JP5794869B2 - Mask for forming solid electrolyte membrane and method for producing lithium secondary battery - Google Patents

Mask for forming solid electrolyte membrane and method for producing lithium secondary battery Download PDF

Info

Publication number
JP5794869B2
JP5794869B2 JP2011198614A JP2011198614A JP5794869B2 JP 5794869 B2 JP5794869 B2 JP 5794869B2 JP 2011198614 A JP2011198614 A JP 2011198614A JP 2011198614 A JP2011198614 A JP 2011198614A JP 5794869 B2 JP5794869 B2 JP 5794869B2
Authority
JP
Japan
Prior art keywords
mask
solid electrolyte
secondary battery
lithium secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011198614A
Other languages
Japanese (ja)
Other versions
JP2013060618A (en
Inventor
佐々木 俊介
俊介 佐々木
光隆 廣瀬
光隆 廣瀬
慶一郎 浅川
慶一郎 浅川
哲平 橋本
哲平 橋本
神保 武人
武人 神保
弘綱 鄒
弘綱 鄒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011198614A priority Critical patent/JP5794869B2/en
Publication of JP2013060618A publication Critical patent/JP2013060618A/en
Application granted granted Critical
Publication of JP5794869B2 publication Critical patent/JP5794869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、薄膜形成の技術分野に係り、特に、リチウムイオン電池の固体電解質層を形成する技術に関する。   The present invention relates to the technical field of thin film formation, and more particularly to a technology for forming a solid electrolyte layer of a lithium ion battery.

薄膜リチウムイオン二次電池の固体電解質層を形成する際には、スパッタリング装置内に搬入した成膜対象物の表面に、所定形状の貫通孔を有するマスクを配置し、貫通孔を通過したスパッタリング粒子によって、成膜対象物上に、貫通孔と同じパターンの固体電解質層を形成する。   When forming a solid electrolyte layer of a thin film lithium ion secondary battery, a mask having through holes of a predetermined shape is arranged on the surface of a film formation target carried into a sputtering apparatus, and the sputtered particles that have passed through the through holes Thus, a solid electrolyte layer having the same pattern as the through hole is formed on the film formation target.

このマスクについては、金属を母材とするのが一般的であり、Liを含有する固体電解質層を正極層に形成する際に、正極層の下層の正極集電層が露出しているおり、固体電解質層が形成されると、マスクと正極集電層間に形成される電場により、Liイオンの偏り、イオンマイグレーションが発生する。   About this mask, it is common to use a metal as a base material, and when forming a solid electrolyte layer containing Li on the positive electrode layer, the positive electrode current collecting layer under the positive electrode layer is exposed, When the solid electrolyte layer is formed, Li ions are biased and ion migration occurs due to an electric field formed between the mask and the positive electrode current collecting layer.

このイオンマイグレーションによって基板上やマスク上にデンドライト状の析出物が形成され、成膜対象物上で、析出物によって正極と負極とが短絡し、大幅に歩留まりが低下する問題が発生する。   Due to this ion migration, a dendrite-like precipitate is formed on the substrate or the mask, and the positive electrode and the negative electrode are short-circuited by the precipitate on the film formation target, resulting in a problem of a significant decrease in yield.

マスクの材質をセラミックスの様な絶縁物にして、マスクと集電層との間に電界が形成されないようにしても、マスクを固定する金具の周辺にデンドライト状の析出物が形成され、パーティクルが発生し、また、固体電解質層中のLiが不足することから、固体電解質層が変質するという問題がある。   Even if the mask is made of an insulating material such as ceramic so that an electric field is not formed between the mask and the current collecting layer, dendritic precipitates are formed around the metal fittings to fix the mask, and particles are In addition, since the Li in the solid electrolyte layer is insufficient, there is a problem that the solid electrolyte layer is altered.

特開2007−103130号公報JP 2007-103130 A

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、デンドライト状の析出物を発生させずに個体電解質層を形成する技術を提供することにある。   The present invention was created to solve the above-described disadvantages of the prior art, and an object thereof is to provide a technique for forming a solid electrolyte layer without generating dendritic precipitates.

本願発明の発明者等は、リチウムイオンが電界の影響で移動することが析出の原因であると考えたが、電界が形成されることは避けることができないことも判明した。
そこで、リチウムイオンを移動させないためには、移動するリチウムを固体、即ちマスク表面に吸収して固定すればよいことに考えが至った。
The inventors of the present invention considered that lithium ions move under the influence of an electric field as a cause of precipitation, but it was also found that the formation of an electric field cannot be avoided.
Therefore, in order to prevent lithium ions from moving, it has been thought that the moving lithium may be absorbed and fixed on a solid, that is, the mask surface.

本発明は、上記知見に基づいて創作されたものであり、本発明では、マスクを正極材料で構成することができ、また、マスクを負極材料で構成することもできる。
そして本発明は、リチウム二次電池の正極と負極との間に配置される固体電解質層をスパッタリング法によって基板上に形成する際に前記基板上に配置されるマスクであって、前記マスクは、スパッタリング粒子を通過させない遮蔽部と、前記スパッタリング粒子を通過させる通過部とを有し、表面には、Liを吸収する素材であるグラファイト、ハードカーボン、Si、Sn、SiO、SnO、Nb 2 5 、Li 4 Ti 5 12 、TiO 2 、LiCoO 2 、LiNiO 2 、LiMn 2 4 、LiFePO 4 、V 2 5 、FeF 3 、又はSが露出された固体電解質膜形成用のマスクである。
また、本発明は、Liを吸収する前記素材は、LiCoO2又はグラファイトのいずれか一方又は両方であるマスクである。
また、本発明は、基板表面に形成され、正極と負極との間に配置される固体電解質層を、スパッタリング粒子を通過させない遮蔽部と、前記スパッタリング粒子を通過させる通過部とを有するマスクを、前記正極と前記負極のいずれか一方が前記基板上に形成された成膜対象物に配置して形成するリチウム二次電池の製造方法であって、表面にLiを吸収する素材であるグラファイト、ハードカーボン、Si、Sn、SiO、SnO、Nb 2 5 、Li 4 Ti 5 12 、TiO 2 、LiCoO 2 、LiNiO 2 、LiMn 2 4 、LiFePO 4 、V 2 5 、FeF 3 、又はSが露出するマスクを配置し、Liを含有する化合物から成るターゲットをスパッタリングし、スパッタリング粒子に前記マスクに設けられた通過部を通過させ、前記通過部底面の前記成膜対象物の表面に固体電解質膜を形成するリチウム二次電池の製造方法である。
また、本発明は、Liを吸収する前記素材は、LiCoO2又はグラファイトのいずれか一方又は両方であるリチウム二次電池の製造方法である。
また、本発明は、前記ターゲットはLi3PO4で構成されたリチウム二次電池の製造方法である。
The present invention has been created based on the above knowledge. In the present invention, the mask can be made of a positive electrode material, and the mask can be made of a negative electrode material.
And this invention is a mask arrange | positioned on the said board | substrate when forming the solid electrolyte layer arrange | positioned between the positive electrode and negative electrode of a lithium secondary battery on a board | substrate by sputtering method, Comprising: a shielding portion that does not pass through the sputtered particles, and a passage portion for passing the sputtering particles, the surface of graphite which is a material that absorbs Li, hard carbon, Si, Sn, SiO, SnO , Nb 2 O 5 , Li 4 Ti 5 O 12 , TiO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , V 2 O 5 , FeF 3 , or S is a mask for forming a solid electrolyte membrane.
In the present invention, the material that absorbs Li is a mask that is one or both of LiCoO 2 and graphite.
Further, the present invention provides a mask having a shielding part that does not allow sputtering particles to pass through the solid electrolyte layer that is formed on the substrate surface and is disposed between the positive electrode and the negative electrode, and a passing part that allows the sputtering particles to pass through. A method of manufacturing a lithium secondary battery in which one of the positive electrode and the negative electrode is disposed on a film formation target formed on the substrate, and is a material that absorbs Li on its surface. Carbon, Si, Sn, SiO, SnO, Nb 2 O 5 , Li 4 Ti 5 O 12 , TiO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , V 2 O 5 , FeF 3 , or S a mask that exposed place, by sputtering a target composed of a compound containing Li, is passed through the passage portion provided in said mask in sputtering particles, the A method for producing a lithium secondary battery to form a solid electrolyte film on the surface of the object to be film over-section bottom.
Further, the present invention is the method for manufacturing a lithium secondary battery, wherein the material that absorbs Li is either one or both of LiCoO 2 and graphite.
The present invention is also a method for manufacturing a lithium secondary battery in which the target is composed of Li 3 PO 4 .

本発明によれば、デンドライト状の析出物の発生が防止されるので、高歩留まりで固体電解質層を形成することができ、又、リチウムイオン二次電池の信頼性も高い。   According to the present invention, since the generation of dendritic precipitates is prevented, a solid electrolyte layer can be formed with a high yield, and the reliability of the lithium ion secondary battery is high.

(a)、(b):本発明に用いることができるスパッタリング装置の一例(a), (b): An example of a sputtering apparatus that can be used in the present invention (a)〜(f):本発明のリチウム二次電池を製造する工程を説明するための図(a)-(f): The figure for demonstrating the process of manufacturing the lithium secondary battery of this invention. 薄膜が形成された本発明に用いるマスクの例Example of mask used in the present invention with a thin film formed

図2(f)は、リチウム二次電池20の概略構造を示す断面図であり、基板11を有している。
ここでは基板11はガラス基板であり、基板11上に、それぞれパターニングされた正極集電体層12と、正極13と、固体電解質層14と、負極15とがこの順序で積層されており、負極15は、基板11上の離間した位置に配置された負極集電体層16と接触されている。図2(f)では、保護膜やパッケージは省略されている。
FIG. 2F is a cross-sectional view showing a schematic structure of the lithium secondary battery 20 and has a substrate 11.
Here, the substrate 11 is a glass substrate, and a positive electrode current collector layer 12, a positive electrode 13, a solid electrolyte layer 14, and a negative electrode 15, which are respectively patterned, are laminated on the substrate 11 in this order. 15 is in contact with the negative electrode current collector layer 16 disposed at a spaced position on the substrate 11. In FIG. 2F, the protective film and the package are omitted.

このリチウム二次電池20を充電するときには、直流電圧源の正電圧出力端子を正極集電体層12に接続し、負電圧出力端子を負極集電体層16に接続し、リチウム二次電池内部で正極と負極の間に位置する固体電解質層14に電圧を印加し、固体電解質層14の内部でリチウムイオンを正極から負極に向けて移動させ、負極内部に浸入させる。
放電させるときには、正極集電体層12と負極集電体層16との間に負荷を接続してリチウムイオンを固体電解質層14内部で負極から正極に移動させ、負荷に通電する。
When charging the lithium secondary battery 20, the positive voltage output terminal of the DC voltage source is connected to the positive electrode current collector layer 12, and the negative voltage output terminal is connected to the negative electrode current collector layer 16. Then, a voltage is applied to the solid electrolyte layer 14 positioned between the positive electrode and the negative electrode, and lithium ions are moved from the positive electrode toward the negative electrode inside the solid electrolyte layer 14 to enter the negative electrode.
When discharging, a load is connected between the positive electrode current collector layer 12 and the negative electrode current collector layer 16 to move lithium ions from the negative electrode to the positive electrode inside the solid electrolyte layer 14, and the load is energized.

このように、リチウム二次電池の正極と負極は、どちらもリチウムイオンを吸蔵し、放出できる特性を有しており、本発明は固体電解質層14を所望形状に形成する際にマスクを用いて固体電解質層14をスパッタリング成膜しており、本発明のマスクには、正極を構成できる物質と、負極を構成できる物質の両方とも使用し、電界によって移動するリチウムイオンを吸収することができる。   As described above, both of the positive electrode and the negative electrode of the lithium secondary battery have a property of occluding and releasing lithium ions, and the present invention uses a mask when forming the solid electrolyte layer 14 in a desired shape. The solid electrolyte layer 14 is formed by sputtering, and the mask of the present invention uses both a substance that can form a positive electrode and a substance that can form a negative electrode, and can absorb lithium ions that move by an electric field.

本願発明の工程を説明すると、図2(a)を参照し、本発明は、一枚の基板11上に複数個のリチウム二次電池を形成し、基板11を切断して一枚の基板11から複数個のリチウム二次電池を得るリチウム二次電池の製造方法であり、複数個のうちの一個のリチウムイオン二次電池を図(a)〜(f)に示して、その工程を説明する。   The process of the present invention will be described. Referring to FIG. 2A, the present invention forms a plurality of lithium secondary batteries on a single substrate 11 and cuts the substrate 11 to form a single substrate 11. A lithium secondary battery manufacturing method for obtaining a plurality of lithium secondary batteries from a plurality of lithium secondary batteries, wherein one of the plurality of lithium ion secondary batteries is shown in FIGS. .

同図では、一個の正極集電体層12が示されている。正極集電体層12はアルミニウムやニッケル等の金属で構成されており、その表面に、図2(b)に示すように、正極13を形成する。正極13は、ここではLiCoO2で構成されている。 In the figure, one positive electrode current collector layer 12 is shown. The positive electrode current collector layer 12 is made of a metal such as aluminum or nickel, and a positive electrode 13 is formed on the surface thereof as shown in FIG. Here, the positive electrode 13 is made of LiCoO 2 .

次に、正極13上に、パターニングされた固体電解質層14を形成する。図1(a)、(b)の符号40は、固体電解質層14を成膜するスパッタリング装置であり、真空槽41の内部に載置台45が配置されており、載置台45と対面する位置にはターゲット46が配置されている。   Next, a patterned solid electrolyte layer 14 is formed on the positive electrode 13. A reference numeral 40 in FIGS. 1A and 1B is a sputtering apparatus for forming the solid electrolyte layer 14. A mounting table 45 is disposed inside the vacuum chamber 41, and is located at a position facing the mounting table 45. The target 46 is arranged.

先ず、図1(a)に示すように、真空槽41内を真空排気装置42によって真空排気して真空雰囲気にしておき、真空雰囲気を維持しながら、正極13を形成した成膜対象物10を真空槽41内に搬入し、載置台45上に配置する。   First, as shown in FIG. 1A, the inside of the vacuum chamber 41 is evacuated by a vacuum evacuation device 42 to make a vacuum atmosphere, and the film formation target 10 on which the positive electrode 13 is formed is maintained while maintaining the vacuum atmosphere. It is carried into the vacuum chamber 41 and placed on the mounting table 45.

次に、マスク17aを、成膜対象物10に対して位置合わせして、成膜対象物10上に配置する。ここでは真空槽41の内部で配置したが、予め成膜対象物10とマスク17aとを真空槽41の外部で位置合わせして配置し、その状態で真空槽41内に搬入して載置台45上に配置してもよい。
載置台45上のターゲット46は板状に成形されたLi3PO4で構成されており、バッキングプレート47に取り付けられている。
Next, the mask 17 a is positioned on the film formation target 10 while being aligned with the film formation target 10. Here, the film forming object 10 and the mask 17a are aligned and arranged outside the vacuum tank 41 in advance, and are loaded into the vacuum tank 41 and placed on the mounting table 45. You may arrange on top.
A target 46 on the mounting table 45 is made of Li 3 PO 4 formed into a plate shape, and is attached to a backing plate 47.

バッキングプレート47は、交流電源48に接続されており、ガス導入系43から反応性ガスN2と、スパッタリングガスとを真空槽41内に導入し、交流電源48を動作させてバッキングプレート47に交流電圧を印加すると、ターゲット46がスパッタリングされ、ターゲット46の構成物質がターゲット46からスパッタリング粒子として飛び出す。 The backing plate 47 is connected to an AC power source 48, and reactive gas N 2 and sputtering gas are introduced from the gas introduction system 43 into the vacuum chamber 41, and the AC power source 48 is operated to exchange AC with the backing plate 47. When a voltage is applied, the target 46 is sputtered, and the constituent material of the target 46 jumps out of the target 46 as sputtered particles.

マスク17aは、スパッタリング粒子から成膜対象物10を遮蔽する遮蔽部21aと、遮蔽部21a間に設けられ、スパッタリング粒子を通過させる通過部22aとを有しており、通過部22aを通過したスパッタリング粒子は、成膜対象物10の表面に到達し、ターゲット46の構成物質が反応性ガスN2と反応して形成されたLiPONの薄膜が通過部22aと同じ平面形状に形成される。 The mask 17a includes a shielding portion 21a that shields the film formation target 10 from the sputtering particles, and a passage portion 22a that is provided between the shielding portions 21a and allows the sputtering particles to pass therethrough, and the sputtering that has passed through the passage portion 22a. The particles reach the surface of the film formation target 10, and a LiPON thin film formed by reacting the constituent material of the target 46 with the reactive gas N 2 is formed in the same planar shape as the passage portion 22a.

本発明のマスク17aは、グラファイト板が加工されて、グラファイトから成る遮蔽部21と、貫通孔である通過部22aとが形成されており、スパッタリングの際に形成される電界によって成膜対象物10上に到達したLiPON中のLi原子がマスク17a上に移動しても、グラファイト板中の平面状に炭素が結合したグラファイトシートの間にLi原子が進入するので、リチウムはマスク17aの表面に析出せず、デンドライト状の析出物は発生しない。   In the mask 17a of the present invention, a graphite plate is processed to form a shielding portion 21 made of graphite and a passage portion 22a that is a through hole, and the film formation target 10 is formed by an electric field formed during sputtering. Even if Li atoms in LiPON reaching the top move on the mask 17a, Li atoms enter between the graphite sheets in which carbon is bonded in a plane in the graphite plate, so that lithium is deposited on the surface of the mask 17a. Thus, no dendritic precipitate is generated.

図2(d)の符号14は、形成された固体電解質層14であり、スパッタリング装置40の真空槽41から固体電解質層14が形成された成膜対象物10を搬出し、他の成膜装置内に搬入して、図2(e)に示すように、露出する基板11の表面に負極集電体層16を形成する。   Reference numeral 14 in FIG. 2 (d) denotes the formed solid electrolyte layer 14, which unloads the film formation target 10 on which the solid electrolyte layer 14 is formed from the vacuum chamber 41 of the sputtering apparatus 40, and forms another film formation apparatus. Then, the negative electrode current collector layer 16 is formed on the exposed surface of the substrate 11 as shown in FIG.

この状態では、固体電解質層14と負極集電体層16とは表面が露出しており、この状態の成膜対象物10上にLi金属を堆積させると、固体電解質層14の表面と負極集電体層16の表面とに接触したLi金属から成る負極15が形成され、基板11上に形成されたリチウム二次電池20が得られる。
保護膜を形成した後、基板11を切断して基板11上の複数のリチウム二次電池20を分離させると、複数のリチウム二次電池が得られる。
In this state, the surfaces of the solid electrolyte layer 14 and the negative electrode current collector layer 16 are exposed. When Li metal is deposited on the film formation target 10 in this state, the surface of the solid electrolyte layer 14 and the negative electrode current collector layer 16 are exposed. The negative electrode 15 made of Li metal in contact with the surface of the electric conductor layer 16 is formed, and the lithium secondary battery 20 formed on the substrate 11 is obtained.
After forming the protective film, the substrate 11 is cut to separate the plurality of lithium secondary batteries 20 on the substrate 11 to obtain a plurality of lithium secondary batteries.

なお、本願発明のリチウム二次電池では、固体電解質層14には、Li2O−P25+N(LiPON),Li2O−B25+N(LiBON)等のガラス系固体電解質、Li2S−P25,Li2S−SiS等のガラス硫化物系固体電解質、Li2Ti37,Li3N,La0.5Li0.5TiO3等の結晶系固体電解質を用いることができる。 In the lithium secondary battery of the present invention, the solid electrolyte layer 14 has a glass-based solid electrolyte such as Li 2 O—P 2 O 5 + N (LiPON), Li 2 O—B 2 O 5 + N (LiBON), It is possible to use glass sulfide solid electrolytes such as Li 2 S—P 2 S 5 and Li 2 S—SiS, and crystalline solid electrolytes such as Li 2 Ti 3 O 7 , Li 3 N, La0.5Li0.5TiO 3. it can.

上記実施例では、負極としてはLi金属を用いたが、グラファイト、ハードカーボン等の炭素系負極材料を用いることができ、また、Si,Sn,SiO,SnO等の合金系負極を用いることができ、また、Nb25,Li4Ti5O12,TiO2等の酸化物系負極材料を用いることができる。
また、一般的ではないが、Al,Zn,Ga,Ge,Ag,Cd,In,Sb,Pb,Bi等の金属も用いることができる。
In the above embodiment, Li metal was used as the negative electrode, but carbon-based negative electrode materials such as graphite and hard carbon can be used, and alloy-based negative electrodes such as Si, Sn, SiO, and SnO can be used. Also, oxide-based negative electrode materials such as Nb 2 O 5 , Li 4 Ti 5 O 1 2 , and TiO 2 can be used.
Although not generally used, metals such as Al, Zn, Ga, Ge, Ag, Cd, In, Sb, Pb, and Bi can also be used.

正極には、LiCoO2、LiNiO2等の層上岩塩型正極材料を用いることができる他、LiMn24等のスピネル型正極材料、LiFePO4等のオリビン型正極材料、V25等の酸化バナジウム系正極材料、FeF3等のフッ化物正極材料、S等の硫化物系正極材料を用いることができる。
これら正極の構成材料と、負極の構成材料は、本発明のマスクを形成するマスク構成材料に用いることができる。
For the positive electrode, an upper layer rock salt type positive electrode material such as LiCoO 2 or LiNiO 2 can be used, a spinel type positive electrode material such as LiMn 2 O 4, an olivine type positive electrode material such as LiFePO 4 , V 2 O 5, etc. A vanadium oxide positive electrode material, a fluoride positive electrode material such as FeF 3 , or a sulfide positive electrode material such as S can be used.
These positive electrode constituent materials and negative electrode constituent materials can be used as mask constituent materials for forming the mask of the present invention.

上記実施例では、グラファイト板を加工してマスク17aを形成したが、図3に示すように、金属やセラミックス等のグラファイト以外の物質から成る母材19に貫通孔22bを形成し、貫通孔22bの内周面であり、貫通孔22b内に露出する面と、板状の母材19の少なくともターゲットに対面する面と、その面の反対側の面と、から成る表面にグラファイト薄膜23を形成し、表面にグラファイト薄膜23が露出するマスク17bを用いても良い。要するに、Liが析出する部分にグラファイト層が形成されていればよく、マスク17の全面にグラファイト層が形成されていなくてもよい。   In the above embodiment, the graphite plate is processed to form the mask 17a. However, as shown in FIG. 3, the through hole 22b is formed in the base material 19 made of a material other than graphite such as metal or ceramics, and the through hole 22b. The graphite thin film 23 is formed on a surface formed by a surface exposed in the through hole 22b, a surface of the plate-shaped base material 19 facing at least the target, and a surface opposite to the surface. Alternatively, a mask 17b in which the graphite thin film 23 is exposed on the surface may be used. In short, it is only necessary that the graphite layer is formed on the portion where Li is deposited, and the graphite layer may not be formed on the entire surface of the mask 17.

また、マスク17aを構成するマスクの材料や、母材19表面に形成する薄膜の材料は、グラファイトに限定されるものでは無く、Liイオンを吸収できる材料であればよく、正極や負極に用いられる物質はリチウムを吸収する素材であるから、正極の物質や負極の物質をマスク材料や薄膜材料にし、表面に露出させてもよい。   Further, the material of the mask constituting the mask 17a and the material of the thin film formed on the surface of the base material 19 are not limited to graphite, and any material that can absorb Li ions may be used. Since the substance is a material that absorbs lithium, the positive electrode substance or the negative electrode substance may be used as a mask material or a thin film material to be exposed on the surface.

例えば、グラファイトやLiCoO2がマスク材料と薄膜材料として使用でき、グラファイトとLiCoO2はリチウムを吸収した場合、Liイオン単独拡散層として侵入するため、基本的な材料の構造にあまり変化が無いため使用による劣化が少ない。従って、リチウムの析出物を発生させず、また、マスク起因のパーティクルも発生させずに、スパッタリングによってパターニングされた固体電解質層14を形成することができる。マスク17の表面には、LiCoO2又はグラファイトに代表される正極材料、負極材料が露出していれば良い。
なお、上記例では、正極13上に固体電解質層14を形成したが、負極を形成した後、負極上に固体電解質層を形成し、固体電解質層上に正極を形成してもよい。
For example, graphite or LiCoO 2 can be used as a mask material and thin film material. When graphite and LiCoO 2 absorb lithium, it penetrates as a Li ion single diffusion layer, so there is not much change in the basic material structure. There is little deterioration by. Therefore, the solid electrolyte layer 14 patterned by sputtering can be formed without generating lithium deposits and without generating particles due to the mask. It is only necessary that a positive electrode material and a negative electrode material typified by LiCoO 2 or graphite are exposed on the surface of the mask 17.
In the above example, the solid electrolyte layer 14 is formed on the positive electrode 13, but after forming the negative electrode, the solid electrolyte layer may be formed on the negative electrode, and the positive electrode may be formed on the solid electrolyte layer.

11……基板
13……正極
14……固体電解質層
15……負極
17……マスク
20……リチウム二次電池
46……ターゲット
11 ... Substrate 13 ... Positive electrode 14 ... Solid electrolyte layer 15 ... Negative electrode 17 ... Mask 20 ... Lithium secondary battery 46 ... Target

Claims (5)

リチウム二次電池の正極と負極との間に配置される固体電解質層をスパッタリング法によって基板上に形成する際に前記基板上に配置されるマスクであって、
前記マスクは、スパッタリング粒子を通過させない遮蔽部と、前記スパッタリング粒子を通過させる通過部とを有し、表面には、Liを吸収する素材であるグラファイト、ハードカーボン、Si、Sn、SiO、SnO、Nb 2 5 、Li 4 Ti 5 12 、TiO 2 、LiCoO 2 、LiNiO 2 、LiMn 2 4 、LiFePO 4 、V 2 5 、FeF 3 、又はSが露出された固体電解質膜形成用のマスク。
A mask disposed on the substrate when a solid electrolyte layer disposed between a positive electrode and a negative electrode of a lithium secondary battery is formed on the substrate by a sputtering method,
The mask has a shielding portion that does not pass through the sputtered particles, and a passage portion for passing the sputtering particles, the surface of graphite which is a material that absorbs Li, hard carbon, Si, Sn, SiO, SnO, Mask for forming a solid electrolyte film in which Nb 2 O 5 , Li 4 Ti 5 O 12 , TiO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , V 2 O 5 , FeF 3 , or S is exposed. .
Liを吸収する前記素材は、LiCoO2又はグラファイトのいずれか一方又は両方である請求項1記載のマスク。 The mask according to claim 1, wherein the material that absorbs Li is one or both of LiCoO 2 and graphite. 基板表面に形成され、正極と負極との間に配置される固体電解質層を、スパッタリング粒子を通過させない遮蔽部と、前記スパッタリング粒子を通過させる通過部とを有するマスクを、前記正極と前記負極のいずれか一方が前記基板上に形成された成膜対象物に配置して形成するリチウム二次電池の製造方法であって、
表面にLiを吸収する素材であるグラファイト、ハードカーボン、Si、Sn、SiO、SnO、Nb 2 5 、Li 4 Ti 5 12 、TiO 2 、LiCoO 2 、LiNiO 2 、LiMn 2 4 、LiFePO 4 、V 2 5 、FeF 3 、又はSが露出するマスクを配置し、Liを含有する化合物から成るターゲットをスパッタリングし、スパッタリング粒子に前記マスクに設けられた通過部を通過させ、前記通過部底面の前記成膜対象物の表面に固体電解質膜を形成するリチウム二次電池の製造方法。
A mask having a shielding part that does not allow sputtering particles to pass through and a passage part that allows the sputtering particles to pass through a solid electrolyte layer formed between the positive electrode and the negative electrode formed on the surface of the substrate is provided between the positive electrode and the negative electrode. A method for producing a lithium secondary battery in which any one is disposed and formed on a film formation target formed on the substrate,
Graphite, hard carbon, Si, Sn, SiO, SnO, Nb 2 O 5 , Li 4 Ti 5 O 12 , TiO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 which are materials that absorb Li on the surface , V 2 O 5 , FeF 3 , or a mask in which S is exposed, a target made of a Li- containing compound is sputtered, and a passing part provided in the mask is allowed to pass through the sputtered particles, and the passing part bottom face The manufacturing method of the lithium secondary battery which forms a solid electrolyte membrane on the surface of the said film-forming target object.
Liを吸収する前記素材は、LiCoO2又はグラファイトのいずれか一方又は両方である請求項3記載のリチウム二次電池の製造方法。 The method of manufacturing a lithium secondary battery according to claim 3, wherein the material that absorbs Li is one or both of LiCoO 2 and graphite. 前記ターゲットはLi3PO4で構成された請求項3又は4のいずれか1項記載のリチウム二次電池の製造方法。
The method of manufacturing a lithium secondary battery according to claim 3, wherein the target is made of Li 3 PO 4 .
JP2011198614A 2011-09-12 2011-09-12 Mask for forming solid electrolyte membrane and method for producing lithium secondary battery Active JP5794869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198614A JP5794869B2 (en) 2011-09-12 2011-09-12 Mask for forming solid electrolyte membrane and method for producing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198614A JP5794869B2 (en) 2011-09-12 2011-09-12 Mask for forming solid electrolyte membrane and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013060618A JP2013060618A (en) 2013-04-04
JP5794869B2 true JP5794869B2 (en) 2015-10-14

Family

ID=48185535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198614A Active JP5794869B2 (en) 2011-09-12 2011-09-12 Mask for forming solid electrolyte membrane and method for producing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5794869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972816B2 (en) 2013-03-22 2016-08-17 日本碍子株式会社 Honeycomb structure
TW201529873A (en) * 2014-01-24 2015-08-01 Applied Materials Inc Deposition of solid state electrolyte on electrode layers in electrochemical devices
TW201622229A (en) * 2014-08-28 2016-06-16 應用材料股份有限公司 Special mask to increase LiPON ionic conductivity and TFB fabrication yield

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118897A1 (en) * 2001-02-15 2003-06-26 Shinji Mino Solid electrolyte cell and production method thereof
JP2003132941A (en) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd Solid electrolyte secondary battery having capacitors formed integrally therewith
JP2004127743A (en) * 2002-10-03 2004-04-22 Matsushita Electric Ind Co Ltd Thin film battery
JP2007103130A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
JP5148902B2 (en) * 2007-03-16 2013-02-20 日本電信電話株式会社 All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
JP2009158416A (en) * 2007-12-27 2009-07-16 Ulvac Japan Ltd Manufacturing method for solid electrolyte thin film, parallel flat-plate type magnetron sputtering device, and manufacturing method for thin-film solid lithium ion secondary battery
JP2009179867A (en) * 2008-01-31 2009-08-13 Ulvac Japan Ltd Parallel flat plate type magnetron sputtering apparatus, method for producing solid electrolyte thin film, and method for producing thin film solid lithium ion secondary battery
JP2009211920A (en) * 2008-03-04 2009-09-17 Nippon Telegr & Teleph Corp <Ntt> All solid lithium secondary battery and method of manufacturing the same
JP5515308B2 (en) * 2009-02-03 2014-06-11 ソニー株式会社 Thin-film solid lithium ion secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013060618A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
TWI586022B (en) Forming an interconnection for solid-state batteries
CN104871361B (en) The maskless manufacture of vertical thin-film battery
JP5515307B2 (en) Thin-film solid lithium ion secondary battery
CA2594455C (en) Thin film lithium battery
JP7108409B2 (en) Electrochemical cell with protected negative electrode
US9356320B2 (en) Lithium battery having low leakage anode
US9083057B2 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
JP6190527B2 (en) Substrate for solid state battery
US20140234725A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
CN108134049B (en) Negative electrode layer, preparation method thereof, lithium battery cell and lithium battery
WO2011043267A1 (en) Non-aqueous electrolyte cell
KR100652324B1 (en) Solid electrolyte and all-solid battery using same
WO2011148824A1 (en) Nonaqueous electrolyte battery and method for producing same
JP2009259696A (en) Lithium cell
JP2008112635A (en) All solid lithium ion battery and its manufacturing method
JP5794869B2 (en) Mask for forming solid electrolyte membrane and method for producing lithium secondary battery
JP2009176644A (en) Lithium cell
JP2008218178A (en) Lithium ion cell
JP2017054761A (en) Method for inspecting all-solid lithium battery, and method for manufacturing all-solid lithium battery
JP6068241B2 (en) Method for manufacturing lithium ion battery
JP7070329B2 (en) Manufacturing method of all-solid-state battery
JP2008171734A (en) Manufacturing method of thin film battery
KR20110112067A (en) Thin film battery having improved anode characteristics and method of manufacturing the same
JP2012038433A (en) Thin-film solid secondary battery and method of manufacturing thin-film solid secondary battery
JP2009070591A (en) Cathode, all-solid battery and manufacturing method of all-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R150 Certificate of patent or registration of utility model

Ref document number: 5794869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250