JP5415099B2 - Method for manufacturing thin-film solid secondary battery - Google Patents

Method for manufacturing thin-film solid secondary battery Download PDF

Info

Publication number
JP5415099B2
JP5415099B2 JP2009033257A JP2009033257A JP5415099B2 JP 5415099 B2 JP5415099 B2 JP 5415099B2 JP 2009033257 A JP2009033257 A JP 2009033257A JP 2009033257 A JP2009033257 A JP 2009033257A JP 5415099 B2 JP5415099 B2 JP 5415099B2
Authority
JP
Japan
Prior art keywords
layer
active material
current collector
material layer
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009033257A
Other languages
Japanese (ja)
Other versions
JP2010192170A (en
Inventor
公宏 佐野
健太郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2009033257A priority Critical patent/JP5415099B2/en
Publication of JP2010192170A publication Critical patent/JP2010192170A/en
Application granted granted Critical
Publication of JP5415099B2 publication Critical patent/JP5415099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、薄膜固体二次電池の製造方法に係り、特に、マスクを使用した製造工程の簡略化を図り、歩留まりの良い薄膜固体二次電池の製造方法に関する。 The present invention relates to a method of manufacturing a thin-film solid secondary battery, in particular, aims to simplify the manufacturing process using a mask, a method for producing a good have thin film solid state secondary battery of the yield.

現在、携帯電話をはじめとする小型携帯機器は広く普及し、より小型、軽量、多機能化が進んでいる。それに伴い、それらの機器を駆動させるために必要な電池もより小型でエネルギー密度が高いことが求められている。リチウムイオン二次電池は、他の電池と比べてエネルギー密度が高いため広い用途で用いることが可能で、現在、最も広く普及している。   Currently, small portable devices such as mobile phones are widely spread, and are becoming smaller, lighter, and more multifunctional. Accordingly, batteries required for driving these devices are also required to be smaller and have higher energy density. Lithium ion secondary batteries have a higher energy density than other batteries and can be used in a wide range of applications, and are currently most widely used.

最近では、安全性や高温耐性もリチウムイオン二次電池の重要な要素となってきているが、電解液を用いる従来の電池には液洩れや熱膨張による爆発などの危険性が伴うため、安全性や高温耐性が完全ではない面がある。例えば、電池動作が可能な温度の上限は、溶液電解質を使った通常のリチウムイオン二次電池では80℃程度であり、それよりも温度が上がると電池特性は劣化し、熱膨張による不測の事態が生じる可能性がある。   Recently, safety and high-temperature resistance have become important elements of lithium ion secondary batteries. However, conventional batteries that use electrolytes have risks such as liquid leakage and explosion due to thermal expansion. There are aspects that are not perfect for high temperature and high temperature resistance. For example, the upper limit of the temperature at which the battery can operate is about 80 ° C. for a normal lithium ion secondary battery using a solution electrolyte, and if the temperature rises higher than that, the battery characteristics deteriorate, and an unexpected situation due to thermal expansion May occur.

また、小型化、薄型化に関しても、電解液を用いる従来の電池では容器の厚さなどから限界がある。このため、溶液ではなく、ゲル状の電解質や固体電解質を用いる全固体型の電池が提案されており、例えばゲル状の電解質を用いるポリマー電池(例えば、特許文献1参照)や、固体電解質を用いる薄膜固体二次電池(例えば、特許文献2、3参照)が提案されている。   Further, with regard to miniaturization and thinning, conventional batteries using an electrolytic solution have limitations due to the thickness of the container. For this reason, an all-solid battery using a gel electrolyte or a solid electrolyte instead of a solution has been proposed. For example, a polymer battery using a gel electrolyte (see, for example, Patent Document 1) or a solid electrolyte is used. Thin film solid secondary batteries (see, for example, Patent Documents 2 and 3) have been proposed.

特許文献1に記載のポリマー電池は、外装体内部に、正極集電体、内部に高分子固体電解質を含有する複合正極、イオン伝導性高分子化合物からなる電解質層、内部に高分子固体電解質を含有する複合負極、負極集電体を順に配置して構成されている。   The polymer battery described in Patent Document 1 has a positive electrode current collector inside an exterior body, a composite positive electrode containing a polymer solid electrolyte inside, an electrolyte layer made of an ion conductive polymer compound, and a polymer solid electrolyte inside. A composite negative electrode and a negative electrode current collector are sequentially arranged.

このようなポリマー電池は、電解液を使う通常のリチウムイオン二次電池よりは薄型化、小型化が可能であり、また、安定した電池動作が可能な温度も100℃程度まで向上する。しかしながら、ゲル状の電解質や接合剤、封口部材等を必要とするため、厚さとしては0.1mm程度が限界であり、より一層の薄型化、小型化を進めるには適当ではなかった。また、電解質がポリマーであるため、150℃ぐらいの温度になると構造変化を起こし、電池そのものが崩壊してしまうため、より高い温度での使用に問題があった。   Such a polymer battery can be made thinner and smaller than a normal lithium ion secondary battery using an electrolytic solution, and the temperature at which stable battery operation can be improved to about 100 ° C. However, since a gel electrolyte, a bonding agent, a sealing member, and the like are required, the thickness is about 0.1 mm, which is not suitable for further thinning and miniaturization. In addition, since the electrolyte is a polymer, the structure changes when the temperature reaches about 150 ° C., and the battery itself collapses. Therefore, there is a problem in use at a higher temperature.

一方、薄膜固体二次電池の構成は、特許文献2、3に記載のように、基板上に集電体薄膜、負極活物質薄膜、固体電解質薄膜、正極活物質薄膜、集電体薄膜を順に積層した構成、又は基板上に上記層を逆の順で積層した構成である。このような構成により、薄膜固体二次電池は、基板を除けば1μm程度の薄さにすることが可能である。また、基板の厚さを薄くしたり、薄膜化した固体電解質フィルムを基板の代わりに使用したりすれば、全体としてより薄型化、小型化を図ることが可能である。さらに、全固体型の薄膜固体二次電池であるため、液漏れ等の不都合もなく、高い安全性を備えたものとすることができる。   On the other hand, as described in Patent Documents 2 and 3, the configuration of the thin film solid secondary battery is as follows: a current collector thin film, a negative electrode active material thin film, a solid electrolyte thin film, a positive electrode active material thin film, and a current collector thin film on a substrate. A stacked structure or a structure in which the above layers are stacked in the reverse order on the substrate. With such a configuration, the thin-film solid secondary battery can be made as thin as about 1 μm except for the substrate. Further, if the thickness of the substrate is reduced or a thin solid electrolyte film is used instead of the substrate, the overall thickness can be reduced and the size can be reduced. Furthermore, since it is an all-solid-state thin film solid secondary battery, it can be provided with high safety without inconvenience such as liquid leakage.

薄膜固体二次電池の製造技術に関しては、薄膜固体二次電池(例えば薄膜固体リチウム二次電池)の各層を積層させる際、スパッタリング技術、真空蒸着技術等のドライプロセスによりその材料及び成膜技術に関して、種々の材料及び技術が提案されている。その中でも、スパッタリングによる成膜技術は、近年の技術進歩に伴い、様々なターゲットによる成膜が可能となってきているだけでなく、装置の小型化、成膜工程の簡略化、及びそれに伴うコストダウンも可能であることから、薄膜固体二次電池の製造技術において非常に重要とされる技術である。   Regarding the manufacturing technology of a thin film solid secondary battery, when laminating each layer of a thin film solid secondary battery (for example, a thin film solid lithium secondary battery), the material and the film forming technique are applied by a dry process such as a sputtering technique and a vacuum deposition technique. Various materials and techniques have been proposed. Among them, the film formation technology by sputtering is not only capable of forming a film with various targets in accordance with recent technological advances, but also downsizing the apparatus, simplifying the film formation process, and the costs associated therewith. This is a technology that is very important in the manufacturing technology of thin film solid state secondary batteries because it can be down.

スパッタリング技術において、成膜面積の制御方法としては、基板にマスクを装着し、基板成膜面側を部分的に覆い隠し、マスクの開口部分のみに成膜する方法がよく用いられている。基本的に、薄膜固体二次電池を構成する5層の成膜においては、それぞれ任意の二次元形状に成膜するために、マスクを積層プロセスごとに交換する必要がある。しかしながら、このマスク交換時においては、技術的な問題により僅かな「ずれ」が生じ、この「ずれ」に伴い、正極膜(正極集電体層及び正極活物質層)と負極膜(負極集電体層及び負極活物質層)とが、それぞれ膜の端部において接触して短絡が起きるという問題点がある。したがって、スパッタリング技術により高性能な全固体型リチウム二次電池を製造できるにもかかわらず、上記問題点により、不良品が発生する可能性があった。   In the sputtering technique, as a method for controlling the film formation area, a method is often used in which a mask is attached to a substrate, the substrate film formation surface side is partially covered, and a film is formed only on an opening portion of the mask. Basically, in the film formation of the five layers constituting the thin film solid state secondary battery, it is necessary to exchange the mask for each lamination process in order to form each film in an arbitrary two-dimensional shape. However, when this mask is replaced, a slight “deviation” occurs due to technical problems. Along with this “deviation”, the positive electrode film (positive electrode current collector layer and positive electrode active material layer) and negative electrode film (negative electrode current collector). The body layer and the negative electrode active material layer) are in contact with each other at the end of the film, causing a short circuit. Therefore, despite the fact that a high-performance all-solid-state lithium secondary battery can be manufactured by the sputtering technique, there is a possibility that a defective product may be generated due to the above problems.

これに対し、特許文献4では、基板に凹部を形成し、凹部内に下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層の4層を順に成膜することによりマスク交換が必要ないとしている。すなわち、前記4層を成膜する際に、凹部内に順に積層されていくため、各膜の面積制御のためのマスク交換の必要はなく、従ってマスクのずれが生じることを回避することができると同時に、各膜の端部は均一に揃って成膜されるため、正極膜と負極膜とが接触して起こる短絡を防止でき、不良品の発生率が低い、と提案されている。さらに、各層成膜時のマスク交換に伴う異物の混入による電池機能の低下も解決できるとされている。   On the other hand, in Patent Document 4, a recess is formed in a substrate, and four layers of an active material layer of a lower electrode, a solid electrolyte layer, an active material layer of an upper electrode, and an upper electrode current collector layer are sequentially formed in the recess. By doing so, it is said that there is no need to replace the mask. That is, when the four layers are formed, the layers are sequentially stacked in the concave portion, so that it is not necessary to replace the mask for controlling the area of each film, and therefore it is possible to avoid the occurrence of mask displacement. At the same time, since the end portions of the respective films are uniformly formed, it is proposed that a short circuit caused by contact between the positive electrode film and the negative electrode film can be prevented and the incidence of defective products is low. Furthermore, it is said that the deterioration of the battery function due to the mixing of foreign matters accompanying the mask exchange at the time of forming each layer can be solved.

特開平10−74496号公報Japanese Patent Laid-Open No. 10-74496 特開平10−284130号公報Japanese Patent Laid-Open No. 10-284130 特開2002−42863号公報JP 2002-42863 A 特開2008−140705号公報JP 2008-140705 A

特許文献4の技術では、基板に凹部を形成し、凹部内に下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層を成膜することで、マスク交換時の「ずれ」を解消し、それにより短絡の発生率が低くなるとされているが、薄膜固体二次電池において、前記4層だけで機能することはできない。薄膜固体二次電池が機能するためには、下部電極集電体層が必要不可欠であり、下部電極集電体層には電極取り出し端子部を形成しなければならない。この下部電極集電体層は他の層とは外形が異なるため、下部電極集電体層を成膜した後マスクを交換し、その後、下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層を順に積層する方法が一般的である。   In the technique of Patent Document 4, a mask is exchanged by forming a recess in a substrate and forming an active material layer of a lower electrode, a solid electrolyte layer, an active material layer of an upper electrode, and an upper electrode current collector layer in the recess. It is said that the time “shift” is eliminated, thereby reducing the incidence of short circuits, but in a thin-film solid secondary battery, it cannot function with only the four layers. In order for the thin film solid secondary battery to function, the lower electrode current collector layer is indispensable, and an electrode lead-out terminal portion must be formed in the lower electrode current collector layer. Since the lower electrode current collector layer has a different external shape from the other layers, the mask is changed after the lower electrode current collector layer is formed, and then the lower electrode active material layer, the solid electrolyte layer, and the upper electrode A method of laminating an active material layer and an upper electrode current collector layer in order is common.

したがって、特許文献4の技術においては、下部電極集電体形成後は一旦大気開放する必要がある。これは、下部電極の集電体層を開口部底面に成膜するとき、同時に基板表面上に電極端子を形成するが、その後で、電極端子と下部電極集電体層を接続する工程が必要になるためである。従って、積層される下部電極の活物質層との界面となる下部電極集電体層の表面が、マスク交換に伴い、大気中に曝される事で発生する酸化、水分による変質、それに伴い電池性能(例えば、電池の寿命)が低下するという問題点は解決されず、加えて薄膜固体二次電池の製造工程が複雑であるという問題があった。   Therefore, in the technique of Patent Document 4, it is necessary to open the atmosphere once after the lower electrode current collector is formed. This is because when the current collector layer of the lower electrode is formed on the bottom surface of the opening, an electrode terminal is formed on the substrate surface at the same time, and then a step of connecting the electrode terminal and the lower electrode current collector layer is necessary. Because it becomes. Therefore, the surface of the lower electrode current collector layer that becomes the interface with the active material layer of the lower electrode to be laminated is oxidized due to exposure to the atmosphere due to mask exchange, alteration due to moisture, and the battery accordingly The problem that the performance (for example, battery life) is reduced is not solved, and in addition, the manufacturing process of the thin film solid secondary battery is complicated.

本発明の目的は、薄膜固体二次電池を構成する薄膜のうち、下部電極集電体層、下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層からなる5層のスパッタリングによる成膜において、マスク交換に伴う異物の混入を防ぎ、マスクと基板の位置がずれることにより上下電極間で起こる短絡の削減を図った薄膜固体二次電池の製造方法を提供することにある。
本発明の他の目的は、長時間電圧を維持できる薄膜固体二次電池の製造方法を提供することにある。
An object of the present invention is to provide a thin film solid secondary battery including a lower electrode current collector layer, a lower electrode active material layer, a solid electrolyte layer, an upper electrode active material layer, and an upper electrode current collector layer. in film formation by five layers sputtering comprising prevents contamination of foreign substances due to mask exchange, a method of manufacturing a thin-film solid secondary battery which aimed to reduce the short-circuit occurring between the upper and lower electrodes by the position of the mask and the substrate is deviated It is to provide.
Another object of the present invention is to provide a method of manufacturing a thin-film solid secondary battery long that can maintain the voltage.

前記課題は、本発明に係る薄膜固体二次電池の製造方法によれば、表面に導電層を有する基板の該導電層上に、下部電極集電体層、下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層を、この順にそれぞれ所定の膜厚で積層してなる薄膜固体二次電池の製造方法であって、前記下部電極集電体層、前記下部電極の活物質層、前記固体電解質層、前記上部電極の活物質層、前記上部電極集電体層を、同一マスクにより連続して所定の厚さまで成膜する成膜工程、を備えてなること、によって解決される。   According to the method for manufacturing a thin-film solid secondary battery according to the present invention, the object is to provide a lower electrode current collector layer, a lower electrode active material layer, a solid electrolyte on the conductive layer of a substrate having a conductive layer on the surface. A method of manufacturing a thin-film solid secondary battery in which a layer, an active material layer of an upper electrode, and an upper electrode current collector layer are respectively laminated in a predetermined thickness in this order, the lower electrode current collector layer, A film forming step of continuously forming the active material layer of the lower electrode, the solid electrolyte layer, the active material layer of the upper electrode, and the upper electrode current collector layer to a predetermined thickness using the same mask; That is solved.

このように、同一マスクによって、下部電極集電体層を含む薄膜固体二次電池を構成する5層を大気開放することなく、同じ成膜装置内で連続成膜して形成することができる。また下部電極集電体層から上部電極集電体層までの5層の連続成膜を行なうことによって、異物の混入、不純物の生成が妨げられ、前記5層の界面に電池性能を劣化させる不純物が生じる可能性を低減することができる。
さらに、下部電極集電体層から上部電極集電体層までの5層を成膜する際、各層の位置がずれることがなく、これにより、正極膜と負極膜が接することによる短絡の発生を防止することができる。
As described above, the five layers constituting the thin-film solid-state secondary battery including the lower electrode current collector layer can be continuously formed in the same film forming apparatus by the same mask without opening to the atmosphere. Impurities that deteriorate the battery performance at the interface between the five layers by preventing the introduction of impurities and the generation of impurities by continuously forming five layers from the lower electrode current collector layer to the upper electrode current collector layer. It is possible to reduce the possibility of occurrence.
Furthermore, when the five layers from the lower electrode current collector layer to the upper electrode current collector layer are formed, the positions of the respective layers are not shifted, thereby preventing a short circuit caused by contact between the positive electrode film and the negative electrode film. Can be prevented.

このとき、前記下部電極集電体層を正極集電体層、前記下部電極の活物質層を正極活物質層、前記上部電極の活物質層を負極活物質層、前記上部電極集電体層を負極集電体層とし、各層が前記導電層上にこの順に成膜して積層していると好適である。
このように構成すると、薄膜固体リチウム二次電池を作する際、正極活物質層に含まれるリチウムが成膜中に負極活物質層等に移動し、不可逆容量の原因となり、電池特性が低下するのを防止できる。すなわち、リチウムイオン可動部分を密封することができるので、リチウムを含んでいる正極活物質層の表面保護を図り、電池性能の劣化を抑えることができ、電池性能を長期間保持することが可能となる。
At this time, the lower electrode current collector layer is a positive electrode current collector layer, the lower electrode active material layer is a positive electrode active material layer, the upper electrode active material layer is a negative electrode active material layer, and the upper electrode current collector layer Is a negative electrode current collector layer, and each layer is preferably formed and laminated in this order on the conductive layer.
According to this structure, when the steel work a thin film solid state lithium secondary battery, lithium contained in the positive electrode active material layer is moved in the negative electrode active material layer or the like during the film formation, it may cause irreversible capacity, reduced battery characteristics Can be prevented. That is, since the lithium ion movable part can be sealed, it is possible to protect the surface of the positive electrode active material layer containing lithium, to suppress the deterioration of the battery performance, and to maintain the battery performance for a long period of time. Become.

また、前記固体電解質層は、リン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライドガラス(LiPON)、又は遷移金属及びLiとNを含む複合酸化物の内の一つであると好ましい。このように、リチウムイオンの伝導性が良好なこれらの化合物を固体電解質層に含有することで、リチウムイオン二次電池の充放電特性を向上させることができる。 The solid electrolyte layer includes lithium phosphate (Li 3 PO 4 ), lithium phosphate oxynitride glass (LiPON) in which oxygen of the lithium phosphate is partially substituted with nitrogen, or a transition metal and Li and N. One of the complex oxides is preferable. Thus, the charging / discharging characteristic of a lithium ion secondary battery can be improved by containing these compounds with favorable lithium ion conductivity in the solid electrolyte layer.

さらに、前記導電層は電極取り出し金属膜であり、絶縁性基板上に金属層を形成する工程で形成されていると好適である。これにより、基板が薄膜固体二次電池の性能に与える影響を減らすことができ、薄膜固体二次電池の充放電特性を向上させることができる。   Furthermore, it is preferable that the conductive layer is an electrode extraction metal film and is formed in a step of forming a metal layer on an insulating substrate. Thereby, the influence which a board | substrate has on the performance of a thin film solid secondary battery can be reduced, and the charge / discharge characteristic of a thin film solid secondary battery can be improved.

このとき、前記電極取り出し金属膜と前記下部電極集電体層は、同一材料からなると好適である。これにより、前記電極取り出し金属膜と前記下部電極集電体は同一ターゲットで成膜できるため、薄膜固体二次電池の製造時、成膜に必要となるターゲット数が少なくなり、操作の簡易化、成膜時間の短縮、薄膜固体二次電池の製造装置の簡略化を図ることができる。   At this time, it is preferable that the electrode extraction metal film and the lower electrode current collector layer are made of the same material. Thereby, since the electrode extraction metal film and the lower electrode current collector can be formed with the same target, the number of targets required for film formation is reduced during the manufacture of the thin film solid secondary battery, the operation is simplified, It is possible to shorten the film formation time and simplify the manufacturing apparatus of the thin film solid secondary battery.

さらに、前記電極集電体層のうち負極集電体層がニオブであり、前記電極活物質層のうち負極活物質層がニオブ酸化物(Nb)であると好ましい。この時、負極集電体層と負極活物質層は、同一のニオブ金属ターゲットを用い、スパッタリング成膜時の酸素ガス流量を調節して作製する事ができる。したがって、薄膜固体二次電池を作製する際に、成膜に使用するターゲット数及び電源の切り替え回数を減らし、製造工程を簡略化することができ、操作の簡易化、装置の小型化を図ることができる。また同一材料の金属を利用できるので、金属ターゲットを交換する必要がないため、作業者の作業効率の向上と共に、不純物の混入を防止して、得られる電池の性能の均一性を確保することができる。 Furthermore, the negative electrode current collector layer of the electrode current collector layer is preferably niobium, and the negative electrode active material layer of the electrode active material layer is preferably niobium oxide (Nb 2 O 5 ). At this time, the negative electrode current collector layer and the negative electrode active material layer can be manufactured by using the same niobium metal target and adjusting the oxygen gas flow rate during sputtering film formation. Therefore, when manufacturing a thin film solid-state secondary battery, the number of targets used for film formation and the number of power source switching can be reduced, the manufacturing process can be simplified, the operation can be simplified, and the apparatus can be downsized. Can do. In addition, since the same material metal can be used, it is not necessary to replace the metal target, so that it is possible to improve the work efficiency of the operator and prevent the contamination of impurities, thereby ensuring the uniformity of the performance of the obtained battery. it can.

本発明の請求項1の薄膜固体二次電池の製造方法によれば、下部電極集電体層、下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層の5層を大気開放することなく、同じ成膜装置内で連続成膜して形成することができ、5層の連続成膜を行なうことによって、異物の混入、不純物の生成が妨げられ、両者の界面に電池性能を劣化させる不純物が生じる可能性が低くなる。また、電源の切り替え回数を減らし、製造工程を簡略化することができ、操作の簡易化、装置の小型化を図ることができる。   According to the method for producing a thin film solid secondary battery of claim 1 of the present invention, the lower electrode current collector layer, the lower electrode active material layer, the solid electrolyte layer, the upper electrode active material layer, the upper electrode current collector layer These five layers can be formed by continuous film formation in the same film forming apparatus without opening to the atmosphere. By performing the five layer continuous film formation, contamination of foreign matters and generation of impurities are hindered. The possibility that impurities that deteriorate the battery performance are generated at the interface is reduced. Further, the number of times of switching the power source can be reduced, the manufacturing process can be simplified, the operation can be simplified, and the apparatus can be downsized.

本発明の薄膜固体二次電池の製造方法によれば、薄膜固体リチウム二次電池の各層を積層させる際、同一マスクで連続成膜することが可能となる。電池セルの動作部分を一貫して高真空の成膜装置内で作製する為、電池性能が周囲の温度、湿度、クリーン度のような環境の変化による影響を受けにくいと言える。その結果、成膜時の異物混入を防ぐことができ、それに伴い短絡の発生を防ぐことができる。したがって、より安定した、再現性の良い電池性能が得られ、且つ、歩留まり良く作製することができる。また、連続成膜することにより、集電体界面と活物質層界面の不連続性による性能への悪影響がなく、電池性能の向上が期待できる。 According to the method for manufacturing a thin film solid secondary battery of the present invention, when the layers of the thin film solid lithium secondary battery are stacked, it is possible to continuously form films using the same mask. Since the operating part of the battery cell is consistently produced in a high-vacuum film forming apparatus, it can be said that the battery performance is not easily affected by environmental changes such as ambient temperature, humidity, and cleanliness. As a result, it is possible to prevent foreign matters from being mixed during film formation, and accordingly, occurrence of a short circuit can be prevented. Therefore, more stable and reproducible battery performance can be obtained, and the battery can be manufactured with high yield. In addition, the continuous film formation does not adversely affect the performance due to the discontinuity between the current collector interface and the active material layer interface, and an improvement in battery performance can be expected.

さらに上記電池性能の向上のみならず、連続成膜により電池セルの作製時間が大幅に短縮されるため、製造原価の低減を図ることができる。これは、マスク交換の為、真空成膜装置を大気開放する毎に行なう真空成膜装置の排気時間を省略する事ができるためである。
さらに、その製造過程において、複数の担当者が関わった場合でも、電池セルを構成する薄膜が劣化しやすい大気中での作業が少ないので、担当者間の作業効率の差に依存して、電池性能に差が出る可能性が低い。
Furthermore, not only the battery performance is improved, but the production time of the battery cell is greatly shortened by continuous film formation, so that the manufacturing cost can be reduced. This is because the evacuation time of the vacuum film forming apparatus performed every time the vacuum film forming apparatus is opened to the atmosphere for mask exchange can be omitted.
Furthermore, even when multiple persons in charge are involved in the manufacturing process, there are few operations in the atmosphere where the thin film constituting the battery cell is likely to deteriorate, so depending on the difference in work efficiency between persons in charge, the battery It is unlikely that there will be a difference in performance.

また請求項2のように、薄膜固体リチウム二次電池を作する際、下部電極集電体層を正極集電体層とし、電極の活物質層を正極活物質層、固体電解質層、上部電極の活物質層を負極活物質層、上部電極集電体層を負極集電体層とし、各層が下部電極取り出し金属膜上にこの順に積層すると、正極活物質層に含まれるリチウムが成膜中に負極活物質層等に移動し、不可逆容量の原因となり、電池特性が低下するのを防止できる。 Also, as claimed in claim 2, when manufactured create a thin film solid state lithium secondary battery, the lower electrode collector layer and the cathode current collector layer, a positive electrode active material layer of the active material layer of the electrode, the solid electrolyte layer, an upper When the active material layer of the electrode is the negative electrode active material layer, the upper electrode current collector layer is the negative electrode current collector layer, and each layer is laminated in this order on the lower electrode extraction metal film, lithium contained in the positive electrode active material layer is formed. It moves to the negative electrode active material layer and the like, causing irreversible capacity and preventing battery characteristics from deteriorating.

また請求項3の発明によれば、前記した効果を備えると共に、リチウムイオンの伝導性が良好な上記化合物を固体電解質層に含有することで、リチウムイオン二次電池の充放電特性を向上させることができる。
また請求項4の発明によれば、基板として絶縁体を選択することにより、薄膜固体二次電池を作製できる基板の種類が制限されず、絶縁体フィルムなどを含む様々な材料を用いることができる。
Moreover, according to invention of Claim 3, while providing the above-mentioned effect, the charging / discharging characteristic of a lithium ion secondary battery is improved by containing the said compound with favorable electroconductivity of lithium ion in a solid electrolyte layer. Can do.
According to the invention of claim 4, by selecting an insulator as the substrate, the type of the substrate on which the thin film solid secondary battery can be manufactured is not limited, and various materials including an insulator film can be used. .

また請求項5のように、電極取り出し金属膜と下部電極集電体層を同一材料とすることにより、成膜に必要となるターゲット数を減らすことができ、操作の簡易化、成膜時間の短縮、薄膜固体二次電池の製造装置の簡略化を図ることができる。   Further, as described in claim 5, by using the same material for the electrode lead-out metal film and the lower electrode current collector layer, the number of targets required for film formation can be reduced, and the operation can be simplified and the film formation time can be reduced. Shortening and simplification of a thin film solid state secondary battery manufacturing apparatus can be achieved.

さらに、請求項6の発明によれば、電極集電体層において、負極集電体層をニオブ、電極活物質層において負極活物質層をニオブ酸化物(Nb)とすることで、連続成膜工程中、負極集電体層及び負極活物質層を単一ターゲットで成膜できるため、成膜工程の簡略化を図ることができる Further, according to the invention of claim 6, in the electrode current collector layer, the negative electrode current collector layer is niobium, and the negative electrode active material layer is niobium oxide (Nb 2 O 5 ) in the electrode active material layer. Since the negative electrode current collector layer and the negative electrode active material layer can be formed with a single target during the continuous film formation process, the film formation process can be simplified .

本発明の実施形態に係る薄膜固体二次電池の概略側面図である。It is a schematic side view of the thin film solid secondary battery which concerns on embodiment of this invention. 薄膜固体二次電池のサイクル特性のグラフ図である。It is a graph of the cycle characteristics of a thin film solid secondary battery. 薄膜固体二次電池の放電曲線のグラフ図である。It is a graph of the discharge curve of a thin film solid secondary battery. 比較例1の実施形態に係る薄膜固体二次電池の概略側面図である。6 is a schematic side view of a thin-film solid secondary battery according to an embodiment of Comparative Example 1. FIG. 比較例2の実施形態に係る薄膜固体二次電池の概略側面図である。6 is a schematic side view of a thin-film solid secondary battery according to an embodiment of Comparative Example 2. FIG.

本発明の実施形態に係る薄膜固体二次電池の製造方法を図面に基づいて説明する。なお、以下に説明する材料、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
図1は本発明の実施形態に係る薄膜固体二次電池を示す概略側面図であり、本実施形態の薄膜固体二次電池は、基板1上に、電極取り出し金属膜2、下部電極集電体層3、下部電極の活物質層4、固体電解質層5、上部電極の活物質層6、上部電極集電体層7の薄膜が順に積層されて形成されている。
A method of manufacturing a thin film solid secondary battery according to an embodiment of the present invention will be described with reference to the drawings. The materials, arrangements, configurations, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
FIG. 1 is a schematic side view showing a thin film solid secondary battery according to an embodiment of the present invention. The thin film solid secondary battery according to the present embodiment has an electrode extraction metal film 2 and a lower electrode current collector on a substrate 1. The layer 3, the active material layer 4 of the lower electrode, the solid electrolyte layer 5, the active material layer 6 of the upper electrode, and the thin film of the upper electrode current collector layer 7 are sequentially laminated.

そして、本発明の薄膜固体二次電池の製造方法では、電極取り出し金属膜2に重なるように、下部電極集電体層3、下部電極の活物質層4、固体電解質層5、上部電極の活物質層6、上部電極集電体層7を、この順で各層が所定の膜厚になるまで同一マスクを用いて連続して成膜する。
このように、下部電極集電体層3以降はマスクの交換、大気開放を行うことなく、真空状態を保った状態で成膜する。
In the method for manufacturing a thin film solid secondary battery of the present invention, the lower electrode current collector layer 3, the lower electrode active material layer 4, the solid electrolyte layer 5, and the upper electrode active so as to overlap the electrode extraction metal film 2. The material layer 6 and the upper electrode current collector layer 7 are successively formed in this order using the same mask until each layer has a predetermined thickness.
In this manner, the lower electrode current collector layer 3 and subsequent layers are formed in a vacuum state without changing the mask and opening to the atmosphere.

なお、本実施形態では、下部電極集電体層3又は上部電極集電体層7において、いずれかを負極集電体層とし、負極集電体をニオブとし、さらに下部電極の活物質層4又は上部電極の活物質層6のうちいずれかを負極活物質層とし、負極活物質をニオブ酸化物(Nb)とした場合、DCスパッタリング法によって成膜することができるため、RFスパッタリング法に比して、成膜速度の向上が促され、成膜時間の短縮が可能となり、生産効率が向上し、製造原価を削減することができる。 In the present embodiment, either the lower electrode current collector layer 3 or the upper electrode current collector layer 7 is a negative electrode current collector layer, the negative electrode current collector is niobium, and the lower electrode active material layer 4 Alternatively, when any of the active material layers 6 of the upper electrode is a negative electrode active material layer and the negative electrode active material is niobium oxide (Nb 2 O 5 ), the film can be formed by a DC sputtering method. Compared to the method, the film formation speed is improved, the film formation time can be shortened, the production efficiency can be improved, and the manufacturing cost can be reduced.

上記構成を持つ様々な動作原理、種類の薄膜固体型の二次電池が作製可能であると考えられる。その中で、エネルギー密度等の電池特性が優れている点と、構成材料の薄膜化が比較的容易である点から、実用的には薄膜固体型のリチウム二次電池が好適である。   It is considered that various operating principles and types of thin film solid-state secondary batteries having the above-described configuration can be manufactured. Among them, a thin-film solid-state lithium secondary battery is preferable from the viewpoint of excellent battery characteristics such as energy density and relatively easy thinning of the constituent materials.

ここで、薄膜固体リチウム二次電池を作製する場合は、下部電極集電体層3を正極集電体層、下部電極の活物質層4を正極活物質層、上部電極の活物質層6を負極活物質層、上部電極集電体層7を負極集電体層として成膜を行う。このように正極側から、順序に積層して作製したほうが望ましい。
正極側から順に積層する理由としては、リチウムを含んでいる正極活物質層の表面保護という目的があり、逆に負極側から積層して電池セルを作製した場合、正極活物質層に含まれるリチウムが成膜中に負極活物質層等に移動してしまい、不可逆容量の原因となり、電池特性が低下する可能性があることによる。
Here, when a thin film solid lithium secondary battery is manufactured, the lower electrode current collector layer 3 is a positive electrode current collector layer, the lower electrode active material layer 4 is a positive electrode active material layer, and the upper electrode active material layer 6 is formed. Film formation is performed using the negative electrode active material layer and the upper electrode current collector layer 7 as a negative electrode current collector layer. In this way, it is desirable to produce the layers in order from the positive electrode side.
The reason for stacking in order from the positive electrode side is to protect the surface of the positive electrode active material layer containing lithium. Conversely, when a battery cell is manufactured by stacking from the negative electrode side, the lithium contained in the positive electrode active material layer Is moved to the negative electrode active material layer or the like during film formation, causing irreversible capacity and possibly reducing battery characteristics.

上記の各薄膜の形成方法としては、スパッタリング法、電子ビーム蒸着法、加熱蒸法等の真空成膜法や、塗布法等を用いることができる。好ましくは、より薄く均一に薄膜を形成できる真空成膜法を用いるのが良い。さらに好ましくは、蒸着物質との原子組成のずれが少なく、均一に成膜ができるスパッタリング法を用いるのが良い。   As a method for forming each thin film, a vacuum film forming method such as a sputtering method, an electron beam vapor deposition method, a heating steam method, a coating method, or the like can be used. It is preferable to use a vacuum film-forming method that can form a thin film more thinly and uniformly. More preferably, it is preferable to use a sputtering method in which there is little deviation in the atomic composition from the vapor deposition material and uniform film formation is possible.

リチウム二次電池の構成材料であるリチウム含有酸化物は、水分及び酸化によって劣化しやすい事がよく知られている。その対策としてドライルーム、グローブボックス等が必要となるが、本発明により電池セルを構成する下部電極集電体層から上部電極集電体層までを連続して、真空成膜装置内で作製できるので、リチウム二次電池の作製方法として好適である。   It is well known that a lithium-containing oxide, which is a constituent material of a lithium secondary battery, easily deteriorates due to moisture and oxidation. As a countermeasure, a dry room, a glove box, and the like are required. According to the present invention, the lower electrode current collector layer constituting the battery cell to the upper electrode current collector layer can be continuously produced in a vacuum film forming apparatus. Therefore, it is suitable as a method for manufacturing a lithium secondary battery.

以降、下部電極集電体層3を正極集電体層3、下部電極の活物質層4を正極活物質層4、上部電極の活物質層6を負極活物質層6、上部電極集電体層7を負極集電体層7として、本例の薄膜固体リチウム二次電池の作製に最適な形態を述べる。なお、電極取り出し金属膜2上への積層順序は、正極集電体層3と負極集電体層7、及び正極活物質層4と負極活物質層6とを入れ替えた順序、すなわち、負極集電体層7、負極活物質層6、固体電解質層5、正極活物質層4、正極集電体層3の順であってもよい。   Hereinafter, the lower electrode current collector layer 3 is the positive electrode current collector layer 3, the lower electrode active material layer 4 is the positive electrode active material layer 4, the upper electrode active material layer 6 is the negative electrode active material layer 6, and the upper electrode current collector. The layer 7 is used as the negative electrode current collector layer 7, and an optimum form for manufacturing the thin film solid lithium secondary battery of this example will be described. The stacking order on the electrode extraction metal film 2 is the order in which the positive electrode current collector layer 3 and the negative electrode current collector layer 7, and the positive electrode active material layer 4 and the negative electrode active material layer 6 are replaced, that is, the negative electrode current collector layer. The order of the electric conductor layer 7, the negative electrode active material layer 6, the solid electrolyte layer 5, the positive electrode active material layer 4, and the positive electrode current collector layer 3 may be used.

基板1は、ガラス、半導体シリコン、セラミック、ステンレス、樹脂基板等を用いることができる。樹脂基板としては、ポリイミドやPET等を用いることができる。また、形が崩れずに取り扱いができるものであれば、基板1に折り曲げが可能な薄いフィルムを用いることができる。これらの基板には、例えば透明性を増したり、Naなどのアルカリ元素の拡散を防止したり、耐熱性を増したり、ガスバリア性を持たせるなどの付加特性が備わっていればより好ましく、そのために表面にSiO、TiOなどの薄膜がスパッタリング法などにより形成された基板であっても良い。 As the substrate 1, glass, semiconductor silicon, ceramic, stainless steel, a resin substrate, or the like can be used. As the resin substrate, polyimide, PET, or the like can be used. A thin film that can be bent can be used for the substrate 1 as long as it can be handled without losing its shape. It is more preferable that these substrates have additional characteristics such as increasing transparency, preventing diffusion of alkali elements such as Na, increasing heat resistance, and providing gas barrier properties. A substrate on which a thin film such as SiO 2 or TiO 2 is formed by sputtering or the like may be used.

電極取り出し金属膜2は、基板1との密着性がよく、電気抵抗が低い金属膜を用いることができる。電極取り出し金属層2が取り出し電極として良好に機能するためには、そのシート抵抗が1kΩ/□以下であることが望ましい。電極取り出し金属層2の膜厚を0.1μm以上に設定すると、電極取り出し金属層2は抵抗率が1×10−2Ω・cm以下の物質によって形成する必要がある。このような物質として、例えば、バナジウム、チタン、ニオブ、アルミニウム、銅、ニッケル、金等を使用することができる。これらの物質によって電極取り出し金属層2は、できるだけ薄くて電気抵抗も低くなる0.05〜1μm程度の膜厚に形成することができる。 The electrode extraction metal film 2 may be a metal film having good adhesion to the substrate 1 and low electrical resistance. In order for the electrode extraction metal layer 2 to function well as an extraction electrode, the sheet resistance is desirably 1 kΩ / □ or less. When the film thickness of the electrode extraction metal layer 2 is set to 0.1 μm or more, the electrode extraction metal layer 2 needs to be formed of a substance having a resistivity of 1 × 10 −2 Ω · cm or less. As such a substance, for example, vanadium, titanium, niobium, aluminum, copper, nickel, gold or the like can be used. With these materials, the electrode lead-out metal layer 2 can be formed to a thickness of about 0.05 to 1 μm, which is as thin as possible and has a low electrical resistance.

正極集電体層3は、正極活物質層4との密着性がよく、電気抵抗が低い導電膜を用いることができる。電極取り出し金属膜2と同様にバナジウム、チタン、ニオブ、アルミニウム、銅、ニッケル、金等を使用することができる。電極取り出し金属膜2と正極集電体層3を同一の材料で形成すると、電池セルの製造工程を簡略化することができ、好適である。   As the positive electrode current collector layer 3, a conductive film having good adhesion to the positive electrode active material layer 4 and low electric resistance can be used. Vanadium, titanium, niobium, aluminum, copper, nickel, gold or the like can be used in the same manner as the electrode extraction metal film 2. When the electrode extraction metal film 2 and the positive electrode current collector layer 3 are formed of the same material, the battery cell manufacturing process can be simplified, which is preferable.

正極活物質層4は、リチウムを含み、リチウムイオンの離脱、吸蔵が可能である物質であればよく、特に限定はないが、好ましくは、遷移金属であるマンガン、コバルト、ニッケルのうちのいずれか一つ以上とリチウムを含む金属酸化物薄膜を用いると好適である。例えば、リチウム−マンガン酸化物(LiMn,LiMn等),リチウム−コバルト酸化物(LiCoO,LiCo等),リチウム−ニッケル酸化物(LiNiO,LiNi等),リチウム−マンガン−コバルト酸化物(LiMnCoO,LiMnCoO等),リチウム−チタン酸化物(LiTi12,LiTi等)等を使用することができる。正極活物質層4の膜厚は、できるだけ薄いことが望ましいが、充放電容量を確保できる0.05〜5μm程度とするとよい。 The positive electrode active material layer 4 may be any material containing lithium and capable of detaching and occluding lithium ions, and is not particularly limited, but is preferably any one of transition metals such as manganese, cobalt, and nickel. A metal oxide thin film containing one or more and lithium is preferably used. For example, lithium-manganese oxide (LiMn 2 O 4 , Li 2 Mn 2 O 4 etc.), lithium-cobalt oxide (LiCoO 2 , LiCo 2 O 4 etc.), lithium-nickel oxide (LiNiO 2 , LiNi 2 O) 4 ), lithium-manganese-cobalt oxide (LiMnCoO 4 , Li 2 MnCoO 4 etc.), lithium-titanium oxide (Li 4 Ti 5 O 12 , LiTi 2 O 4 etc.), etc. can be used. The film thickness of the positive electrode active material layer 4 is desirably as thin as possible, but is preferably about 0.05 to 5 μm that can secure a charge / discharge capacity.

固体電解質層5は、リチウムイオンの伝導性が良いリン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライドガラス(LiPON)、又はTaとNbのいずれか一つ以上の遷移金属及びLiとNを含む複合酸化物等を用いることができる。固体電解質層5の膜厚は、ピンホ−ルの発生が低減され且つできるだけ薄い0.05〜1μm程度が好ましい。 The solid electrolyte layer 5 is composed of lithium phosphate (Li 3 PO 4 ) having good lithium ion conductivity, lithium phosphate oxynitride glass (LiPON) in which oxygen of the lithium phosphate is partially substituted with nitrogen, or Ta and Nb. Any one or more transition metals and composite oxides containing Li and N can be used. The thickness of the solid electrolyte layer 5 is preferably about 0.05 to 1 [mu] m, where generation of pinholes is reduced and as thin as possible.

負極活物質層6は、リチウムイオンの離脱、吸蔵が可能である物質であればよく、特に限定はないが、好ましくは、シリコン−マンガン合金(Si−Mn),シリコン−コバルト合金(Si−Co),シリコン−ニッケル合金(Si−Ni),リチウム−チタン酸化物(LiTi,LiTi12等)、五酸化ニオブ(Nb),酸化チタン(TiO),酸化インジウム(In),酸化亜鉛(ZnO),酸化スズ(SnO)、酸化ニッケル(NiO)、スズが添加された酸化インジウム(ITO)、アルミニウムが添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素が添加された酸化スズ(FTO)、リチウムが添加された酸化ニッケル(NiO−Li)等を用いると好適である。 The negative electrode active material layer 6 is not particularly limited as long as it can release and occlude lithium ions, and is preferably a silicon-manganese alloy (Si-Mn), a silicon-cobalt alloy (Si-Co). ), Silicon-nickel alloy (Si—Ni), lithium-titanium oxide (LiTi 2 O 4 , Li 4 Ti 5 O 12, etc.), niobium pentoxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), oxidation Indium (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), nickel oxide (NiO), indium oxide added with tin (ITO), zinc oxide added with aluminum (AZO), gallium Added zinc oxide (GZO), antimony added tin oxide (ATO), fluorine added tin oxide (FTO), lithium added It is preferable to use nickel oxide (NiO—Li) or the like.

負極集電体層7は、負極活物質層6との密着性がよく、電気抵抗が低い導電膜を用いることができる。
電極取り出し金属膜2及び正極集電体層3と同様にバナジウム、チタン、ニオブ、アルミニウム、銅、ニッケル、金等を使用することができる。
As the negative electrode current collector layer 7, a conductive film having good adhesion to the negative electrode active material layer 6 and low electric resistance can be used.
Vanadium, titanium, niobium, aluminum, copper, nickel, gold or the like can be used in the same manner as the electrode extraction metal film 2 and the positive electrode current collector layer 3.

また、負極活物質層6として、ニオブ酸化物(Nb)を用いた場合、負極集電体層7をニオブとすることにより、同一のニオブ金属ターゲットを用いてスパッタリング成膜時の酸素ガス流量を調節して作製する事ができる。これにより、電池セルを作製する際に、必要なターゲット数と電源数を少なくする事ができ、装置の小型化を実現でき、原価削減につながる。 Further, when niobium oxide (Nb 2 O 5 ) is used as the negative electrode active material layer 6, oxygen during sputtering film formation using the same niobium metal target by using the negative electrode current collector layer 7 as niobium. It can be made by adjusting the gas flow rate. Thereby, when manufacturing a battery cell, the number of required targets and the number of power supplies can be reduced, the apparatus can be miniaturized, and the cost can be reduced.

上記の薄膜固体二次電池は、充電を行うと、正極活物質層4からリチウムがイオンとなって離脱し、固体電解質層5を介して負極活物質層6に吸蔵される。このとき、正極活物質層4から外部へ電子が放出される。
また、放電時には、負極活物質層6からリチウムがイオンとなって離脱し、固体電解質層5を介して正極活物質層4に吸蔵される。このとき、負極活物質層6から外部へ電子が放出される。
When the thin-film solid secondary battery is charged, lithium is released from the positive electrode active material layer 4 as ions, and is inserted in the negative electrode active material layer 6 through the solid electrolyte layer 5. At this time, electrons are emitted from the positive electrode active material layer 4 to the outside.
Further, at the time of discharging, lithium is separated from the negative electrode active material layer 6 as ions and is inserted into the positive electrode active material layer 4 through the solid electrolyte layer 5. At this time, electrons are emitted from the negative electrode active material layer 6 to the outside.

次に、図面を参照して、本発明の実施例、比較例について説明する。図2は負極活物質と負極集電体を変更した電池セルのサイクル特性比較のグラフ図であり、充放電サイクル数と放電容量との関係を示すものである。図3は負極活物質と負極集電体を変更した電池セルの放電曲線比較のグラフ図であり、電池容量と電池電圧との関係を示すものである。図4は比較例1の実施形態に係る薄膜固体二次電池の概略側面図であり、正極活物質層4、固体電解質層5、負極活物質層6を連続成膜したことを示すものである。図5は比較例2の実施形態に係る薄膜固体二次電池の概略側面図であり、正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7を連続成膜したことを示すものである。   Next, examples and comparative examples of the present invention will be described with reference to the drawings. FIG. 2 is a graph showing comparison of cycle characteristics of battery cells in which the negative electrode active material and the negative electrode current collector are changed, and shows the relationship between the number of charge / discharge cycles and the discharge capacity. FIG. 3 is a graph showing comparison of discharge curves of battery cells in which the negative electrode active material and the negative electrode current collector are changed, and shows the relationship between the battery capacity and the battery voltage. FIG. 4 is a schematic side view of the thin-film solid secondary battery according to the embodiment of Comparative Example 1, and shows that the positive electrode active material layer 4, the solid electrolyte layer 5, and the negative electrode active material layer 6 are continuously formed. . FIG. 5 is a schematic side view of a thin-film solid secondary battery according to an embodiment of Comparative Example 2, in which a positive electrode active material layer 4, a solid electrolyte layer 5, a negative electrode active material layer 6, and a negative electrode current collector layer 7 are continuously formed. It shows that it did.

図1の構成をなすよう基板1上に、電極取り出し金属膜2、正極集電体層3、正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7をこの順にスパッタリング法により形成し、薄膜固体二次電池を作した。このとき、前記したように、基板上に予め電極取り出し金属膜2を成膜した後、マスク交換、大気開放を行い、その後、正極集電体層3、正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7を連続的に成膜した。
基板1は、縦50mm、横50mm、厚さ1mmのソーダライムガラスを用いた。
電極取り出し金属膜2は、チタン(Ti)ターゲットを用いてDCマグネトロンスパッタリング法により形成した。このとき、DCパワーは1KW、無加熱で成膜した。これにより、電極取り出し金属膜2として0.1μmのチタン薄膜を形成した。
次に、電極取り出し金属膜2を成膜後、大気開放、マスク交換を行った。その後の作製工程は全て、高真空状態を維持した成膜装置内で連続して行った。
正極集電体層3は電極取り出し金属膜2と同様にチタン(Ti)ターゲットを用い、DCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、正極集電体層3として0.1μmのチタン薄膜を形成した。
An electrode extraction metal film 2, a positive electrode current collector layer 3, a positive electrode active material layer 4, a solid electrolyte layer 5, a negative electrode active material layer 6, and a negative electrode current collector layer 7 are formed on a substrate 1 so as to have the configuration shown in FIG. sequentially formed by sputtering to manufactured create a thin film solid secondary battery. At this time, as described above, after the electrode extraction metal film 2 is formed on the substrate in advance, the mask is exchanged and the atmosphere is released, and then the positive electrode current collector layer 3, the positive electrode active material layer 4, and the solid electrolyte layer 5. The negative electrode active material layer 6 and the negative electrode current collector layer 7 were continuously formed.
As the substrate 1, soda lime glass having a length of 50 mm, a width of 50 mm, and a thickness of 1 mm was used.
The electrode extraction metal film 2 was formed by DC magnetron sputtering using a titanium (Ti) target. At this time, the film was formed with a DC power of 1 KW and no heating. As a result, a 0.1 μm titanium thin film was formed as the electrode extraction metal film 2.
Next, after the electrode extraction metal film 2 was formed, the atmosphere was released and the mask was exchanged. All subsequent manufacturing steps were performed continuously in a film forming apparatus that maintained a high vacuum state.
The positive electrode current collector layer 3 was formed by a DC magnetron sputtering method using a titanium (Ti) target in the same manner as the electrode extraction metal film 2. The film was formed with a DC power of 1 KW and no heating. As a result, a 0.1 μm titanium thin film was formed as the positive electrode current collector layer 3.

正極活物質層4は、マンガン酸リチウム(LiMn)ターゲットを用い、酸素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.2μmのLiMn薄膜を形成した。
固体電解質層5は、リン酸リチウム(LiPO)の焼結体ターゲットを用い、窒素を導入してRFマグネトロンスパッタリング法にて形成した。RFパワーは1KW、無加熱で成膜した。これにより、0.1μmのリン酸リチウムオキシナイトライドガラス(LiPON)薄膜を形成した。
負極活物質層6はニオブ(Nb)ターゲットを用い、酸素を導入してDCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、0.1μmの酸化ニオブ薄膜を形成した。
負極集電体7は負極活物質層6と同様にニオブ(Nb)ターゲットを用い、DCマグネトロンスパッタリング法にて形成した。DCパワーは1KW、無加熱で成膜した。これにより、0.1μmのニオブ薄膜を形成した。
The positive electrode active material layer 4 was formed by RF magnetron sputtering using a lithium manganate (LiMn 2 O 4 ) target and introducing oxygen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.2 μm thick LiMn 2 O 4 thin film was formed.
The solid electrolyte layer 5 was formed by RF magnetron sputtering using a sintered phosphor target of lithium phosphate (Li 3 PO 4 ) and introducing nitrogen. The film was formed with an RF power of 1 KW and no heating. Thereby, a 0.1 μm lithium phosphate oxynitride glass (LiPON) thin film was formed.
The negative electrode active material layer 6 was formed by DC magnetron sputtering using a niobium (Nb) target and introducing oxygen. The film was formed with a DC power of 1 KW and no heating. Thereby, a 0.1 μm niobium oxide thin film was formed.
The negative electrode current collector 7 was formed by a DC magnetron sputtering method using a niobium (Nb) target in the same manner as the negative electrode active material layer 6. The film was formed with a DC power of 1 KW and no heating. As a result, a 0.1 μm-thick niobium thin film was formed.

上述のようにして得られた薄膜固体二次電池について、X線回折測定を行い、この結果、回折ピークが現れないことを確認した。これにより、いずれの構成層も非晶質であることが確認できた。また、上述の方法により作した薄膜固体二次電池の歩留まりは91.0%であった(測定個数78個、可動数71個)。 The thin-film solid secondary battery obtained as described above was subjected to X-ray diffraction measurement, and as a result, it was confirmed that no diffraction peak appeared. Thereby, it was confirmed that all the constituent layers were amorphous. Further, the yield was 91.0% of the thin film solid secondary battery manufactured created by the method described above (measurement number 78, the movable number 71 pieces).

次に電池性能を評価するために、充放電測定器を用いて充放電特性を測定した。
測定条件は、充電及び放電時の電流はいずれも0.02mA、充電及び放電の終止電圧はそれぞれ3.5V、0.3Vとした。その結果、繰り返し充放電動作を示すことが確認できた。
Next, in order to evaluate battery performance, the charge / discharge characteristics were measured using a charge / discharge meter.
The measurement conditions were such that the current during charging and discharging was 0.02 mA, and the final voltages for charging and discharging were 3.5 V and 0.3 V, respectively. As a result, it was confirmed that repeated charge / discharge operations were exhibited.

[比較例1]
比較例1では、実施例と同様に、図4の構成の薄膜固体二次電池をスパッタリング法により作した。ただし、正極集電体層3を成膜後、大気開放、マスク交換を行った。その後正極活物質層4、固体電解質層5、負極活物質層6の3層を連続成膜し、大気開放、マスク交換を行った。その後負極集電体層7を成膜し、薄膜固体二次電池を作製した。
正極集電体層3、正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7の各層毎の成膜条件は実施例と各々同様である。
[Comparative Example 1]
In Comparative Example 1, as in the example were made created by sputtering a thin film solid state secondary battery having the structure shown in FIG. 4. However, after the positive electrode current collector layer 3 was formed, the atmosphere was released and the mask was exchanged. Thereafter, three layers of the positive electrode active material layer 4, the solid electrolyte layer 5, and the negative electrode active material layer 6 were continuously formed, and the atmosphere was released and the mask was exchanged. Thereafter, a negative electrode current collector layer 7 was formed to produce a thin film solid secondary battery.
The film forming conditions for each of the positive electrode current collector layer 3, the positive electrode active material layer 4, the solid electrolyte layer 5, the negative electrode active material layer 6, and the negative electrode current collector layer 7 are the same as those in the example.

また、上述の方法により作した薄膜固体二次電池の歩留まりは77.0%であった(測定個数126個、可動数97個)。 Also, the yield of the thin film solid secondary battery manufactured created by the above method was 77.0% (determined number 126, 97 movable few).

[比較例2]
比較例2では、実施例と同様に、図5の構成の薄膜固体二次電池をスパッタリング法により作した。ただし、正極集電体層3を成膜後、大気開放、マスク交換を行った。その後正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7の4層を連続成膜し、薄膜固体二次電池を作製した。
正極集電体層3、正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7の各層毎の成膜条件は実施例と各々同様である。
[Comparative Example 2]
In Comparative Example 2, as in the example were made created by sputtering a thin film solid state secondary battery having the structure shown in FIG. 5. However, after the positive electrode current collector layer 3 was formed, the atmosphere was released and the mask was exchanged. Thereafter, four layers of a positive electrode active material layer 4, a solid electrolyte layer 5, a negative electrode active material layer 6, and a negative electrode current collector layer 7 were continuously formed to produce a thin film solid secondary battery.
The film forming conditions for each of the positive electrode current collector layer 3, the positive electrode active material layer 4, the solid electrolyte layer 5, the negative electrode active material layer 6, and the negative electrode current collector layer 7 are the same as those in the example.

図2に示されるように、同じ充放電回数のとき、連続で積層させる層の数が多いほど、高い放電容量を維持できることが示された。例えば20サイクル目では、実施例の方法により5層連続で成膜して作製した薄膜固体二次電池は、比較例1の方法により3層(正極活物質層4、固体電解質層5、負極活物質層6)連続で成膜して作製した薄膜固体二次電池よりも約1.3倍高い放電容量を維持できることが示された。また、実施例の方法により5層連続で成膜して作製した薄膜固体二次電池は、比較例2の方法により4層(正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7)連続で成膜して作製した薄膜固体二次電池よりも約1.2倍高い放電容量を維持できることが示された。   As shown in FIG. 2, it was shown that when the number of times of charge / discharge is the same, the higher the number of layers to be continuously stacked, the higher the discharge capacity can be maintained. For example, in the 20th cycle, a thin-film solid secondary battery produced by continuously forming five layers by the method of the example has three layers (the positive electrode active material layer 4, the solid electrolyte layer 5, the negative electrode active material) by the method of Comparative Example 1. Material layer 6) It was shown that a discharge capacity about 1.3 times higher than that of a thin-film solid secondary battery produced by continuous film formation can be maintained. In addition, the thin film solid secondary battery produced by continuously forming five layers by the method of the example was divided into four layers (positive electrode active material layer 4, solid electrolyte layer 5, negative electrode active material layer 6, It was shown that the negative electrode current collector layer 7) can maintain a discharge capacity about 1.2 times higher than that of a thin film solid secondary battery produced by continuous film formation.

図3に示されるように、等しい電池容量においては、連続で積層させる層数が多いほど、高い電池電圧を維持できることが示された。
例えば電池電圧が1.0V以上を維持できる電池容量を比較すると、実施例の方法により5層連続で成膜して作製した薄膜固体二次電池は、比較例1の方法により3層(正極活物質層4、固体電解質層5、負極活物質層6)連続で成膜して作製した薄膜固体二次電池の約1.3倍の電池容量であることが示された。また、実施例の方法により5層連続で成膜して作製した薄膜固体二次電池は、比較例2の方法により4層(正極活物質層4、固体電解質層5、負極活物質層6、負極集電体層7)連続で成膜して作製した薄膜固体二次電池の約1.2倍の電池容量であることが示された。
As shown in FIG. 3, it was shown that a higher battery voltage can be maintained as the number of layers to be continuously stacked increases with an equal battery capacity.
For example, when comparing battery capacities that can maintain a battery voltage of 1.0 V or more, a thin-film solid secondary battery produced by continuously forming five layers by the method of the example has three layers (positive electrode active) by the method of Comparative Example 1. Material layer 4, solid electrolyte layer 5, negative electrode active material layer 6) It was shown that the battery capacity was about 1.3 times that of a thin film solid secondary battery produced by continuous film formation. In addition, the thin film solid secondary battery produced by continuously forming five layers by the method of the example was divided into four layers (positive electrode active material layer 4, solid electrolyte layer 5, negative electrode active material layer 6, Negative electrode current collector layer 7) It was shown that the battery capacity was about 1.2 times that of a thin-film solid secondary battery produced by continuous film formation.

以上のように、3層又は4層連続で成膜した場合と比較した結果、5層連続で成膜した時は放電カーブが緩やかになり、より長い時間、所定電圧を維持できる効果が見られた。これは、各層を連続成膜することにより、大気開放による各層の劣化が抑えられ、より高性能の薄膜固体二次電池が作できたことを示唆している。また、5層連続で成膜して作した電池は4層連続で成膜して作した電池よりも歩留まりが良いことも示された。 As described above, as a result of comparison with the case where three or four layers are continuously formed, the discharge curve becomes gentle when the five layers are continuously formed, and an effect of maintaining a predetermined voltage for a longer time is seen. It was. This can be achieved by continuously forming each layer, it is suppressed layers of degradation due to air release, suggesting a more a thin film solid state secondary battery of high performance could be made created. The battery was made created by depositing five layers continuously has also been shown that the yield than good batteries manufactured created by depositing four layers continuously.

なお、本発明には以下のような実施形態も含まれる。すなわち、基板1上に、電極取り出し金属膜2、下部電極集電体層3、下部電極の活物質層4、固体電解質層5、上部電極の極活物質層6、上部電極集電体層7を、この順にそれぞれ所定の膜厚で積層してなる薄膜固体二次電池の製造方法であって、前記基板1上に電極取り出し金属膜2を、マスクを用いて、所定の厚さで成膜する第1成膜工程と、前記第1成膜工程の後で、前記第1成膜工程で使用したマスクを交換するマスク交換工程と、前記第1成膜工程で成膜した電極取り出し金属膜2に重なるように、前記マスク交換工程で交換された同一のマスクを使用して、前記下部電極集電体層3、前記下部電極の活物質層4、前記固体電解質層5、前記上部電極の極活物質層6、前記上部電極集電体層7を、連続成膜して所定の厚さまで成膜する第2成膜工程と、を備えてなることを特徴とする薄膜固体二次電池の製造方法であってもよい。   The following embodiments are also included in the present invention. That is, an electrode extraction metal film 2, a lower electrode current collector layer 3, a lower electrode active material layer 4, a solid electrolyte layer 5, an upper electrode electrode active material layer 6, an upper electrode current collector layer 7 on a substrate 1. Are formed in this order in a predetermined thickness, and a metal thin film secondary electrode 2 is formed on the substrate 1 with a predetermined thickness using a mask. A first film forming step, a mask exchanging step for exchanging a mask used in the first film forming step after the first film forming step, and an electrode extraction metal film formed in the first film forming step 2, using the same mask exchanged in the mask exchange step, the lower electrode current collector layer 3, the lower electrode active material layer 4, the solid electrolyte layer 5, and the upper electrode The electrode active material layer 6 and the upper electrode current collector layer 7 are continuously formed to a predetermined thickness. A second film forming step of, may be a method of manufacturing a thin film solid secondary battery, characterized by comprising comprises a.

本発明により製造された薄膜固体二次電池は、デバイスを備えた複合型機器の電源として用いられることにより、安定的かつ長時間にわたってデバイスを駆動することができる。このようなデバイスとして、たとえば、携帯電話、ノートパソコン、デジタルカメラ、携帯型ゲーム等のモバイル機器が挙げられる。   The thin-film solid-state secondary battery manufactured according to the present invention can be used as a power source for a composite apparatus equipped with a device, thereby driving the device stably for a long time. Examples of such devices include mobile devices such as mobile phones, notebook computers, digital cameras, and portable games.

1 基板
2 電極取り出し金属膜
3 下部電極集電体層(正極集電体層)
4 下部電極の活物質層(正極活物質層)
5 固体電解質層
6 上部電極の活物質層(負極活物質層)
7 上部電極集電体層(負極集電体層)
DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode extraction metal film 3 Lower electrode current collector layer (positive electrode current collector layer)
4 Active material layer of lower electrode (positive electrode active material layer)
5 Solid electrolyte layer 6 Upper electrode active material layer (negative electrode active material layer)
7 Upper electrode current collector layer (negative electrode current collector layer)

Claims (6)

表面に導電層を有する基板の該導電層上に、下部電極集電体層、下部電極の活物質層、固体電解質層、上部電極の活物質層、上部電極集電体層を、この順にそれぞれ所定の膜厚で積層してなる薄膜固体二次電池の製造方法であって、
前記下部電極集電体層、前記下部電極の活物質層、前記固体電解質層、前記上部電極の活物質層、前記上部電極集電体層を、同一マスクにより連続して所定の厚さまで成膜する成膜工程、
を備えてなることを特徴とする薄膜固体二次電池の製造方法。
A lower electrode current collector layer, a lower electrode active material layer, a solid electrolyte layer, an upper electrode active material layer, and an upper electrode current collector layer are arranged in this order on the conductive layer of the substrate having a conductive layer on the surface. A method for producing a thin-film solid secondary battery having a predetermined film thickness,
The lower electrode current collector layer, the lower electrode active material layer, the solid electrolyte layer, the upper electrode active material layer, and the upper electrode current collector layer are successively formed to a predetermined thickness using the same mask. A film forming process,
A method for producing a thin-film solid secondary battery, comprising:
前記下部電極集電体層を正極集電体層、前記下部電極の活物質層を正極活物質層、前記上部電極の活物質層を負極活物質層、前記上部電極集電体層を負極集電体層とし、各層が前記導電層上にこの順に成膜して積層したことを特徴とする請求項1に記載の薄膜固体二次電池の製造方法。   The lower electrode current collector layer is a positive electrode current collector layer, the lower electrode active material layer is a positive electrode active material layer, the upper electrode active material layer is a negative electrode active material layer, and the upper electrode current collector layer is a negative electrode current collector. 2. The method of manufacturing a thin film solid state secondary battery according to claim 1, wherein each of the layers is formed in this order and laminated on the conductive layer. 前記固体電解質層は、リン酸リチウム(LiPO)、リン酸リチウムの酸素を窒素で一部置換したリン酸リチウムオキシナイトライドガラス(LiPON)、又は遷移金属及びLiとNを含む複合酸化物の内の一つであることを特徴とする請求項1に記載の薄膜固体二次電池の製造方法。 The solid electrolyte layer is composed of lithium phosphate (Li 3 PO 4 ), lithium phosphate oxynitride glass (LiPON) in which oxygen of the lithium phosphate is partially substituted with nitrogen, or a composite oxide containing a transition metal and Li and N The method for manufacturing a thin film solid state secondary battery according to claim 1, wherein the method is one of the objects. 前記導電層は電極取り出し金属膜であり、絶縁性基板上に金属層を形成する工程で形成されたことを特徴とする請求項1に記載の薄膜固体二次電池の製造方法。   2. The method of manufacturing a thin film solid secondary battery according to claim 1, wherein the conductive layer is an electrode extraction metal film, and is formed in a step of forming a metal layer on an insulating substrate. 前記電極取り出し金属膜と前記下部電極集電体層は、同一材料からなることを特徴とする請求項1に記載の薄膜固体二次電池の製造方法。   2. The method for manufacturing a thin film solid secondary battery according to claim 1, wherein the electrode extraction metal film and the lower electrode current collector layer are made of the same material. 前記電極集電体層のうち負極集電体層がニオブであり、前記電極活物質層のうち負極活物質層がニオブ酸化物(Nb)であることを特徴とする請求項1に記載の薄膜固体二次電池の製造方法 The negative electrode current collector layer of the electrode current collector layer is niobium, and the negative electrode active material layer of the electrode active material layer is niobium oxide (Nb 2 O 5 ). The manufacturing method of the thin film solid secondary battery of description .
JP2009033257A 2009-02-16 2009-02-16 Method for manufacturing thin-film solid secondary battery Expired - Fee Related JP5415099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033257A JP5415099B2 (en) 2009-02-16 2009-02-16 Method for manufacturing thin-film solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033257A JP5415099B2 (en) 2009-02-16 2009-02-16 Method for manufacturing thin-film solid secondary battery

Publications (2)

Publication Number Publication Date
JP2010192170A JP2010192170A (en) 2010-09-02
JP5415099B2 true JP5415099B2 (en) 2014-02-12

Family

ID=42817999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033257A Expired - Fee Related JP5415099B2 (en) 2009-02-16 2009-02-16 Method for manufacturing thin-film solid secondary battery

Country Status (1)

Country Link
JP (1) JP5415099B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247570B2 (en) * 2009-04-14 2013-07-24 株式会社アルバック Thin film lithium secondary battery manufacturing apparatus and thin film lithium secondary battery manufacturing method
US8464419B2 (en) 2009-09-22 2013-06-18 Applied Materials, Inc. Methods of and factories for thin-film battery manufacturing
JP5403524B2 (en) * 2010-12-08 2014-01-29 レーザーテック株式会社 Battery electrode material thickness measuring device and thickness measuring method
KR101210372B1 (en) 2010-12-09 2012-12-10 지에스나노텍 주식회사 Thin Film Battery
US9130238B2 (en) * 2011-06-10 2015-09-08 Applied Materials, Inc. Methods of and hybrid factories for thin-film battery manufacturing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146917A (en) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The All-solid lithium secondary battery

Also Published As

Publication number Publication date
JP2010192170A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5515308B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP5217195B2 (en) Thin-film solid lithium ion secondary battery and composite device including the same
JP5515307B2 (en) Thin-film solid lithium ion secondary battery
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP5316809B2 (en) Lithium battery and manufacturing method thereof
JP4043296B2 (en) All solid battery
JP4415241B2 (en) Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
JP6675821B2 (en) Solid state battery and method of manufacturing the same
JP2007103129A (en) Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
US20090029264A1 (en) Thin-Film Solid Secondary Cell
JP5157005B2 (en) Negative electrode active material for thin film solid lithium ion secondary battery, thin film solid lithium ion secondary battery using the same, and method for producing the same
CN111490247B (en) Lithium battery anode structure and all-solid-state thin film lithium battery structure
JP2012059497A (en) Solid electrolyte battery
JP5415099B2 (en) Method for manufacturing thin-film solid secondary battery
KR20180005990A (en) Unit cell, and preparation method thereof
KR20060124978A (en) Thin film battery and fabrication method thereof
US11757158B2 (en) All-solid-state lithium battery and method for fabricating the same
JP2012038433A (en) Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery
JP2009211920A (en) All solid lithium secondary battery and method of manufacturing the same
JP5209527B2 (en) Thin-film solid secondary battery and method for producing thin-film solid secondary battery
CN115552662A (en) Battery and method for manufacturing same
JP2014229502A (en) Manufacturing method of all-solid state lamination battery
KR102639668B1 (en) Multi-Layer Typed Solid Electrolyte and All-Solid-State Thin Film Battery comprising The Same
KR101941452B1 (en) Thin film battery and method of fabricating the same
JP2022129559A (en) Laminate type solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees