JP5148902B2 - All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery - Google Patents

All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery Download PDF

Info

Publication number
JP5148902B2
JP5148902B2 JP2007068630A JP2007068630A JP5148902B2 JP 5148902 B2 JP5148902 B2 JP 5148902B2 JP 2007068630 A JP2007068630 A JP 2007068630A JP 2007068630 A JP2007068630 A JP 2007068630A JP 5148902 B2 JP5148902 B2 JP 5148902B2
Authority
JP
Japan
Prior art keywords
solid
secondary battery
electrode film
lithium secondary
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007068630A
Other languages
Japanese (ja)
Other versions
JP2008234860A (en
Inventor
政彦 林
庸司 櫻井
雅也 高橋
尊久 正代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007068630A priority Critical patent/JP5148902B2/en
Publication of JP2008234860A publication Critical patent/JP2008234860A/en
Application granted granted Critical
Publication of JP5148902B2 publication Critical patent/JP5148902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

この発明は、全固体型リチウム二次電池製造方法および全固体型リチウム二次電池に関する。   The present invention relates to an all-solid lithium secondary battery manufacturing method and an all-solid lithium secondary battery.

従来より、リチウムイオン二次電池は、ニッケルカドミウム二次電池やニッケル水素二次電池など他の二次電池と比較して、エネルギー密度が大きく、充放電のサイクル特性に優れていることから、小型化、薄型化が進む携帯電話、ノート型パソコン、携帯型音楽プレイヤーなどのモバイル電子機器の電源として広く用いられている。   Conventionally, lithium ion secondary batteries are smaller than other secondary batteries such as nickel cadmium secondary batteries and nickel metal hydride secondary batteries because they have higher energy density and excellent charge / discharge cycle characteristics. It is widely used as a power source for mobile electronic devices such as mobile phones, notebook personal computers, and portable music players that are becoming thinner and thinner.

しかし、可燃性の有機電解液を用いる現状のリチウムイオン二次電池においては、当該有機電解液の漏出を防止するために、強固な電池筐体やアルミラミネート外装体を用いる必要があるために、電池の薄型化には限界がある。このために、今後普及が進むことが予想されるペーパー電子ディスプレイや超薄型のRF−ID(Radio frequency identification)タグなどに、現状のリチウムイオン二次電池を搭載することは非常に困難である。   However, in the current lithium ion secondary battery using a flammable organic electrolyte, in order to prevent leakage of the organic electrolyte, it is necessary to use a strong battery housing or aluminum laminate outer body, There is a limit to making the battery thinner. For this reason, it is very difficult to mount the present lithium ion secondary battery on a paper electronic display or an ultra-thin RF-RF (Radio frequency identification) tag that is expected to become popular in the future. .

このようなことから、薄膜作製技術(スパッタ法や真空蒸着法などの乾式プロセスや、ゾルゲル法などの湿式プロセス)を用いて、固体の正極膜、固体電解質膜、固体の負極膜を基板上に積層させ、漏液の問題がなく、広い温度範囲で使用可能な全固体型の二次電池を製造する試みが行われている。例えば、基板として一般的に用いられてきた石英やシリコンウエハに代わって、ポリマーフィルムを基板として用い、薄膜作製技術によって、当該フィルム上に固体の正極膜、固体電解質膜、固体の負極膜を積層させることにより、折り曲げることが可能なフレキシブル電池を製造することができれば、ペーパー電子ディスプレイやRF−IDタグへの応用も広がると予想される。   For this reason, a solid positive electrode film, a solid electrolyte film, and a solid negative electrode film are formed on a substrate by using a thin film manufacturing technique (a dry process such as a sputtering method or a vacuum deposition method or a wet process such as a sol-gel method). Attempts have been made to produce an all-solid-state secondary battery that can be used in a wide temperature range without being laminated and having a problem of leakage. For example, instead of quartz or silicon wafers commonly used as substrates, polymer films are used as substrates, and solid positive electrode films, solid electrolyte membranes, and solid negative electrode films are stacked on the films by thin film fabrication technology. If it is possible to manufacture a flexible battery that can be bent, the application to paper electronic displays and RF-ID tags is expected to expand.

これまでに、全固体型リチウム二次電池については、数多くの報告がなされている。例えば、非特許文献1では、RF(高周波)スパッタ法を用いて、LiCoO2からなる正極を成膜して電気炉中で熱処理を行った後に、固体電解質膜としてLiPON(Li3PO4-xNx)、負極膜としてリチウム金属を、それぞれRFスパッタ法、真空蒸着法を用いて積層して全固体型薄膜電池を製造し、約0.8mWh/cm2のエネルギー密度と良好な充放電サイクル特性を達成している。 To date, many reports have been made on all-solid-state lithium secondary batteries. For example, in Non-Patent Document 1, a positive electrode made of LiCoO 2 is formed by RF (radio frequency) sputtering and heat-treated in an electric furnace, and then LiPON (Li 3 PO 4-x N x ), lithium metal as the negative electrode film, and laminated by using RF sputtering and vacuum deposition, respectively, to produce an all-solid-state thin film battery, energy density of about 0.8 mWh / cm 2 and good charge / discharge cycle Has achieved the characteristics.

また、特許文献1では、導電性基板上にLiMn2O4正極膜、Li2O-V2O5-SiO2からなる固体電解質膜、リチウムなどの金属負極膜を積層することによって全固体型二次電池を製造し、200回程度の充放電サイクルにおいても放電容量の減衰が小さい、良好な電池性能を実現している。 In Patent Document 1, an all solid-state secondary layer is formed by laminating a LiMn 2 O 4 positive electrode film, a Li 2 OV 2 O 5 —SiO 2 solid electrolyte film, and a metal negative electrode film such as lithium on a conductive substrate. A battery is manufactured, and good battery performance is realized with a small decay of discharge capacity even in a charge / discharge cycle of about 200 times.

また、特許文献2では、正極膜、固体電解質膜、負極膜を一つのユニットとする全固体型二次電池を、同一基板上に、複数ユニット製造し、これら複数ユニットを、共通電極膜などを介して、直列あるいは並列に多層積層することによりコンパクトで高い容量を有する電池を実現している。   In Patent Document 2, a plurality of units of an all-solid-state secondary battery having a positive electrode film, a solid electrolyte film, and a negative electrode film as one unit are manufactured on the same substrate. Thus, a compact and high-capacity battery is realized by stacking multiple layers in series or in parallel.

J. B. Bates, et al., ''Preferred Orientation of Polycrystalline LiCoO2 Films.", Journal of The Electrochemical Society, Vol. 147, No. 1, pp59-70, 2000J. B. Bates, et al., `` Preferred Orientation of Polycrystalline LiCoO2 Films. '', Journal of The Electrochemical Society, Vol. 147, No. 1, pp59-70, 2000 特開平10−83838号公報Japanese Patent Laid-Open No. 10-83838 特許第3531866号公報Japanese Patent No. 3531866

ところで、上記した従来の技術は、正極膜、固体電解質膜、負極膜を積層する際に、正極膜と負極膜が接触するために、ショートが引き起こされる場合があることから、不良品が発生する可能性のある全固体型リチウム二次電池の製造方法であるという問題点があった。   By the way, in the above-described conventional technique, when the positive electrode film, the solid electrolyte film, and the negative electrode film are laminated, the positive electrode film and the negative electrode film come into contact with each other, so that a short circuit may be caused. There was a problem that it was a manufacturing method of a possible all-solid-state lithium secondary battery.

ここで、上記した従来の技術は、正極膜、固体電解質膜、負極膜をそれぞれ任意の二次元形状に成膜するために用いるマスクを、積層プロセスごとに交換して全固体型リチウム二次電池を製造する。これにより、正極膜または負極膜を覆うように、大きな面積を有する固体電解質膜を成膜することで、正極膜と負極膜とを分け隔てて、正極膜と負極膜が接触して生じるショートを防止する。例えば、図9の右側の破線で囲った領域にて示すように、正極膜が完全に固体電解質膜に覆われて、負極膜と隔離されるように電池エッジ部が整然とした積層構造となっている場合には、ショートは起こり得ない。なお、図9は、従来技術の問題点を説明するための図である。   Here, the above-described conventional technology replaces the mask used for forming the positive electrode film, the solid electrolyte film, and the negative electrode film in an arbitrary two-dimensional shape for each stacking process, and thus the all solid-state lithium secondary battery. Manufacturing. Thus, by forming a solid electrolyte film having a large area so as to cover the positive electrode film or the negative electrode film, the positive electrode film and the negative electrode film are separated from each other, and a short circuit caused by contact between the positive electrode film and the negative electrode film is prevented. To prevent. For example, as shown in the region surrounded by the broken line on the right side of FIG. 9, the battery edge is in an orderly laminated structure so that the positive electrode film is completely covered with the solid electrolyte film and isolated from the negative electrode film. If so, a short circuit cannot occur. In addition, FIG. 9 is a figure for demonstrating the problem of a prior art.

しかしながら、基板上に作製された正極集電極膜上に正極膜を積層し、さらに上記と同様に正極膜および負極膜よりも大きな面積を有する固体電解質膜を積層した場合、図9の左側の破線で囲った領域にて示すように、電池エッジ部の段差がある領域において、固体電解質膜が正極膜のエッジ面に回り込むように成膜され、この電池エッジ部において固体電解質膜または負極膜の膜厚が薄くなるので、ショートが引き起こされる場合が多くあることから、不良品が発生する可能性のある全固体型リチウム二次電池の製造方法であるという問題点があった。   However, when the positive electrode film is laminated on the positive electrode collector film formed on the substrate and the solid electrolyte film having a larger area than the positive electrode film and the negative electrode film is laminated as described above, the broken line on the left side of FIG. As shown by the region surrounded by, the solid electrolyte membrane is formed so as to wrap around the edge surface of the positive electrode film in the region where there is a step in the battery edge portion, and the solid electrolyte film or the negative electrode film is formed at the battery edge portion. Since the thickness is reduced, there are many cases where a short circuit is caused, and there is a problem that this is a method for manufacturing an all-solid-state lithium secondary battery in which a defective product may occur.

また、電池の実効面積を広げるために、正極集電極上に積層された正極膜と同じ面積になるように負極膜を固体電解質膜上に積層すると、固体電解質膜の膜厚が電池エッジ部で薄くなっているためにショートが引き起こされる場合があることから、不良品が発生する可能性のある全固体型リチウム二次電池の製造方法であるという問題点があった。   In addition, in order to increase the effective area of the battery, if the negative electrode film is laminated on the solid electrolyte film so as to have the same area as the positive electrode film laminated on the positive electrode collector electrode, the film thickness of the solid electrolyte film is reduced at the battery edge. Since the thinning may cause a short circuit, there is a problem in that it is a method for manufacturing an all-solid-state lithium secondary battery in which a defective product may occur.

このように、上記した従来の技術は、ショートが引き起こされて、電圧がゼロになる、電圧を示してもソフトショートにより充放電を行っても電池として作動しないなどの事象が起こり、不良品が発生する可能性のある全固体型リチウム二次電池の製造方法であるという問題点があった。   As described above, in the conventional technique described above, a short circuit is caused, the voltage becomes zero, and even if the voltage is displayed or the battery is charged / discharged by a soft short, the battery does not operate, and a defective product is generated. There is a problem in that it is a method of manufacturing an all solid lithium secondary battery that may occur.

なお、図9に示すように、基板上に、正極集電極、正極膜、固体電解質膜、負極膜、負極集電極の順に積層して全固体型リチウム二次電池を製造する場合において、上述した問題点があったことを説明したが、基板上に、負極集電極、負極膜、固体電解質膜、正極膜、正極集電極の順に積層して全固体型リチウム二次電池を製造する場合においても、同様の問題点があった。   In addition, as shown in FIG. 9, in the case where an all-solid-type lithium secondary battery is manufactured by laminating a positive electrode collector electrode, a positive electrode film, a solid electrolyte membrane, a negative electrode film, and a negative electrode collector electrode in this order on the substrate, Although we explained that there were problems, even when manufacturing an all-solid-state lithium secondary battery by laminating a negative electrode collector electrode, a negative electrode film, a solid electrolyte film, a positive electrode film, and a positive electrode collector electrode in this order on the substrate. There was a similar problem.

また、上記した複数ユニットからなる全固体型二次電池を直列あるいは並列に多層積層する技術は、ショートが起こる場合がより多くなることが予想され、不良品が発生する可能性のある全固体型リチウム二次電池の製造方法であるという問題点があった。   In addition, the above-described technology for multi-layer stacking of all-solid-state secondary batteries composed of multiple units in series or in parallel is expected to cause more short-circuits, and all-solid-state types that may cause defective products. There was a problem that it was a manufacturing method of a lithium secondary battery.

そこで、この発明は、上述した従来技術の課題を解決するためになされたものであり、不良品の発生率が低い全固体型リチウム二次電池製造方法および全固体型リチウム二次電池を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems of the prior art, and provides an all-solid-state lithium secondary battery manufacturing method and an all-solid-type lithium secondary battery with a low incidence of defective products. For the purpose.

上述した課題を解決し、目的を達成するため、本発明は、リチウムイオン導電性の固体からなる固体電解質膜が、リチウムイオンの挿入および脱離が可能な固体からなる正極膜と、リチウム金属もしくはリチウムイオンの吸蔵および放出が可能な固体からなる負極膜とによって挟まれて積層される構成からなる全固体型リチウム二次電池を製造する全固体型リチウム二次電池製造方法であって、前記正極膜および前記負極膜それぞれに接触する集電極のうち、前記全固体型リチウム二次電池が製造される基板にも接触する集電極を、当該基板と接触する面と対向するもう一方の面において、少なくともひとつの凹状の窪みを有するように成膜する集電極成膜工程と、前記集電極成膜工程によって成膜される前記集電極が有する前記凹状の窪みにおいて、前記正極膜または前記負極膜としての電極膜を積層する際に、前記集電極が有する前記凹状の窪みの周縁部が前記固体電解質膜と接触する面の高さと、前記電極膜が前記固体電解質膜と接触する面の高さが異なり生じる段差が、前記固体電解質膜の膜厚の20%以下となり、かつ、前記集電極により全周囲が囲まれた状態となるように前記電極膜を成膜する電極膜成膜工程と、前記集電極成膜工程によって成膜される前記集電極が有する前記凹状の窪みの周縁部と、前記電極膜成膜工程によって成膜される前記電極膜の表面とが、連続的に被膜されるように前記固体電解質膜を成膜する固体電解質膜成膜工程と、を含んだことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a solid electrolyte membrane made of a lithium ion conductive solid, a positive electrode membrane made of a solid capable of inserting and removing lithium ions, and lithium metal or An all-solid-state lithium secondary battery manufacturing method for manufacturing an all-solid-type lithium secondary battery having a configuration in which a negative electrode film made of a solid capable of occluding and releasing lithium ions is sandwiched and laminated. Of the collector electrode that contacts each of the membrane and the negative electrode membrane, the collector electrode that also contacts the substrate on which the all-solid-state lithium secondary battery is manufactured, on the other surface facing the surface that contacts the substrate, A collector electrode film forming step of forming a film so as to have at least one concave depression, and the concave depression of the collector electrode formed by the collector electrode film forming process Oite, wherein when stacking the positive electrode film or an electrode film serving as the negative electrode membrane, and the height of the surface on which the peripheral edge of the recess of the concave in which the collecting electrode has to contact the solid electrolyte membrane, the electrode film The electrode is formed such that a step that is different from the height of the surface in contact with the solid electrolyte membrane is 20% or less of the thickness of the solid electrolyte membrane, and is surrounded by the collector electrode. An electrode film forming step for forming a film; a peripheral portion of the concave depression of the collector electrode formed by the collector electrode forming step; and the electrode formed by the electrode film forming step. And a solid electrolyte membrane forming step of forming the solid electrolyte membrane so that the surface of the membrane is continuously coated.

また、発明は、上記の発明において、前記集電極成膜工程は、前記集電極が有する前記凹状の窪みの開口部中央から俯瞰した場合に、当該凹状の窪みの底面および側面が、当該凹状の窪みの開口部の周辺部によって遮蔽されないように、前記集電極を成膜することを特徴とする。 Further, the present invention is the above invention, wherein, when the collector electrode film forming step is viewed from the center of the opening of the concave recess of the collector electrode, the bottom surface and the side surface of the concave recess have the concave shape. The collector electrode is formed so as not to be shielded by the periphery of the opening of the depression.

また、発明は、上記の発明において、Co、Ni 、Mn、Vの少なくとも1つを含む遷移金属系酸化物を前記正極膜として成膜する正極膜成膜工程をさらに含んだことを特徴とする。 Further, the present invention is characterized in that, in the above invention, the method further includes a positive electrode film forming step of forming a transition metal oxide containing at least one of Co, Ni 2, Mn, and V as the positive electrode film. To do.

また、発明は、上記の発明において、前記集電極成膜工程は、前記凹状の窪みの底面部分を除いた側壁部分において、当該側壁部分の最深部または当該凹状の窪みの開口部から一定の深さの部分から、当該凹状の窪みの開口部までの面を、絶縁性物質によって構成するように前記集電極を成膜することを特徴とする。 Further, the present invention is the above invention, wherein the collector electrode film forming step is performed at a constant distance from the deepest portion of the sidewall portion or the opening portion of the recessed recess in the sidewall portion excluding the bottom surface portion of the recessed recess. The collector electrode is formed such that the surface from the depth portion to the opening of the concave recess is formed of an insulating material.

また、発明は、上記の発明において、前記正極膜、前記負極膜、前記固体電解質膜、前記正極膜に接触する集電極、および前記負極膜に接触する集電極それぞれにおいて、外気に露出される表面を絶縁性物質からなる保護層により被膜する保護層被膜工程をさらに含むことを特徴とする。 In the present invention, the positive electrode film, the negative electrode film, the solid electrolyte film, the collector electrode in contact with the positive electrode film, and the collector electrode in contact with the negative electrode film are each exposed to the outside air. It further includes a protective layer coating step of coating the surface with a protective layer made of an insulating material.

また、発明は、上記の発明のいずれか一つに記載の全固体型リチウム二次電池製造方法により製造された全固体型リチウム二次電池であることを特徴とする。 Further, the present invention is characterized by an all-solid-state lithium secondary battery manufactured by the all-solid-state lithium secondary battery production method according to any one of the above inventions of.

本発明によれば、正極膜および負極膜それぞれに接触する集電極のうち、全固体型リチウム二次電池が製造される基板にも接触する集電極を、当該基板と接触する面と対向するもう一方の面において、少なくともひとつの凹状の窪みを有するように成膜し、成膜される集電極が有する凹状の窪みにおいて、正極膜または負極膜としての電極膜を積層する際に、集電極が有する前記凹状の窪みの周縁部が固体電解質膜と接触する面の高さと、電極膜が固体電解質膜と接触する面の高さが異なり生じる段差が、固体電解質膜の膜厚の20%以下となり、かつ、集電極により全周囲が囲まれた状態となるように電極膜を成膜し、成膜される集電極が有する凹状の窪みの周縁部と、成膜される電極膜の表面とが、連続的に被膜されるように固体電解質膜を成膜するので、電池エッジ部でのショートを回避することができ、不良品の発生率を低くすることが可能になる。また、これによって、「電池エッジ部でのショートを回避するために、固体電解質の上に作製する電極膜を、当該固体電解質より小さい面積になるように成膜すると、電池の実効面積が小さくなり、電池のエネルギー密度が減少する結果、非効率的な電池しか製造できない」という問題点を解消でき、エネルギー密度が高い、効率的な全固体型リチウム二次電池を容易に製造することが可能になる。 According to the present invention, of the collector electrodes that are in contact with each of the positive electrode film and the negative electrode film, the collector electrode that also contacts the substrate on which the all-solid-state lithium secondary battery is manufactured is opposed to the surface in contact with the substrate. On one surface, the collector electrode is formed so as to have at least one concave recess, and when the electrode film as the positive electrode film or the negative electrode film is laminated in the concave recess of the collector electrode to be formed, the collector electrode peripheral edge of the concave recesses and the height of the surface in contact with the solid electrolyte membrane having height and are different occurs stepped surface on which the electrode film is in contact with the solid electrolyte membrane, 20% of the thickness of the solid electrolyte membrane The electrode film is formed so that the entire periphery is surrounded by the collector electrode, and the peripheral edge of the concave depression of the collector electrode to be formed, and the surface of the electrode film to be formed And solid electrolytic so that it is continuously coated Since the formation of the film, it is possible to avoid the short circuit of the battery edge portion, it is possible to lower the incidence of defective products. In addition, this makes it possible to reduce the effective area of the battery by forming an electrode film formed on the solid electrolyte so as to have a smaller area than the solid electrolyte in order to avoid short circuit at the battery edge. As a result, the inefficiency of batteries can be reduced, resulting in the solution to the inefficiency of batteries, which makes it possible to easily produce efficient, all-solid-state lithium secondary batteries with high energy density. Become.

また、発明によれば、成膜される集電極が有する凹状の窪みの周縁部と、成膜される電極膜の表面とが、連続的に被膜されるように固体電解質膜を成膜するので、基板上に作製される集電極と電極膜とを固体電解質膜によって密に被膜して電池エッジ部でのショートをさらに回避することができ、不良品の発生率をより低くすることが可能になる。すなわち、電極膜と集電極との段差に起因する固体電解質膜の膜厚の局所的な不均一などの欠陥を防止して電池エッジ部でのショートをさらに回避することができ、不良品の発生率をより低くすることが可能になる。 Further, according to the present invention, the solid electrolyte membrane is formed such that the peripheral edge of the concave depression of the collector electrode to be formed and the surface of the electrode film to be formed are continuously coated. Therefore, the collector electrode and the electrode film produced on the substrate can be densely coated with the solid electrolyte film to further avoid the short circuit at the battery edge, and the generation rate of defective products can be further reduced. become. That is, defects such as local non-uniformity in the thickness of the solid electrolyte membrane due to the step between the electrode membrane and the collector electrode can be prevented, and a short circuit at the battery edge can be further avoided, resulting in the generation of defective products. The rate can be made lower.

また、発明によれば、集電極が有する凹状の窪みの開口部中央から俯瞰した場合に、当該凹状の窪みの底面および側面が、当該凹状の窪みの開口部の周辺部によって遮蔽されないように、集電極を成膜するので、集電極が有する凹状の窪みに電極膜を密に均一に積層して電池エッジ部でのショートをさらに回避することができ、不良品の発生率をより低くすることが可能になる。 In addition, according to the present invention, when viewed from the center of the opening of the concave depression of the collector electrode, the bottom and side surfaces of the concave depression are not shielded by the peripheral portion of the opening of the concave depression. Since the collector electrode is formed, the electrode film can be densely and uniformly laminated in the concave depression of the collector electrode to further avoid a short circuit at the battery edge portion, thereby further reducing the incidence of defective products. It becomes possible.

また、発明によれば、Co、Ni 、Mn、Vの少なくとも1つを含む遷移金属系酸化物を正極膜として成膜するので、結晶構造や結晶中の遷移金属イオンの価数状態から判断して、円滑なリチウムイオンの挿入および脱離を実現する材料を用いて正極膜を作製することができ、エネルギー密度が高い、より効率的な全固体型リチウム二次電池を製造することが可能になる。 In addition, according to the present invention, since the transition metal oxide containing at least one of Co, Ni 2, Mn, and V is formed as the positive electrode film, it is determined from the crystal structure and the valence state of the transition metal ion in the crystal. Thus, a positive electrode film can be manufactured using a material that can smoothly insert and desorb lithium ions, and a more efficient all-solid-state lithium secondary battery with high energy density can be manufactured. become.

また、発明によれば、凹状の窪みの底面部分を除いた側壁部分において、当該側壁部分の最深部または当該凹状の窪みの開口部から一定の深さの部分から、当該凹状の窪みの開口部までの面を、絶縁性物質によって構成するように集電極を成膜するので、基板上に作製される集電極と、固体電解質膜の上に作製される電極膜との間のショートを回避することができ、不良品の発生率をより低くすることが可能になる。 Further, according to the present invention, in the side wall part excluding the bottom part of the concave depression, the opening of the concave depression from the deepest part of the side wall part or a part of a certain depth from the opening part of the concave depression. Since the collector electrode is deposited so that the surface up to the surface is made of an insulating material, a short circuit between the collector electrode fabricated on the substrate and the electrode membrane fabricated on the solid electrolyte membrane is avoided. It is possible to reduce the incidence of defective products.

また、発明によれば、正極膜、負極膜、固体電解質膜、正極膜に接触する集電極、および負極膜に接触する集電極それぞれにおいて、外気に露出される表面を絶縁性物質からなる保護層により被膜するので、安定性やハンドリング性に優れた電池を製造することができ、不良品の発生率をより低くすることが可能になる。 According to the present invention, the positive electrode film, the negative electrode film, the solid electrolyte film, the collector electrode that is in contact with the positive electrode film, and the collector electrode that is in contact with the negative electrode film are each made of a protective material made of an insulating material. Since it coats with a layer, the battery excellent in stability and handling nature can be manufactured, and it becomes possible to make the incidence rate of inferior goods lower.

以下に添付図面を参照して、この発明に係る全固体型リチウム二次電池製造方法および全固体型リチウム二次電池の実施例を詳細に説明する。なお、以下では、実施例1に係る全固体型リチウム二次電池製造方法および全固体型リチウム二次電池の特性を説明した後に、実施例1と同様に、実施例2に係る全固体型リチウム二次電池製造方法および全固体型リチウム二次電池の特性について説明し、さらに、実施例1に係る全固体型リチウム二次電池の保護層の有用性を、比較例1において説明し、最後に、実施例1に係る全固体型リチウム二次電池の有用性を、実施例1に係る全固体型リチウム二次電池と従来技術に係る全固体型リチウム二次電池との比較例2において説明する。   Embodiments of an all solid lithium secondary battery manufacturing method and an all solid lithium secondary battery according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description, after describing the all-solid-state lithium secondary battery manufacturing method according to Example 1 and the characteristics of the all-solid-state lithium secondary battery, all-solid-state lithium according to Example 2 is described as in Example 1. The characteristics of the secondary battery manufacturing method and the all-solid-state lithium secondary battery will be described. Further, the usefulness of the protective layer of the all-solid-type lithium secondary battery according to Example 1 will be described in Comparative Example 1, and finally The usefulness of the all solid lithium secondary battery according to Example 1 will be described in Comparative Example 2 between the all solid lithium secondary battery according to Example 1 and the all solid lithium secondary battery according to the related art. .

[実施例1における全固体型リチウム二次電池の製造方法]
まず最初に、図1および図2を用いて、実施例1における全固体型リチウム二次電池製造方法の概要および主たる特徴を具体的に説明する。図1は、実施例1における全固体型リチウム二次電池の構成を説明するための俯瞰図および断面図であり、図2は、実施例1における全固体型リチウム二次電池の正極集電極の成膜から正極膜の成膜にいたる工程を説明するための断面図である。
[Method for Producing All Solid-Type Lithium Secondary Battery in Example 1]
First, the outline and main features of the all-solid-state lithium secondary battery manufacturing method in Example 1 will be specifically described with reference to FIGS. 1 and 2. FIG. 1 is a bird's-eye view and a cross-sectional view for explaining the configuration of the all-solid-state lithium secondary battery in Example 1. FIG. 2 shows the positive electrode collector electrode of the all-solid-type lithium secondary battery in Example 1. It is sectional drawing for demonstrating the process from film-forming to film-forming of a positive electrode film.

実施例1における全固体型リチウム二次電池は、リチウムイオン導電性の固体からなる固体電解質膜が、リチウムイオンの挿入および脱離が可能な固体からなる正極膜と、リチウム金属もしくはリチウムイオンの吸蔵および放出が可能な固体からなる負極膜とによって挟まれて積層される構成からなることを概要とし、不良品の発生率が低い製造方法によって製造できることに主たる特徴がある。   The all-solid-state lithium secondary battery in Example 1 has a solid electrolyte membrane made of lithium ion conductive solid, a positive electrode membrane made of solid capable of inserting and removing lithium ions, and occlusion of lithium metal or lithium ions. The main feature is that it can be manufactured by a manufacturing method with a low occurrence rate of defective products.

この主たる特徴について簡単に説明すると、図1に示すように、まず、石英からなる基板1(15mm×15mm、厚さ0.3mm)上の中央部に、凹状の窪みを有する正極集電極2を作製する。   This main feature will be briefly described. As shown in FIG. 1, first, a positive electrode collector electrode 2 having a concave depression is formed at the center on a quartz substrate 1 (15 mm × 15 mm, thickness 0.3 mm). Make it.

具体的には、凹状の窪みを有する正極集電極2を、図2の(A)〜(F)に示す工程により作製する。まず、図2の(A)に示すように、基板1の中央部に第一マスク8をセットする。ここで、第一マスク8は、厚さ50μmのマスクであり、正方形 (10mm×10mm)と長方形(2mm×4mm)とが合わさった開口部を有する(図1の俯瞰図における正極集電極2の形状を参照)。なお、長方形(2mm×4mm)の部分における開口部は、正極集電極2における正極端子を形成するために使用されるものである。   Specifically, the positive electrode collector electrode 2 having a concave depression is produced by the steps shown in FIGS. First, as shown in FIG. 2A, the first mask 8 is set at the center of the substrate 1. Here, the first mask 8 is a mask having a thickness of 50 μm and has an opening in which a square (10 mm × 10 mm) and a rectangle (2 mm × 4 mm) are combined (the positive electrode collector electrode 2 in the overhead view of FIG. 1). See shape). Note that the opening in the rectangular (2 mm × 4 mm) portion is used to form the positive electrode terminal in the positive electrode collector electrode 2.

続いて、図2の(B)に示すように、第一マスク8がセットされた基板1を、RFマグネトロンスパッタリング装置内に設置して、10-5Paオーダーまで減圧した後、アルゴンガス(1.0Pa)をフローさせながら、Ptターゲットを用い、RF出力:100Wで、膜厚が0.5μmになるようにPt(白金)を成膜する。この状態から、第一マスク8を取り外すことにより、図2の(C)に示すように、正極集電極2の下部構造が得られる。 Subsequently, as shown in FIG. 2B, the substrate 1 on which the first mask 8 is set is placed in an RF magnetron sputtering apparatus and depressurized to the order of 10 −5 Pa. 0.0 Pa), a Pt target is used, an RF output is 100 W, and Pt (platinum) is deposited so that the film thickness becomes 0.5 μm. By removing the first mask 8 from this state, the lower structure of the positive electrode collector electrode 2 is obtained as shown in FIG.

そして、図2の(D)に示すように、得られた正極集電極2の下部構造の中心部に、第二マスク9 (開口部:7mm×7mm、厚さ:50μm)を、正極集電極2の下部構造と接触するようにセットし、さらに、基板1上において電池材料が成膜されない部分をシールドするために、第三マスク10 (開口部:10mm×10mm、厚さ:約50μm)を、基板1にセットする。   Then, as shown in FIG. 2D, a second mask 9 (opening: 7 mm × 7 mm, thickness: 50 μm) is placed at the center of the lower structure of the obtained positive electrode collector electrode 2. The third mask 10 (opening: 10 mm × 10 mm, thickness: about 50 μm) is set so as to be in contact with the lower structure 2 and to shield the portion where the battery material is not deposited on the substrate 1. , Set on the substrate 1.

そののち、図2の(E)に示すように、Pt(白金)を、図2の(B)と同一条件で、厚さ0.5μmになるようにスパッタし、正極集電極2の上部構造を作製する。この状態から、第二マスク9と第三マスク10とを取り外すことにより、図2の(F)に示すように、正極集電極2の上部構造が得られ、基板1上に凹状の窪みを有する正極集電極2を作製する。   After that, as shown in FIG. 2E, Pt (platinum) is sputtered to a thickness of 0.5 μm under the same conditions as in FIG. Is made. By removing the second mask 9 and the third mask 10 from this state, as shown in FIG. 2F, the upper structure of the positive electrode collector electrode 2 is obtained, and the substrate 1 has a concave depression. A positive electrode collector electrode 2 is prepared.

このように、図2の(A)〜(E)に示す工程により、正極集電極2が有する凹状の窪みの開口部中央から俯瞰した場合に、当該凹状の窪みの底面および側面が、当該凹状の窪みの開口部の周辺部によって遮蔽されない構造になるように、正極集電極2を作製する。   As described above, when viewed from the center of the opening of the concave depression of the positive electrode collecting electrode 2 by the steps shown in FIGS. 2A to 2E, the bottom and side surfaces of the concave depression are concave. The positive electrode collector electrode 2 is prepared so as to have a structure that is not shielded by the periphery of the opening of the depression.

続いて、図2の(G)に示すように、第四マスク11 (開口部:7mm×7mm、厚さ:50μm)を、正極集電極2の上部構造を覆って接触するようにセットする。   Subsequently, as shown in FIG. 2G, the fourth mask 11 (opening: 7 mm × 7 mm, thickness: 50 μm) is set so as to cover and contact the upper structure of the positive electrode collector electrode 2.

そして、図2の(H)に示すように、正極集電極2が有する凹状の窪みに、膜厚が0.5μmとなるように成膜時間を調整して、コバルト酸リチウム(LiCoO2)からなる正極膜3を作製する。ここで、正極集電極2が有する凹状の窪みの周縁部が、後述する固体電解質膜4と接触する面と、正極膜3が、後述する固体電解質膜4と接触する面との段差が小さくなるように、すなわち、膜厚が0.5μmに近い値となるように、正極膜3を作製する。 Then, as shown in FIG. 2H, the film formation time is adjusted so that the film thickness is 0.5 μm in the concave depression of the positive electrode collector electrode 2, and lithium cobalt oxide (LiCoO 2 ) is used. A positive electrode film 3 is produced. Here, the step between the surface where the peripheral edge of the concave depression of the positive electrode collecting electrode 2 contacts the solid electrolyte membrane 4 described later and the surface where the positive electrode film 3 contacts the solid electrolyte membrane 4 described later is reduced. In other words, the positive electrode film 3 is produced so that the film thickness becomes a value close to 0.5 μm.

具体的には、コバルト酸リチウム(LiCoO2)からなる正極膜3の成膜は、電子サイクロトロン共鳴(Electron Cyclotron Resonance、ECR)スパッタ法により、コバルト酸リチウムセラミックターゲットを用い、アルゴンと酸素の流通分圧比を40:1、トータルのガス圧を0.14Paに設定し、マイクロ波出力及びRF出力を、それぞれ800Wおよび500Wに設定した条件で行った。なお、本条件下で作製されたLiCoO2正極膜は、電気炉中での熱処理なしでも高結晶性を有していることを、X線回折法などで確認した。 Specifically, the positive electrode film 3 made of lithium cobalt oxide (LiCoO 2 ) is formed by an electron cyclotron resonance (ECR) sputtering method using a lithium cobalt oxide ceramic target and a distribution of argon and oxygen. The pressure ratio was set to 40: 1, the total gas pressure was set to 0.14 Pa, and the microwave output and RF output were set to 800 W and 500 W, respectively. Note that the LiCoO 2 positive electrode film produced under these conditions was confirmed to have high crystallinity even without heat treatment in an electric furnace by an X-ray diffraction method or the like.

ここで、上述したように、正極集電極2が有する凹状の窪みの周縁部が、後述する固体電解質膜4と接触する面と、正極膜3が当該固体電解質膜4と接触する面との段差が小さくなるように、正極膜3を成膜するが、さらに、当該段差が、次の段階で作製される固体電解質膜4の厚さ(本実施例では、1μm)の20%以下(本実施例では、0.2μm以下)であることが、電池の不良品の発生率を低下させるために望ましい。これについては、後に詳述する。   Here, as described above, the step between the surface where the peripheral edge of the concave depression of the positive electrode collector electrode 2 is in contact with the solid electrolyte membrane 4 described later and the surface where the positive electrode membrane 3 is in contact with the solid electrolyte membrane 4. The positive electrode film 3 is formed so as to be smaller, but the step is 20% or less of the thickness (1 μm in this embodiment) of the solid electrolyte film 4 produced in the next stage (this embodiment) In the example, 0.2 μm or less is desirable in order to reduce the incidence of defective batteries. This will be described in detail later.

なお、上記の条件によって成膜された正極膜3は、正極集電極2が有する凹状の窪みの周縁部よりも若干低く、走査型電子顕微鏡(SEM)による精密な観察の結果、その段差は0.18μmであった。また、凹状の窪みを有する負極集電極を基板1上に作製し、当該凹状の窪みに負極膜を作製する場合も、上記と同様の条件で作製される。   Note that the positive electrode film 3 formed under the above conditions is slightly lower than the peripheral edge of the concave depression of the positive electrode collector electrode 2, and as a result of precise observation with a scanning electron microscope (SEM), the level difference is 0. .18 μm. Further, when a negative electrode collector electrode having a concave depression is produced on the substrate 1 and a negative electrode film is produced in the concave depression, it is produced under the same conditions as described above.

そののち、第四マスク11を取り外すことにより、図2の(I)に示すように、基板1上に成膜された正極集電極2が有する凹状の窪み内に、正極膜3が積層された構造が得られ、得られた構造上に、固体電解質膜4として窒素を含有したリン酸リチウム塩であるLiPON(Li3PO4-xNx)を積層する。 After that, by removing the fourth mask 11, the positive electrode film 3 was laminated in the concave depression of the positive electrode collector electrode 2 formed on the substrate 1 as shown in FIG. A structure is obtained, and LiPON (Li 3 PO 4−x N x ), which is a lithium phosphate containing nitrogen, is laminated as the solid electrolyte membrane 4 on the obtained structure.

すなわち、中央に四角形(8mm×10mm)の開口部を有したマスク(厚さ:50μm)を正極膜3に接触した状態でセットし、Li3PO4をターゲットとするRFマグネトロンスパッタ法により、窒素を流通させながら、膜厚が1.0μmとなるように成膜して、固体電解質膜4を作製する。ここで、LiPONからなる固体電解質膜4が、正極集電極2が有する凹状の窪み内に作製されたLiCoO2からなる正極膜3と、Ptからなる正極集電極2の凹状の窪みの周縁部とを連続的に被覆するように成膜する。 That is, a mask (thickness: 50 μm) having a square (8 mm × 10 mm) opening in the center is set in contact with the positive electrode film 3, and nitrogen is formed by RF magnetron sputtering using Li 3 PO 4 as a target. The solid electrolyte membrane 4 is produced by forming the film so that the film thickness becomes 1.0 μm. Here, the solid electrolyte membrane 4 made of LiPON includes a positive electrode membrane 3 made of LiCoO 2 produced in a concave depression of the positive electrode collector electrode 2, and a peripheral portion of the concave depression of the positive electrode collector electrode 2 made of Pt. The film is formed so as to be continuously coated.

そして、負極膜5としてリチウム金属膜を積層する。すなわち、固体電解質膜4を作製する際に用いたマスクを取り外し、中央に正方形(7mm×7mm)の開口部を有したマスク(厚さ:50μm)をセットし、リチウムを蒸着源とする真空蒸着法により、膜厚0.5μmのリチウム金属膜を成膜して、負極膜5を作製する。   Then, a lithium metal film is laminated as the negative electrode film 5. That is, the mask used when producing the solid electrolyte membrane 4 is removed, a mask (thickness: 50 μm) having a square (7 mm × 7 mm) opening in the center is set, and vacuum deposition using lithium as a deposition source A negative electrode film 5 is produced by forming a lithium metal film having a thickness of 0.5 μm by the method.

続いて、負極集電極6として銅金属膜を積層する。すなわち、蒸着源をCuとする真空蒸着法により、膜厚0.5μmの銅金属膜を成膜し、負極端子としても機能する負極集電極6を作製する。   Subsequently, a copper metal film is laminated as the negative electrode collector electrode 6. That is, a copper metal film having a film thickness of 0.5 μm is formed by a vacuum vapor deposition method in which the vapor deposition source is Cu, and the negative electrode collector electrode 6 that also functions as a negative electrode terminal is produced.

最後に、保護層7として絶縁性を有するパリレン樹脂を積層する。すなわち、中央に正方形(13mm×13mm)の開口部を有したマスク(厚さ:50μm)をセットし、パリレン樹脂を、熱蒸着法により膜厚2.0μmとなるように成膜して、保護層7を作製する。ここで、絶縁性物質からなる保護層7が、正極集電極2、正極膜3、固体電解質膜4、負極膜5、負極集電極6において外気に露出される膜表面を被覆するように成膜する。   Finally, an insulating parylene resin is laminated as the protective layer 7. In other words, a mask (thickness: 50 μm) having a square (13 mm × 13 mm) opening in the center is set, and a parylene resin is deposited to a thickness of 2.0 μm by thermal evaporation to protect it. Layer 7 is produced. Here, the protective layer 7 made of an insulating material is formed so as to cover the surface of the positive electrode collector electrode 2, the positive electrode film 3, the solid electrolyte membrane 4, the negative electrode film 5, and the negative electrode collector electrode 6 exposed to the outside air. To do.

このようにして製造する実施例1における全固体型リチウム二次電池は、電池エッジ部でのショートを回避することができ、上記した主たる特徴の通り、不良品の発生率が低い製造方法によって製造できる。   The all-solid-state lithium secondary battery in Example 1 manufactured in this way can avoid a short-circuit at the battery edge and is manufactured by a manufacturing method with a low incidence of defective products as described above. it can.

なお、本実施例では、正極集電極2としてPt、負極集電極6としてCuを用いる場合いついて説明したが、本発明はこれに限定されるものではなく、リチウムと反応しない若しくは反応性が低い導電性の物質であれば、正極集電極2あるいは負極集電極6として用いることができる。   In this embodiment, the case where Pt is used as the positive electrode collector electrode 2 and Cu is used as the negative electrode collector electrode 6 has been described. However, the present invention is not limited to this and does not react with lithium or has low reactivity. Any conductive material can be used as the positive electrode collector 2 or the negative electrode collector 6.

また、本実施例では、正極集電極2の下部構造として一層のPtを成膜する場合について説明したが、本発明はこれに限定されるものではなく、基板1との密着性を向上させるために、正極集電極2の下部構造として、さらに複数層の膜を成膜する場合であってもよい。   In this embodiment, the case where a single layer of Pt is formed as the lower structure of the positive electrode collector electrode 2 has been described. However, the present invention is not limited to this, and the adhesion to the substrate 1 is improved. In addition, as the lower structure of the positive electrode collector electrode 2, a plurality of layers of films may be formed.

また、本実施例では、固体電解質膜4としてLiPONを用いたが、本発明はこれに限定されるものではなく、例えば、リチウムイオン導電性リチウム含有ガラスやLiTi2(PO4)3などのリチウム含有リン酸塩など、リチウムイオン導電性を有する物質であれば、固体電解質膜4として用いることができる。 In this embodiment, LiPON is used as the solid electrolyte membrane 4. However, the present invention is not limited to this. For example, lithium ion conductive lithium-containing glass or lithium such as LiTi 2 (PO 4 ) 3 is used. Any substance having lithium ion conductivity, such as a contained phosphate, can be used as the solid electrolyte membrane 4.

また、本実施例では、負極膜5として金属リチウムを用いる場合を説明したが、本発明はこれに限定されるものではなく、カーボンや、シリコン、スズ、または、これらを含む合金やLi4Ti5O12などの金属酸化物といったように、卑電位においてリチウムイオンの吸蔵および放出が可能な物質であれば、負極膜5として用いることができる。 In the present embodiment, the case where metallic lithium is used as the negative electrode film 5 has been described. However, the present invention is not limited to this, and carbon, silicon, tin, an alloy containing these, or Li 4 Ti Any material that can occlude and release lithium ions at a base potential, such as a metal oxide such as 5 O 12 , can be used as the negative electrode film 5.

また、本実施例では、保護層7としてパリレン樹脂を用いる場合を説明したが、本発明はこれに限定されるものではなく、パリレンのような高分子樹脂や、チッ化ケイ素のような絶縁性物質、または、高分子樹脂と絶縁性物質の混合物など、耐湿性を有したものであれば、保護層7として用いることができる。   In this embodiment, the case where a parylene resin is used as the protective layer 7 has been described. However, the present invention is not limited to this, and a polymer resin such as parylene or an insulating property such as silicon nitride. Any material or moisture-resistant material such as a mixture of a polymer resin and an insulating material can be used as the protective layer 7.

また、本実施例では、凹状の窪みを有する正極集電極2を基板1上に作製する場合について説明したが、本発明はこれに限定されるものではなく、凹状の窪みを有する負極集電極6を基板1上に作製し、さらに、当該凹状の窪み内に負極膜5を作製し、この構造の上に、固体電解質膜4、正極膜3、正極集電極2、保護層7を積層する場合であってもよい。   Moreover, although the present Example demonstrated the case where the positive electrode collector electrode 2 which has a concave hollow was produced on the board | substrate 1, this invention is not limited to this, The negative electrode collector electrode 6 which has a concave hollow Is produced on the substrate 1, and further, the negative electrode film 5 is produced in the concave depression, and the solid electrolyte film 4, the positive electrode film 3, the positive electrode collector electrode 2, and the protective layer 7 are laminated on this structure. It may be.

また、本実施例による電池の製造方法は、電極、固体電解質、集電極または保護層の成膜手法によらず適用可能である。しかしながら、正極膜の作製方法としては、組成ずれが起きにくく、成膜条件を適切に設定することで高温での熱処理無しで高結晶性膜を作製できるスパッタ法を用いることがより好ましいが、これに限定されるものではない。   In addition, the battery manufacturing method according to this embodiment can be applied regardless of the electrode, solid electrolyte, collector electrode, or protective layer deposition method. However, as a method for producing the positive electrode film, it is more preferable to use a sputtering method in which composition deviation hardly occurs and a highly crystalline film can be produced without heat treatment at high temperature by appropriately setting the film formation conditions. It is not limited to.

[実施例1における全固体型リチウム二次電池の特性]
次に、図3および図4を用いて、このようにして製造された全固体型リチウム二次電池(図1参照)の特性について説明する。図3は、実施例1における全固体型リチウム二次電池の充放電特性を示す図であり、図4は、実施例1における全固体型リチウム二次電池の放電容量のサイクル依存性を示す図である。
[Characteristics of all solid-state lithium secondary battery in Example 1]
Next, the characteristics of the all solid-state lithium secondary battery (see FIG. 1) manufactured in this way will be described with reference to FIGS. FIG. 3 is a diagram showing the charge / discharge characteristics of the all-solid-state lithium secondary battery in Example 1, and FIG. 4 is a diagram showing the cycle dependency of the discharge capacity of the all-solid-type lithium secondary battery in Example 1. It is.

実施例1における全固体型リチウム二次電池の充放電測定を、充放電の電流密度を10μA/cm2とし2.5〜4.3Vの電圧範囲で行った。ここで、測定は、室温において湿度制御しない通常の生活環境下で行った。図3に、20サイクル目の充放電曲線を示す。なお、ここでは、充放電容量は、後述する実施例2との比較を容易におこなうために、電池の有効面積(cm2)に正極の膜厚(μm)を乗じた値で示される正極の単位体積当たりの値(μAh/cm2μm)で示した。 The charge / discharge measurement of the all solid-state lithium secondary battery in Example 1 was performed in a voltage range of 2.5 to 4.3 V with a charge / discharge current density of 10 μA / cm 2 . Here, the measurement was performed in a normal living environment where humidity was not controlled at room temperature. FIG. 3 shows a charge / discharge curve at the 20th cycle. Here, the charge / discharge capacity is the value of the positive electrode indicated by a value obtained by multiplying the effective area (cm 2 ) of the battery by the film thickness (μm) of the positive electrode for easy comparison with Example 2 described later. The value per unit volume (μAh / cm 2 μm) is shown.

図3に示すように、実施例1における全固体型リチウム二次電池は、平均放電電圧が約3.9Vと高電圧であり、充電容量と放電容量もほぼ一致し、可逆性に優れていることが分かる。   As shown in FIG. 3, the all-solid-state lithium secondary battery in Example 1 has a high average discharge voltage of about 3.9 V, almost the same charge capacity and discharge capacity, and is excellent in reversibility. I understand that.

また、図4に示すように、実施例1における全固体型リチウム二次電池は、サイクルとともに若干の放電容量の減少がみられるものの、放電容量は約50μAh/cm2μmと大きな値を示し、安定したサイクル依存性を示す。 As shown in FIG. 4, the all solid-state lithium secondary battery in Example 1 shows a large value of about 50 μAh / cm 2 μm, although the discharge capacity slightly decreases with the cycle. Shows stable cycle dependency.

さらに、実施例1における全固体型リチウム二次電池の作製条件を検討するために、正極集電極2が有する凹状の窪みの周縁部が固体電解質膜4と接触する面と、正極膜3が当該固体電解質膜4と接触する面との段差が0.10μm〜0.35μmの範囲にある全固体型リチウム二次電池を、スパッタ時間を調整することにより製造した。   Furthermore, in order to study the manufacturing conditions of the all-solid-state lithium secondary battery in Example 1, the surface where the peripheral edge of the concave depression of the positive electrode collector electrode 2 is in contact with the solid electrolyte membrane 4 and the positive electrode membrane 3 An all solid-state lithium secondary battery having a step with the surface in contact with the solid electrolyte membrane 4 in the range of 0.10 μm to 0.35 μm was manufactured by adjusting the sputtering time.

製造した全固体型リチウム二次電池の性能を検討した結果、段差が0.2μmを超えると、電池のショートが頻発し、電池の不良品の発生率が著しく高くなることが確認された。すなわち、良好に作動する電池を製造するためには、上記の段差が、固体電解質膜4の厚さ(本実施例では、1μm)の20%以下(本実施例では、0.2μm以下)であることが望ましいことが判明した。   As a result of investigating the performance of the manufactured all-solid-state lithium secondary battery, it was confirmed that when the step difference exceeds 0.2 μm, short-circuiting of the battery frequently occurs and the incidence of defective batteries is remarkably increased. That is, in order to manufacture a battery that operates satisfactorily, the above step is 20% or less of the thickness of the solid electrolyte membrane 4 (1 μm in this embodiment) (0.2 μm or less in this embodiment). It turned out to be desirable.

すなわち、上記の測定結果より、基板1上に作製された正極集電極2が有する凹状の窪みの周縁部が固体電解質膜4(LiPON)と接触する面と、正極膜3(LiCoO2)が当該固体電解質膜4と接触する面との段差が、固体電解質膜4の膜厚の20%以下である全固体型リチウム二次電池は、充放電特性や放電容量のサイクル依存性において、優れた電池性能を示すことが明らかとなった。 That is, from the above measurement results, the surface where the peripheral edge of the concave depression of the positive electrode collector electrode 2 produced on the substrate 1 is in contact with the solid electrolyte membrane 4 (LiPON) and the positive electrode membrane 3 (LiCoO 2 ) The all-solid-state lithium secondary battery in which the level difference from the surface in contact with the solid electrolyte membrane 4 is 20% or less of the thickness of the solid electrolyte membrane 4 is an excellent battery in terms of charge / discharge characteristics and cycle dependency of discharge capacity. It became clear to show performance.

[実施例1の効果]
上記したように、実施例1によれば、基板1上に作製される正極集電極2を、当該基板1と接触する面と対向するもう一方の面において、少なくともひとつの凹状の窪みを有するように成膜し、成膜される正極集電極2が有する凹状の窪みにおいて、正極膜3を積層する際に、正極集電極2が有する凹状の窪みの周縁部が固体電解質膜4と接触する面と、正極膜3が固体電解質膜4と接触する面との段差が、固体電解質膜4の膜厚の20%以下となるように正極膜3を成膜するので、電池エッジ部でのショートを回避することができ、不良品の発生率を低くすることが可能になる。また、これによって、「電池エッジ部でのショートを回避するために、固体電解質の上に作製する電極膜を、当該固体電解質より小さい面積になるように成膜すると、電池の実効面積が小さくなり、電池のエネルギー密度が減少する結果、非効率的な電池しか製造できない」という問題点を解消でき、エネルギー密度が高い、効率的な全固体型リチウム二次電池を容易に製造することが可能になる。
[Effect of Example 1]
As described above, according to Example 1, the positive electrode collector electrode 2 manufactured on the substrate 1 has at least one concave depression on the other surface facing the surface in contact with the substrate 1. In the concave depression of the positive electrode collector electrode 2 formed into a film, when the positive electrode film 3 is laminated, the peripheral edge of the concave depression of the positive electrode collector electrode 2 is in contact with the solid electrolyte membrane 4 Since the positive electrode film 3 is formed so that the step difference between the positive electrode film 3 and the surface where the positive electrode film 3 is in contact with the solid electrolyte film 4 is 20% or less of the film thickness of the solid electrolyte film 4, the short circuit at the battery edge portion is prevented. This can be avoided, and the incidence of defective products can be reduced. In addition, this makes it possible to reduce the effective area of the battery by forming an electrode film formed on the solid electrolyte so as to have a smaller area than the solid electrolyte in order to avoid short circuit at the battery edge. As a result, the inefficiency of batteries can be reduced, resulting in the solution to the inefficiency of the battery. " Become.

また、実施例1によれば、正極集電極2が有する凹状の窪みの周縁部と、正極膜3の表面とが、連続的に被膜されるように固体電解質膜4を成膜するので、基板1上に作製される正極集電極2と正極膜3とを固体電解質膜4によって密に被膜して電池エッジ部でのショートをさらに回避することができ、不良品の発生率をより低くすることが可能になる。すなわち、正極集電極2と正極膜3との段差に起因する固体電解質膜4の膜厚の局所的な不均一などの欠陥を防止して電池エッジ部でのショートをさらに回避することができ、不良品の発生率をより低くすることが可能になる。   Moreover, according to Example 1, since the solid electrolyte membrane 4 is formed so that the peripheral part of the concave hollow which the positive electrode collector electrode 2 has, and the surface of the positive electrode film | membrane 3 may be continuously coat | covered, board | substrate The positive electrode collector electrode 2 and the positive electrode film 3 manufactured on the substrate 1 can be densely coated with the solid electrolyte film 4 to further avoid a short circuit at the battery edge, and to further reduce the incidence of defective products. Is possible. That is, it is possible to prevent defects such as local non-uniformity in the thickness of the solid electrolyte film 4 due to the step between the positive electrode collector electrode 2 and the positive electrode film 3 and further avoid a short circuit at the battery edge portion, It becomes possible to lower the incidence of defective products.

また、実施例1によれば、正極集電極2が有する前記凹状の窪みの開口部中央から俯瞰した場合に、当該凹状の窪みの底面および側面が、当該凹状の窪みの開口部の周辺部によって遮蔽されないように、正極集電極2を成膜するので、正極集電極2が有する凹状の窪みに正極膜3を密に均一に積層して電池エッジ部でのショートをさらに回避することができ、不良品の発生率をより低くすることが可能になる。   Further, according to Example 1, when viewed from the center of the opening of the concave depression of the positive electrode collector electrode 2, the bottom and side surfaces of the concave depression are formed by the peripheral portion of the opening of the concave depression. Since the positive electrode collector electrode 2 is formed so as not to be shielded, the positive electrode film 3 can be densely and uniformly laminated in the concave depression of the positive electrode collector electrode 2 to further avoid a short circuit at the battery edge, It becomes possible to lower the incidence of defective products.

また、実施例1によれば、正極膜3、負極膜5、固体電解質膜4、正極集電極2、および負極集電極6それぞれにおいて、外気に露出される表面を絶縁性物質からなる保護層7により被膜するので、安定性やハンドリング性に優れた電池を製造することができ、不良品の発生率をより低くすることが可能になる。すなわち、電池の構成要素に大気中の水分により劣化する物質を含む場合、絶縁性有機物および絶縁性無機物質の少なくともひとつからなる保護層7で、外気に露出される電池部分を覆うことにより、耐湿性を付与して優れた耐久性を与えて安定性やハンドリング性に優れた電池を製造することができ、不良品の発生率をより低くすることが可能になる。   Further, according to Example 1, in each of the positive electrode film 3, the negative electrode film 5, the solid electrolyte film 4, the positive electrode collector electrode 2, and the negative electrode collector electrode 6, the protective layer 7 made of an insulating material is exposed on the surface. Therefore, it is possible to manufacture a battery having excellent stability and handling properties, and to further reduce the occurrence rate of defective products. That is, when a battery component includes a substance that deteriorates due to moisture in the atmosphere, the protective layer 7 made of at least one of an insulating organic substance and an insulating inorganic substance covers the battery part that is exposed to the outside air. Therefore, it is possible to manufacture a battery having excellent stability and handling properties by imparting excellent durability and lowering the incidence of defective products.

また、凹状の窪みの底面部分を除いた側壁部分において、当該側壁部分の最深部または当該凹状の窪みの開口部から一定の深さの部分から、当該凹状の窪みの開口部までの面を、絶縁性物質によって構成するように正極集電極2を成膜することで、正極集電極2と負極膜5との間のショートを回避することができ、不良品の発生率をより低くすることが可能になる。以下、これについて説明する。   Further, in the side wall part excluding the bottom part of the concave depression, the surface from the deepest part of the side wall part or the opening part of the concave depression to the opening part of the concave depression, By forming the positive electrode collector electrode 2 so as to be composed of an insulating material, a short circuit between the positive electrode collector electrode 2 and the negative electrode film 5 can be avoided, and the generation rate of defective products can be further reduced. It becomes possible. This will be described below.

すなわち、他機器との接続を行う端子(図1における正極端子)を作製した上で、正極集電極2に作製された凹状の窪みの底面部分を除いた側壁部分において、側壁部分の最深部または窪みの開口部から一定の深さの部分から窪み開口部までの面を、絶縁性物質で構成することによって、正極集電極2と負極膜5とが接触しショートがおこることを防止することができる。   That is, after making a terminal (positive electrode terminal in FIG. 1) for connection with another device, in the side wall part excluding the bottom part of the concave depression made in the positive electrode collecting electrode 2, the deepest part of the side wall part or By forming the surface from the recessed opening to a certain depth from the recessed opening with an insulating material, it is possible to prevent the positive electrode collecting electrode 2 and the negative electrode film 5 from coming into contact with each other and causing a short circuit. it can.

例えば、正極集電極2の凹状の窪みに正極膜3を作製する場合、図2の(A)〜(C)に示す工程で、正極集電極2の下部構造をPtとし、図2の(D)〜(F)に示す工程で、正極集電極2の上部構造をポリエチレンとすることによって、正極集電極2と負極膜5とが接触しショートがおこることを防止することができる。   For example, in the case where the positive electrode film 3 is formed in the concave depression of the positive electrode collector electrode 2, the lower structure of the positive electrode collector electrode 2 is set to Pt in the steps shown in FIGS. ) To (F), when the upper structure of the positive electrode collector electrode 2 is made of polyethylene, it is possible to prevent the positive electrode collector electrode 2 and the negative electrode film 5 from coming into contact with each other to cause a short circuit.

あるいは、基板1上に先ずPtなどの導電性膜を作製し、次に、当該導電性膜上にポリエチレンなどの絶縁性膜を蒸着法などにより積層し、絶縁性膜の少なくとも一箇所に、絶縁性膜がその周囲に残存するように導電性膜まで、レーザーやリソグラフィーなどの手法で貫通する穴を開けることにより、凹状の窪みを有する正極集電極2を作製する。この凹状の窪み内に正極膜3を作製することにより、正極集電極2と負極膜5とが接触してショートがおこることを防止することができる。   Alternatively, a conductive film such as Pt is first formed on the substrate 1, and then an insulating film such as polyethylene is laminated on the conductive film by a vapor deposition method or the like, and insulation is performed on at least one portion of the insulating film. The positive electrode collector electrode 2 having a concave depression is produced by opening a hole penetrating to the conductive film by a technique such as laser or lithography so that the conductive film remains around the conductive film. By producing the positive electrode film 3 in the concave recess, it is possible to prevent the positive electrode collector electrode 2 and the negative electrode film 5 from coming into contact with each other to cause a short circuit.

このように、凹状の窪みを有する正極集電極2の作製法は、作製される膜の平坦性や加工性に優れた手法であればよく、マスクだけでなく、半導体の製造プロセスで用いられるレジストやエッチングの手法などを用いることができる。   As described above, the method for producing the positive electrode collector electrode 2 having a concave depression may be any method that is excellent in flatness and workability of the film to be produced. Etching techniques or the like can be used.

上述した実施例1では、正極膜3としてコバルト酸リチウム(LiCoO2)を用いて製造した全固体型リチウム二次電池について説明したが、実施例2では、リチウムイオンの挿入及び脱離が可能な固体からなる正極膜3として、Co、Ni、Mn、Vの少なくとも1つを含む遷移金属系酸化物である「LiNi0.5Co0.5O2」、「LiMn2O4」、「V2O5」それぞれを用いて製造した、実施例1と同様の構造を有する全固体型リチウム二次電池について説明する。 In Example 1 described above, an all solid-state lithium secondary battery manufactured using lithium cobalt oxide (LiCoO 2 ) as the positive electrode film 3 has been described. In Example 2, lithium ions can be inserted and removed. As the positive electrode film 3 made of solid, “LiNi 0.5 Co 0.5 O 2 ”, “LiMn 2 O 4 ”, “V 2 O 5 ”, which are transition metal oxides containing at least one of Co, Ni, Mn, and V, are used. The all-solid-state lithium secondary battery having the same structure as in Example 1 manufactured using each will be described.

[実施例2における全固体型リチウム二次電池の製造方法]
「LiNi0.5Co0.5O2」、「LiMn2O4」、「V2O5」それぞれからなる正極膜3は、RFマグネトロンスパッタ法を用いて公知の手法で作製した。膜厚は、すべて0.5μmとし、実施例1と同様にして作製した。他の電池構成要素である、正極集電極2、固体電解質膜4、負極膜5、負極集電極6、保護層7も、実施例1と同様に作製した。
[Method for producing all solid-state lithium secondary battery in Example 2]
The positive electrode film 3 made of each of “LiNi 0.5 Co 0.5 O 2 ”, “LiMn 2 O 4 ”, and “V 2 O 5 ” was produced by a known method using an RF magnetron sputtering method. The film thicknesses were all 0.5 μm, and were produced in the same manner as in Example 1. Other battery components, the positive electrode collector electrode 2, the solid electrolyte membrane 4, the negative electrode membrane 5, the negative electrode collector electrode 6, and the protective layer 7, were also produced in the same manner as in Example 1.

[実施例2における全固体型リチウム二次電池の特性]
次に、図5を用いて、このようにして製造された、実施例2における全固体型リチウム二次電池の特性について説明する。図5は、実施例2における全固体型リチウム二次電池の特性を示す図である。
[Characteristics of an all-solid-state lithium secondary battery in Example 2]
Next, the characteristics of the all solid-state lithium secondary battery in Example 2 manufactured as described above will be described with reference to FIG. FIG. 5 is a diagram showing the characteristics of the all-solid-state lithium secondary battery in Example 2.

図5に示すように、実施例2における全固体型リチウム二次電池の特性を調べるために、これら製造した3種類の全固体型リチウム二次電池について、充放電の電流密度を10μA/cm2として充放電試験を行った。なお、用いる正極材料の種類によって、作動電圧が異なるため、それぞれの電池ごとに既報に従って測定を行う電圧範囲を設定した(図5の「測定電圧範囲」参照)。また、測定は、室温で湿度を制御しない通常の環境下で行った。 As shown in FIG. 5, in order to investigate the characteristics of the all-solid-state lithium secondary battery in Example 2, the charge / discharge current density was set to 10 μA / cm 2 for these three types of all-solid-state lithium secondary batteries manufactured. As a result, a charge / discharge test was conducted. In addition, since an operating voltage changes with kinds of positive electrode material to be used, the voltage range which performs a measurement according to the report for each battery was set (refer to "Measurement voltage range" in FIG. 5). The measurement was performed in a normal environment where the humidity was not controlled at room temperature.

図5に、これら3種類の実施例2における全固体型リチウム二次電池の充放電試験の結果を、LiCoO2を用いて正極膜3を作製した実施例1における全固体型リチウム二次電池の充放電試験の結果と共に示す。 FIG. 5 shows the results of the charge / discharge test of the all-solid-state lithium secondary battery in these three types of Example 2, and the results of the all-solid-state lithium secondary battery in Example 1 in which the positive electrode film 3 was produced using LiCoO 2 . It shows with the result of a charge / discharge test.

実施例2で製造した電池は、実施例1で製造した電池と同様に、高い電圧を示すとともに(図5の「平均放電電圧」参照)、40〜70μAh/cm2μmの大きな放電容量を有していることが分かった(図5の「初期放電容量」参照)。また、100サイクルの充放電後においても、いずれも初期放電容量と比較して、約90%の放電容量が維持されており、安定に充放電を行うことができた(図5の「100回目の放電容量」参照)。 The battery manufactured in Example 2 shows a high voltage (see “Average Discharge Voltage” in FIG. 5) as well as the battery manufactured in Example 1, and has a large discharge capacity of 40 to 70 μAh / cm 2 μm. (See “Initial Discharge Capacity” in FIG. 5). In addition, even after 100 cycles of charging / discharging, about 90% of the discharge capacity was maintained compared to the initial discharge capacity, and charging / discharging could be performed stably (the “100th cycle” in FIG. 5). Discharge capacity ”).

すなわち、実施例2における全固体型リチウム二次電池は、実施例1で示したLiCoO2だけでなく、リチウムイオンの挿入及び脱離が可能な、Co、Ni、Mn、Vの少なくとも1つを含む遷移金属系酸化物を正極膜3として用いることによって、優れた電池性能を実現できることを示している。 That is, the all-solid-state lithium secondary battery in Example 2 is not limited to LiCoO 2 shown in Example 1, but includes at least one of Co, Ni, Mn, and V that can insert and desorb lithium ions. It shows that excellent battery performance can be realized by using the transition metal-based oxide containing as the positive electrode film 3.

[実施例2の効果]
上記したように、実施例2によれば、Co、Ni 、Mn、Vの少なくとも1つを含む遷移金属系酸化物を正極膜3として成膜するので、結晶構造や結晶中の遷移金属イオンの価数状態から判断して、円滑なリチウムイオンの挿入および脱離を実現する材料を用いて正極膜3を作製することができ、エネルギー密度が高い、効率的な全固体型リチウム二次電池を容易に製造することが可能になる。
[Effect of Example 2]
As described above, according to Example 2, since the transition metal oxide containing at least one of Co, Ni 2, Mn, and V is formed as the positive electrode film 3, the crystal structure and the transition metal ions in the crystal Judging from the valence state, the positive electrode film 3 can be manufactured using a material that can smoothly insert and desorb lithium ions, and an efficient all-solid-state lithium secondary battery with high energy density can be obtained. It can be easily manufactured.

[比較例1]
次に、図6を用いて、電池に実装される保護層7の有用性について説明する。図6は、保護層の有用性について説明するための図である。
[Comparative Example 1]
Next, the usefulness of the protective layer 7 mounted on the battery will be described with reference to FIG. FIG. 6 is a diagram for explaining the usefulness of the protective layer.

まず、電池に実装される保護層7の有用性を検討するために、実施例1における全固体型リチウム二次電池において、保護層7を成膜せずに、正極集電極2、正極膜3、固体電解質膜4、負極膜5、負極集電極6のみで構成される全固体型リチウム二次電池を比較例1における全固体型リチウム二次電池として製造した。   First, in order to examine the usefulness of the protective layer 7 mounted on the battery, in the all solid-state lithium secondary battery in Example 1, the positive electrode collector electrode 2 and the positive electrode film 3 were formed without forming the protective layer 7. Then, an all solid lithium secondary battery including only the solid electrolyte membrane 4, the negative electrode membrane 5, and the negative electrode collector electrode 6 was produced as the all solid lithium secondary battery in Comparative Example 1.

そして、実施例1における全固体型リチウム二次電池(保護層7あり)と、比較例1における全固体型リチウム二次電池(保護層7なし)とについて電池性能をそれぞれ評価した。電池性能の評価は、上述した[実施例1における全固体型リチウム二次電池の特性]と同様に、充放電試験におけるサイクルに伴う放電容量の変化を測定することで行った。なお、充放電試験は、室温で湿度を制御することなく、ほぼ実際の生活環境下で行った。   And the battery performance was evaluated about the all-solid-type lithium secondary battery in Example 1 (with the protective layer 7) and the all-solid-type lithium secondary battery in the comparative example 1 (without the protective layer 7), respectively. The evaluation of the battery performance was performed by measuring the change in the discharge capacity accompanying the cycle in the charge / discharge test, similarly to the above-mentioned [Characteristics of the all-solid-state lithium secondary battery in Example 1]. In addition, the charge / discharge test was performed in an actual living environment without controlling humidity at room temperature.

図6に示すように、実施例1における全固体型リチウム二次電池(保護層7あり)が安定したサイクルを示す(サイクル数に伴う、放電容量の変化が少ない)のに対して、比較例1における全固体型リチウム二次電池(保護層7なし)は、初回の放電容量は、全く同一であるものの、以後のサイクルにおいては、劣化は著しく急激な放電容量の減少がみられた。   As shown in FIG. 6, the all-solid-state lithium secondary battery (with the protective layer 7) in Example 1 shows a stable cycle (the change in the discharge capacity with the number of cycles is small), whereas the comparative example The all-solid-state lithium secondary battery (without protective layer 7) in No. 1 had the same initial discharge capacity, but in the subsequent cycles, the deterioration of the discharge capacity was remarkably abrupt.

この結果は、水分による劣化を防止するために、パリレンのような高分子樹脂、もしくはチッ化ケイ素のような絶縁性物質のいずれか、望ましくは高分子樹脂と絶縁性物質の混合物からなる保護層7で、正極膜3、負極膜5、固体電解質膜4、正極集電極2、および負極集電極6それぞれにおいて外気に露出される表面を覆うことが、不良品の発生率を低くすることに必要であることを示している。   As a result, in order to prevent deterioration due to moisture, a protective layer made of either a polymer resin such as parylene or an insulating material such as silicon nitride, preferably a mixture of a polymer resin and an insulating material. 7, covering the surfaces exposed to the outside air in each of the positive electrode film 3, the negative electrode film 5, the solid electrolyte film 4, the positive electrode collector electrode 2, and the negative electrode collector electrode 6 is necessary to reduce the incidence of defective products. It is shown that.

[比較例2]
最後に、本発明による全固体型リチウム二次電池の製造方法により製造された全固体型リチウム二次電池の有効性を、従来一般的に用いられてきた製造方法による全固体型リチウム二次電池との比較を行なうことによって検証した。
[Comparative Example 2]
Finally, the effectiveness of the all-solid-state lithium secondary battery manufactured by the method for manufacturing the all-solid-state lithium secondary battery according to the present invention is compared with the effectiveness of the all-solid-state lithium secondary battery that has been conventionally used. It verified by comparing with.

まず、実施例1における全固体型リチウム二次電池の比較対象として、図7に示すように、一般的な構造を有する全固体型リチウム二次電池を製造した。なお、図7は、従来技術により製造した全固体型リチウム二次電池の構成を説明するための俯瞰図および断面図である。   First, as an object to be compared with the all solid lithium secondary battery in Example 1, an all solid lithium secondary battery having a general structure was manufactured as shown in FIG. FIG. 7 is a bird's-eye view and a cross-sectional view for explaining the configuration of an all solid-state lithium secondary battery manufactured by the prior art.

図7に示すように、従来技術により製造した全固体型リチウム二次電池は、基板1上に、正極集電極(正極端子)2としてPtを成膜し、正極膜3としてLiCoO2を成膜し、固体電解質膜4としてLiPONを成膜し、負極膜5としてLiを成膜し、負極集電極(負極端子)6としてCuを成膜し、最後に保護層7としてパリレン樹脂を成膜して製造した。負極集電極6(Cu)、正極膜3(LiCoO2)、固体電解質膜4(LiPON)、負極膜5(Li) の成膜方法については、実施例1と同様にして行い、膜厚も同一とした。また、正極集電極2(Pt) は、実施例1における正極集電極の下部構造と同様に、RFマグネトロンスパッタ法で成膜を行った。それぞれの膜面積については、電池エッジ部でのショートを避けるために、正極膜 :0.8cm2、固体電解質膜 :1.1cm2 、負極膜:0.8cm2 とした。また、正極集電極膜および負極集電極膜の膜表面積については、それぞれ0.9cm2および0.8cm2とした。 As shown in FIG. 7, the all-solid-state lithium secondary battery manufactured by the conventional technique forms a Pt film as a positive electrode collector (positive electrode terminal) 2 and a LiCoO 2 film as a positive electrode film 3 on a substrate 1. Then, LiPON is formed as the solid electrolyte film 4, Li is formed as the negative electrode film 5, Cu is formed as the negative electrode collector (negative electrode terminal) 6, and finally a parylene resin is formed as the protective layer 7. Manufactured. The negative electrode collector electrode 6 (Cu), the positive electrode film 3 (LiCoO 2 ), the solid electrolyte film 4 (LiPON), and the negative electrode film 5 (Li) were formed in the same manner as in Example 1, and the film thickness was the same. It was. The positive electrode collector electrode 2 (Pt) was formed by RF magnetron sputtering in the same manner as the lower structure of the positive electrode collector electrode in Example 1. In order to avoid short-circuiting at the battery edge, the film area was set to positive electrode film: 0.8 cm 2 , solid electrolyte film: 1.1 cm 2 , and negative electrode film: 0.8 cm 2 . Also, the membrane surface area of the positive electrode current electrode film and negative collector electrode film, was 0.9 cm 2 and 0.8 cm 2, respectively.

さらに、電圧が低い、充放電できないなどの電池の不良品の発生率(不良率)を調べるために、実施例1における全固体型リチウム二次電池(図1参照、以下、「実施例1における電池」と記す)および従来技術により製造した全固体型リチウム二次電池(図7参照、以下、「従来の電池」と記す)を、それぞれ30個製造し、電流密度10μA/cm2で2.5〜4.3Vの電圧範囲で充放電サイクル試験を行った。 Further, in order to examine the occurrence rate (defective rate) of defective products such as low voltage and inability to charge / discharge, the all solid-state lithium secondary battery in Example 1 (see FIG. 1, hereinafter “in Example 1”). cell "and referred) and all-solid-state lithium secondary battery produced by the prior art (see FIG. 7, hereinafter," the referred to as conventional batteries "), produced 30 pieces each, 2 at a current density of 10 .mu.A / cm 2. A charge / discharge cycle test was conducted in a voltage range of 5 to 4.3V.

その結果、「従来の電池」は、二次電池として正常に作動した場合、「実施例1における電池」と同様の電極材料および固体電解質材料を同様の膜厚で成膜しているために、単位体積当たりの放電容量 (μAh/cm2μm) において、「実施例1における電池」と同様の値を示し、充放電を繰り返した場合のサイクル特性においても、「実施例1における電池」と同様の傾向を有していた。しかしながら、多数個の電池を製造した場合に、不良品の発生率に大きな差異が見られた。 As a result, when the “conventional battery” operates normally as a secondary battery, the same electrode material and solid electrolyte material as the “battery in Example 1” are formed with the same film thickness. The discharge capacity per unit volume (μAh / cm 2 μm) shows the same value as “Battery in Example 1”, and the cycle characteristics when charging and discharging are repeated are the same as “Battery in Example 1” Had a tendency to However, when a large number of batteries were manufactured, there was a large difference in the incidence of defective products.

図8に、「30個の実施例1における電池」および「30個の従来の電池」における不良品の数を電池の不良要因別にまとめた表を示す。なお、図8は、実施例1における全固体型リチウム二次電池と従来技術により製造した全固体型リチウム二次電池との比較を説明するための図である。   FIG. 8 shows a table in which the number of defective products in “30 batteries in Example 1” and “30 conventional batteries” is summarized for each failure factor of the battery. In addition, FIG. 8 is a figure for demonstrating the comparison with the all-solid-state lithium secondary battery in Example 1, and the all-solid-state lithium secondary battery manufactured by the prior art.

ここで、不良要因については、「(1)低電圧:初期電圧(開回路電圧)が2V以下と極端に低いもの(通常は3V以上)」、「(2)充放電不可:ショートのため全く充放電できないもの」、「(3)サイクル特性不良:図4と比較して、サイクル劣化が著しいもの」、という3つの要因で分別した。図8に示すように、「実施例1における電池」では、不良品の発生率が約3%と低いのに対し、「従来の電池」では、不良品の発生率が約40%と極端に高いことがわかる。   Here, the cause of failure is “(1) Low voltage: extremely low initial voltage (open circuit voltage) of 2V or less (usually 3V or more)”, “(2) Impossible charge / discharge: completely due to short circuit. It was classified by three factors, “Those that cannot be charged / discharged” and “(3) Poor cycle characteristics: those with significant cycle deterioration compared to FIG. 4”. As shown in FIG. 8, in the “battery in Example 1”, the rate of occurrence of defective products is as low as about 3%, whereas in the “conventional battery”, the rate of occurrence of defective products is extremely high at about 40%. I understand that it is expensive.

なお、実施例2においてLiNi0.5Co0.5O2 、LiMn2O4 、V2O5 を正極膜3としてそれぞれ用いた全固体型リチウム二次電池についても同様の検討を行ったところ、本発明による構造を有する電池が、「従来の電池」よりも不良品の発生率が著しく低いという、本比較例と同様の結果が得られた。 A similar study was conducted on an all-solid-state lithium secondary battery using LiNi 0.5 Co 0.5 O 2 , LiMn 2 O 4 , and V 2 O 5 as the positive electrode film 3 in Example 2, according to the present invention. A result similar to this comparative example was obtained that the battery having the structure has a significantly lower occurrence rate of defective products than the “conventional battery”.

以上の結果から、本発明による全固体型リチウム二次電池の製造方法は、不良品の発生率が低く、容易で効率的な方法であることが実証された。また、以上の結果から、本発明によれば、製造された電池は非常に高性能であることが明らかであり、今後、電子回路基板上や、シリコンウエハ上、さらにICカードやRF―IDタグに直接、上記実施例と同様にして組み込み型の電池を製造できることを示している。また、上記の全固体型リチウム二次電池は、湾曲や折り曲げても正常に電池として機能することが可能であるので、曲面に貼り付けるシール型電池や、紙のように使用するペーパーディスプレイ用の駆動源としても有望である。   From the above results, it was demonstrated that the method for producing an all-solid-state lithium secondary battery according to the present invention is an easy and efficient method with a low incidence of defective products. From the above results, according to the present invention, it is clear that the manufactured battery has a very high performance, and in the future, on an electronic circuit board, a silicon wafer, an IC card, and an RF-ID tag. This shows that an embedded battery can be manufactured directly in the same manner as in the above embodiment. In addition, since the all-solid-state lithium secondary battery can function normally as a battery even if it is bent or bent, it is suitable for a sealed battery that is attached to a curved surface or a paper display that is used like paper. It is also promising as a driving source.

以上のように、本発明に係る全固体型リチウム二次電池製造方法は、固体電解質膜が、正極膜と、負極膜とによって挟まれて積層される構成からなる全固体型リチウム二次電池を製造する場合に有用であり、特に、不良品の発生率が低い全固体型リチウム二次電池を製造することに適し、不良品の発生率が低い全固体型リチウム二次電池を提供する。   As described above, the method for producing an all-solid-state lithium secondary battery according to the present invention includes an all-solid-state lithium secondary battery having a configuration in which a solid electrolyte membrane is sandwiched and stacked between a positive electrode film and a negative electrode film. The present invention provides an all solid-state lithium secondary battery that is useful for manufacturing and is particularly suitable for manufacturing an all-solid-state lithium secondary battery with a low occurrence rate of defective products and a low occurrence rate of defective products.

実施例1における全固体型リチウム二次電池の構成を説明するための俯瞰図および断面図である。2 is an overhead view and a cross-sectional view for explaining a configuration of an all solid-state lithium secondary battery in Example 1. FIG. 実施例1における全固体型リチウム二次電池の正極集電極の成膜から正極膜の成膜にいたる工程を説明するための断面図である。3 is a cross-sectional view for explaining a process from film formation of a positive electrode collector electrode to film formation of a positive electrode film of an all solid-state lithium secondary battery in Example 1. FIG. 実施例1における全固体型リチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the all-solid-state lithium secondary battery in Example 1. FIG. 実施例1における全固体型リチウム二次電池の放電容量のサイクル依存性を示す図である。It is a figure which shows the cycle dependence of the discharge capacity of the all-solid-type lithium secondary battery in Example 1. FIG. 実施例2における全固体型リチウム二次電池の特性を示す図である。FIG. 4 is a diagram showing characteristics of an all solid-state lithium secondary battery in Example 2. 保護層の有用性について説明するための図である。It is a figure for demonstrating the usefulness of a protective layer. 従来技術により製造した全固体型リチウム二次電池の構成を説明するための俯瞰図および断面図である。It is the bird's-eye view and sectional drawing for demonstrating the structure of the all-solid-state lithium secondary battery manufactured by the prior art. 実施例1における全固体型リチウム二次電池と従来技術により製造した全固体型リチウム二次電池との比較を説明するための図である。It is a figure for demonstrating the comparison with the all-solid-state lithium secondary battery in Example 1, and the all-solid-state lithium secondary battery manufactured by the prior art. 従来技術の問題点を説明するための図である。It is a figure for demonstrating the problem of a prior art.

符号の説明Explanation of symbols

1 基板
2 正極集電極(正極端子)
3 正極膜
4 固体電解質膜
5 負極膜
6 負極集電極(負極端子)
7 保護層
8 第一マスク
9 第二マスク
10 第三マスク
11 第四マスク
1 Substrate 2 Positive electrode collector (positive electrode terminal)
3 Positive Electrode Membrane 4 Solid Electrolyte Membrane 5 Negative Electrode Membrane 6 Negative Electrode Current Collector (Negative Electrode Terminal)
7 Protective layer 8 First mask 9 Second mask 10 Third mask 11 Fourth mask

Claims (6)

リチウムイオン導電性の固体からなる固体電解質膜が、リチウムイオンの挿入および脱離が可能な固体からなる正極膜と、リチウム金属もしくはリチウムイオンの吸蔵および放出が可能な固体からなる負極膜とによって挟まれて積層される構成からなる全固体型リチウム二次電池を製造する全固体型リチウム二次電池製造方法であって、
前記正極膜および前記負極膜それぞれに接触する集電極のうち、前記全固体型リチウム二次電池が製造される基板にも接触する集電極を、当該基板と接触する面と対向するもう一方の面において、少なくともひとつの凹状の窪みを有するように成膜する集電極成膜工程と、
前記集電極成膜工程によって成膜される前記集電極が有する前記凹状の窪みにおいて、前記正極膜または前記負極膜としての電極膜を積層する際に、前記集電極が有する前記凹状の窪みの周縁部が前記固体電解質膜と接触する面の高さと、前記電極膜が前記固体電解質膜と接触する面の高さが異なり生じる段差が、前記固体電解質膜の膜厚の20%以下となり、かつ、前記集電極により全周囲が囲まれた状態となるように前記電極膜を成膜する電極膜成膜工程と、
前記集電極成膜工程によって成膜される前記集電極が有する前記凹状の窪みの周縁部と、前記電極膜成膜工程によって成膜される前記電極膜の表面とが、連続的に被膜されるように前記固体電解質膜を成膜する固体電解質膜成膜工程と、
を含んだことを特徴とする全固体型リチウム二次電池製造方法。
A solid electrolyte membrane made of a lithium ion conductive solid is sandwiched between a positive electrode membrane made of a solid capable of inserting and removing lithium ions and a negative electrode membrane made of a solid capable of inserting and extracting lithium metal or lithium ions. An all-solid-state lithium secondary battery manufacturing method for manufacturing an all-solid-type lithium secondary battery having a configuration of being stacked,
Of the collector electrodes that are in contact with each of the positive electrode film and the negative electrode film, the collector electrode that also contacts the substrate on which the all-solid-state lithium secondary battery is manufactured is the other surface that faces the surface that contacts the substrate. In the collector electrode film forming step of forming a film so as to have at least one concave depression,
When the electrode film as the positive electrode film or the negative electrode film is laminated in the concave recess of the collector electrode formed by the collector electrode forming step, the peripheral edge of the concave recess of the collector electrode the height of the surface part is in contact with the solid electrolyte membrane, height and are different resulting level difference surface on which the electrode film is in contact with the solid electrolyte membrane, becomes 20% or less of the thickness of the solid electrolyte membrane, And an electrode film forming step of forming the electrode film so that the entire periphery is surrounded by the collector electrode;
The peripheral edge of the concave depression of the collector electrode formed by the collector electrode film forming step and the surface of the electrode film formed by the electrode film film forming step are continuously coated. A solid electrolyte membrane forming step for forming the solid electrolyte membrane,
All-solid-state lithium secondary battery manufacturing method characterized by including.
前記集電極成膜工程は、前記集電極が有する前記凹状の窪みの開口部中央から俯瞰した場合に、当該凹状の窪みの底面および側面が、当該凹状の窪みの開口部の周辺部によって遮蔽されないように、前記集電極を成膜することを特徴とする請求項1に記載の全固体型リチウム二次電池製造方法。   In the collector electrode film forming step, when viewed from the center of the opening of the concave depression of the collector electrode, the bottom and side surfaces of the concave depression are not shielded by the peripheral portion of the opening of the concave depression. The method for producing an all solid state lithium secondary battery according to claim 1, wherein the collector electrode is formed as described above. Co、Ni 、Mn、Vの少なくとも1つを含む遷移金属系酸化物を前記正極膜として
成膜する正極膜成膜工程をさらに含んだことを特徴とする請求項1または2に記載の全固
体型リチウム二次電池製造方法。
The all solid according to claim 1, further comprising a positive electrode film forming step of forming a transition metal-based oxide containing at least one of Co, Ni 2, Mn, and V as the positive electrode film. Type lithium secondary battery manufacturing method.
前記集電極成膜工程は、前記凹状の窪みの底面部分を除いた側壁部分において、当該側壁部分の最深部または当該凹状の窪みの開口部から一定の深さの部分から、当該凹状の窪みの開口部までの面を、絶縁性物質によって構成するように前記集電極を成膜することを特徴とする請求項1〜3のいずれか一つに記載の全固体型リチウム二次電池製造方法。   In the collector electrode film forming step, in the side wall portion excluding the bottom surface portion of the concave depression, from the deepest portion of the side wall portion or the opening portion of the concave depression, the concave depression The method for producing an all-solid-state lithium secondary battery according to any one of claims 1 to 3, wherein the collector electrode is formed so that a surface up to the opening is formed of an insulating material. 前記正極膜、前記負極膜、前記固体電解質膜、前記正極膜に接触する集電極、および前記負極膜に接触する集電極それぞれにおいて、外気に露出される表面を絶縁性物質からなる保護層により被膜する保護層被膜工程をさらに含むことを特徴とする請求項1〜4のいずれか一つに記載の全固体型リチウム二次電池製造方法。   The positive electrode film, the negative electrode film, the solid electrolyte film, the collector electrode in contact with the positive electrode film, and the collector electrode in contact with the negative electrode film are coated with a protective layer made of an insulating material on the surface exposed to the outside air. The method for producing an all solid lithium secondary battery according to claim 1, further comprising a protective layer coating step. 請求項1〜5のいずれか一つに記載の全固体型リチウム二次電池製造方法により製造されたことを特徴とする全固体型リチウム二次電池。   An all solid lithium secondary battery manufactured by the method for producing an all solid lithium secondary battery according to claim 1.
JP2007068630A 2007-03-16 2007-03-16 All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery Expired - Fee Related JP5148902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068630A JP5148902B2 (en) 2007-03-16 2007-03-16 All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068630A JP5148902B2 (en) 2007-03-16 2007-03-16 All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008234860A JP2008234860A (en) 2008-10-02
JP5148902B2 true JP5148902B2 (en) 2013-02-20

Family

ID=39907441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068630A Expired - Fee Related JP5148902B2 (en) 2007-03-16 2007-03-16 All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5148902B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392536B2 (en) * 2008-11-20 2014-01-22 トヨタ自動車株式会社 ALL SOLID BATTERY, ALL SOLID BATTERY ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP5247570B2 (en) * 2009-04-14 2013-07-24 株式会社アルバック Thin film lithium secondary battery manufacturing apparatus and thin film lithium secondary battery manufacturing method
US8580332B2 (en) * 2009-09-22 2013-11-12 Applied Materials, Inc. Thin-film battery methods for complexity reduction
JP5804053B2 (en) * 2011-04-15 2015-11-04 株式会社村田製作所 Solid battery
JP5794869B2 (en) * 2011-09-12 2015-10-14 株式会社アルバック Mask for forming solid electrolyte membrane and method for producing lithium secondary battery
JP6590242B2 (en) * 2014-05-20 2019-10-16 パナソニックIpマネジメント株式会社 Thin-film all-solid-state battery
WO2021145345A1 (en) * 2020-01-17 2021-07-22 富士フイルム株式会社 Non-aqueous electrolyte secondary battery, current collector and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118897A1 (en) * 2001-02-15 2003-06-26 Shinji Mino Solid electrolyte cell and production method thereof
FR2910721B1 (en) * 2006-12-21 2009-03-27 Commissariat Energie Atomique CURRENT-ELECTRODE COLLECTOR ASSEMBLY WITH EXPANSION CAVITIES FOR LITHIUM ACCUMULATOR IN THE FORM OF THIN FILMS.

Also Published As

Publication number Publication date
JP2008234860A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
US7846579B2 (en) Thin film battery with protective packaging
US9680177B2 (en) All-solid-state thin-film battery
JP5148902B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
KR101355007B1 (en) Flexible thin film battery through thermal annealing at high temperature and method of manufacturing the same
WO2010090126A1 (en) Solid state thin film lithium ion secondary battery and manufacturing method therefor
US20040048157A1 (en) Lithium vanadium oxide thin-film battery
US20040185336A1 (en) All solid-state thin-film cell and application thereof
JP5154139B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
KR100982468B1 (en) High capacity thin film battery module and the method for preparing the same
CN110476292B (en) Anode structure of solid-state lithium-based thin-film battery
JP2004273436A (en) All solid thin film laminated battery
JP2007103129A (en) Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
CN101395744A (en) Secondary battery, manufacturing method thereof and system thereof
US20200251784A1 (en) High-performance thin-film battery with an interfacial layer
JP5497538B2 (en) Solid type secondary battery
CN110870122A (en) Thin film lithium ion battery with fast charging speed
US20070042272A1 (en) Solid electrolyte and all solid state battery using the same
KR100790844B1 (en) Thin film battery and fabrication method thereof
JP4381176B2 (en) Thin film solid secondary battery
KR20180005990A (en) Unit cell, and preparation method thereof
JP5008960B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
JP2009211920A (en) All solid lithium secondary battery and method of manufacturing the same
JP2004303715A (en) Battery
JP2012038433A (en) Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees