JP2003132941A - Solid electrolyte secondary battery having capacitors formed integrally therewith - Google Patents

Solid electrolyte secondary battery having capacitors formed integrally therewith

Info

Publication number
JP2003132941A
JP2003132941A JP2001330495A JP2001330495A JP2003132941A JP 2003132941 A JP2003132941 A JP 2003132941A JP 2001330495 A JP2001330495 A JP 2001330495A JP 2001330495 A JP2001330495 A JP 2001330495A JP 2003132941 A JP2003132941 A JP 2003132941A
Authority
JP
Japan
Prior art keywords
solid electrolyte
film
capacitor
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001330495A
Other languages
Japanese (ja)
Inventor
Tatsuji Mino
辰治 美濃
Hiromu Matsuda
宏夢 松田
Shuji Ito
修二 伊藤
Kazuya Iwamoto
和也 岩本
Hiroshi Higuchi
洋 樋口
Masaya Ugaji
正弥 宇賀治
Yasuyuki Shibano
靖幸 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001330495A priority Critical patent/JP2003132941A/en
Publication of JP2003132941A publication Critical patent/JP2003132941A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte secondary battery having capacitors formed integrally therewith by which the capacitors required to be used together to respond to a larger current discharge such as a pulse discharge are not required to be mounted separately from the battery, and electronic equipment and circuit boards or the like can be downsized. SOLUTION: An oxidation film (b) is provided on a silicon substrate (a), upon which cells (g, i, l, n and p) are constituted and then the silicon substrate (a) and the cells' upper metal current collector (p) are connected electrically so that a lower metal current collector (g) may be served also as electrodes of the capacitors (a, b and g). As the electrodes and the capacitors are integrally formed, traditional capacitors to be mounted separately from the battery are not required, and the electronic equipment can be downsized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンデンサと共存
させてなるコンデンサ一体型の固体電解質二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor-integrated solid electrolyte secondary battery that coexists with a capacitor.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化に伴い、電池
についても小型化、軽量化の要望が強くなっている。こ
れまで、半導体チップのように劇的に縮小化が進んでい
る分野もある一方で、電池のように遅々として縮小化が
進まない分野もある。電池の小型化を進めるため、従来
からドライプロセスを用いて作製する固体電解質二次電
池が注目されており、特許開示もいくつかある。例え
ば、米国特許第5,567,660号、第5,512,
147号、特公昭61−165965号、特開平6−1
53412号、特開平10−284130号、特開20
00−106366等がある。しかしこれら固体電解質
二次電池は高いレート特性が望めず、パルス放電などの
大電流放電には適さないという課題がある。このため、
コンデンサとの併用が不可欠である。
2. Description of the Related Art As electronic devices have become smaller and lighter, there has been a strong demand for smaller and lighter batteries. Up to now, there are some fields such as semiconductor chips that have been drastically reduced in size, while there are fields such as batteries that have not been gradually reduced in size. In order to miniaturize the battery, solid electrolyte secondary batteries manufactured by using a dry process have been attracting attention, and some patent disclosures have been made. For example, US Pat. Nos. 5,567,660 and 5,512,
No. 147, Japanese Examined Patent Publication No. 61-165965, JP-A 6-1
No. 53412, JP-A-10-284130, JP-A-20
00-106366 and the like. However, these solid electrolyte secondary batteries cannot be expected to have high rate characteristics, and have a problem that they are not suitable for large-current discharge such as pulse discharge. For this reason,
Combined use with a capacitor is essential.

【0003】[0003]

【発明が解決しようとする課題】しかし、コンデンサは
外付け部品であり、電子機器の小型化の妨げになる。固
体電解質を用いることで半導体プロセスによる二次電池
の作製が可能となり、ドライプロセスであることから微
細加工を施すことができて、電池の小型化が実現でき
る。しかし外付け部品を用いることで、電子機器の小型
化の妨げになってしまう。
However, the capacitor is an external component, which hinders miniaturization of electronic equipment. By using a solid electrolyte, a secondary battery can be manufactured by a semiconductor process, and since it is a dry process, fine processing can be performed and a battery can be miniaturized. However, the use of external components hinders the miniaturization of electronic devices.

【0004】本発明は、このような課題を払拭すること
ができ、電子機器や回路基板等を小型化できるコンデン
サ一体型固体電解質二次電池を提供することを目的とす
る。
An object of the present invention is to provide a capacitor-integrated solid electrolyte secondary battery capable of overcoming such problems and downsizing electronic devices, circuit boards and the like.

【0005】[0005]

【課題を解決するための手段】請求項1記載のコンデン
サ一体型の固体電解質二次電池は、基板と、この基板上
に積層されたコンデンサ要素と、前記基板上の前記コン
デンサ要素の位置に積層された発電要素とを備えたもの
である。
A solid electrolyte secondary battery integrated with a capacitor according to claim 1, wherein a substrate, a capacitor element laminated on the substrate, and a capacitor element on the substrate are laminated on the substrate. And a generated power generation element.

【0006】請求項1記載のコンデンサ一体型の固体電
解質二次電池によれば、コンデンサと固体電解質二次電
池を同一基板上に積層して形成することにより、コンデ
ンサの外付けが不要にできるため、電子機器の小型化、
回路基板の縮小化に貢献することができる。とくに、コ
ンデンサと固体電解質二次電池を並列に接続した場合、
固体電解質二次電池単体では得られないハイレート放電
特性が得られる。
According to the solid electrolyte secondary battery integrated with a capacitor of claim 1, since the capacitor and the solid electrolyte secondary battery are laminated and formed on the same substrate, the external attachment of the capacitor is unnecessary. , Downsizing of electronic devices,
It can contribute to downsizing of the circuit board. Especially when a capacitor and a solid electrolyte secondary battery are connected in parallel,
High-rate discharge characteristics that cannot be obtained by a solid electrolyte secondary battery alone can be obtained.

【0007】請求項2記載のコンデンサ一体型の固体電
解質二次電池は、金属基板上に誘電体となる絶縁膜を設
け、その上に下部金属集電体膜、第1活物質層、固体電
解質層、第2活物質層、上部金属集電体膜からなる発電
要素が構成され、前記金属基板と前記上部金属集電体が
電気的に導通しており、前記下部金属集電体がコンデン
サの電極も兼ねていることを特徴とするものである。
According to a second aspect of the present invention, in the solid electrolyte secondary battery integrated with a capacitor, an insulating film serving as a dielectric is provided on a metal substrate, and a lower metal current collector film, a first active material layer, and a solid electrolyte are provided thereon. A power generation element including a layer, a second active material layer, and an upper metal current collector film, the metal substrate and the upper metal current collector are electrically connected, and the lower metal current collector is a capacitor. The feature is that it also serves as an electrode.

【0008】請求項2記載のコンデンサ一体型の固体電
解質二次電池によれば、金属基板上に絶縁膜を設け、そ
の上に電池を構成し、金属基板と電池の上部金属集電体
を電気的に導通させ、下部金属集電体がコンデンサの電
極も兼ねる構造とすることで、電池とコンデンサを一体
化できるため、従来の外付けコンデンサ部品が不要とな
り、電子機器の小型化が可能となる。
According to another aspect of the solid electrolyte secondary battery integrated with a capacitor, an insulating film is provided on a metal substrate, a battery is formed on the insulating film, and the metal substrate and an upper metal collector of the battery are electrically connected. Since the lower metal current collector also functions as a capacitor electrode, the battery and capacitor can be integrated, eliminating the need for conventional external capacitor components and enabling miniaturization of electronic devices. .

【0009】このコンデンサは金属基板とその上に形成
する絶縁膜例えば酸化膜上の下部金属集電体膜が電極と
して形成されるが、酸化膜の厚みと面積を制御すること
で、コンデンサの容量が決まる。また、このコンデンサ
は酸化膜と金属膜を積層することも可能なため、容量の
増大を自由に設定できる。
In this capacitor, a metal substrate and an insulating film formed on the metal substrate, for example, a lower metal current collector film on an oxide film are formed as electrodes. By controlling the thickness and area of the oxide film, the capacitance of the capacitor is increased. Is decided. Further, since this capacitor can also be formed by laminating an oxide film and a metal film, it is possible to freely set an increase in capacitance.

【0010】請求項3記載のコンデンサ一体型の固体電
解質二次電池は、金属基板上に誘電体となる第1の絶縁
膜を設け、その上に金属膜を設け、更にその上に誘電体
となる第2の絶縁膜を設け、更にその上に下部金属集電
体膜、第1活物質層、固体電解質層、第2活物質層、上
部金属集電体膜からなる発電要素が構成され、前記金属
基板と前記下部金属集電体が電気的に導通しており、前
記下部金属集電体がコンデンサの電極も兼ねており、前
記上部金属集電体と前記金属膜が電気的に導通している
ことを特徴とするものである。
According to a third aspect of the solid electrolyte secondary battery integrated with a capacitor, a first insulating film serving as a dielectric is provided on a metal substrate, a metal film is provided on the first insulating film, and a dielectric is further provided on the first insulating film. A second insulating film is provided, and a power generating element including a lower metal current collector film, a first active material layer, a solid electrolyte layer, a second active material layer, and an upper metal current collector film is further formed on the second insulating film. The metal substrate and the lower metal current collector are electrically connected, the lower metal current collector also serves as an electrode of a capacitor, and the upper metal current collector and the metal film are electrically connected. It is characterized by that.

【0011】請求項3記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2よりも大きなパルス放
電が可能となる。
According to the solid electrolyte secondary battery integrated with a capacitor described in claim 3, pulse discharge larger than that in claim 2 is possible.

【0012】請求項4記載のコンデンサ一体型の固体電
解質二次電池は、請求項2または請求項3において、絶
縁膜が酸化膜であるものである。
According to a fourth aspect of the present invention, in the solid electrolyte secondary battery integrated with a capacitor, the insulating film is an oxide film.

【0013】請求項4記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2または請求項3と同様
な効果がある。
According to the solid electrolyte secondary battery integrated with a capacitor described in claim 4, the same effect as in claim 2 or 3 can be obtained.

【0014】請求項5記載のコンデンサ一体型の固体電
解質二次電池は、請求項2または請求項3において、絶
縁膜がチッ化膜であるものである。
According to a fifth aspect of the present invention, in the capacitor-integrated solid electrolyte secondary battery according to the second or third aspect, the insulating film is a nitride film.

【0015】請求項5記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2または請求項3と同様
な効果がある。
According to the solid electrolyte secondary battery integrated with a capacitor described in claim 5, the same effect as in claim 2 or 3 can be obtained.

【0016】請求項6記載のコンデンサ一体型の固体電
解質二次電池は、請求項2または請求項3において、絶
縁膜が樹脂膜であるものである。
According to a sixth aspect of the present invention, in the solid electrolyte secondary battery integrated with a capacitor according to the second or third aspect, the insulating film is a resin film.

【0017】請求項6記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2または請求項3と同様
な効果がある。
According to the solid electrolyte secondary battery integrated with a capacitor described in claim 6, the same effect as in claim 2 or 3 can be obtained.

【0018】請求項7記載のコンデンサ一体型の固体電
解質二次電池は、請求項2または請求項3において、絶
縁膜がセラミック膜であるものである。
The solid electrolyte secondary battery integrated with a capacitor according to claim 7 is the solid electrolyte secondary battery according to claim 2 or 3, wherein the insulating film is a ceramic film.

【0019】請求項7記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2または請求項3と同様
な効果がある。
According to the solid electrolyte secondary battery integrated with a capacitor described in claim 7, the same effect as in claim 2 or 3 can be obtained.

【0020】請求項8記載のコンデンサ一体型の固体電
解質二次電池は、請求項2または請求項3において、金
属基板が半導体基板であるものである。
According to an eighth aspect of the present invention, in the solid electrolyte secondary battery integrated with a capacitor, in the second or third aspect, the metal substrate is a semiconductor substrate.

【0021】請求項8記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2または請求項3と同様
な効果がある。
According to the solid electrolyte secondary battery integrated with a capacitor described in claim 8, the same effect as in claim 2 or 3 can be obtained.

【0022】[0022]

【発明の実施の形態】本発明は、例えば金属基板上に酸
化膜を設け、この酸化膜上に発電要素を積層した構成と
することで、コンデンサと固体電解質二次電池の一体化
ができ、コンデンサと電池を併用する電子機器の小型
化、コストダウンができるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a capacitor and a solid electrolyte secondary battery can be integrated by providing an oxide film on a metal substrate and stacking a power generation element on this oxide film, for example. It is possible to reduce the size and cost of an electronic device that uses both a capacitor and a battery.

【0023】本発明の製造工程は、金属基板、半導体基
板のいずれかの基板上に、熱酸化法、CVD法、塗布等に
より酸化膜、チッ化膜、樹脂膜、セラミック膜などの絶
縁膜を所定の厚みと面積に形成する工程と、更にその上
に蒸着法、スパッタ法等により金属膜の薄膜を形成する
工程と、その金属膜上に第1活物質層、固体電解質層、
第2活物質層、上部金属集電体膜を塗布法、蒸着法、ス
パッタ法あるいはCVD法で形成(パターニング工程を含
む)する積層工程とから構成される。
In the manufacturing process of the present invention, an insulating film such as an oxide film, a nitride film, a resin film or a ceramic film is formed on any one of a metal substrate and a semiconductor substrate by a thermal oxidation method, a CVD method, coating or the like. A step of forming a predetermined thickness and area, further vapor deposition method, a step of forming a thin film of a metal film by a sputtering method, and the like, a first active material layer on the metal film, a solid electrolyte layer,
The second active material layer and the upper metal current collector film are formed by a coating method, a vapor deposition method, a sputtering method or a CVD method (including a patterning step).

【0024】コンデンサを形成する絶縁膜の層の上に形
成する金属膜はコンデンサの片側の電極と電池の下部集
電体を兼ねる。アニール処理が必要となる成膜工程は固
体電解質層より前工程に限られる。
The metal film formed on the insulating film layer forming the capacitor serves as an electrode on one side of the capacitor and also as a lower current collector of the battery. The film forming process requiring the annealing treatment is limited to the process before the solid electrolyte layer.

【0025】また、不導体基板を用いる場合は基板上に
金属薄膜の形成が必要となる。これらの工程は半導体プ
ロセスとほぼ同じであるため、半導体装置である集積回
路が形成された半導体基板において、コンデンサと固体
電解質二次電池の一体化積層体を形成することもでき
る。ここで用いる固体電解質層の薄膜材料としては,銀
イオン導電性固体電解質,銅イオン導電性固体電解質,
リチウムイオン導電性固体電解質,プロトン導電性固体
電解質を用いることができる。
When a non-conductive substrate is used, it is necessary to form a metal thin film on the substrate. Since these steps are almost the same as the semiconductor process, an integrated laminated body of the capacitor and the solid electrolyte secondary battery can be formed on the semiconductor substrate on which the integrated circuit which is the semiconductor device is formed. As the thin film material of the solid electrolyte layer used here, a silver ion conductive solid electrolyte, a copper ion conductive solid electrolyte,
A lithium ion conductive solid electrolyte or a proton conductive solid electrolyte can be used.

【0026】リチウムイオン導電性固体電解質薄膜を用
いた場合には,電極材料薄膜としては,LixCoO2
LixNiO2,LixMn24,LixTiS2,Lix
oS 2,LixMoO2,Lix25,Lix613,金
属リチウム,Li3/4Ti5/34等通常リチウム電池に
用いられる化合物を所望する電池電圧により組み合わせ
て用いることができる。
Uses a lithium ion conductive solid electrolyte thin film
If it is present, the electrode material thin film is LixCoO2
LixNiO2, LixMn2OFour, LixTiS2, LixM
oS 2, LixMoO2, LixV2OFive, LixV6O13,Money
Genus lithium, Li3/4Ti5/3OFourEtc. to normal lithium battery
Combination of compounds used depending on desired battery voltage
Can be used.

【0027】リチウムイオン導電性固体電解質として
は,Li2S−SiS2,Li3PO4−Li2S−Si
2,LiI−Li2S−SiS2,LiI,LiI−A
23,Li3N,Li3N−LiI−LiOH,Li2
O−SiO2,Li2O−B23,LiI−Li2S−P2
5,LiI−Li2S−B23,Li3.6Si0.60.4
4,LiI−Li3PO4−P25等が用いることがで
きる。
Lithium ion conductive solid electrolytes include Li 2 S-SiS 2 and Li 3 PO 4 -Li 2 S-Si.
S 2, LiI-Li 2 S -SiS 2, LiI, LiI-A
l 2 O 3, Li 3 N , Li 3 N-LiI-LiOH, Li 2
O-SiO 2, Li 2 O -B 2 O 3, LiI-Li 2 S-P 2
O 5, LiI-Li 2 S -B 2 S 3, Li 3.6 Si 0.6 P 0.4
O 4, LiI-Li 3 PO 4 -P 2 S 5 or the like can be used.

【0028】また,固体電解質薄膜に銅イオン導電体を
用いた場合には,金属Cu,Cu2S,CuxTiS2
Cu2Mo67.8等を用いることができる。銅イオン導
電性固体電解質としては,RbCu41.5Cl3.5,C
uI−Cu2O−MoO3,Rb4Cu167Cl13等を用
いることができる。
When a copper ion conductor is used for the solid electrolyte thin film, metal Cu, Cu 2 S, Cu x TiS 2 ,
Cu 2 Mo 6 S 7.8 or the like can be used. As the copper ion conductive solid electrolyte, RbCu 4 I 1.5 Cl 3.5 , C
uI-Cu 2 O-MoO 3 , Rb 4 Cu 16 I 7 Cl 13 and the like can be used.

【0029】固体電解質薄膜に銀イオン導電体を用いた
場合には,金属Ag,Ag0.72 5,AgxTiS2
を用いることができる。銀イオン導電体としてはα―A
gI,Ag64WO4,C65NHAg56,AgI−
Ag2O−MoO3,AgI−Ag2O−B23,AgI
−Ag2O−V25等を用いることができる。
A silver ion conductor was used for the solid electrolyte thin film.
In case of metal Ag, Ag0.7V2O Five, AgxTiS2etc
Can be used. Α-A as a silver ion conductor
gI, Ag6IFourWOFour, C6HFiveNHAgFiveI6, AgI-
Ag2O-MoO3, AgI-Ag2OB2O3, AgI
-Ag2O-V2OFiveEtc. can be used.

【0030】さらにプロトン導電性固体電解質を用いた
場合には形成する電池がニッケル水素電池の場合には,
負極にTiFe,ZnMn2,ZrV2,ZrNi2,C
aNi5,LaNi5,MmNi5,Mg2Ni,Mg2
u,正極にはNi(OH)2を用いることができる。プ
ロトン導電体としてはLaMg0.5Ce0.53,La2
27,α―Al23等を用いることができる。
Further, when the proton conductive solid electrolyte is used and the battery formed is a nickel hydrogen battery,
TiFe, ZnMn 2 , ZrV 2 , ZrNi 2 , C on the negative electrode
aNi 5 , LaNi 5 , MmNi 5 , Mg 2 Ni, Mg 2 C
u and Ni (OH) 2 can be used for the positive electrode. As the proton conductor, LaMg 0.5 Ce 0.5 O 3 , La 2 Z
r 2 O 7 , α-Al 2 O 3 or the like can be used.

【0031】[0031]

【実施例】以下、本発明の実施例について図を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】(実施例1)図1から図5は本発明にかか
る形成方法の工程順断面図を示している。図1の(1)
は3cm×3cmサイズのシリコン基板aを示す。まず
図1(2)に示すように熱酸化によってシリコン酸化膜
bを50Å形成する。熱酸化は1200℃の電熱炉中に
酸素ガス流量100cc/minで行う。その上に感光
性レジストをスピンコーター(1500rpm)を用い
て2000Åの膜厚に塗布し、100℃で30分間のベ
ーキングを行いレジスト膜cを形成する(図1
(3))。次に図1(4)に示すようにパターニングさ
れた石英マスクdを用いてPLA(Parallel
Line Aliener)露光装置により、短波長光
線eを照射する。その後、現像液に浸しレジスト膜cの
パターニングが完了する(図2(1))。次に、RIE
(Reactive Ion Etching)ドライ
エッチング装置を用いて、レジスト膜cが被覆していな
い部分のシリコン酸化膜bをエッチングする(図2
(2))。ドライエッチングはRF13.56MHz、
エッチングガスはCHF3 を用いて行う。最後にレジス
ト膜cをレジスト剥離液に浸漬して除去する(図2
(3))、これにより誘電体となる絶縁膜として、厚み
50Å、2.5cm×2.5cmサイズのシリコン酸化
膜bを形成する。次に図2(4)に示すようにパターニ
ングされた金属マスクd(SUS304)を用いて、真
空蒸着装置によりアルミメタルfを蒸着する(10mT
orr)。アルミメタルは、コンデンサ用の電極を兼ね
た下部金属集電体として、1μmの厚みで、サイズは
2.5cm×2.5cmの薄膜gとした。その後、図3
(1)に示すようにパターニングされた金属マスクd
(SUS304)を用いて、LiCoO2のhをスパッ
タする。スパッタ条件は200Wのパワー、Ar/O2
=3/1を20sccm、20mTorrとする。Li
CoO2は第1活物質層として、5μmの厚みで、サイ
ズは2cm×2cmの薄膜iとした。その後、図3
(2)に示すようにパターニングされた金属マスクd
(SUS304)を用いて、Li2S−SiS2−Li3
PO4のkをスパッタする。スパッタ条件は35Wのパ
ワー、N2雰囲気で、20mTorrの真空状態にす
る。Li2S−SiS2−Li3PO4は固体電解質層とし
て、1μmの厚みで、サイズは2cm×2cmの膜lと
した。更にその後、図3(3)に示すようにパターニン
グされた金属マスクd(SUS304)を用いて、金属
Liのmを蒸着する(10mTorr)。金属Liは第
2活物質層として、1μmの厚みで、サイズは2cm×
2cmの膜nとした。次に図4(1)に示すようにパタ
ーニングされた金属マスクd(SUS304)を用い
て、真空蒸着装置により銅メタルのoを蒸着する(10
mTorr)。銅メタルは上部金属集電体として、ステ
ップカバレッジを考慮して10μmの厚みで、サイズは
2.5cm×2.5cmの膜pとした。膜pの一部はシ
リコン基板aに延びているため、シリコン基板aと膜p
が電気的に導通する。最後に図4(2)に示すようにパ
ターニングされた金属マスクd(SUS304)を用い
て、エポキシ系樹脂qをスピンコーター(500rp
m)で塗布する。樹脂(日立化成製:SN9000S−
3)は5μmの厚みで、サイズは2.2cm×2.2c
mの膜rとした。
(Embodiment 1) FIGS. 1 to 5 show sectional views in order of steps of a forming method according to the present invention. Figure 1 (1)
Indicates a silicon substrate a having a size of 3 cm × 3 cm. First, as shown in FIG. 1B, a silicon oxide film b of 50 Å is formed by thermal oxidation. Thermal oxidation is carried out in an electric furnace at 1200 ° C. with an oxygen gas flow rate of 100 cc / min. A photosensitive resist is applied thereon with a film thickness of 2000Å using a spin coater (1500 rpm), and baked at 100 ° C. for 30 minutes to form a resist film c (FIG. 1).
(3)). Next, using a quartz mask d patterned as shown in FIG. 1D, PLA (Parallel) is used.
A short wavelength light beam e is irradiated by a line aligner exposure device. Then, the resist film c is dipped in a developing solution to complete the patterning of the resist film c (FIG. 2A). Next, RIE
Using a (Reactive Ion Etching) dry etching apparatus, the silicon oxide film b in a portion not covered with the resist film c is etched (FIG. 2).
(2)). Dry etching is RF13.56MHz,
The etching gas is CHF 3 . Finally, the resist film c is immersed in a resist stripping solution and removed (FIG. 2).
(3)), thereby forming a silicon oxide film b having a thickness of 50 cm and a size of 2.5 cm × 2.5 cm as an insulating film serving as a dielectric. Next, using a metal mask d (SUS304) patterned as shown in FIG. 2 (4), aluminum metal f is deposited by a vacuum deposition apparatus (10 mT).
orr). Aluminum metal was used as a lower metal current collector that also served as an electrode for a capacitor, and was a thin film g having a thickness of 1 μm and a size of 2.5 cm × 2.5 cm. After that, FIG.
Metal mask d patterned as shown in (1)
(SUS304) is used to sputter LiCoO 2 h. Sputtering conditions are 200 W power, Ar / O 2
= 3/1 is 20 sccm and 20 mTorr. Li
CoO 2 was used as the first active material layer and was a thin film i having a thickness of 5 μm and a size of 2 cm × 2 cm. After that, FIG.
Metal mask d patterned as shown in (2)
(SUS304), Li 2 S-SiS 2 -Li 3
Sputter k of PO 4 . The sputtering conditions are a power of 35 W, an N 2 atmosphere, and a vacuum state of 20 mTorr. Li 2 S—SiS 2 —Li 3 PO 4 was used as a solid electrolyte layer with a thickness of 1 μm and a film size of 2 cm × 2 cm. After that, using a metal mask d (SUS304) patterned as shown in FIG. 3C, m of metal Li is deposited (10 mTorr). The metal Li is used as the second active material layer and has a thickness of 1 μm and a size of 2 cm ×
The film n was 2 cm. Next, using a metal mask d (SUS304) patterned as shown in FIG. 4A, copper metal o is deposited by a vacuum deposition apparatus (10).
mTorr). The copper metal was used as an upper metal current collector, and a film p having a thickness of 10 μm and a size of 2.5 cm × 2.5 cm was formed in consideration of step coverage. Since part of the film p extends to the silicon substrate a, the silicon substrate a and the film p
Becomes electrically conductive. Finally, using a metal mask d (SUS304) patterned as shown in FIG. 4B, the epoxy resin q is spin-coated (500 rp).
Apply in m). Resin (manufactured by Hitachi Chemical: SN9000S-
3) has a thickness of 5 μm and a size of 2.2 cm × 2.2 c
The film r of m was used.

【0033】この様にして作成した電池は図5に示す
が、正常に充放電が行えた。電池容量は0.7mAhで
コンデンサを並列接続することで、10mA/2mse
cのパルス放電が行えた。コンデンサを接続しない場合
は10mAの放電はまったくできなかった。
The battery thus produced is shown in FIG. 5 and was able to be charged and discharged normally. The battery capacity is 0.7 mAh and 10 mA / 2 mse by connecting the capacitors in parallel.
The pulse discharge of c was performed. When the capacitor was not connected, discharge of 10 mA was not possible at all.

【0034】(実施例2)図6は、実施例2のコンデン
サ一体型の固体電解質二次電池の構造を示す。まず3c
m×3cmサイズ、厚み500μmのシリコン基板a上
に熱酸化によってシリコン酸化膜を50Å形成する。熱
酸化は1200℃の電熱炉中に酸素ガス流量100cc
/minで行う。その上に感光性レジストをスピンコー
ター(1500rpm)を用いて2000Åの膜厚に塗
布し、100℃で30分間のベーキングを行いレジスト
膜を形成する。次にパターニングされた石英マスク(S
US304)を用いてPLA(Parallel Li
ne Aliener)露光装置により、短波長光線を
照射する。その後、現像液に浸しレジスト膜のパターニ
ングが完了する。次に、RIE(Reactive I
on Etching)ドライエッチング装置を用い
て、レジスト膜が被覆していない部分のシリコン酸化膜
をエッチングする。ドライエッチングはRF13.56
MHz、エッチングガスはCHF3を用いて行う。最後
にレジスト膜をレジスト剥離液に浸漬して除去する。こ
れにより厚み50Å、2.5cm×2.5cmサイズの
シリコン酸化膜b1を形成する。その上にパターニング
された金属マスク(SUS304)を用いて、真空蒸着
装置によりアルミメタルを蒸着する(10mTor
r)。アルミメタルは1μmの厚みで、サイズは2.5
cm×2.5cmの薄膜g1とした。更にその上にパタ
ーニングされた金属マスク(SUS304)を設置し、
プラズマCVD(Chemical Vapor De
position)法によってシリコン酸化膜を形成す
る。反応ガスはSiH4、N2Oを用いて成長温度は38
0℃、プラズマは50kHz、4kWで発生する。その
後、パターニングされた金属マスクを取り除き、厚み5
0Å、2.0cm×2.0cmサイズのシリコン酸化膜
b2を得る。その上にパターニングされた金属マスク
(SUS304)を用いて、真空蒸着装置によりアルミ
メタルを蒸着する(10mTorr)。アルミメタルは
コンデンサの電極を兼ねた下部金属集電体として、1μ
mの厚みで、サイズは2.5cm×2.5cmの薄膜g
2とした。一部は薄膜g1の蒸着時にシリコン基板aに
形成された膜g1′に延びて、シリコン基板aと薄膜g
2が電気的に導通する。その後、パターニングされた金
属マスク(SUS304)を用いて、LiCoO2をス
パッタする。スパッタ条件は200Wのパワー、Ar/
2=3/1を20sccm、20mTorrとする。
LiCoO2は5μmの厚みで、サイズは2cm×2c
mの薄膜iとした。その後、パターニングされた金属マ
スク(SUS304)を用いて、Li2S−SiS2−L
3PO4をスパッタする。スパッタ条件は35Wのパワ
ー、N2雰囲気で、20mTorrの真空状態にする。
Li2S−SiS2−Li3PO4は1μmの厚みで、サイ
ズは2cm×2cmの膜lとした。更にその後、パター
ニングされた金属マスク(SUS304)を用いて、金
属Liを蒸着する(10mTorr)。金属Liは1μ
mの厚みで、サイズは2cm×2cmの膜nとした。次
にパターニングされた金属マスク(SUS304)を用
いて、真空蒸着装置により銅メタルを蒸着する(10m
Torr)。銅メタルはステップカバレッジを考慮して
10μmの厚みで、サイズは2.5cm×2.5cmの
膜pとした。その一部は薄膜g1に延びて上部金属集電
体である膜pと金属膜である膜g1が電気的に導通して
いる。最後にパターニングされた金属マスク(SUS3
04)を用いて、エポキシ系樹脂をスピンコーター(5
00rpm)で塗布する。樹脂(日立化成製:SN90
00S−3)は5μmの厚みで、サイズは2.2cm×
2.2cmの膜とした。
(Embodiment 2) FIG. 6 shows the structure of a capacitor-integrated solid electrolyte secondary battery of Embodiment 2. First 3c
A silicon oxide film of 50 Å is formed by thermal oxidation on a silicon substrate a having a size of m × 3 cm and a thickness of 500 μm. Thermal oxidation is carried out in an electric furnace at 1200 ° C with an oxygen gas flow rate of 100 cc
/ Min. A photosensitive resist is applied thereon to a film thickness of 2000Å using a spin coater (1500 rpm) and baked at 100 ° C. for 30 minutes to form a resist film. Next, a patterned quartz mask (S
US 304) using PLA (Parallel Li)
A short wavelength light beam is irradiated by a ne Aliener exposure device. Then, the resist film is dipped in a developing solution to complete the patterning of the resist film. Next, RIE (Reactive I)
on Etching) dry etching apparatus is used to etch the silicon oxide film in the portion not covered with the resist film. RF 13.56 for dry etching
MHz and etching gas is CHF 3 . Finally, the resist film is immersed in a resist stripping solution and removed. As a result, a silicon oxide film b1 having a thickness of 50Å and a size of 2.5 cm × 2.5 cm is formed. Using a patterned metal mask (SUS304) thereon, aluminum metal is vapor-deposited by a vacuum vapor deposition device (10 mTorr).
r). Aluminum metal has a thickness of 1 μm and a size of 2.5
A thin film g1 of cm × 2.5 cm was prepared . Further, a patterned metal mask (SUS304) is placed on it,
Plasma CVD (Chemical Vapor De)
A silicon oxide film is formed by the position method. The reaction gas was SiH 4 and N 2 O, and the growth temperature was 38.
At 0 ° C., plasma is generated at 50 kHz and 4 kW. Then, the patterned metal mask is removed, and the thickness 5
0Å, silicon oxide film of 2.0 cm x 2.0 cm size
b2 is obtained. Using a patterned metal mask (SUS304) thereon, aluminum metal is vapor-deposited by a vacuum vapor deposition device (10 mTorr). Aluminum metal is used as a lower metal current collector that doubles as a capacitor electrode.
Thin film g with a thickness of m and a size of 2.5 cm x 2.5 cm
It was set to 2. A part of the thin film g1 extends to the film g1 'formed on the silicon substrate a when the thin film g1 is deposited, and the silicon substrate a and the thin film g
2 becomes electrically conductive. Then, LiCoO 2 is sputtered using a patterned metal mask (SUS304). Sputtering conditions are 200 W power, Ar /
O 2 = 3/1 is set to 20 sccm and 20 mTorr.
LiCoO 2 has a thickness of 5 μm and a size of 2 cm × 2 c
A thin film i of m was used. Thereafter, using the patterned metal mask (SUS304), Li 2 S- SiS 2 -L
Sputter i 3 PO 4 . The sputtering conditions are a power of 35 W, an N 2 atmosphere, and a vacuum state of 20 mTorr.
Li 2 S—SiS 2 —Li 3 PO 4 was a film 1 having a thickness of 1 μm and a size of 2 cm × 2 cm. After that, metal Li is vapor-deposited (10 mTorr) using a patterned metal mask (SUS304). Metal Li is 1μ
A film n having a thickness of m and a size of 2 cm × 2 cm was used. Next, using a patterned metal mask (SUS304), copper metal is vapor-deposited by a vacuum vapor deposition device (10 m).
Torr). The copper metal has a thickness of 10 μm in consideration of step coverage and has a size of 2.5 cm × 2.5 cm. Part of it extends to the thin film g1, and the film p that is the upper metal current collector and the film g1 that is the metal film are electrically connected. Finally patterned metal mask (SUS3
04) was used to spin the epoxy resin into a spin coater (5
(00 rpm). Resin (manufactured by Hitachi Chemical: SN90)
00S-3) has a thickness of 5 μm and a size of 2.2 cm ×
The film was 2.2 cm.

【0035】この様にして作成した電池は、正常に充放
電が行えた。電池容量は0.7mAhでコンデンサを並
列接続することで、20mA/2msecのパルス放電
が行えた。コンデンサを接続しない場合は20mAの放
電はまったくできなかった。
The battery thus prepared could be charged and discharged normally. The battery capacity was 0.7 mAh, and by connecting the capacitors in parallel, pulse discharge of 20 mA / 2 msec was possible. When the capacitor was not connected, the discharge of 20 mA was not possible at all.

【0036】(実施例3)実施例1と電池の構成(形
状、膜厚、構造)、製造方法は同じにして、負極にC
u、固体電解質としてRbCuI1.5l3.5、正極にT
iS2を用いて固体電解質二次電池を作製した。レート
特性は実施例1のLi系に比べて低下したが、サイクル
寿命等は同等であった。また、コンデンサと電池と混成
することで10mA/2msecの放電ができた。
(Embodiment 3) The structure (shape, film thickness, structure) and manufacturing method of the battery are the same as in Embodiment 1, and the negative electrode is made of C.
u, RbCuI 1.5 Cl3.5 as the solid electrolyte, T as the positive electrode
A solid electrolyte secondary battery was produced using iS 2 . The rate characteristic was lower than that of the Li-based material of Example 1, but the cycle life was the same. Also, by mixing the capacitor and the battery, a discharge of 10 mA / 2 msec was possible.

【0037】Cu系の固体電解質としては他にRb4
167Cl13、Rb4Cu167Cl 13、CuI−Cu2
O−MoO3等も有効であった。
Another Cu-based solid electrolyte is Rb.FourC
u16I7Cl13, RbFourCu16I7Cl 13, CuI-Cu2
O-MoO3Etc. were also effective.

【0038】(実施例4)実施例2と電池の構成(形
状、膜厚、構造)、製造方法は同じにして、負極にA
g、固体電解質としてAg64WO4、正極にV25
用いて固体電解質二次電池を作製した。レート特性は実
施例1のLi系に比べて低下したが、サイクル寿命等は
同等であった。また、コンデンサと電池と混成すること
で20mA/2msecの放電ができた。
(Embodiment 4) The same constitution (shape, film thickness, structure) and manufacturing method as in Embodiment 2 was used, except that A was used as the negative electrode.
g, Ag 6 I 4 WO 4 as the solid electrolyte and V 2 O 5 as the positive electrode were used to prepare a solid electrolyte secondary battery. The rate characteristic was lower than that of the Li-based material of Example 1, but the cycle life was the same. Also, by mixing the capacitor and the battery, discharge of 20 mA / 2 msec was possible.

【0039】Ag系の固体電解質としては他にAgI−
Ag2O−MoO3、α―AgI、C 65NHAg56
AgI−Ag2O−B23、AgI−Ag2O−V35
も有効であった。
Other Ag-based solid electrolytes include AgI-
Ag2O-MoO3, Α-AgI, C 6HFiveNHAgFiveI6,
AgI-Ag2OB2O3, AgI-Ag2O-V3OFiveetc
Was also effective.

【0040】(実施例5)実施例1と電池の構成(形
状、膜厚、構造)、製造方法は同じにして、コンデンサ
絶縁膜が窒化珪素でも有効であった。酸化珪素を含めた
それらの無機化合物の厚みが50Å以上(100Å、5
00Å)でも有効であった。
(Embodiment 5) The structure (shape, film thickness, structure) and manufacturing method of the battery were the same as in Embodiment 1, and the capacitor insulating film was effective even if silicon nitride was used. The thickness of those inorganic compounds including silicon oxide is 50 Å or more (100 Å, 5
00Å) was also effective.

【0041】(実施例6)実施例1と電池の構成(形
状、膜厚、構造)、製造方法は同じにして、コンデンサ
の絶縁膜がエポキシ樹脂、ポリエステル樹脂、フェノー
ル樹脂、ポリイミド樹脂でも有効であった。
Example 6 The battery configuration (shape, film thickness, structure) and manufacturing method are the same as in Example 1, and the insulating film of the capacitor is effective even if it is an epoxy resin, polyester resin, phenol resin or polyimide resin. there were.

【0042】(実施例7)実施例1と電池の構成(形
状、膜厚、構造)、製造方法は同じにして、量産性を高
めるために、基板上に予め互いに距離を設けて複数個の
コンデンサおよび固体電解質二次電池を形成し、全面に
保護膜を形成した後で各コンデンサ一体型の固体電解質
電池の間に設けてある間隔にそってダイヤモンドカッタ
ーで切断し(ダイシング法)、複数の各コンデンサ一体
型の固体電解質電池を得た。その際、コンデンサ一体型
の固体電解質電池の積層体間に一定の距離を設けてある
ために積層体に与えるダメージがなく切断できた。ま
た、切断面から水分の侵入も防ぐことができ、量産性に
優れ、安価で薄型、優れた信頼性のコンデンサ一体型の
固体電解質電池を得た。この様にして作製した電池は、
正常に充放電が行えた。電池容量は0.7mAhでコン
デンサを並列接続することで、10mA/2msecの
パルス放電が行えた。コンデンサを接続しない場合は1
0mAの放電はまったくできなかった(実施例8)実施
例1において完成したコンデンサ一体型の固体電解質電
池を、半導体装置で用いられるリードフレーム上に銀ペ
ーストで接着し、200℃加熱硬化15分の後、集積回
路と電池の混成チップとアウターリードを金ワイヤーで
ワイヤーボンダ−を使って接続した。その後、半導体チ
ップをパッケージングするようにエポキシ樹脂(日立化
成製)を使って、トランスファー成形した。あるいは、
ブチルゴム系樹脂(日東電工製:LSS810)をディ
ップした。あるいは、アウターリードが外部端子となる
ように液晶ポリマーフィルム(クラレ製)で挟み、28
0℃加熱シールを行った。これらいずれの場合も10m
A/2msecの放電が可能で、固体電解質二次電池は
正常に充放電が行えた。
(Embodiment 7) The configuration (shape, film thickness, structure) and manufacturing method of the battery are the same as those in Embodiment 1, and a plurality of substrates are provided with a distance from each other in advance on the substrate in order to enhance mass productivity. After forming a capacitor and a solid electrolyte secondary battery, forming a protective film on the entire surface, cut with a diamond cutter along the intervals provided between the solid electrolyte batteries of each capacitor integrated type (dicing method), A solid electrolyte battery of each capacitor type was obtained. At that time, since a constant distance was provided between the laminated bodies of the capacitor-integrated solid electrolyte battery, the laminated bodies could be cut without damage. Further, it is possible to prevent the intrusion of water from the cut surface, to obtain a mass-produced, inexpensive, thin, and reliable capacitor-integrated solid electrolyte battery. The battery produced in this way is
It was able to charge and discharge normally. The battery capacity was 0.7 mAh, and 10 mA / 2 msec pulse discharge could be performed by connecting the capacitors in parallel. 1 if no capacitor is connected
The discharge of 0 mA was not possible at all (Example 8). The capacitor-integrated solid electrolyte battery completed in Example 1 was bonded onto a lead frame used in a semiconductor device with a silver paste and heat-cured at 200 ° C. for 15 minutes. After that, the hybrid chip of the integrated circuit and the battery and the outer lead were connected with a gold wire using a wire bonder. After that, transfer molding was performed using an epoxy resin (manufactured by Hitachi Chemical Co., Ltd.) so as to package the semiconductor chip. Alternatively,
Butyl rubber resin (manufactured by Nitto Denko: LSS810) was dipped. Alternatively, the outer leads are sandwiched between liquid crystal polymer films (made by Kuraray) so that they serve as external terminals.
A 0 ° C. heat seal was performed. 10m in any of these cases
A / 2 msec discharge was possible, and the solid electrolyte secondary battery could be normally charged and discharged.

【0043】[0043]

【発明の効果】請求項1記載のコンデンサ一体型の固体
電解質二次電池によれば、コンデンサと固体電解質二次
電池を同一基板上に積層して形成することにより、コン
デンサの外付けが不要にできるため、電子機器の小型
化、回路基板の縮小化に貢献することができる。とく
に、コンデンサと固体電解質二次電池を並列に接続した
場合、固体電解質二次電池単体では得られないハイレー
ト放電特性が得られる。
According to the solid electrolyte secondary battery integrated with a capacitor according to the first aspect of the present invention, the capacitor and the solid electrolyte secondary battery are laminated and formed on the same substrate, thereby eliminating the need for external attachment of the capacitor. Therefore, it is possible to contribute to downsizing of electronic devices and downsizing of circuit boards. In particular, when the capacitor and the solid electrolyte secondary battery are connected in parallel, high rate discharge characteristics that cannot be obtained by the solid electrolyte secondary battery alone can be obtained.

【0044】請求項2記載のコンデンサ一体型の固体電
解質二次電池によれば、金属基板上に絶縁膜を設け、そ
の上に電池を構成し、金属基板と電池の上部金属集電体
を電気的に導通させ、下部金属集電体がコンデンサの電
極も兼ねる構造とすることで、電池とコンデンサを一体
化できるため、従来の外付けコンデンサ部品が不要とな
り、電子機器の小型化が可能となる。
According to another aspect of the solid electrolyte secondary battery with a built-in capacitor, the insulating film is provided on the metal substrate, the battery is formed on the insulating film, and the metal substrate and the upper metal collector of the battery are electrically connected. Since the lower metal current collector also functions as a capacitor electrode, the battery and capacitor can be integrated, eliminating the need for conventional external capacitor components and enabling miniaturization of electronic devices. .

【0045】このコンデンサは金属基板とその上に形成
する絶縁膜例えば酸化膜上の下部金属集電体膜が電極と
して形成されるが、酸化膜の厚みと面積を制御すること
で、コンデンサの容量が決まる。また、このコンデンサ
は酸化膜と金属膜を積層することも可能なため、容量の
増大を自由に設定できる。
In this capacitor, a metal substrate and an insulating film formed on the metal substrate, for example, a lower metal current collector film on an oxide film are formed as electrodes. By controlling the thickness and area of the oxide film, the capacitance of the capacitor is reduced. Is decided. Further, since this capacitor can also be formed by laminating an oxide film and a metal film, it is possible to freely set an increase in capacitance.

【0046】請求項3記載のコンデンサ一体型の固体電
解質二次電池によれば、請求項2よりも大きなパルス放
電が可能となる。
According to the capacitor-integrated solid electrolyte secondary battery of the third aspect, a larger pulse discharge than that of the second aspect becomes possible.

【0047】請求項4から請求項8記載のコンデンサ一
体型の固体電解質二次電池によれば、請求項2または請
求項3と同様な効果がある。
The capacitor-integrated solid electrolyte secondary battery according to any one of claims 4 to 8 has the same effect as that of claim 2 or claim 3.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコンデンサ一体型の固体電解質二次電
池の実施例1の電池の製造プロセスの一部を示す断面図
である。
1 is a cross-sectional view showing a part of a manufacturing process of a battery of Example 1 of a capacitor-integrated solid electrolyte secondary battery of the present invention.

【図2】図1に続く製造プロセスの断面図である。FIG. 2 is a cross-sectional view of the manufacturing process following FIG.

【図3】図2に続く製造プロセスの断面図である。FIG. 3 is a cross-sectional view of the manufacturing process subsequent to FIG.

【図4】図3に続く製造プロセスの断面図である。FIG. 4 is a cross-sectional view of the manufacturing process following FIG.

【図5】製造された固体電解質二次電池の断面図であ
る。
FIG. 5 is a cross-sectional view of a manufactured solid electrolyte secondary battery.

【図6】実施例2のコンデンサ一体型の固体電解質二次
電池の断面図である。
FIG. 6 is a cross-sectional view of a capacitor-integrated solid electrolyte secondary battery of Example 2.

【符号の説明】[Explanation of symbols]

a シリコン基板 b シリコン酸化膜 c フォトレジスト膜 d マスク e 短波長光線 f アルミ蒸着 g アルミメタル膜 h LiCoO2スパッタ i LiCoO2薄膜 k Li2S−SiS2−Li3PO4スパッタ l Li2S−SiS2−Li3PO4薄膜 m Liメタル蒸着 n Liメタル薄膜 o 銅蒸着 p 銅メタル膜 q 樹脂蒸着 r 樹脂保護膜a silicon substrate b silicon oxide film c photoresist film d mask e short wavelength light beam f aluminum deposition g aluminum metal film h LiCoO 2 sputter i LiCoO 2 thin film k Li 2 S-SiS 2 -Li 3 PO 4 sputter l Li 2 S- SiS 2 -Li 3 PO 4 thin film m Li metal deposition n Li metal thin o copper deposition p copper metal film q resin deposition r resin protective film

フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岩本 和也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 樋口 洋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宇賀治 正弥 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 柴野 靖幸 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA03 AA05 AA06 AA07 CC02 CC05 DD22 GG04 HH02 JJ15 5H017 AA03 AA04 AS06 AS08 BB00 CC01 DD05 EE05 5H029 AJ00 AJ14 AK02 AK03 AK05 AL11 AL12 AM11 AM12 AM13 BJ04 BJ12 CJ24 DJ02 DJ07 DJ11 EJ00 EJ01 EJ05 HJ12Continued front page    (72) Inventor Shuji Ito             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kazuya Iwamoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroshi Higuchi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Masaya Uga             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yasuyuki Shibano             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H011 AA03 AA05 AA06 AA07 CC02                       CC05 DD22 GG04 HH02 JJ15                 5H017 AA03 AA04 AS06 AS08 BB00                       CC01 DD05 EE05                 5H029 AJ00 AJ14 AK02 AK03 AK05                       AL11 AL12 AM11 AM12 AM13                       BJ04 BJ12 CJ24 DJ02 DJ07                       DJ11 EJ00 EJ01 EJ05 HJ12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板上に積層されたコンデ
ンサ要素と、前記基板上の前記コンデンサ要素の位置に
積層された発電要素とを備えたコンデンサ一体型の固体
電解質二次電池。
1. A solid electrolyte secondary battery integrated with a capacitor, comprising a substrate, a capacitor element laminated on the substrate, and a power generating element laminated on the substrate at the position of the capacitor element.
【請求項2】 金属基板上に誘電体となる絶縁膜を設
け、その上に下部金属集電体膜、第1活物質層、固体電
解質層、第2活物質層、上部金属集電体膜からなる発電
要素が構成され、前記金属基板と前記上部金属集電体が
電気的に導通しており、前記下部金属集電体がコンデン
サの電極も兼ねていることを特徴とするコンデンサ一体
型の固体電解質二次電池。
2. An insulating film serving as a dielectric is provided on a metal substrate, and a lower metal current collector film, a first active material layer, a solid electrolyte layer, a second active material layer, and an upper metal current collector film are provided on the insulating film. And a lower metal current collector also functions as an electrode of a capacitor. Solid electrolyte secondary battery.
【請求項3】 金属基板上に誘電体となる第1の絶縁膜
を設け、その上に金属膜を設け、更にその上に誘電体と
なる第2の絶縁膜を設け、更にその上に下部金属集電体
膜、第1活物質層、固体電解質層、第2活物質層、上部
金属集電体膜からなる発電要素が構成され、前記金属基
板と前記下部金属集電体が電気的に導通しており、前記
下部金属集電体がコンデンサの電極も兼ねており、前記
上部金属集電体と前記金属膜が電気的に導通しているこ
とを特徴とするコンデンサ一体型の固体電解質二次電
池。
3. A first insulating film serving as a dielectric is provided on a metal substrate, a metal film is provided thereon, and a second insulating film serving as a dielectric is further provided thereon, and a lower portion is further provided thereon. A power generation element including a metal current collector film, a first active material layer, a solid electrolyte layer, a second active material layer, and an upper metal current collector film is configured, and the metal substrate and the lower metal current collector are electrically connected to each other. The capacitor-integrated solid electrolyte is electrically connected, and the lower metal current collector also serves as an electrode of a capacitor, and the upper metal current collector and the metal film are electrically connected. Next battery.
【請求項4】 絶縁膜が酸化膜である請求項2または請
求項3記載のコンデンサ一体型の固体電解質二次電池。
4. The solid electrolyte secondary battery integrated with a capacitor according to claim 2, wherein the insulating film is an oxide film.
【請求項5】 絶縁膜がチッ化膜である請求項2または
請求項3記載のコンデンサ一体型の固体電解質二次電
池。
5. The capacitor-integrated solid electrolyte secondary battery according to claim 2, wherein the insulating film is a nitride film.
【請求項6】 絶縁膜が樹脂膜である請求項2または請
求項3記載のコンデンサ一体型の固体電解質二次電池。
6. The solid electrolyte secondary battery integrated with a capacitor according to claim 2 or 3, wherein the insulating film is a resin film.
【請求項7】 絶縁膜がセラミック膜である請求項2ま
たは請求項3記載のコンデンサ一体型の固体電解質二次
電池。
7. The solid electrolyte secondary battery integrated with a capacitor according to claim 2 or 3, wherein the insulating film is a ceramic film.
【請求項8】 金属基板が半導体基板である請求項2ま
たは請求項3記載のコンデンサ一体型の固体電解質二次
電池。
8. The solid electrolyte secondary battery integrated with a capacitor according to claim 2, wherein the metal substrate is a semiconductor substrate.
JP2001330495A 2001-10-29 2001-10-29 Solid electrolyte secondary battery having capacitors formed integrally therewith Pending JP2003132941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330495A JP2003132941A (en) 2001-10-29 2001-10-29 Solid electrolyte secondary battery having capacitors formed integrally therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330495A JP2003132941A (en) 2001-10-29 2001-10-29 Solid electrolyte secondary battery having capacitors formed integrally therewith

Publications (1)

Publication Number Publication Date
JP2003132941A true JP2003132941A (en) 2003-05-09

Family

ID=19146210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330495A Pending JP2003132941A (en) 2001-10-29 2001-10-29 Solid electrolyte secondary battery having capacitors formed integrally therewith

Country Status (1)

Country Link
JP (1) JP2003132941A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196235A (en) * 2005-01-12 2006-07-27 Hitachi Ltd Battery-capacitor composite element
JP2007115598A (en) * 2005-10-21 2007-05-10 Matsushita Electric Ind Co Ltd Electric device
JP2008532238A (en) * 2005-03-03 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for producing electrochemical energy source, electrochemical energy source obtained by the method, and electronic device
WO2010090124A1 (en) * 2009-02-03 2010-08-12 ソニー株式会社 Solid state thin film lithium ion secondary battery and manufacturing method therefor
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
JP2010251075A (en) * 2009-04-14 2010-11-04 Ulvac Japan Ltd Thin-film lithium secondary battery manufacturing device and thin-film lithium secondary battery manufacturing method
JP2013060618A (en) * 2011-09-12 2013-04-04 Ulvac Japan Ltd Mask for forming solid electrolyte membrane and method for producing lithium secondary battery
JP2014067603A (en) * 2012-09-26 2014-04-17 Fujitsu Ltd Lithium ion secondary battery and process of manufacturing the same
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
CN110663135A (en) * 2017-05-31 2020-01-07 Tdk电子股份有限公司 Hybrid energy supply circuit, use of a hybrid energy supply circuit and method for producing a hybrid energy supply circuit

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196235A (en) * 2005-01-12 2006-07-27 Hitachi Ltd Battery-capacitor composite element
JP2008532238A (en) * 2005-03-03 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for producing electrochemical energy source, electrochemical energy source obtained by the method, and electronic device
JP2007115598A (en) * 2005-10-21 2007-05-10 Matsushita Electric Ind Co Ltd Electric device
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
WO2010090124A1 (en) * 2009-02-03 2010-08-12 ソニー株式会社 Solid state thin film lithium ion secondary battery and manufacturing method therefor
JP2010182447A (en) * 2009-02-03 2010-08-19 Sony Corp Solid-state thin film lithium ion secondary battery, and method of manufacturing the same
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
JP2010251075A (en) * 2009-04-14 2010-11-04 Ulvac Japan Ltd Thin-film lithium secondary battery manufacturing device and thin-film lithium secondary battery manufacturing method
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
JP2013060618A (en) * 2011-09-12 2013-04-04 Ulvac Japan Ltd Mask for forming solid electrolyte membrane and method for producing lithium secondary battery
JP2014067603A (en) * 2012-09-26 2014-04-17 Fujitsu Ltd Lithium ion secondary battery and process of manufacturing the same
CN110663135A (en) * 2017-05-31 2020-01-07 Tdk电子股份有限公司 Hybrid energy supply circuit, use of a hybrid energy supply circuit and method for producing a hybrid energy supply circuit
JP2020522869A (en) * 2017-05-31 2020-07-30 テーデーカー エレクトロニクス アーゲー Hybrid energy supply circuit, use of the hybrid energy supply circuit, and method for manufacturing the hybrid energy circuit
US11552353B2 (en) 2017-05-31 2023-01-10 Tdk Electronics Ag Hybrid power supply circuit, use of a hybrid power supply circuit and method for producing a hybrid power supply circuit
CN110663135B (en) * 2017-05-31 2024-02-13 Tdk电子股份有限公司 Hybrid energy supply circuit, use of a hybrid energy supply circuit and method for producing a hybrid energy supply circuit
EP3631890B1 (en) * 2017-05-31 2024-03-06 TDK Electronics AG Hybrid power supply circuit, use of a hybrid power supply circuit and method for producing a hybrid power supply circuit

Similar Documents

Publication Publication Date Title
US20030118897A1 (en) Solid electrolyte cell and production method thereof
JP2003132941A (en) Solid electrolyte secondary battery having capacitors formed integrally therewith
US6264709B1 (en) Method for making electrical and electronic devices with vertically integrated and interconnected thin-film type battery
EP2044642B1 (en) Photolithographic manufacture of a solid-state microbattery
US8441102B2 (en) Semiconductor device having a capacitor
JP3708474B2 (en) Semiconductor device
US20040234847A1 (en) Solid state battery
CN110476292B (en) Anode structure of solid-state lithium-based thin-film battery
WO2004090982A1 (en) Battery-mounted integrated circuit device
US7235112B2 (en) Micro-battery fabrication process including formation of an electrode on a metal strip, cold compression and removal of the metal strip
JP2002352850A (en) Chip cell and its manufacturing method
EP2953161B1 (en) Secondary-battery-equipped circuit chip and manufacturing method therefor
US8242590B2 (en) Silicon wafer for semiconductor with powersupply system on the backside of wafer
JP3730164B2 (en) All-solid-state battery and manufacturing method thereof
JP2007026982A (en) Solid state battery and battery-mounted integrated circuit device
JP2003197164A (en) All solid battery built-in semiconductor device
JP2004234880A (en) Laminated battery
JP2003046077A (en) Semiconductor device
JP2003187763A (en) Electrochemical element
KR20000040454A (en) Secondary battery
JPH06120217A (en) Semiconductor device and its manufacture