JP2004273436A - All solid thin film laminated battery - Google Patents

All solid thin film laminated battery Download PDF

Info

Publication number
JP2004273436A
JP2004273436A JP2004016261A JP2004016261A JP2004273436A JP 2004273436 A JP2004273436 A JP 2004273436A JP 2004016261 A JP2004016261 A JP 2004016261A JP 2004016261 A JP2004016261 A JP 2004016261A JP 2004273436 A JP2004273436 A JP 2004273436A
Authority
JP
Japan
Prior art keywords
current collector
film
electrode
solid
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016261A
Other languages
Japanese (ja)
Inventor
Shuji Ito
修二 伊藤
Masaya Ugaji
正弥 宇賀治
Tatsuji Mino
辰治 美濃
Junichi Inaba
純一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004016261A priority Critical patent/JP2004273436A/en
Publication of JP2004273436A publication Critical patent/JP2004273436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all solid thin film laminated battery, having reduced battery failure rate and excellent charge/discharge cycle property. <P>SOLUTION: The all solid thin film laminated battery comprises a plurality of power generating elements, which are laminated. The plurality of power generating elements are connected in series or in parallel. Each of the power generating elements comprises a first collector 12, a first electrode 13, a solid electrolyte 14, a second electrode 15 and a second collector 16, which are laminated in this order. At least one buffer layer 17a, 17b, is deployed between the power generating elements. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、固体電解質を用いた全固体薄膜積層電池の高性能化に関する。   The present invention relates to improving the performance of an all-solid-state thin-film battery using a solid electrolyte.

電子・電気機器の小型化・軽量化に伴い、電池に対する小型化・軽量化への要望が強まってきている。一方、現行のリチウムイオン電池、リチウムポリマー電池および全固体電池は、電極材料の塗布工程やペレット成型工程を経て製造されている。そのため、電極合剤層や電解質層の厚さは、数10〜数100μmとなり、薄型化・小型化には限界がある。   With the miniaturization and weight reduction of electronic and electrical devices, there is an increasing demand for miniaturization and weight reduction of batteries. On the other hand, current lithium ion batteries, lithium polymer batteries, and all solid state batteries are manufactured through an electrode material coating process and a pellet molding process. Therefore, the thickness of the electrode mixture layer or the electrolyte layer is several tens to several hundreds of micrometers, and there is a limit to thinning and miniaturization.

また、厚膜の電極合剤層や電解質層からなる全固体電池の場合、電極合剤層に多量の固体電解質を混合して、電極材料粒子と固体電解質とを十分に接触させなければ、所望の容量とレート性能が得られない。そのため高エネルギー密度化に限界がある。   In addition, in the case of an all-solid-state battery including a thick-film electrode mixture layer and an electrolyte layer, it is desirable to mix a large amount of solid electrolyte into the electrode mixture layer so that the electrode material particles and the solid electrolyte do not sufficiently contact each other. Capacity and rate performance cannot be obtained. Therefore, there is a limit in increasing the energy density.

そこで、上記のような要求に応じる電池として、薄膜技術と電池材料技術との融合により開発されつつある超小型薄型電池の検討が進んでいる。超小型薄型電池は、ICカード、タグなどの電源として有望であり、LSI基板上への実装なども期待されている。   Therefore, as a battery that meets the above-mentioned demands, ultra-small and thin batteries that are being developed by combining thin-film technology and battery material technology are being studied. Ultra-small and thin batteries are promising as power sources for IC cards and tags, and are also expected to be mounted on LSI substrates.

また、LiCoO2などのリチウム複合酸化物からなる正極と、金属Liからなる負極と、固体電解質とを具備する全固体薄膜電池が開発されている。全固体薄膜電池は、スパッタリング法、蒸着法などの半導体製造プロセスと、パターニング工法を導入して作製される。このような工法の採用により、厚さ10μm以下の電極合剤層や固体電解質層からなる全固体薄膜電池が開発されつつある(例えば特許文献1〜4参照)。また、全固体薄膜電池を縦方向に積層し、これらを直列または並列に接続することにより、実質的に電池面積を増やすことなく、高電圧化もしくは高容量化が図られている(例えば特許文献5〜7参照)。
特開昭61−165965号公報 特開平6−153412号公報 特開平10−284130号公報 特開2000−106366号公報 特開平6−231796号公報 特開2002−42863号公報 米国特許第5612152号明細書
Further, an all-solid-state thin-film battery including a positive electrode made of a lithium composite oxide such as LiCoO 2 , a negative electrode made of metallic Li, and a solid electrolyte has been developed. The all-solid-state thin-film battery is manufactured by introducing a semiconductor manufacturing process such as a sputtering method or an evaporation method and a patterning method. By adopting such a construction method, an all-solid-state thin film battery including an electrode mixture layer and a solid electrolyte layer having a thickness of 10 μm or less is being developed (for example, see Patent Documents 1 to 4). Further, by stacking all solid-state thin-film batteries in the vertical direction and connecting them in series or in parallel, higher voltage or higher capacity can be achieved without substantially increasing the battery area (for example, see Patent Document 1). 5-7).
JP-A-61-165965 JP-A-6-153412 JP-A-10-284130 JP 2000-106366 A JP-A-6-231796 JP 2002-42863 A U.S. Pat. No. 5,612,152

スパッタリング法、蒸着法などの真空プロセスを用いて作製された薄膜は、膜応力を有しており、複数の薄膜を積層すると、成膜工程あるいは成膜後のハンドリング時に、膜同士が剥離するという問題を有する。また、膜同士の剥離を起こさずに作製することができた電池でも、膜応力のために、界面接合は不十分である。従って、充放電時の電極合剤層の膨張・収縮により、充放電サイクルを繰り返すと剥がれが生じ、容量が低下する。   A thin film manufactured by using a vacuum process such as a sputtering method or a vapor deposition method has a film stress. When a plurality of thin films are stacked, the films are separated from each other at a film forming step or at the time of handling after the film formation. Have a problem. Further, even in a battery that can be manufactured without peeling of the films, the interfacial bonding is insufficient due to the film stress. Therefore, when the charge and discharge cycle is repeated, peeling occurs due to expansion and contraction of the electrode mixture layer during charge and discharge, and the capacity is reduced.

本発明は、全固体薄膜積層電池であって、積層された複数の発電要素からなり、前記複数の発電要素は、直列または並列に接続されており、各発電要素は、順次に積層された第1集電体、第1電極、固体電解質、第2電極および第2集電体からなり、発電要素間に介在する少なくとも1つの緩衝層を有する全固体薄膜積層電池に関する。   The present invention is an all-solid-film thin-film battery, comprising a plurality of stacked power generating elements, wherein the plurality of power generating elements are connected in series or in parallel, and each power generating element is sequentially stacked. The present invention relates to an all-solid-film thin-film battery including at least one current collector, a first electrode, a solid electrolyte, a second electrode, and a second current collector, and having at least one buffer layer interposed between power generation elements.

緩衝層の厚さは、例えば、0.01μm以上5μm以下である。
緩衝層は、金属および/または樹脂からなることが好ましい。
複数の発電要素が、直列に接続されている場合、第1集電体と接続される第1端子および第2集電体と接続される第2端子は、それぞれ、積層された複数の発電要素の上下面に配置することができる。ただし、第1端子および第2端子の位置はこれに限定されない。
The thickness of the buffer layer is, for example, 0.01 μm or more and 5 μm or less.
The buffer layer is preferably made of a metal and / or a resin.
When the plurality of power generation elements are connected in series, the first terminal connected to the first current collector and the second terminal connected to the second current collector are respectively connected to the plurality of stacked power generation elements. Can be arranged on the upper and lower surfaces. However, the positions of the first terminal and the second terminal are not limited to this.

複数の発電要素が、並列に接続されている場合、第1集電体と接続される第1端子および第2集電体と接続される第2端子は、それぞれ、積層された複数の発電要素の一側面および前記一側面の反対側の側面に配置することができる。ただし、第1端子および第2端子の位置はこれに限定されない。   When the plurality of power generating elements are connected in parallel, the first terminal connected to the first current collector and the second terminal connected to the second current collector are respectively connected to the plurality of stacked power generating elements. On one side and on the side opposite to the one side. However, the positions of the first terminal and the second terminal are not limited to this.

本発明は、また、上記の全固体薄膜積層電池を具備する回路基板や携帯端末に関する。ここで、全固体薄膜積層電池の外周形状は、一辺の長さが20mm以上の矩形であり、その厚みが2mm以下であることが好ましい。   The present invention also relates to a circuit board and a mobile terminal equipped with the above-mentioned all-solid-state thin-film battery. Here, the outer peripheral shape of the all-solid-state thin-film laminated battery is preferably a rectangle having a side length of 20 mm or more and a thickness of 2 mm or less.

本発明によれば、成膜工程で発生する膜応力を緩和し、電池の不良率を低減することができる。また、本発明によれば、充放電サイクル特性に優れた全固体薄膜積層電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the film | membrane stress which generate | occur | produces in a film-forming process can be eased, and the defect rate of a battery can be reduced. Further, according to the present invention, it is possible to provide an all-solid-state thin-film battery having excellent charge-discharge cycle characteristics.

本発明の全固体薄膜積層電池は、積層された複数の発電要素および前記発電要素間に介在する少なくとも1つの緩衝層からなる。各発電要素は、順次に積層された第1集電体、第1電極、固体電解質、第2電極および第2集電体からなり、これらはいずれも薄膜である。このような薄膜からなる発電要素間に、緩衝層を設けることにより、緩衝層と接する両側の集電体の膜応力を吸収・緩和することができる。また、電池作製時の薄膜同士の剥離を抑制することができ、生産歩留まりが向上する。また、充放電時に電極合剤層が膨張・収縮しても、緩衝層の作用により、界面接合が破損されにくい。従って、高容量で、充放電サイクル特性に優れた全固体薄膜積層電池を得ることができる。   The all-solid-state thin-film battery of the present invention includes a plurality of stacked power generation elements and at least one buffer layer interposed between the power generation elements. Each power generating element includes a first current collector, a first electrode, a solid electrolyte, a second electrode, and a second current collector, which are sequentially stacked, and all of them are thin films. By providing the buffer layer between the power generating elements made of such a thin film, the film stress of the current collector on both sides in contact with the buffer layer can be absorbed and reduced. In addition, peeling of the thin films during battery fabrication can be suppressed, and the production yield is improved. Even if the electrode mixture layer expands and contracts during charge and discharge, the interface layer is less likely to be damaged by the action of the buffer layer. Therefore, it is possible to obtain an all-solid-state thin-film battery having a high capacity and excellent charge-discharge cycle characteristics.

緩衝層を設けた全固体薄膜積層電池は、曲がっても壊れにくいため、曲がりやすい回路基板へ実装または内蔵するのに好適である。そのような回路基板としては、例えばIC基板、LSI基板などが挙げられる。
また、本発明の全固体薄膜積層電池は、曲がっても壊れにくいため、薄型の携帯端末に利用するのに適している。そのような携帯端末としては、例えばICカード、ICタグなどが挙げられる。
本発明は、全固体薄膜積層電池の外周形状が、一辺の長さが20mm以上の矩形であり、厚みが2mm以下のときに、特に効果的である。
以下、本発明の実施形態について説明する。
The all-solid-state thin-film battery provided with the buffer layer is suitable for being mounted on or built into a bendable circuit board because it is hard to break when bent. Examples of such a circuit board include an IC board and an LSI board.
Further, the all-solid-state thin-film laminated battery of the present invention is suitable for use in a thin portable terminal because it is hardly broken even when bent. Examples of such a portable terminal include an IC card, an IC tag, and the like.
The present invention is particularly effective when the outer peripheral shape of the all-solid-state thin-film laminated battery is a rectangle having a side length of 20 mm or more and a thickness of 2 mm or less.
Hereinafter, embodiments of the present invention will be described.

実施の形態1
本実施の形態では、複数の発電要素が、並列に接続されている場合の一例について説明する。
図1に、本実施の形態に係る全固体薄膜積層電池の縦断面図を示す。また、図2に、前記電池の上面図を示す。図1は、図2のI−I線断面図に相当する。
図1において、保護層を兼ねる基板11a上には、順次に、第1集電体12、第1電極13、固体電解質14、第2電極15、第2集電体16、緩衝層17a、第2集電体16・・・が積層されている。そして、最後に第1集電体12が積層され、さらにその上が保護層を兼ねる基板11bで覆われている。基板11bは必ずしも必要ではない。
Embodiment 1
In the present embodiment, an example in which a plurality of power generation elements are connected in parallel will be described.
FIG. 1 shows a vertical sectional view of the all-solid-state thin-film battery according to the present embodiment. FIG. 2 shows a top view of the battery. FIG. 1 corresponds to a cross-sectional view taken along line II of FIG.
In FIG. 1, a first current collector 12, a first electrode 13, a solid electrolyte 14, a second electrode 15, a second current collector 16, a buffer layer 17a, and a Two current collectors 16 are stacked. Finally, the first current collector 12 is stacked, and the first current collector 12 is further covered with a substrate 11b also serving as a protective layer. The substrate 11b is not always necessary.

各第1集電体12は、積層された発電要素の一側面(図1右側)に配置された第1端子18aに接続されており、各第2集電体16は、前記一側面の反対側の側面(図1左側)に配置された第2端子18bに接続されている。残り二つの側面は、樹脂などの絶縁材料で封止することが好ましい。   Each first current collector 12 is connected to a first terminal 18a disposed on one side surface (the right side in FIG. 1) of the stacked power generating elements, and each second current collector 16 is connected to the opposite side of the one side surface. It is connected to a second terminal 18b disposed on the side surface (the left side in FIG. 1). The remaining two side surfaces are preferably sealed with an insulating material such as a resin.

このように側面に外部端子を形成することにより、端子構造が簡易になり、体積利用率に優れ、かつ、高容量で、高エネルギー密度の全固体薄膜積層電池を得ることができる。また、このような全固体薄膜積層電池を用いることにより、実装面積効率に優れた回路基板や携帯端末を得ることができる。   By forming the external terminals on the side surfaces in this way, a terminal structure can be simplified, an excellent volume utilization rate, a high capacity, and a high energy density all-solid-film thin-film battery can be obtained. In addition, by using such an all-solid-state thin-film battery, a circuit board and a portable terminal having excellent mounting area efficiency can be obtained.

次に、このような全固体薄膜積層電池の製造法について、図1、2を参照しながら説明する。なお、ここでは、第1電極が負極であるリチウム二次電池の場合について説明する。   Next, a method for manufacturing such an all-solid-state thin-film battery will be described with reference to FIGS. Here, a case of a lithium secondary battery in which the first electrode is a negative electrode will be described.

(イ)第1集電体の成膜
まず、図2に示すように、幅L1を有する基板11a上の、幅L3−長さL5で示される領域に、第1集電体12を形成する。
基板11aには、アルミナ、ガラス、ポリイミドフィルム、絶縁層を表面に形成した金属箔等のような電気絶縁性を有する基板を用いることができる。基板の表面の表面粗さは、小さい方が好ましく、鏡面板などが好適である。
(A) First film forming the first current collector, as shown in FIG. 2, on the substrate 11a having a width L 1, the width L 3 - the area indicated by the length L 5, a first current collector 12 To form
As the substrate 11a, an electrically insulating substrate such as alumina, glass, a polyimide film, or a metal foil having an insulating layer formed on the surface can be used. It is preferable that the surface roughness of the surface of the substrate is small, and a mirror plate or the like is suitable.

第1集電体には、電子伝導性を有し、かつ、第1電極と反応しない材料を用いる。例えば、白金、白金/パラジウム合金、アルミニウム、ニッケル、銅、ITO(インジウム−錫酸化物)、炭素材料などを用いることができる。   For the first current collector, a material having electron conductivity and not reacting with the first electrode is used. For example, platinum, a platinum / palladium alloy, aluminum, nickel, copper, ITO (indium-tin oxide), a carbon material, or the like can be used.

第1集電体は、従来から公知の薄膜形成プロセスを用いて成膜することができる。例えば、基板11上に、幅L3−長さL5で示される領域に応じた窓を有するマスクを被せ、窓の内側に、上記材料を成膜する。第1集電体の形成プロセスとしては、化学的気相反応法、スパッタ法、イオンビーム蒸着法、電子ビーム蒸着法、抵抗加熱蒸着法、レーザーアブレーション法などを挙げることができる。第1集電体の厚さは、0.005μm以上2μm以下が好ましい。 The first current collector can be formed using a conventionally known thin film forming process. For example, a mask having a window corresponding to a region indicated by width L 3 -length L 5 is placed on the substrate 11, and the above material is formed inside the window. Examples of the formation process of the first current collector include a chemical vapor reaction method, a sputtering method, an ion beam evaporation method, an electron beam evaporation method, a resistance heating evaporation method, and a laser ablation method. The thickness of the first current collector is preferably from 0.005 μm to 2 μm.

(ロ)第1電極の成膜
次に、図2に示すように、第1集電体12上の、幅L4−長さL5で示される領域に、第1電極13として、負極を形成する。負極には、リチウム二次電池の負極材料として知られている材料を限定なく用いることができる。例えば、金属リチウム、非晶質炭素、黒鉛、Li3-aCoaN、Li3-aNiaN、Li3-aMnaNなどの窒化物、Nb25、SnO2、Fe23などの酸化物、リチウムを吸蔵・放出することが可能なAl、Sn、Siなどの金属材料もしくはそれらの合金材料などが好ましい。
(B) Formation of First Electrode Next, as shown in FIG. 2, a negative electrode was formed as a first electrode 13 in a region on the first current collector 12 indicated by width L 4 -length L 5. Form. As the negative electrode, a material known as a negative electrode material of a lithium secondary battery can be used without limitation. For example, metallic lithium, amorphous carbon, graphite, Li 3-a Co a N , Li 3-a Ni a N, nitrides such as Li 3-a Mn a N, Nb 2 O 5, SnO 2, Fe 2 An oxide such as O 3 , a metal material such as Al, Sn, or Si capable of inserting and extracting lithium, or an alloy material thereof is preferable.

負極は、従来から公知の薄膜形成プロセスを用いて成膜することができる。例えば、第1集電体12上から、幅L4−長さL5で示される領域に応じた窓を有するマスクを被せ、窓の内側に、上記材料を成膜する。負極の形成プロセスとしては、化学的気相反応法、スパッタ法、イオンビーム蒸着法、電子ビーム蒸着法、抵抗加熱蒸着法、レーザーアブレーション法などを用いることができる。 The negative electrode can be formed using a conventionally known thin film forming process. For example, a mask having a window corresponding to the area indicated by the width L 4 -length L 5 is put on the first current collector 12, and the above-mentioned material is formed inside the window. As a process for forming the negative electrode, a chemical vapor reaction method, a sputtering method, an ion beam evaporation method, an electron beam evaporation method, a resistance heating evaporation method, a laser ablation method, or the like can be used.

なお、酸化物や窒化物は、成膜時に酸素欠損あるいは窒素欠損を生じやすいため、成膜時には、酸素プラズマを基板に照射することが好ましい。酸素プラズマの照射は、第1電極に酸素欠損や窒素欠損が発生するのを防止するのに有効である。第1電極の厚さは0.1μm以上20μm以下が好ましい。   Note that an oxide or a nitride easily causes oxygen deficiency or nitrogen deficiency during film formation; therefore, it is preferable to irradiate the substrate with oxygen plasma during film formation. Irradiation with oxygen plasma is effective for preventing generation of oxygen deficiency or nitrogen deficiency in the first electrode. The thickness of the first electrode is preferably 0.1 μm or more and 20 μm or less.

(ハ)固体電解質の成膜
固体電解質14は、図2に示すように、第1集電体12と第1電極13とが完全に覆われるように、幅L2−長さL7で示される領域に成膜する。固体電解質には、イオン導電性を有し、電子伝導性が無視できるほど小さい材料を用いることが好ましい。本実施の形態では、リチウムイオン伝導性の優れた固体電解質を用いることが望ましい。
(C) Film formation of solid electrolyte As shown in FIG. 2, the solid electrolyte 14 has a width L 2 and a length L 7 so that the first current collector 12 and the first electrode 13 are completely covered. Is formed in a region to be formed. For the solid electrolyte, it is preferable to use a material having ionic conductivity and having a negligible electron conductivity. In this embodiment, it is desirable to use a solid electrolyte having excellent lithium ion conductivity.

リチウムイオン伝導性に優れた固体電解質としては、例えば、Li3PO4、Li3PO4に窒素をドープしたLiPO4-xx(LIPON)、Li2S−SiS2、Li2S−P25、Li2S−B23等のガラス状硫化物、LiIなどのハロゲン化リチウムやLi3PO4などのリチウム酸素酸塩を前記ガラス状硫化物にドープした材料などが挙げられる。 As the lithium ion conductive excellent solid electrolyte, for example, Li 3 PO 4, Li 3 LiPO nitrogen doped in PO 4 4-x N x ( LIPON), Li 2 S-SiS 2, Li 2 S-P glassy sulfides such as 2 S 5, Li 2 S- B 2 S 3, and the like material a lithium oxyacid salt such as lithium halide and Li 3 PO 4 doped to the glassy sulfides such as LiI .

固体電解質は、従来から公知の薄膜形成プロセスを用いて成膜することができる。例えば、第1電極13上から、幅L2−長さL7で示される領域に応じた窓を有するマスクを被せ、窓の内側に、上記材料を成膜する。固体電解質の成膜プロセスとしては、化学的気相反応法、スパッタ法、イオンビーム蒸着法、電子ビーム蒸着法、抵抗加熱蒸着法、レーザーアブレーション法などを用いることができる。固体電解質の厚さは0.1μm以上10μm以下が好ましい。 The solid electrolyte can be formed using a conventionally known thin film forming process. For example, a mask having a window corresponding to a region represented by the width L 2 -length L 7 is put on the first electrode 13, and the above material is formed inside the window. As a process for forming a solid electrolyte, a chemical vapor reaction method, a sputtering method, an ion beam evaporation method, an electron beam evaporation method, a resistance heating evaporation method, a laser ablation method, or the like can be used. The thickness of the solid electrolyte is preferably from 0.1 μm to 10 μm.

(ニ)第2電極の成膜
次に、図2に示すように、固体電解質14上の、幅L4−長さL6で示される領域に、第2電極15として、正極を形成する。正極には、リチウム二次電池の正極材料として知られている材料を限定なく用いることができる。特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)などのリチウム複合遷移金属酸化物、V25、MoO2などの酸化物、TiS2などの硫化物を用いることが好ましい。
(D) Formation of Second Electrode Next, as shown in FIG. 2, a positive electrode is formed as the second electrode 15 in a region indicated by the width L 4 -length L 6 on the solid electrolyte 14. For the positive electrode, a material known as a positive electrode material of a lithium secondary battery can be used without limitation. In particular, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium composite transition metal oxide such as lithium manganate (LiMn 2 O 4), V 2 O 5, an oxide such as MoO 2, TiS 2 It is preferable to use a sulfide such as

正極は、従来から公知の薄膜形成プロセスを用いて成膜することができる。例えば、固体電解質14上から、幅L4−長さL6で示される領域に応じた窓を有するマスクを被せ、窓の内側に、上記材料を成膜する。正極の形成プロセスとしては、化学的気相反応法、スパッタ法、イオンビーム蒸着法、電子ビーム蒸着法、抵抗加熱蒸着法、レーザーアブレーション法などを用いることができる。 The positive electrode can be formed using a conventionally known thin film forming process. For example, a mask having a window corresponding to a region indicated by width L 4 -length L 6 is put on the solid electrolyte 14, and the above-mentioned material is formed inside the window. As a process for forming the positive electrode, a chemical vapor reaction method, a sputtering method, an ion beam evaporation method, an electron beam evaporation method, a resistance heating evaporation method, a laser ablation method, or the like can be used.

なお、成膜時には、酸素プラズマを基板に照射することが好ましい。酸素プラズマの照射は、第2電極に酸素欠損が発生するのを防止するのに有効である。第2電極の厚さは0.1μm以上20μm以下が好ましい。   Note that at the time of film formation, the substrate is preferably irradiated with oxygen plasma. Irradiation with oxygen plasma is effective in preventing oxygen deficiency from occurring in the second electrode. The thickness of the second electrode is preferably 0.1 μm or more and 20 μm or less.

(ホ)第2集電体の成膜
第2集電体16は、図2に示すように、第2電極15上の、幅L3−長さL6で示される領域に形成する。第2集電体には、第1集電体と同様に、電子伝導性を有し、かつ、第2電極と反応しない材料を用いる。例えば、白金、白金/パラジウム合金、アルミニウム、ニッケル、銅、ITO(インジウム−錫酸化物)、炭素材料などを用いることができる。
(E) Film formation of second current collector The second current collector 16 is formed on the second electrode 15 in a region indicated by the width L 3 -length L 6 as shown in FIG. As the second current collector, a material having electron conductivity and not reacting with the second electrode is used like the first current collector. For example, platinum, a platinum / palladium alloy, aluminum, nickel, copper, ITO (indium-tin oxide), a carbon material, or the like can be used.

第2集電体は、第1集電体と同様に、従来から公知の薄膜形成プロセスを用いて成膜することができる。例えば、第2電極15上から、幅L3−長さL6で示される領域に応じた窓を有するマスクを被せ、窓の内側に、上記材料を成膜する。第2集電体の形成プロセスとしては、化学的気相反応法、スパッタ法、イオンビーム蒸着法、電子ビーム蒸着法、抵抗加熱蒸着法、レーザーアブレーション法などを挙げることができる。第2集電体の厚さは、0.005μm以上2μm以下が好ましい。 Like the first current collector, the second current collector can be formed using a conventionally known thin film forming process. For example, a mask having a window corresponding to a region represented by the width L 3 -length L 6 is put on the second electrode 15, and the above material is formed inside the window. Examples of the formation process of the second current collector include a chemical vapor reaction method, a sputtering method, an ion beam evaporation method, an electron beam evaporation method, a resistance heating evaporation method, and a laser ablation method. The thickness of the second current collector is preferably from 0.005 μm to 2 μm.

(ヘ)緩衝層の成膜
次に、第2集電体16上に、緩衝層17aを成膜する。緩衝層は、弾性に富む樹脂および/または展性延性に富む金属からなることが好ましい。
樹脂からなる緩衝層は、例えば、有機モノマーのプラズマ重合などのプロセスにより、形成することができる。プラズマ重合は、グロー放電によって、有機モノマーを低温プラズマ状態にすることにより進行する。
(F) Formation of Buffer Layer Next, a buffer layer 17a is formed on the second current collector 16. The buffer layer is preferably made of a resin having high elasticity and / or a metal having high malleable ductility.
The buffer layer made of a resin can be formed, for example, by a process such as plasma polymerization of an organic monomer. Plasma polymerization proceeds by bringing an organic monomer into a low-temperature plasma state by glow discharge.

例えば、第2集電体16上から、幅L3−長さL6で示される領域(第2集電体16上の全面)に応じた窓を有するマスクを被せ、周囲の雰囲気で有機モノマーを低温プラズマ状態にすることにより、窓の内側に、所定の樹脂薄膜を形成することができる。 For example, a mask having a window corresponding to the region indicated by the width L 3 -length L 6 (the entire surface on the second current collector 16) is placed over the second current collector 16, and the organic monomer is exposed to the surrounding atmosphere. Is brought into a low temperature plasma state, a predetermined resin thin film can be formed inside the window.

プラズマ重合が可能な有機モノマーとしては、エタン、エチレン、アセチレン、プロピレン、ブテン、ブタジエン、シクロヘキサン、ベンゼン、キシレンなどの炭化水素、アクリル酸、アクリル酸メチル、プロピオン酸、メタクリル酸メチル、メタクリル酸アリル、酢酸ビニルなどのビニル化合物、四フッ化エチレン、六フッ化プロピレンなどのフルオロカーボン、ヘキサメチルジシロキサン、ヘキサメチルジシラン、テトラメチルジシロキサンなどの有機シラン化合物、エチレンオキサイド、プロピレンオキサイドなどの含酸素モノマーを用いることができる。   Organic monomers capable of plasma polymerization include hydrocarbons such as ethane, ethylene, acetylene, propylene, butene, butadiene, cyclohexane, benzene, xylene, acrylic acid, methyl acrylate, propionic acid, methyl methacrylate, allyl methacrylate, Vinyl compounds such as vinyl acetate, fluorocarbons such as ethylene tetrafluoride and propylene hexafluoride, organic silane compounds such as hexamethyldisiloxane, hexamethyldisilane and tetramethyldisiloxane, and oxygen-containing monomers such as ethylene oxide and propylene oxide. Can be used.

また、上記有機モノマーを気化させて、モノマーを成膜面に付着させ、成膜面に付着したモノマーに電子線や紫外線を照射することにより、モノマーを重合させて成膜することも可能である。   Further, it is also possible to vaporize the organic monomer, attach the monomer to the film-forming surface, and irradiate the monomer attached to the film-forming surface with an electron beam or an ultraviolet ray, thereby polymerizing the monomer to form a film. .

また、集電体よりも展延性に富む金属、例えば金、銀などからなる緩衝層は、例えば、抵抗加熱蒸着法により、形成することができる。例えば、第2集電体16上から、幅L3−長さL6で示される領域(第2集電体16上の全面)に応じた窓を有するマスクを被せ、窓の内側に、所定の金属を蒸着させる。 In addition, a buffer layer made of a metal, such as gold or silver, which is more extensible than the current collector, can be formed by, for example, a resistance heating evaporation method. For example, a mask having a window corresponding to a region indicated by the width L 3 -length L 6 (the entire surface on the second current collector 16) is put on the second current collector 16, and a predetermined amount is placed inside the window. Of metal.

膜応力を緩和する効果を得るためには、緩衝層の厚さが0.01μm以上であることが好ましい。緩衝層が厚いほど、電池作製時における薄膜同士の剥離が減少するため、歩留まりが向上する。ただし、緩衝層が厚すぎると、電池のエネルギー密度が低下するため、5μm以下が好ましい。   In order to obtain the effect of reducing the film stress, it is preferable that the thickness of the buffer layer is 0.01 μm or more. As the buffer layer is thicker, peeling of the thin films during the production of the battery is reduced, so that the yield is improved. However, if the buffer layer is too thick, the energy density of the battery decreases, so that the thickness is preferably 5 μm or less.

以降は、上記と同様の工程により、第2集電体16、第2電極15、固体電解質14、第1電極13、第1集電体12を順次に形成し、工程(へ)と同様にして、緩衝層17bを形成する。このような操作を複数回繰り返すことにより、所望の積層電池を得ることができる。最後の成膜が終わると、その膜上に絶縁性基板11bを配置する。そして、図2に示すように、第1集電体および第2集電体の端部がそれぞれ露出している側面を、導電性材料で被覆することにより、第1端子18aおよび第2端子18bを設ける。端子を形成する導電性材料には、例えば、樹脂に導電性粒子を分散させた導電性ペーストなどを用いることができる。   After that, the second current collector 16, the second electrode 15, the solid electrolyte 14, the first electrode 13, and the first current collector 12 are sequentially formed by the same steps as described above, and the same as step (F) is performed. Thus, a buffer layer 17b is formed. By repeating such an operation a plurality of times, a desired laminated battery can be obtained. When the last film formation is completed, the insulating substrate 11b is arranged on the film. Then, as shown in FIG. 2, the first terminal 18 a and the second terminal 18 b are covered with a conductive material on the side surfaces from which the ends of the first current collector and the second current collector are exposed. Is provided. As the conductive material for forming the terminal, for example, a conductive paste in which conductive particles are dispersed in a resin can be used.

なお、図1では、緩衝層が、第1集電体の間および第2集電体の間に、それぞれ設けられているが、緩衝層が多いほど、積層電池のエネルギー密度が低下する。従って、積層電池の構成材料やスタック数に応じて、第1集電体の間のみ、もしくは第2集電体の間のみに緩衝層を設けたり、数スタック毎に緩衝層を設けたりすることにより、エネルギー密度の低下を抑制することが好ましい。また、図1において、緩衝層17aが絶縁樹脂の場合、緩衝層17aは、第1端子18aおよび第2端子18bと接触していてもよい。   In FIG. 1, the buffer layers are provided between the first current collector and the second current collector, respectively. However, as the number of the buffer layers increases, the energy density of the stacked battery decreases. Therefore, a buffer layer is provided only between the first current collectors or only between the second current collectors, or a buffer layer is provided every several stacks, depending on the constituent materials of the stacked battery and the number of stacks. Therefore, it is preferable to suppress a decrease in energy density. In FIG. 1, when the buffer layer 17a is an insulating resin, the buffer layer 17a may be in contact with the first terminal 18a and the second terminal 18b.

実施の形態2
本実施の形態では、複数の発電要素が、直列に接続されている場合の一例について説明する。
図3に、本実施の形態に係る全固体薄膜積層電池の縦断面図を示す。また、図4に、前記電池の上面図を示す。図3は、図4のIII−III線断面図に相当する。図3において、保護層および第1端子を兼ねる基板21a上には、順次に、第1集電体22、第1電極23、固体電解質24、第2電極25、第2集電体26、緩衝層27、第1集電体22、第1電極23・・・が積層されている。そして、最後に第2集電体26が積層され、さらにその上が保護層および第2端子を兼ねる基板21bで覆われている。四つの側面は絶縁層28で封止されている。
次に、このような全固体薄膜積層電池の製造法について、図3、4を参照しながら説明する。なお、ここでは、第1電極が正極である場合について説明する。
Embodiment 2
In the present embodiment, an example in which a plurality of power generation elements are connected in series will be described.
FIG. 3 shows a vertical cross-sectional view of the all-solid-state thin-film battery according to the present embodiment. FIG. 4 shows a top view of the battery. FIG. 3 corresponds to a cross-sectional view taken along line III-III of FIG. In FIG. 3, a first current collector 22, a first electrode 23, a solid electrolyte 24, a second electrode 25, a second current collector 26, and a buffer are sequentially formed on a substrate 21 a serving also as a protective layer and a first terminal. The layer 27, the first current collector 22, the first electrodes 23,... Are stacked. Finally, a second current collector 26 is laminated, and the upper portion is further covered with a substrate 21b which also serves as a protective layer and a second terminal. The four side surfaces are sealed with an insulating layer 28.
Next, a method for manufacturing such an all-solid-state thin-film battery will be described with reference to FIGS. Here, the case where the first electrode is a positive electrode will be described.

(イ)第1集電体の成膜
まず、図4に示すように、幅L1を有する基板21a上の、幅L3−長さL5で示される領域に、第1集電体22を形成する。
基板21aには、シリコン等の半導体基板、アルミニウム、銅、ステンレス鋼等の導電性基板、あるいは金属などの導電層を表面に形成した樹脂フィルムなどを用いることができる。基板の表面の表面粗さは、小さい方が好ましく、鏡面板などが好適である。
(A) First film forming the first current collector, as shown in FIG. 4, on the substrate 21a having a width L 1, the width L 3 - the area indicated by the length L 5, a first current collector 22 To form
As the substrate 21a, a semiconductor substrate such as silicon, a conductive substrate such as aluminum, copper, stainless steel, or the like, or a resin film having a conductive layer such as a metal formed on the surface can be used. It is preferable that the surface roughness of the surface of the substrate is small, and a mirror plate or the like is suitable.

なお、基板21a自体が導電性を有することから、必ずしも第1集電体を形成する必要はない。第1集電体の原料、成膜方法、厚さ等は、実施の形態1の第2集電体の場合と同様である。   Since the substrate 21a itself has conductivity, it is not always necessary to form the first current collector. The raw material, film forming method, thickness, and the like of the first current collector are the same as those of the second current collector of the first embodiment.

(ロ)第1電極の成膜
次に、図4に示すように、第1集電体22上の、幅L4−長さL5で示される領域に、第1電極23として、正極を形成する。正極の原料、成膜方法、厚さ等は、実施の形態1の第2電極と同様である。
(B) Formation of First Electrode Next, as shown in FIG. 4, a positive electrode is formed as a first electrode 23 in a region indicated by width L 4 -length L 5 on the first current collector 22. Form. The raw material, film forming method, thickness, and the like of the positive electrode are the same as those of the second electrode of the first embodiment.

(ハ)固体電解質の成膜
固体電解質24は、図4に示すように、第1集電体22と第1電極23とが完全に覆われるように、幅L2−長さL7で示される領域に成膜する。固体電解質の原料、成膜方法、厚さ等は、実施の形態1と同様である。
(C) Formation of Solid Electrolyte As shown in FIG. 4, the solid electrolyte 24 has a width L 2 and a length L 7 so that the first current collector 22 and the first electrode 23 are completely covered. Is formed in a region to be formed. The raw material of the solid electrolyte, the film formation method, the thickness, and the like are the same as in the first embodiment.

(ニ)第2電極の成膜
次に、図4に示すように、固体電解質24上の、幅L4−長さL6で示される領域に、第2電極25として、負極を形成する。負極の原料、成膜方法、厚さ等は、実施の形態1の第1電極と同様である。
(D) Formation of Second Electrode Next, as shown in FIG. 4, a negative electrode is formed as a second electrode 25 on the solid electrolyte 24 in a region indicated by width L 4 -length L 6 . The material of the negative electrode, the film formation method, the thickness, and the like are the same as those of the first electrode of the first embodiment.

(ホ)第2集電体の成膜
第2集電体26は、図4に示すように、第2電極25上の、幅L3−長さL6で示される領域に形成する。第2集電体の原料、成膜方法、厚さ等は、実施の形態1の第1集電体と同様である。
(E) Film formation of second current collector The second current collector 26 is formed on the second electrode 25 in a region indicated by the width L 3 -length L 6 as shown in FIG. The material, the film formation method, the thickness, and the like of the second current collector are the same as those of the first current collector of the first embodiment.

(ヘ)緩衝層の成膜
次に、第2集電体26上の全面に、緩衝層27を成膜する。緩衝層の原料、成膜方法、厚さ等は、実施の形態1と同様である。
図3に示すように複数の発電要素が直列に接続される場合、集電構造を簡単にする観点から、緩衝層には金属や導電性樹脂を用いることが好ましい。ただし、積層電池の側面を利用して発電要素同士を直列に接続する場合であれば、緩衝層を絶縁樹脂で構成してもよい。
(F) Formation of Buffer Layer Next, a buffer layer 27 is formed on the entire surface of the second current collector 26. The raw material, film forming method, thickness, and the like of the buffer layer are the same as those in the first embodiment.
When a plurality of power generating elements are connected in series as shown in FIG. 3, it is preferable to use a metal or a conductive resin for the buffer layer from the viewpoint of simplifying the current collecting structure. However, if the power generating elements are connected in series using the side surfaces of the stacked battery, the buffer layer may be made of an insulating resin.

以降は、上記と同様の工程により、第1集電体22、第1電極23、固体電解質24、第2電極25、第2集電体26、緩衝層27を順次に形成する。このような操作を複数回繰り返すことにより、所望の積層電池を得ることができる。最後の成膜が終わると、その膜上に導電性の基板21bを配置する。そして、図4に示すように、4つの側面を絶縁性材料からなる絶縁層28で被覆する。絶縁性材料には、例えば、樹脂を用いることができる。   After that, the first current collector 22, the first electrode 23, the solid electrolyte 24, the second electrode 25, the second current collector 26, and the buffer layer 27 are sequentially formed by the same steps as described above. By repeating such an operation a plurality of times, a desired laminated battery can be obtained. When the last film formation is completed, the conductive substrate 21b is disposed on the film. Then, as shown in FIG. 4, the four side surfaces are covered with an insulating layer 28 made of an insulating material. As the insulating material, for example, a resin can be used.

なお、図3では、緩衝層が、全ての第1集電体と第2集電体との間に設けられているが、積層電池の構成材料やスタック数に応じて、数スタック毎に緩衝層を設けることにより、エネルギー密度の低下を抑制することが好ましい。また、図3において、少なくとも緩衝層27が、対向する絶縁層28と接触していてもよい。
次に、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
In FIG. 3, the buffer layer is provided between all the first current collectors and the second current collectors. However, the buffer layers are provided every several stacks according to the constituent materials of the stacked batteries and the number of stacks. By providing a layer, it is preferable to suppress a decrease in energy density. In FIG. 3, at least the buffer layer 27 may be in contact with the opposing insulating layer 28.
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.

《実施例1》
本実施例では、実施の形態1で説明した、図1、2で示される電池とほぼ同様の構造を有し、かつ、表1に示す材料からなる緩衝層を有する全固体薄膜積層電池を作製した。ここで作製した電池においては、6つの発電要素が並列に接続されている。ただし、第1電極は正極とした。
<< Example 1 >>
In this example, an all-solid-state thin-film battery having a structure substantially similar to that of the battery shown in FIGS. 1 and 2 described in Embodiment 1 and having a buffer layer made of the material shown in Table 1 was manufactured. did. In the battery manufactured here, six power generation elements are connected in parallel. However, the first electrode was a positive electrode.

(イ)第1工程
基板11aには、表面研磨されたエポキシ樹脂基板を用いた。この基板上に、幅12mm、長さ20mmの窓を有するメタルマスクを被せ、図2に示すように、幅L3−長さL5で示される12mm×20mmの領域に、rfマグネトロンスパッタ法により、第1集電体12として、厚さ0.3μmの白金を成膜した。
(A) First Step An epoxy resin substrate whose surface was polished was used as the substrate 11a. A metal mask having a window having a width of 12 mm and a length of 20 mm was put on the substrate, and as shown in FIG. 2, an area of 12 mm × 20 mm represented by a width L 3 -a length L 5 was formed by rf magnetron sputtering. As the first current collector 12, a platinum film having a thickness of 0.3 μm was formed.

(ロ)第2工程
次に、第1集電体12上に、幅10mm、長さ20mmの窓を有するメタルマスクを被せ、図2に示すように、幅L4−長さL5で示される10mm×20mmの領域に、第1電極13として、厚さ2μmのコバルト酸リチウム(LiCoO2)を成膜した。
(B) Second Step Next, a metal mask having a window having a width of 10 mm and a length of 20 mm is put on the first current collector 12, and the width is represented by width L 4 -length L 5 as shown in FIG. A 2 μm-thick lithium cobalt oxide (LiCoO 2 ) film was formed as a first electrode 13 in a region of 10 mm × 20 mm to be formed.

コバルト酸リチウムの成膜は、1×10-4TorrのAr50%、酸素50%の混合ガス雰囲気下で、リチウムとコバルトを蒸発させることにより行った。ここでは、グラファイト製るつぼに入れたリチウム、アルミナ製るつぼに入れたコバルトを、それぞれ蒸発源に用いた。リチウムは抵抗加熱真空蒸着法(電流100A)により、コバルトは電子ビーム真空蒸着法(電子加速電圧30kV、エミッション電流600mA)により、蒸発させた。その際、プラズマ銃(電子加速電圧50V、電子電流2A、Ar流量7sccm)を用いて、基板上へのエネルギー照射を行った。 The film formation of lithium cobalt oxide was performed by evaporating lithium and cobalt in a mixed gas atmosphere of 1 × 10 −4 Torr of Ar 50% and oxygen 50%. Here, lithium in a graphite crucible and cobalt in an alumina crucible were used as evaporation sources, respectively. Lithium was evaporated by a resistance heating vacuum evaporation method (current 100 A), and cobalt was evaporated by an electron beam vacuum evaporation method (electron acceleration voltage 30 kV, emission current 600 mA). At that time, the substrate was irradiated with energy using a plasma gun (electron acceleration voltage 50 V, electron current 2 A, Ar flow rate 7 sccm).

(ハ)第3工程
次に、第1電極13上に、幅14mm、長さ25mmの窓を有するメタルマスクを被せ、図2に示すように、幅L2−長さL7で示される14mm×25mmの領域に、固体電解質14として、厚さ2μmのLIPON(Li2.9PO3.30.46)を成膜した。
(C) Third step Next, on the first electrode 13, covered with a metal mask having a width 14 mm, length 25mm window, as shown in FIG. 2, the width L 2 - 14 mm, shown by the length L 7 A 2 μm-thick LIPON (Li 2.9 PO 3.3 N 0.46 ) film was formed as a solid electrolyte 14 in a region of × 25 mm.

LIPONの成膜は、1×10-2Torrの窒素雰囲気下で、rfマグネトロンスパッタ法(投入電力50W)により、リン酸リチウム(Li3PO4)をスパッタすることにより行った。 The LIPON film was formed by sputtering lithium phosphate (Li 3 PO 4 ) by an rf magnetron sputtering method (input power of 50 W) under a nitrogen atmosphere of 1 × 10 −2 Torr.

(ニ)第4工程
次に、固体電解質14上に、幅10mm、長さ20mmの窓を有するメタルマスクを被せ、図2に示すように、幅L4−長さL6で示される10mm×20mmの領域に、抵抗加熱真空蒸着法(真空度1×10-6Torr)により、第2電極15として、厚さ0.5μmのリチウム金属を成膜した。
(D) Fourth Step Next, a metal mask having a window having a width of 10 mm and a length of 20 mm is put on the solid electrolyte 14, and as shown in FIG. 2, 10 mm × width L 4 -length L 6. A 0.5 μm-thick lithium metal film was formed as the second electrode 15 in a region of 20 mm by a resistance heating vacuum evaporation method (degree of vacuum: 1 × 10 −6 Torr).

(ホ)第5工程
次に、第2電極15上に、幅12mm、長さ20mmの窓を有するメタルマスクを被せ、図2に示すように、幅L3−長さL6で示される12mm×20mmの領域に、rfマグネトロンスパッタ法により、第2集電体16として、厚さ0.3μmの白金を成膜した。
(E) Fifth Step Next, on the second electrode 15, covered with a metal mask having a width 12 mm, length 20mm window, as shown in FIG. 2, the width L 3 - 12 mm, shown by the length L 6 Platinum having a thickness of 0.3 μm was formed as a second current collector 16 in a region of × 20 mm by rf magnetron sputtering.

(ヘ)第6工程
次に、第2集電体16上に、幅12mm、長さ20mmの窓を有するメタルマスクを被せ、図2に示すように、幅L3−長さL6で示される12mm×20mmの領域(第2集電体16上の全面)に、緩衝層17aとして、表1に示す材料a〜mを1μmの厚さで成膜した。
(F) Sixth step Next, a metal mask having a window having a width of 12 mm and a length of 20 mm is put on the second current collector 16, and is represented by width L 3 -length L 6 as shown in FIG. Materials a to m shown in Table 1 were formed as a buffer layer 17a to a thickness of 1 μm on a 12 mm × 20 mm region (the entire surface on the second current collector 16).

用いた材料が有機モノマーの場合には、プラズマ重合法により、緩衝層を成膜した。プラズマ重合の条件は、例えば有機モノマーがエタンである場合には、エタンガス流量20ml/分、ガス圧力0.1Torr、放電周波数13.56MHz、放電電力25Wとした。他の有機モノマーを用いる場合には、ガス流量10〜50ml/分、ガス圧力0.1〜5Torr、放電周波数13.56MHz、放電電力10〜100Wの範囲内でプラズマ重合の条件を調整した。   When the material used was an organic monomer, a buffer layer was formed by a plasma polymerization method. The plasma polymerization conditions were, for example, when the organic monomer was ethane, an ethane gas flow rate of 20 ml / min, a gas pressure of 0.1 Torr, a discharge frequency of 13.56 MHz, and a discharge power of 25 W. When another organic monomer was used, the conditions for plasma polymerization were adjusted within the range of a gas flow rate of 10 to 50 ml / min, a gas pressure of 0.1 to 5 Torr, a discharge frequency of 13.56 MHz, and a discharge power of 10 to 100 W.

また、用いた材料が金属の場合には、抵抗加熱真空蒸着(真空度1×10-6Torr)により、緩衝層を成膜した。
以降は、上記と同様の工程により、第2集電体16、第2電極15、固体電解質14、第1電極13、第1集電体12を順次に形成した。このような操作を複数回繰り返すことにより、6スタックの発電要素を積み上げた。
When the material used was metal, the buffer layer was formed by resistance heating vacuum deposition (vacuum degree: 1 × 10 −6 Torr).
Thereafter, the second current collector 16, the second electrode 15, the solid electrolyte 14, the first electrode 13, and the first current collector 12 were sequentially formed by the same steps as described above. By repeating such an operation a plurality of times, six stacks of power generating elements were stacked.

最後の成膜が終わると、その膜上に、エポキシ樹脂をスピンコータで塗布し、150℃で塗膜を加熱し、厚さ50μmの絶縁性基板11bを配置した。
そして、図2に示すように、第1集電体および第2集電体が、それぞれ露出している側面を、導電性の銀ペーストで被覆することにより、第1端子18aおよび第2端子18bを設けた。こうして、所望の積層電池をそれぞれ20個ずつ作製した。
When the final film formation was completed, an epoxy resin was applied on the film by a spin coater, the coating film was heated at 150 ° C., and an insulating substrate 11b having a thickness of 50 μm was arranged.
Then, as shown in FIG. 2, the first terminal 18a and the second terminal 18b are formed by coating the exposed side surfaces of the first current collector and the second current collector with a conductive silver paste. Was provided. In this manner, 20 desired laminated batteries were produced.

Figure 2004273436
Figure 2004273436

[評価]
〈不良率〉
各電池の充放電を20℃の恒温槽の中で繰り返した。充電および放電は、それぞれ電極面積に対して0.013mA/cm2の電流モードで行った。充電終止電圧は4.2Vとした。放電終止電圧は3.0Vとした。4サイクル目までは同条件で充放電サイクルを繰り返し、5サイクル目以降は、放電電流を0.13mA/cm2に変更して、充放電サイクルを繰り返した。
[Evaluation]
<Defect rate>
The charging and discharging of each battery was repeated in a thermostat at 20 ° C. Charge and discharge were performed in a current mode of 0.013 mA / cm 2 with respect to the electrode area, respectively. The charge termination voltage was set to 4.2V. The discharge end voltage was 3.0 V. The charge / discharge cycle was repeated under the same conditions up to the fourth cycle, and after the fifth cycle, the discharge current was changed to 0.13 mA / cm 2 and the charge / discharge cycle was repeated.

不良率は、20個の電池に占める、作製時に薄膜同士が剥離した電池個数と、4サイクル目の放電容量が公称容量の80%に満たない電池個数の合計の割合を百分率で算出した。   The percentage defective was calculated as a percentage of the total of the number of batteries where the thin films peeled off during fabrication and the number of batteries whose discharge capacity in the fourth cycle was less than 80% of the nominal capacity, among 20 batteries.

〈容量維持率〉
良品とみなされた電池において、500サイクル目の放電容量の、5サイクル目の放電容量に対する維持率{(500サイクル目放電容量÷5サイクル目放電容量)×100}の平均値を求めた。
表1に、不良率と容量維持率を示す。
<Capacity maintenance rate>
The average value of the retention rate of the discharge capacity at the 500th cycle with respect to the discharge capacity at the fifth cycle {(discharge capacity at the 500th cycle {discharge capacity at the fifth cycle) × 100} of the batteries regarded as non-defective was determined.
Table 1 shows the defect rate and the capacity retention rate.

《比較例1》
緩衝層を設けなかったこと以外、実施例1と同様の電池を作製し、実施例1と同様に評価した。
表1に示されるように、比較例1の電池は、不良率が51%と高く、容量維持率も58%であった。これに対して、実施例1の電池は、いずれも不良率が22%以下であり、容量維持率も80%以上であった。
<< Comparative Example 1 >>
A battery similar to that of Example 1 was prepared except that no buffer layer was provided, and was evaluated in the same manner as in Example 1.
As shown in Table 1, the battery of Comparative Example 1 had a high failure rate of 51% and a capacity retention rate of 58%. In contrast, the batteries of Example 1 all had a failure rate of 22% or less and a capacity retention rate of 80% or more.

《実施例2》
緩衝層の厚さ、および発電要素のスタック数を、表2に示すように変更したこと以外、実施例1と同様の電池を作製した。すなわち、実施例1と同様の方法で、並列に接続された6スタック、30スタックおよび100スタックの発電要素からなる積層電池を作製した。ただし、ここでは、緩衝層の形成に、アクリル酸メチルを用いた。プラズマ重合の条件は、実施例1と同様とし、プラズマ重合の時間を0.5〜30分の範囲で制御することにより、緩衝層の厚さを変化させた。そして、各電池を実施例1と同様に評価した。
表2に、不良率と容量維持率を示す。
<< Example 2 >>
A battery similar to that of Example 1 was produced, except that the thickness of the buffer layer and the number of stacks of the power generating elements were changed as shown in Table 2. That is, in the same manner as in Example 1, a stacked battery including 6 stacks, 30 stacks, and 100 stacks of power generating elements connected in parallel was manufactured. However, here, methyl acrylate was used for forming the buffer layer. The conditions of the plasma polymerization were the same as in Example 1, and the thickness of the buffer layer was changed by controlling the time of the plasma polymerization in the range of 0.5 to 30 minutes. Each battery was evaluated in the same manner as in Example 1.
Table 2 shows the defect rate and the capacity retention rate.

Figure 2004273436
Figure 2004273436

表2に示されるように、緩衝層の厚さが0.01μm以上で、不良率25%以下、容量維持率70%以上を達成した。また、緩衝層の厚さが5μmまでは、厚さが増加するほど不良率が低下し、容量維持率が向上した。エネルギー密度の観点から、緩衝層の厚さは5μmまでが妥当であると考えられる。   As shown in Table 2, when the thickness of the buffer layer was 0.01 μm or more, the defect rate was 25% or less and the capacity retention rate was 70% or more. In addition, when the thickness of the buffer layer was up to 5 μm, the defect rate decreased as the thickness increased, and the capacity retention rate improved. From the viewpoint of energy density, it is considered appropriate that the thickness of the buffer layer is up to 5 μm.

《実施例3》
本実施例では、図5に示すように、緩衝層57aまたは57bを数スタック間隔で形成し、発電要素のスタック数を100スタックとし、第1電極と固体電解質と第2電極との組み合わせと緩衝層の種類を変更したこと以外、実施例1と同様の電池を作製した。
<< Example 3 >>
In the present embodiment, as shown in FIG. 5, the buffer layers 57a or 57b are formed at several stack intervals, the number of stacks of the power generating elements is 100, the combination of the first electrode, the solid electrolyte, and the second electrode and the buffer A battery similar to that of Example 1 was produced except that the type of the layer was changed.

すなわち、ここでは、基板51aとして表面研磨されたエポキシ樹脂基板を用い、第1集電体52として厚さ0.3μmの白金を成膜し、第1電極53、固体電解質54および第2電極55として所定の材料を成膜し、第2集電体56として厚さ0.3μmの白金を成膜し、緩衝層57a、57bとして厚さ1μmの所定の材料を成膜した。そして、最後の成膜が終わると、その膜上に、エポキシ樹脂をスピンコータで塗布し、150℃で塗膜を加熱し、厚さ50μmの絶縁性材料層51bを配置した。そして、第1集電体および第2集電体が、それぞれ露出している側面を、導電性の銀ペーストで被覆することにより、第1端子58aおよび第2端子58bを設けた。   That is, here, an epoxy resin substrate whose surface is polished is used as the substrate 51a, a platinum film having a thickness of 0.3 μm is formed as the first current collector 52, and the first electrode 53, the solid electrolyte 54, and the second electrode 55 A 0.3 μm-thick platinum film was formed as the second current collector 56, and a 1 μm-thick predetermined material was formed as the buffer layers 57 a and 57 b. Then, when the final film formation was completed, an epoxy resin was applied on the film by a spin coater, the coating film was heated at 150 ° C., and an insulating material layer 51b having a thickness of 50 μm was arranged. And the 1st terminal 58a and the 2nd terminal 58b were provided by covering the side which the 1st current collector and the 2nd current collector respectively exposed each with conductive silver paste.

表3に、第1電極と固体電解質と第2電極との組み合わせ、緩衝層に用いた材料、ならびに緩衝層を設けるスタック間隔を示す。
所望の積層電池はそれぞれ20個ずつ作製した。そして、各電池を実施例1と同様に評価した。ただし、充放電の電圧範囲は表3に示す通りとした。
表3に不良率と容量維持率を示す。
Table 3 shows combinations of the first electrode, the solid electrolyte, and the second electrode, materials used for the buffer layer, and stack intervals at which the buffer layer is provided.
Twenty desired laminated batteries were produced. Each battery was evaluated in the same manner as in Example 1. However, the charging / discharging voltage range was as shown in Table 3.
Table 3 shows the defect rate and the capacity retention rate.

Figure 2004273436
Figure 2004273436

表3に示されるように、緩衝層を設けることで、いずれの電池においても、不良率が低下し、サイクル特性が改善した。また、20スタック間隔で緩衝層を形成した電池においても、500サイクル目の放電容量維持率は70%以上を示した。   As shown in Table 3, the provision of the buffer layer reduced the defective rate and improved the cycle characteristics in all the batteries. Also, in the battery in which the buffer layers were formed at intervals of 20 stacks, the discharge capacity retention ratio at the 500th cycle showed 70% or more.

なお、第1電極のニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)薄膜(厚さ2μm)は、それぞれ実施例1と同様に、1×10-4TorrのAr50%、酸素50%の混合ガス雰囲気下、リチウムと、ニッケルもしくはマンガンとを、蒸発させることにより行った。すなわち、グラファイト製るつぼに入れたリチウム、アルミナ製るつぼに入れたニッケルもしくはマンガンを、それぞれ蒸発源に用いた。リチウムは抵抗加熱真空蒸着法(電流100A)により、ニッケルもしくはマンガンは電子ビーム真空蒸着法(電子加速電圧30kV、エミッション電流600mA)により蒸発させた。その際、プラズマ銃(電子加速電圧50V、電子電流2A、Ar流量7sccm)を用いて、基板上へのエネルギー照射を行った。 The lithium nickel oxide (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ) thin films (thickness: 2 μm) of the first electrode were 1 × 10 −4 Torr Ar 50% and oxygen This was performed by evaporating lithium and nickel or manganese in a 50% mixed gas atmosphere. That is, lithium in a graphite crucible and nickel or manganese in an alumina crucible were used as evaporation sources. Lithium was evaporated by a resistance heating vacuum evaporation method (current 100 A), and nickel or manganese was evaporated by an electron beam vacuum evaporation method (electron acceleration voltage 30 kV, emission current 600 mA). At that time, the substrate was irradiated with energy using a plasma gun (electron acceleration voltage 50 V, electron current 2 A, Ar flow rate 7 sccm).

第1電極のV25薄膜(厚さ2μm)は、アルミナ製るつぼに入れたバナジウムを蒸発源とし、1×10-4TorrのAr50%、酸素50%の混合ガス雰囲気下、電子ビーム真空蒸着法(電子加速電圧30kV、エミッション電流500mA)により成膜した。 The V 2 O 5 thin film (thickness: 2 μm) of the first electrode was formed by evaporation of vanadium in an alumina crucible, an electron beam vacuum in a mixed gas atmosphere of 1 × 10 −4 Torr of Ar 50% and oxygen 50%. A film was formed by a vapor deposition method (electron acceleration voltage: 30 kV, emission current: 500 mA).

固体電解質のガラス状態の0.63Li2S−0.36SiS2−0.01Li3PO4(SSE)薄膜(厚さ2μm)は、モル比が0.63:0.36:0.01のLi2SとSiS2とLi3PO4との混合物のターゲットを用い、20×10-3Torrの窒素雰囲気下、rfマグネトロンスパッタ法により成膜した。 Solid 0.63Li glass state electrolyte 2 S-0.36SiS 2 -0.01Li 3 PO 4 (SSE) thin film (thickness 2 [mu] m), the molar ratio of 0.63: 0.36: 0.01 of Li Using a target of a mixture of 2 S, SiS 2 and Li 3 PO 4 , a film was formed by rf magnetron sputtering under a nitrogen atmosphere of 20 × 10 −3 Torr.

第2電極の炭素薄膜(厚さ1.5μm)は、グラファイトのタブレット(東海カーボン(株)製)を蒸発源に用い、1×10-4TorrのAr雰囲気下、電子ビーム蒸着(電子加速電圧40kV、エミッション電流10mA)により作製した。 The carbon thin film of the second electrode (thickness: 1.5 μm) was deposited by electron beam evaporation (electron acceleration voltage) under a 1 × 10 −4 Torr Ar atmosphere using a graphite tablet (manufactured by Tokai Carbon Co., Ltd.) as an evaporation source. (40 kV, emission current 10 mA).

第2電極のLi2.6Co0.4N薄膜(厚さ2μm)は、1×10-4TorrのAr50%、窒素50%の混合ガス雰囲気下、リチウムとコバルトを蒸発させることにより行った。すなわち、グラファイト製るつぼに入れたリチウム、アルミナ製るつぼに入れたコバルトを、それぞれ蒸発源に用いた。リチウムは抵抗加熱真空蒸着法(電流100A)により、コバルトは電子ビーム真空蒸着法(電子加速電圧30kV、エミッション電流600mA)により、蒸発させた。その際、プラズマ銃(電子加速電圧50V、電子電流2A、Ar流量7sccm)を用いて、基板上へのエネルギー照射を行った。 The Li 2.6 Co 0.4 N thin film (thickness: 2 μm) of the second electrode was formed by evaporating lithium and cobalt in a mixed gas atmosphere of 1 × 10 −4 Torr of 50% Ar and 50% nitrogen. That is, lithium in a graphite crucible and cobalt in an alumina crucible were used as evaporation sources. Lithium was evaporated by a resistance heating vacuum evaporation method (current 100 A), and cobalt was evaporated by an electron beam vacuum evaporation method (electron acceleration voltage 30 kV, emission current 600 mA). At that time, the substrate was irradiated with energy using a plasma gun (electron acceleration voltage 50 V, electron current 2 A, Ar flow rate 7 sccm).

第2電極のLi4Ti512薄膜(厚さ2.2μm)は、1×10-4TorrのAr50%、酸素50%の混合ガス雰囲気下、Li4Ti512をターゲットとするrfマグネトロンスパッタ法(投入電力50W)により成膜した。
第2電極のSi薄膜(厚さ0.5μm)は、1×10-4TorrのArガス雰囲気下、Siをターゲットとするrfマグネトロンスパッタ法(投入電力60W)により成膜した。
上記以外の材料は、実施例1と同様の方法で成膜した。
The Li 4 Ti 5 O 12 thin film (thickness: 2.2 μm) of the second electrode is rf with a target of Li 4 Ti 5 O 12 in a mixed gas atmosphere of 1 × 10 −4 Torr of Ar 50% and oxygen 50%. The film was formed by a magnetron sputtering method (input power: 50 W).
The Si thin film (thickness 0.5 μm) of the second electrode was formed by an rf magnetron sputtering method (input power: 60 W) using Si as a target in an Ar gas atmosphere of 1 × 10 −4 Torr.
Materials other than the above were formed in the same manner as in Example 1.

《実施例4》
本実施例では、実施の形態2で説明した、図3、4で示される電池とほぼ同様の構造を有し、かつ、表4に示す材料からなる緩衝層を有する全固体薄膜積層電池を作製した。すなわち、ここで作製した電池においては、6つの発電要素が直列に接続されている。第1電極は正極とした。
<< Example 4 >>
In this example, an all-solid-film thin-film battery having a structure substantially similar to that of the battery shown in FIGS. 3 and 4 described in Embodiment 2 and having a buffer layer made of the material shown in Table 4 was manufactured. did. That is, in the battery manufactured here, six power generating elements are connected in series. The first electrode was a positive electrode.

(イ)第1工程
基板21aには、表面研磨されたステンレス鋼基板を用いた。この基板上に、幅12mm、長さ20mmの窓を有するメタルマスクを被せ、図4に示すように、幅L3−長さL5で示される12mm×20mmの領域に、rfマグネトロンスパッタ法により、第1集電体22として、厚さ0.3μmの白金を成膜した。
(A) First Step A stainless steel substrate whose surface was polished was used as the substrate 21a. A metal mask having a window having a width of 12 mm and a length of 20 mm was put on the substrate, and as shown in FIG. 4, an area of 12 mm × 20 mm represented by a width L 3 -length L 5 was formed by rf magnetron sputtering. As the first current collector 22, a platinum film having a thickness of 0.3 μm was formed.

(ロ)第2工程
次に、第1集電体22上に、幅10mm、長さ20mmの窓を有するメタルマスクを被せ、図4に示すように、幅L4−長さL5で示される10mm×20mmの領域に、第1電極23として、厚さ2μmのコバルト酸リチウム(LiCoO2)を成膜した。コバルト酸リチウムの成膜は、実施例1の第1電極と同様に行った。
(B) a second step Next, on the first current collector 22, covered with a metal mask having a width 10 mm, length 20mm window, as shown in FIG. 4, the width L 4 - indicated by the length L 5 A 2 μm-thick lithium cobalt oxide (LiCoO 2 ) film was formed as a first electrode 23 in a region of 10 mm × 20 mm to be formed. The film formation of lithium cobaltate was performed in the same manner as the first electrode of Example 1.

(ハ)第3工程
次に、第1電極23上に、幅14mm、長さ25mmの窓を有するメタルマスクを被せ、図4に示すように、幅L2−長さL7で示される14mm×25mmの領域に、固体電解質24として、厚さ2μmのLIPON(Li2.9PO3.30.46)を成膜した。LIPONの成膜は、実施例1の固体電解質と同様に行った。
(C) Third step Next, on the first electrode 23, covered with a metal mask having a width 14 mm, length 25mm window, as shown in FIG. 4, the width L 2 - 14 mm, shown by the length L 7 A LIPON (Li 2.9 PO 3.3 N 0.46 ) having a thickness of 2 μm was formed as a solid electrolyte 24 in a region of × 25 mm. LIPON was formed in the same manner as in the solid electrolyte of Example 1.

(ニ)第4工程
次に、固体電解質24上に、幅10mm、長さ20mmの窓を有するメタルマスクを被せ、図4に示すように、幅L4−長さL6で示される10mm×20mmの領域に、抵抗加熱真空蒸着法により、第2電極25として、厚さ0.5μmのリチウム金属を成膜した。リチウム金属の成膜は、実施例1の第2電極と同様に行った。
(D) Fourth Step Next, a metal mask having a window having a width of 10 mm and a length of 20 mm is put on the solid electrolyte 24 and, as shown in FIG. 4, 10 mm × width L 4 -length L 6. A 0.5 μm-thick lithium metal film was formed as a second electrode 25 in a region of 20 mm by resistance heating vacuum evaporation. The lithium metal film was formed in the same manner as the second electrode of Example 1.

(ホ)第5工程
次に、第2電極25上に、幅12mm、長さ20mmの窓を有するメタルマスクを被せ、図4に示すように、幅L3−長さL6で示される12mm×20mmの領域に、rfマグネトロンスパッタ法により、第2集電体26として、厚さ0.3μmの白金を成膜した。
(E) Fifth Step Next, on the second electrode 25, covered with a metal mask having a width 12 mm, length 20mm window, as shown in FIG. 4, the width L 3 - 12 mm, shown by the length L 6 A 0.3 μm-thick platinum film was formed as a second current collector 26 in a region of × 20 mm by rf magnetron sputtering.

(ヘ)第6工程
次に、第2集電体26上に、幅12mm、長さ20mmの窓を有するメタルマスクを被せ、図4に示すように、幅L3−長さL6で示される12mm×20mmの領域(第2集電体26上の全面)に、緩衝層27として、表4に示す材料(金または銀)を1μmの厚さで成膜した。緩衝層の成膜は、実施例1の場合と同様に行った。
(F) Next sixth step, on the second current collector 26, covered with a metal mask having a width 12 mm, length 20mm window, as shown in FIG. 4, the width L 3 - represented by a length L 6 As a buffer layer 27, a material (gold or silver) shown in Table 4 was formed to a thickness of 1 μm on a 12 mm × 20 mm area (the entire surface on the second current collector 26). The formation of the buffer layer was performed in the same manner as in Example 1.

以降は、上記と同様の工程により、第1集電体22、第1電極23、固体電解質24、第2電極25、第2集電体26を順次に形成した。このような操作を複数回繰り返すことにより、6スタックの発電要素を積み上げた。   After that, the first current collector 22, the first electrode 23, the solid electrolyte 24, the second electrode 25, and the second current collector 26 were sequentially formed by the same steps as described above. By repeating such an operation a plurality of times, six stacks of power generating elements were stacked.

最後の成膜が終わると、その膜上に、ステンレス鋼基板21bを配置した。 そして、図3、4に示すように、4つの側面にエポキシ樹脂を塗布し、150℃で硬化させて厚さ50μmの絶縁層28を設けた。こうして、所望の積層電池をそれぞれ20個ずつ作製した。   When the final film formation was completed, the stainless steel substrate 21b was disposed on the film. Then, as shown in FIGS. 3 and 4, an epoxy resin was applied to the four side surfaces and cured at 150 ° C. to provide an insulating layer 28 having a thickness of 50 μm. In this manner, 20 desired laminated batteries were produced.

また、比較のための電池として、緩衝層を設けていない電池も同様の方法で作製した。
さらに、本実施例では、図6に示すように、緩衝層67を数スタック間隔で形成し、発電要素のスタック数と緩衝層の厚さを変更したこと以外、上記と同様の電池を作製した。表4に、発電要素のスタック数、緩衝層に用いた材料、緩衝層の厚さ、ならびに緩衝層を設けるスタック間隔を示す。
Further, as a battery for comparison, a battery without a buffer layer was produced in the same manner.
Further, in the present example, as shown in FIG. 6, a battery similar to the above was produced except that the buffer layers 67 were formed at intervals of several stacks, and the number of stacks of the power generation elements and the thickness of the buffer layers were changed. . Table 4 shows the number of stacks of the power generating elements, the material used for the buffer layer, the thickness of the buffer layer, and the stack interval at which the buffer layer is provided.

ここでは、基板61aとして表面研磨されたステンレス鋼基板を用い、第1集電体62として厚さ0.3μmの白金を成膜し、第1電極63として厚さ2μmのコバルト酸リチウムを成膜し、固体電解質64として厚さ2μmのLIPONを成膜し、第2電極65として厚さ0.5μmのリチウム金属を成膜し、第2集電体66として厚さ0.3μmの白金を成膜し、緩衝層67として厚さ0.5μmもしくは0.01μmの金または銀を成膜した。そして、最後の成膜が終わると、その膜上に、ステンレス鋼基板61bを配置し、4つの側面に厚さ50μmの絶縁層68を設けた。   Here, a stainless steel substrate whose surface is polished is used as the substrate 61a, a 0.3 μm-thick platinum film is formed as the first current collector 62, and a 2 μm-thick lithium cobalt oxide film is formed as the first electrode 63. Then, a 2 μm-thick LIPON film is formed as the solid electrolyte 64, a 0.5 μm-thick lithium metal film is formed as the second electrode 65, and 0.3 μm-thick platinum is formed as the second current collector 66. Then, gold or silver having a thickness of 0.5 μm or 0.01 μm was formed as a buffer layer 67. When the final film formation was completed, a stainless steel substrate 61b was disposed on the film, and an insulating layer 68 having a thickness of 50 μm was provided on four side surfaces.

こうして、所望の積層電池をそれぞれ20個ずつ作製した。そして、各電池を実施例1と同様に評価した。ただし、充電終止電圧は、スタック数(n)に合わせて、(4.2×n)Vとした。また、放電終止電圧は(3.0×n)Vとした。
表4に、不良率と容量維持率を示す。
In this manner, 20 desired laminated batteries were produced. Each battery was evaluated in the same manner as in Example 1. However, the charge end voltage was set to (4.2 × n) V in accordance with the number of stacks (n). The discharge end voltage was set to (3.0 × n) V.
Table 4 shows the defect rate and the capacity retention rate.

Figure 2004273436
Figure 2004273436

表4に示されるように、緩衝層を有さない電池は、不良率が50%以上、容量維持率が45%以下であるのに対して、実施例の電池は、不良率が28%以下、容量維持率は71%以上に改善した。   As shown in Table 4, the battery without a buffer layer had a failure rate of 50% or more and a capacity retention rate of 45% or less, whereas the battery of the example had a failure rate of 28% or less. And the capacity retention rate was improved to 71% or more.

以上説明したように、本発明によれば、発電要素の間に緩衝層を形成することにより、膜応力を緩和することができ、膜同士の剥がれを抑制することができ、その結果、不良率が低減し、充放電サイクル特性に優れた全固体薄膜積層電池を提供することができる。   As described above, according to the present invention, by forming the buffer layer between the power generating elements, it is possible to alleviate the film stress and suppress the peeling of the films, and as a result, the defective rate , And an all-solid-film thin-film battery having excellent charge-discharge cycle characteristics can be provided.

本発明の全固体薄膜積層電池は、IC基板、LSI基板などの回路基板へ実装または内蔵するのに好適である。また、本発明の全固体薄膜積層電池は、ICカード、ICタグなどの薄型の携帯端末に利用するのに適している。   The all-solid-state thin-film battery of the present invention is suitable for being mounted on or incorporated in a circuit board such as an IC board or an LSI board. Further, the all-solid-state thin-film battery of the present invention is suitable for use in thin mobile terminals such as IC cards and IC tags.

本発明の実施の形態1に係る全固体薄膜積層電池の縦断面図である。FIG. 1 is a longitudinal sectional view of an all solid-state thin-film battery according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る全固体薄膜積層電池の上面図である。FIG. 2 is a top view of the all-solid-state thin-film battery according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る全固体薄膜積層電池の縦断面図である。FIG. 6 is a longitudinal sectional view of an all solid-state thin-film battery according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る全固体薄膜積層電池の上面図である。FIG. 9 is a top view of the all-solid-state thin-film battery according to Embodiment 2 of the present invention. 本発明の実施例3に係る全固体薄膜積層電池の縦断面図である。It is a longitudinal cross-sectional view of the all-solid-state thin-film laminated battery according to Example 3 of the present invention. 本発明の実施例4に係る全固体薄膜積層電池の縦断面図である。It is a longitudinal cross-sectional view of the all-solid-state thin film laminated battery according to Example 4 of the present invention.

符号の説明Explanation of reference numerals

11a、11b 基板
12 第1集電体
13 第1電極
14 固体電解質
15 第2電極
16 第2集電体
17a、17b 緩衝層
18a 第1端子
18b 第2端子
11a, 11b Substrate 12 First current collector 13 First electrode 14 Solid electrolyte 15 Second electrode 16 Second current collector 17a, 17b Buffer layer 18a First terminal 18b Second terminal

21a、21b 基板
22 第1集電体
23 第1電極
24 固体電解質
25 第2電極
26 第2集電体
27 緩衝層
28 絶縁層
21a, 21b Substrate 22 First current collector 23 First electrode 24 Solid electrolyte 25 Second electrode 26 Second current collector 27 Buffer layer 28 Insulating layer

51a エポキシ樹脂基板
51b 絶縁性材料層
52 第1集電体(白金)
53 第1電極、
54 固体電解質
55 第2電極
56 第2集電体(白金)
57a、57b 緩衝層
58a 第1端子
58b 第2端子
51a Epoxy resin substrate 51b Insulating material layer 52 First current collector (platinum)
53 first electrode,
54 solid electrolyte 55 second electrode 56 second current collector (platinum)
57a, 57b Buffer layer 58a First terminal 58b Second terminal

61a、61b ステンレス鋼基板
62 第1集電体(白金)
63 第1電極(コバルト酸リチウム)
64 固体電解質(LIPON)
65 第2電極(リチウム金属)
66 第2集電体(白金)
67 緩衝層(金または銀)
68 絶縁層
61a, 61b Stainless steel substrate 62 First current collector (platinum)
63 1st electrode (lithium cobaltate)
64 Solid electrolyte (LIPON)
65 2nd electrode (lithium metal)
66 2nd current collector (platinum)
67 buffer layer (gold or silver)
68 Insulation layer

Claims (8)

全固体薄膜積層電池であって、
積層された複数の発電要素からなり、
前記複数の発電要素は、直列または並列に接続されており、
各発電要素は、順次に積層された第1集電体、第1電極、固体電解質、第2電極および第2集電体からなり、
前記発電要素間に介在する少なくとも1つの緩衝層を有する全固体薄膜積層電池。
An all-solid-film thin-film battery,
It consists of multiple power generation elements stacked,
The plurality of power generation elements are connected in series or in parallel,
Each power generation element includes a first current collector, a first electrode, a solid electrolyte, a second electrode, and a second current collector that are sequentially stacked,
An all-solid-state thin-film battery having at least one buffer layer interposed between the power generating elements.
前記緩衝層の厚さが、0.01μm以上5μm以下である請求項1記載の全固体薄膜積層電池。   2. The all-solid-film thin-film battery according to claim 1, wherein the thickness of the buffer layer is 0.01 μm or more and 5 μm or less. 前記緩衝層が、金属および/または樹脂からなる請求項1記載の全固体薄膜積層電池。   The all-solid-state thin-film battery according to claim 1, wherein the buffer layer is made of a metal and / or a resin. 前記複数の発電要素が、直列に接続されており、前記第1集電体と接続される第1端子および前記第2集電体と接続される第2端子が、それぞれ、前記積層された複数の発電要素の上下面に配置されている請求項1記載の全固体薄膜積層電池。   The plurality of power generation elements are connected in series, and a first terminal connected to the first current collector and a second terminal connected to the second current collector are each provided by the stacked plurality. The all-solid-state thin-film battery according to claim 1, which is disposed on the upper and lower surfaces of the power generating element. 前記複数の発電要素が、並列に接続されており、前記第1集電体と接続される第1端子および前記第2集電体と接続される第2端子が、それぞれ、前記積層された複数の発電要素の一側面および前記一側面の反対側の側面に配置されている請求項1記載の全固体薄膜積層電池。   The plurality of power generating elements are connected in parallel, and a first terminal connected to the first current collector and a second terminal connected to the second current collector are each provided by the stacked plurality. The all-solid-state thin-film battery according to claim 1, which is disposed on one side surface of the power generation element and a side surface opposite to the one side surface. 外周形状が、一辺の長さが20mm以上の矩形であり、その厚みが2mm以下である請求項1記載の全固体薄膜積層電池。   2. The all-solid-film thin-film battery according to claim 1, wherein the outer peripheral shape is a rectangle having a side length of 20 mm or more and a thickness of 2 mm or less. 請求項1記載の全固体薄膜積層電池を具備する回路基板。   A circuit board comprising the all-solid-state thin-film battery according to claim 1. 請求項1記載の全固体薄膜積層電池を具備する携帯端末。   A mobile terminal comprising the all-solid-state thin-film battery according to claim 1.
JP2004016261A 2003-02-18 2004-01-23 All solid thin film laminated battery Pending JP2004273436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016261A JP2004273436A (en) 2003-02-18 2004-01-23 All solid thin film laminated battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003039617 2003-02-18
JP2004016261A JP2004273436A (en) 2003-02-18 2004-01-23 All solid thin film laminated battery

Publications (1)

Publication Number Publication Date
JP2004273436A true JP2004273436A (en) 2004-09-30

Family

ID=33134081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016261A Pending JP2004273436A (en) 2003-02-18 2004-01-23 All solid thin film laminated battery

Country Status (1)

Country Link
JP (1) JP2004273436A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
WO2008099508A1 (en) * 2007-02-16 2008-08-21 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
JP2009502011A (en) * 2005-07-15 2009-01-22 シンベット・コーポレイション Thin film battery and method with soft and hard electrolyte layers
JP2009081140A (en) * 2008-11-10 2009-04-16 Toshiba Corp Secondary battery, and manufacturing method of secondary battery
US7648537B2 (en) 2004-10-01 2010-01-19 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same
WO2010089855A1 (en) * 2009-02-04 2010-08-12 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same
KR100982468B1 (en) * 2008-04-25 2010-09-16 지에스나노텍 주식회사 High capacity thin film battery module and the method for preparing the same
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
WO2012077926A3 (en) * 2010-12-09 2012-08-02 지에스나노텍 주식회사 Thin film battery package
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
WO2013005897A1 (en) * 2011-07-01 2013-01-10 지에스나노텍 주식회사 Method for packaging a thin film battery and apparatus for manufacturing a thin film battery package
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
JP2014229502A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Manufacturing method of all-solid state lamination battery
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
JP2018190538A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 All-solid battery
CN109449492A (en) * 2018-11-01 2019-03-08 中南大学 A kind of ceramic base all-solid-state battery and preparation method thereof
JP2019096476A (en) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 Series laminate type all-solid battery
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
WO2020138040A1 (en) * 2018-12-25 2020-07-02 Tdk株式会社 Solid-state battery
JP2020149867A (en) * 2019-03-13 2020-09-17 マクセルホールディングス株式会社 All-solid-state lithium secondary battery and manufacturing method therefor
WO2020189599A1 (en) * 2019-03-15 2020-09-24 Tdk株式会社 All-solid-state secondary battery
WO2020195382A1 (en) * 2019-03-27 2020-10-01 株式会社村田製作所 Solid-state battery
JP2022063855A (en) * 2020-10-12 2022-04-22 三星エスディアイ株式会社 All-solid battery
WO2022092883A1 (en) 2020-10-29 2022-05-05 주식회사 엘지에너지솔루션 Bipolar solid-state battery comprising porous support layer
KR20220057166A (en) 2020-10-29 2022-05-09 주식회사 엘지에너지솔루션 Bipolar all-solid-state battery comprising a porous supporting layer
KR20220061439A (en) 2020-11-06 2022-05-13 주식회사 엘지에너지솔루션 Bipolar all solid state battery comprising a porous current collector
CN114614189A (en) * 2022-03-29 2022-06-10 东莞新能安科技有限公司 Battery module and electronic device
WO2022239528A1 (en) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 Battery and method for producing battery
WO2022239526A1 (en) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 Battery and method for producing battery
WO2022239527A1 (en) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 Battery and method for manufacturing battery
WO2023053639A1 (en) * 2021-09-28 2023-04-06 パナソニックIpマネジメント株式会社 Battery and method for producing battery

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7901468B2 (en) 2004-10-01 2011-03-08 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same
US7648537B2 (en) 2004-10-01 2010-01-19 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same
JP2009502011A (en) * 2005-07-15 2009-01-22 シンベット・コーポレイション Thin film battery and method with soft and hard electrolyte layers
US8883347B2 (en) 2006-05-23 2014-11-11 Namics Corporation All solid state secondary battery
US9263727B2 (en) 2006-05-23 2016-02-16 Namics Corporation All solid state secondary battery
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US9236594B2 (en) 2007-02-16 2016-01-12 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
KR101367613B1 (en) 2007-02-16 2014-02-27 나믹스 코포레이션 Lithium ion secondary battery and process for manufacturing the same
WO2008099508A1 (en) * 2007-02-16 2008-08-21 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
KR100982468B1 (en) * 2008-04-25 2010-09-16 지에스나노텍 주식회사 High capacity thin film battery module and the method for preparing the same
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
JP2009081140A (en) * 2008-11-10 2009-04-16 Toshiba Corp Secondary battery, and manufacturing method of secondary battery
JP5152200B2 (en) * 2009-02-04 2013-02-27 トヨタ自動車株式会社 All solid state battery and manufacturing method thereof
US8338036B2 (en) 2009-02-04 2012-12-25 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and manufacturing method thereof
KR101155808B1 (en) 2009-02-04 2012-06-12 도요타지도샤가부시키가이샤 All-solid-state battery and manufacturing method thereof
WO2010089855A1 (en) * 2009-02-04 2010-08-12 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US9385349B2 (en) 2010-12-09 2016-07-05 Gs Energy Corporation Thin film battery package
WO2012077926A3 (en) * 2010-12-09 2012-08-02 지에스나노텍 주식회사 Thin film battery package
US9806302B2 (en) 2010-12-09 2017-10-31 Applied Materials, Inc. Thin film battery package
KR101259442B1 (en) 2011-07-01 2013-05-31 지에스나노텍 주식회사 Method for packaging thin film cells and apparatus for packaging thin film cells
WO2013005897A1 (en) * 2011-07-01 2013-01-10 지에스나노텍 주식회사 Method for packaging a thin film battery and apparatus for manufacturing a thin film battery package
JP2014229502A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Manufacturing method of all-solid state lamination battery
JP2018190538A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 All-solid battery
JP2019096476A (en) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 Series laminate type all-solid battery
CN109449492A (en) * 2018-11-01 2019-03-08 中南大学 A kind of ceramic base all-solid-state battery and preparation method thereof
WO2020138040A1 (en) * 2018-12-25 2020-07-02 Tdk株式会社 Solid-state battery
JP7253941B2 (en) 2019-03-13 2023-04-07 マクセル株式会社 All-solid lithium secondary battery and manufacturing method thereof
JP2020149867A (en) * 2019-03-13 2020-09-17 マクセルホールディングス株式会社 All-solid-state lithium secondary battery and manufacturing method therefor
WO2020189599A1 (en) * 2019-03-15 2020-09-24 Tdk株式会社 All-solid-state secondary battery
CN113474933A (en) * 2019-03-15 2021-10-01 Tdk株式会社 All-solid-state secondary battery
CN113474933B (en) * 2019-03-15 2023-07-28 Tdk株式会社 All-solid secondary battery
WO2020195382A1 (en) * 2019-03-27 2020-10-01 株式会社村田製作所 Solid-state battery
JPWO2020195382A1 (en) * 2019-03-27 2021-11-11 株式会社村田製作所 Solid state battery
JP7375810B2 (en) 2019-03-27 2023-11-08 株式会社村田製作所 solid state secondary battery
JP2022063855A (en) * 2020-10-12 2022-04-22 三星エスディアイ株式会社 All-solid battery
JP7285896B2 (en) 2020-10-12 2023-06-02 三星エスディアイ株式会社 All-solid battery
KR20220057166A (en) 2020-10-29 2022-05-09 주식회사 엘지에너지솔루션 Bipolar all-solid-state battery comprising a porous supporting layer
WO2022092883A1 (en) 2020-10-29 2022-05-05 주식회사 엘지에너지솔루션 Bipolar solid-state battery comprising porous support layer
KR20220061439A (en) 2020-11-06 2022-05-13 주식회사 엘지에너지솔루션 Bipolar all solid state battery comprising a porous current collector
WO2022239526A1 (en) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 Battery and method for producing battery
WO2022239527A1 (en) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 Battery and method for manufacturing battery
WO2022239528A1 (en) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 Battery and method for producing battery
WO2023053639A1 (en) * 2021-09-28 2023-04-06 パナソニックIpマネジメント株式会社 Battery and method for producing battery
CN114614189A (en) * 2022-03-29 2022-06-10 东莞新能安科技有限公司 Battery module and electronic device

Similar Documents

Publication Publication Date Title
JP2004273436A (en) All solid thin film laminated battery
US20040185336A1 (en) All solid-state thin-film cell and application thereof
US10403927B2 (en) Thin film solid state lithium ion secondary battery and method of manufacturing the same
US7094500B2 (en) Secondary battery
CN100511771C (en) Battery
JP4043296B2 (en) All solid battery
US8728660B2 (en) Anode having an anode lead bonded to an active material layer, method of manufacturing of the anode, and battery including the anode
US7288340B2 (en) Integrated battery
CN101395744B (en) Secondary battery, manufacturing method thereof and system thereof
JP5217195B2 (en) Thin-film solid lithium ion secondary battery and composite device including the same
JP2002352850A (en) Chip cell and its manufacturing method
JP4352475B2 (en) Solid electrolyte secondary battery
JP2010182448A (en) Solid-state thin film lithium ion secondary battery and method of manufacturing the same
US7235112B2 (en) Micro-battery fabrication process including formation of an electrode on a metal strip, cold compression and removal of the metal strip
JP2010182447A (en) Solid-state thin film lithium ion secondary battery, and method of manufacturing the same
JP2004165097A (en) Negative electrode and battery, and manufacturing method of same
US11626621B2 (en) Deformable accumulator
JP2004127743A (en) Thin film battery
JP5154139B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
JP5148902B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
KR100790844B1 (en) Thin film battery and fabrication method thereof
JP2005251417A (en) Thin film solid secondary battery
JPH1083838A (en) Whole solid lithium battery
KR20100082679A (en) Elastic thin film battery
JP5008960B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery