KR20000040454A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
KR20000040454A
KR20000040454A KR1019980056107A KR19980056107A KR20000040454A KR 20000040454 A KR20000040454 A KR 20000040454A KR 1019980056107 A KR1019980056107 A KR 1019980056107A KR 19980056107 A KR19980056107 A KR 19980056107A KR 20000040454 A KR20000040454 A KR 20000040454A
Authority
KR
South Korea
Prior art keywords
solid electrolyte
secondary battery
multilayer thin
thin secondary
battery
Prior art date
Application number
KR1019980056107A
Other languages
Korean (ko)
Inventor
김호기
박용준
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019980056107A priority Critical patent/KR20000040454A/en
Publication of KR20000040454A publication Critical patent/KR20000040454A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A second battery is provided to reduce the size of the battery by using a solid electrolyte. CONSTITUTION: An anode material(2) is evaporated on one side surface of a solid electrolyte(1). A cathode material(3) is evaporated on the other side surface of the solid electrolyte(1). A wire material(4) is engaged with the outside of the solid electrolyte(1). A unit battery(5) is manufactured by engaging the wire material with the outside of the solid electrolyte(1). The unit battery(5) is stacked to manufacture a secondary battery(6). According to the secondary battery, the size of the battery is reduced by using a solid electrolyte(1).

Description

고체전해질을 이용한 다층박형 2차 전지Multi-layer thin secondary battery using solid electrolyte

본 발명은 고체전해질, 음극 및 양극물질을 이용하여 제조한 2차 전지를 적층한 후 전기적으로 병렬 또는 직렬로 연결한 다층박형 2차 전지에 관한 것이다.The present invention relates to a multilayer thin secondary battery in which secondary batteries prepared by using a solid electrolyte, a negative electrode, and a positive electrode material are stacked, and then electrically connected in parallel or in series.

최근 휴대용 전자기기의 대중화로 인하여 이들의 소자나 기기에 전력을 공급할 수 있는 2차 전지의 수요가 급격히 증가하고 있으나 현재 사용되고 있는 리튬 2차 전지는 주로 벌크형태로 제조된 것이 사용되는데 방전용량은 크지만 약 500번 정도의 충방전후에는 방전용량의 감소로 인하여 교체해 주어야 하는 불편이 있다.Recently, due to the popularization of portable electronic devices, the demand for secondary batteries capable of supplying power to these devices and devices is rapidly increasing, but the lithium secondary batteries currently used are mainly manufactured in bulk type, but the discharge capacity is large. After about 500 charge / discharge cycles, there is a inconvenience to replace due to a decrease in discharge capacity.

또한 최근 많이 연구되고 있는 박막 2차 전지의 경우 박막제조법을 이용하여 기판위에 양극, 음극 및 전해질을 증착하여 시제품형태로 발표되고 있는데 벌크형 전지에 비해 여러번 충방전을 계속하여도 거의 일정한 방전용량이 거의 반영구적으로 유지되는 장점이 있으나 두께가 얇아 방전용량이 적으므로 낮은 전력을 사용하는 마이크로 소자에는 사용이 가능하나 많은 전력이 요구되는 휴대용 기기나 소자에는 사용하기 어려운 단점이 있다.In addition, the thin film secondary battery, which is being studied a lot recently, is released as a prototype by depositing a positive electrode, a negative electrode, and an electrolyte on a substrate using a thin film manufacturing method. The semi-permanent advantage is maintained, but since the thickness is small, the discharge capacity is small, so it can be used for micro devices that use low power, but it is difficult to use for portable devices or devices that require a lot of power.

본 발명과 관련된 종래기술로서 2차 전지용 리튬망간 산화물 박막 전극 및 그 제조방법(한국공개특허번호 96-019834호)은 기판을 사용함으로써 1차원적인 전고상전지의 제조만이 가능하고, 또한 리튬 2차 전지의 제조방법(한국공개특허번호 97-013467호)은 후막을 이용하여 전지의 구성에 사용되는 전극물질을 제조하는 방법이다.As a related art of the present invention, a lithium manganese oxide thin film electrode for a secondary battery and a method of manufacturing the same (Korean Patent Publication No. 96-019834) can only manufacture a one-dimensional all-solid-state battery by using a substrate. The manufacturing method of a secondary battery (Korean Patent Laid-Open No. 97-013467) is a method of manufacturing an electrode material used in the construction of a battery using a thick film.

그러나 본 발명은 기판대신에 고체 전해질을 사용하여 다층으로 전지를 적층하여 방전용량을 늘림과 동시에 충방전시 방전용량의 감소도 줄일 수 있으며, 음극 또는 양극물질의 제조보다는 전체 전지의 구성을 2차원적으로 하는 전고상전지를 제조하는데 중점을 두고 있어 종래의 기술과 차이가 있다.However, the present invention can increase the discharge capacity by stacking cells in multiple layers by using a solid electrolyte instead of the substrate, and at the same time reduce the discharge capacity during charging and discharging. It focuses on manufacturing all-solid-state batteries, which are different from the prior art.

한편 종래기술에 관한 문헌으로서 브라우세(T. Brousse et al. J. of Power source 68, 1997 pp 412-415)등은 고체전해질을 기판처럼 사용하였으며 벌크형태의 전해질을 얇게 잘라 그 양면에 양극전극과 음극전극을 증착하여 전고상 전지셀을 구성한 것을 발표하였다. 또한 베이츠(J. B. Bates et al. J. of Power source 54 1995, pp 58-62)등은 전기빔 증기법(electron-Beam Evaporation)을 사용하여 LiMn2O4박막을 양극으로 이용한 박막전지를 제조하여 발표하였다. 그러나 본 발명은 기판이 아닌 고체 전해질에 증착을 하여 하나의 전고상 전지를 구성할 뿐만 아니라 그것을 다층으로 적층하여 방전용량 또는 방전전압을 늘려줄 수 있는 2차 전지를 제공한다.Meanwhile, T. Brousse et al. J. of Power source 68, 1997 pp 412-415, et al., Used a solid electrolyte as a substrate, and thinly cut the bulk electrolyte into the anode electrode on both sides. And a cathode electrode were deposited to form an all-solid-state battery cell. In addition, Bates et al. (JB Bates et al. J. of Power source 54 1995, pp 58-62) have fabricated a thin film cell using LiMn 2 O 4 thin film as an anode by means of electron-beam evaporation. Announced. However, the present invention provides a secondary battery capable of increasing the discharge capacity or the discharge voltage by not only forming a single solid-state battery by depositing a solid electrolyte but a substrate, and stacking it in multiple layers.

본 발명은 고체전해질을 얇은 두께로 제조하여 양면에 양극물질과 음극물질을 증착하여 전극을 만들고 이곳에 전기를 통할 수 있는 금속물질을 코팅하여 단위 전지를 제조한 후 그 전지를 다층으로 적층함으로써 방전용량을 증가시켜 휴대용 전자기기, 많은 전력을 필요로 하는 소자 또는 전자카드에 사용이 가능한 다층박형 2차 전지를 제공하는데 있다.In the present invention, a solid electrolyte is manufactured in a thin thickness to deposit an anode material and a cathode material on both sides to form an electrode, and a metal material that is electrically conductive therein is coated thereon to manufacture a unit cell, and then discharge the battery by stacking the cells in multiple layers. It is to provide a multilayer thin secondary battery that can be used in portable electronic devices, devices that require a lot of power, or electronic cards by increasing the capacity.

도 1은 본 발명의 단위 셀 구성도이다.1 is a unit cell configuration diagram of the present invention.

도 2는 본 발명의 다층박형 2차 전지 모델을 제시한 구성도이다.2 is a configuration diagram showing a multilayer thin secondary battery model of the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

1: 고체전해질 2: 양극물질 3: 음극물질1: solid electrolyte 2: positive electrode material 3: negative electrode material

4: 배선재료 5: 단위 전지 6: 다층박형 2차 전지4: wiring material 5: unit cell 6: multilayer thin secondary battery

본 발명에 의해 제조하는 다층박형 2차 전지의 부피를 작게 하기 위해서는 고체전해질의 두께를 최소한으로 하여야 한다. 고체전해질의 경우 액체전해질 또는 폴리머를 이용한 전해질 보다 이온의 전도성이 낮으므로 그 두께를 가능한 얇게 하여야 하며 이를 위해서는 기존의 칩형 전자부품을 제조하는 데 사용되고 있는 후막기법을 사용할 수 있다. 현재 후막기법을 이용해서는 3μm 정도까지 얇게 전해질을 제조할 수 있으며 이를 상용화하여 제조할 경우 매우 작은 부피로도 많은 방전용량을 가지며 반영구적으로 충방전하여 사용할 수 있는 2차 전지의 제조가 가능하다.In order to reduce the volume of the multilayer thin secondary battery produced by the present invention, the thickness of the solid electrolyte should be minimized. In the case of a solid electrolyte, since the conductivity of ions is lower than that of a liquid electrolyte or an electrolyte using a polymer, the thickness of the solid electrolyte should be as thin as possible. For this purpose, a conventional thick film technique used to manufacture chip electronic components may be used. Currently, the thick film technique can be used to manufacture electrolytes as thin as 3μm, and when commercialized to manufacture them, it is possible to manufacture secondary batteries that can be used by semi-permanent charging and discharging even with a very small volume.

본 발명의 다층박형 2차 전지는 다음과 같이 얻을 수 있다.The multilayer thin secondary battery of the present invention can be obtained as follows.

먼저 고체 전해질을 제조하는데 고체 전해질로는 Li3XLn0.67-XTiO3, LiXSr1-XTaxTi1-XO3또는 Li2XSr1-2XM0.5-XTa0.5+xO3과 같이 2차 전지에 사용될 수 있는 것을 벌크형태로 소결온도 1,300∼1,400℃로 제조한 후 0.01mm∼5mm의 두께로 얇게 자르거나 또는 후막기법인 슬립 케스팅법을 통해서 1㎛∼1,000㎛의 두께로 얇게 제조한다First, in the manufacture of a solid electrolyte, the solid electrolyte is Li 3X Ln 0.67-X TiO 3 , Li X Sr 1-X Ta x Ti 1-X O 3 or Li 2X Sr 1-2X M-X 0.5 Ta 0.5 O 3 + x What can be used in the secondary battery, such as in the form of a bulk in the sintering temperature of 1,300 ~ 1,400 ℃ and cut into a thin thickness of 0.01mm ~ 5mm or to a thickness of 1㎛ ~ 1,000㎛ through the thick film slip casting method I manufacture it thinly

한편 상기의 고체전해질에서 x의 범위는 0.1x0.67 이며 Ln은 La, Pr 또는 Nd을 사용할 수 있고, M은 Cr, Fe, Co, Al, Y, Ga 또는 In을 사용할 수 있다.Meanwhile, in the solid electrolyte, the range of x is 0.1x0.67 and Ln may use La, Pr or Nd, and M may use Cr, Fe, Co, Al, Y, Ga, or In.

이와 같이 제조된 고체전해질 양면에 양극과 음극 물질을 화학기상증착법(CVD), 스퍼터링법(Sputtering) 또는 졸-겔법(sol-gel)과 같은 박막증착법으로 100Å∼100㎛ 두께로 증착한다. 이때 양극은 V2O5, LiMn2O4, LiCoO2, LiNiO2또는 TiS2와 같은 리튬 2차 전지용 양극물질을 사용될 수 있으며, 음극으로는 리튬금속, SnO2, 하드카본 또는 흑연을 사용할 수 있다.The positive electrode and the negative electrode material are deposited on both surfaces of the solid electrolyte prepared as described above using a thin film deposition method such as chemical vapor deposition (CVD), sputtering, or sol-gel. In this case, the positive electrode may be a positive electrode material for a lithium secondary battery such as V 2 O 5 , LiMn 2 O 4 , LiCoO 2 , LiNiO 2, or TiS 2, and lithium metal, SnO 2 , hard carbon, or graphite may be used as the negative electrode. have.

고체 전해질 양면에 전극의 증착이 끝난 후 Au, Al, Cu, Ag, Pt 또는 Cr과 같은 배선재료를 박막 또는 후막기법을 사용하여 100Å∼1,000㎛의 두께로 음극과 양극위에 증착하여 도 1에서 나타낸 것과 같은 단위 전지를 제조한다. 이와 같이 제조한 단위 전지를 다층으로 적층하여 전기적으로 병렬 또는 직렬로 연결함으로써 다층박형 2차 전지를 제조할 수 있다. 도 2는 이와 같이 제조한 다층박형 2차 전지의 모델을 나타낸 것이다.After deposition of the electrodes on both sides of the solid electrolyte, a wiring material such as Au, Al, Cu, Ag, Pt, or Cr was deposited on the cathode and the anode with a thickness of 100 μm to 1,000 μm using a thin film or a thick film method, as shown in FIG. 1. Prepare a unit cell such as A multilayer thin secondary battery can be manufactured by stacking unit cells prepared in this way and electrically connecting them in parallel or in series. 2 shows a model of the multilayer thin secondary battery manufactured as described above.

이하 본 발명을 다음의 실시예에 의하여 설명하고자 한다. 그러나 이들에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described by the following examples. However, the technical scope of the present invention is not limited by these.

< 실시예 1><Example 1>

소결온도 1,300℃의 고상반응법에 의해 고체전해질(1) Li0.5La0.5TiO3을 제조한 후 1mm 두께로 절단하였다. 양극물질(2)로 LiMn2O4과 음극물질(3)로 리튬금속을 사용하여 고체전해질 양면에 졸-겔법(sol-gel)을 이용하여 100Å 두께로 증착하였다. 고체전해질의 양면에 음극과 양극이 증착된 외부에 배선재료(4)로 Au(금)을 스퍼터링(Sputtering)법에 의해 단위 전지(5)를 제조하였다. 이와 같은 단위 전지를 직렬로 연결하여 100개로 적층한 후 다층박형 2차 전지(6)를 제조하였다.Solid electrolyte (1) Li 0.5 La 0.5 TiO 3 was prepared by the solid phase reaction method at a sintering temperature of 1,300 ° C., and then cut to a thickness of 1 mm. LiMn 2 O 4 was used as the cathode material (2) and lithium metal was used as the anode material (3), and then, the sol-gel method (sol-gel) was deposited on both surfaces of the solid electrolyte to have a thickness of 100 Å. The unit cell 5 was manufactured by sputtering of Au (gold) as the wiring material 4 on the outside where the cathode and the anode were deposited on both sides of the solid electrolyte. Such unit cells were connected in series, stacked in 100 units, and a multilayer thin secondary battery 6 was prepared.

< 실시예 2><Example 2>

소결온도 1,400℃의 고상반응법에 의해 고체전해질(1) Li0.6Sr0.4Ta0.6Ti0.4O3을 제조한 후 0.5mm의 두께로 절단하고 배선재료(4)로 알루미늄을 사용하는 것을 제외하고는 실시예 1과 같은 방법으로 단위 전지(5)를 제조하였다. 이와 같이 단위 전지를 병렬로 연결하여 50개로 적층한 후 다층박형 2차 전지(6)를 제조하였다.A solid electrolyte (1) Li 0.6 Sr 0.4 Ta 0.6 Ti 0.4 O 3 was prepared by the solid-phase reaction method at a sintering temperature of 1,400 ° C., except that it was cut to a thickness of 0.5 mm and aluminum was used as the wiring material (4). The unit cell 5 was manufactured in the same manner as in Example 1. In this way, the unit cells were connected in parallel, stacked in 50 pieces, and a multilayer thin secondary battery 6 was prepared.

본 발명에 의해 제조한 다층 박형 2차 전지는 부피가 작지만 방전용량을 크게할 수 있어 전력용량이 많이 필요한 휴대용 전자기기나 소자의 전력원으로 사용될 수 있다. 또한 각종소자나 회로의 표면실장을 통해 연결하여 전력원으로 사용할 수 있어 다양한 부분에 응용할 수 있다.The multilayer thin secondary battery manufactured by the present invention can be used as a power source of a portable electronic device or a device that requires a lot of power capacity because of its small volume but a large discharge capacity. In addition, it can be used as a power source by connecting through surface mounting of various devices or circuits, and can be applied to various parts.

Claims (7)

고체전해질(1)의 한면에 양극물질(2)과 다른 한면에 음극물질(3)을 증착하고 그 외부에 배선재료(4)로 결합하여 단위 전지(5)를 제조한 후 단위 전지를 적층하여 2차 전지(6)를 제조하는 것을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.After depositing the positive electrode material (2) on one side of the solid electrolyte (1) and the negative electrode material (3) on the other side and the wiring material (4) on the outside to produce a unit cell (5), the unit cells are laminated A multilayer thin secondary battery using a solid electrolyte, characterized by producing a secondary battery (6). 제 1항에 있어서, 양극물질은 V2O5, LiMn2O4, LiCoO2, LiNiO2또는 TiS2을 사용하는 것을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.The multilayer thin secondary battery using a solid electrolyte according to claim 1, wherein the cathode material is V 2 O 5 , LiMn 2 O 4 , LiCoO 2 , LiNiO 2 or TiS 2 . 제 1항에 있어서, 음극물질은 리튬금속, SnO2, 하드카본 또는 흑연을 사용하는 것을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.The multilayer thin secondary battery using a solid electrolyte according to claim 1, wherein the negative electrode material is lithium metal, SnO 2 , hard carbon or graphite. 제 1항에 있어서, 고체전해질은 Li3XLn0.67-XTiO3, LiXSr1-XTaxTi1-XO3또는 Li2XSr1-2XM0.5-XTa0.5+xO3을 사용하는 것을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.The method of claim 1, wherein the solid electrolyte comprises the Li 3X Ln 0.67-X TiO 3 , Li X Sr 1-X Ta x Ti 1-X O 3 or Li 2X Sr 1-2X M-X 0.5 Ta 0.5 O 3 + x Multilayer thin secondary battery using a solid electrolyte, characterized in that used. 제 1항에 있어서, 고체전해질에 양극물질과 음극물질을 증착시 두께는 100Å∼100㎛ 임을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.The multilayer thin secondary battery using a solid electrolyte according to claim 1, wherein the thickness of the cathode material and the cathode material is 100 μm to 100 μm when the solid material is deposited. 제 1항에 있어서, 단위 전지를 직렬 또는 병렬로 연결하여 단위 전지를 적층하여 다층박형 2차 전지를 구성함을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.The multilayer thin secondary battery using a solid electrolyte according to claim 1, wherein the unit cells are stacked in series or in parallel to form a multilayer thin secondary battery. 제 4항에 있어서, 고체전해질의 x 범위는 0.1x0.67 이며 Ln은 La, Pr 또는 Nd 이고, M은 Cr, Fe, Co, Al, Y, Ga 또는 In인 것을 특징으로 하는 고체전해질을 이용한 다층박형 2차 전지.The method of claim 4, wherein the x range of the solid electrolyte is 0.1x0.67, Ln is La, Pr or Nd, M is Cr, Fe, Co, Al, Y, Ga or In using a solid electrolyte, characterized in that Multilayer thin secondary battery.
KR1019980056107A 1998-12-18 1998-12-18 Secondary battery KR20000040454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980056107A KR20000040454A (en) 1998-12-18 1998-12-18 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980056107A KR20000040454A (en) 1998-12-18 1998-12-18 Secondary battery

Publications (1)

Publication Number Publication Date
KR20000040454A true KR20000040454A (en) 2000-07-05

Family

ID=19563685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980056107A KR20000040454A (en) 1998-12-18 1998-12-18 Secondary battery

Country Status (1)

Country Link
KR (1) KR20000040454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734060B1 (en) 2005-06-24 2007-07-02 건국대학교 산학협력단 LLT SOLID ELECTROLYTE WITH LiPON PROTECTIVE LAYER, AND MANUFACTURING METHOD THEREOF

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734060B1 (en) 2005-06-24 2007-07-02 건국대학교 산학협력단 LLT SOLID ELECTROLYTE WITH LiPON PROTECTIVE LAYER, AND MANUFACTURING METHOD THEREOF

Similar Documents

Publication Publication Date Title
CN101542790B (en) Battery
US5612152A (en) Rechargeable lithium battery for use in applications requiring a low to high power output
US7632602B2 (en) Thin film buried anode battery
US7288340B2 (en) Integrated battery
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
KR101085355B1 (en) Lithium battery and method for manufacturing the same
KR100359055B1 (en) Thin film super capacitor and its fabrication method
WO2010090126A1 (en) Solid state thin film lithium ion secondary battery and manufacturing method therefor
CN103053061A (en) Layered solid-state battery
CN101395744A (en) Secondary battery, manufacturing method thereof and system thereof
WO2017195645A1 (en) Lithium ion secondary battery
WO2012176604A1 (en) Lithium ion secondary battery
EP3545577A1 (en) Li-ion based electrochemical energy storage cell
CN113614947A (en) Solid-state battery
KR101308096B1 (en) Anode for rechargeable lithium thin film battery, method of preparing thereof, and rechargeable lithium thin film battery comprising the same
KR100790844B1 (en) Thin film battery and fabrication method thereof
US20180013119A1 (en) Battery structure and method of manufacturing the same
CA3079064C (en) Solid-state thin film hybrid electrochemical cell
JP4381176B2 (en) Thin film solid secondary battery
CN113169374B (en) All-solid battery
CN110335982B (en) Micro-nano integrated solid film lithium battery and preparation method thereof
US20210167418A1 (en) All solid battery
KR20000040454A (en) Secondary battery
US20190221890A1 (en) Low-Voltage Microbattery
CN113169375B (en) All-solid battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application