2 (en) Solid state battery
WO2017195645A1 (en) Lithium ion secondary battery
JP7405151B2 (en) solid state battery
JP2004127743A (en) Thin film battery
JP2011082039A (en) Nonaqueous electrolyte battery, and battery pack
JP2012038433A (en) Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery
JP5772533B2 (en) Secondary battery and manufacturing method thereof
JP5415099B2 (en) Method for manufacturing thin-film solid secondary battery
US11757158B2 (en) All-solid-state lithium battery and method for fabricating the same
JP2005251417A (en) Thin film solid secondary battery
JP2009211920A (en) All solid lithium secondary battery and method of manufacturing the same
JP7115559B2 (en) solid state battery
WO2018154987A1 (en) Secondary battery and method for producing same
KR101941452B1 (en) Thin film battery and method of fabricating the same
JP2014229502A (en) Manufacturing method of all-solid state lamination battery
JP5209527B2 (en) Thin-film solid secondary battery and method for producing thin-film solid secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105