JP2010225356A - Nonaqueous electrolyte battery and using method for the same - Google Patents

Nonaqueous electrolyte battery and using method for the same Download PDF

Info

Publication number
JP2010225356A
JP2010225356A JP2009069763A JP2009069763A JP2010225356A JP 2010225356 A JP2010225356 A JP 2010225356A JP 2009069763 A JP2009069763 A JP 2009069763A JP 2009069763 A JP2009069763 A JP 2009069763A JP 2010225356 A JP2010225356 A JP 2010225356A
Authority
JP
Japan
Prior art keywords
solid electrolyte
power generation
battery
pressure
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009069763A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Ogawa
光靖 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009069763A priority Critical patent/JP2010225356A/en
Publication of JP2010225356A publication Critical patent/JP2010225356A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery excelling in charging and discharging cycle characteristics. <P>SOLUTION: The nonaqueous electrolyte battery B is provided with a power-generating element E formed by lamination of a cathode 1, a solid electrolyte layer 3 and an anode 2. The cathode 1 is formed by deposition of LiCoO<SB>2</SB>on a stainless base material s by using a laser ablation method. The solid electrolyte layer 3 is formed through the deposition of Li<SB>2</SB>S-P<SB>2</SB>S<SB>5</SB>system solid electrolyte, by using the laser ablation method, and the anode 2 is formed by the deposition of Li by using vacuum deposition method. A pressure of 0.01-1.0 MPa is applied in the laminating direction of the power-generating element E by using a spacer 10 and a leaf spring 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質電池及びその使用方法に関する。   The present invention relates to a non-aqueous electrolyte battery and a method for using the same.

従来、携帯機器といった比較的小型の電気機器の電源に非水電解質電池が利用されている。この非水電解質電池の代表例として、正負極においてリチウムイオンの吸蔵・放出反応を利用したリチウムイオン二次電池(以下、単にリチウム二次電池と呼ぶ)が挙げられる。   Conventionally, non-aqueous electrolyte batteries have been used as power sources for relatively small electric devices such as portable devices. A typical example of this non-aqueous electrolyte battery is a lithium ion secondary battery (hereinafter, simply referred to as a lithium secondary battery) using a lithium ion storage / release reaction at the positive and negative electrodes.

このリチウム二次電池は、正極と負極の間で電解質層を介してリチウムイオンをやり取りすることによって、充放電を行う電池である。近年、電解質層に有機電解液に代えて不燃性の無機固体電解質を用いた全固体リチウム二次電池が実用化されつつあり、正極、負極及び固体電解質層を気相法(例えば真空蒸着法やスパッタリング法)により形成した薄膜タイプの電池も提案されている(例えば特許文献1、2を参照)。   This lithium secondary battery is a battery that charges and discharges by exchanging lithium ions between a positive electrode and a negative electrode through an electrolyte layer. In recent years, all-solid lithium secondary batteries using non-flammable inorganic solid electrolytes instead of organic electrolytes as electrolyte layers are being put into practical use. A positive electrode, a negative electrode, and a solid electrolyte layer are formed by a gas phase method (for example, vacuum deposition or A thin film type battery formed by a sputtering method has also been proposed (see, for example, Patent Documents 1 and 2).

特許文献1、2に記載の全固体リチウム二次電池は、正極と固体電解質層と負極とを順に積層した発電要素を有する構造であり、固体電解質層に酸化物系固体電解質(例えばLiPON)を用いている。   The all-solid-state lithium secondary batteries described in Patent Documents 1 and 2 have a power generation element in which a positive electrode, a solid electrolyte layer, and a negative electrode are sequentially stacked. An oxide-based solid electrolyte (for example, LiPON) is provided on the solid electrolyte layer. Used.

また、最近では、硫化物系固体電解質の研究も進められている。   Recently, research on sulfide-based solid electrolytes has also been promoted.

特開2008‐140705号公報JP 2008-140705 A 特開平10‐83838号公報JP 10-83838 A

しかし、本発明者が鋭意研究したところ、従来の薄膜タイプの電池では充放電サイクル特性の点で改善の余地があることが分かった。   However, as a result of intensive studies by the present inventors, it has been found that there is room for improvement in terms of charge / discharge cycle characteristics in conventional thin-film type batteries.

本発明は、上記事情に鑑みてなされたもので、その目的の一つは、充放電サイクル特性に優れた非水電解質電池を提供することにある。また別の目的は、充放電サイクル特性を向上させる非水電解質電池の使用方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a nonaqueous electrolyte battery having excellent charge / discharge cycle characteristics. Another object is to provide a method of using a nonaqueous electrolyte battery that improves charge / discharge cycle characteristics.

ところで、無機固体電解質、特に酸化物系固体電解質は、硬くて脆いことが一般的に知られており、また、気相法により形成された固体電解質層の厚さは、50μm未満と非常に薄い。そのため、従来の薄膜タイプの電池では、固体電解質層に外部から圧力を加えると、固体電解質層にクラックが生じ、充放電サイクル特性が低下して使い物にならないと考えられていた。   By the way, it is generally known that inorganic solid electrolytes, particularly oxide-based solid electrolytes are hard and brittle, and the thickness of the solid electrolyte layer formed by the vapor phase method is very thin, less than 50 μm. . For this reason, in the conventional thin film type battery, it has been considered that when external pressure is applied to the solid electrolyte layer, a crack is generated in the solid electrolyte layer, and the charge / discharge cycle characteristics are deteriorated to be unusable.

そこで、従来の薄膜タイプの電池では、ケースやアルミラミネートフィルムなどの外装体に発電要素を収容するパッケージング作業の際に、できるだけ固体電解質層を押圧しないようにしていた。例えば、発電要素をケースに収容する場合は、ケースをかしめにより封止する際に、ケースの端子と発電要素の電極とが軽く接触する程度にして、発電要素に積層方向の圧力が加わらないようにしている。   Therefore, in the conventional thin-film type battery, the solid electrolyte layer is prevented from being pressed as much as possible during the packaging operation of housing the power generation element in an exterior body such as a case or an aluminum laminate film. For example, when the power generation element is accommodated in the case, when sealing the case by caulking, the terminal of the case and the electrode of the power generation element are lightly contacted so that pressure in the stacking direction is not applied to the power generation element. I have to.

また、例えば特許文献1では、基板に凹状の開口部を設け、この開口部内に発電要素を収納することで、パッケージングしても、結果的に発電要素に積層方向の圧力が加わらないようになっている。   Further, for example, in Patent Document 1, a concave opening is provided in the substrate, and the power generation element is accommodated in the opening so that, as a result, even in packaging, pressure in the stacking direction is not applied to the power generation element. It has become.

ところが、本発明者が鋭意研究した結果、固体電解質層に硫化物系固体電解質を用いた薄膜タイプの電池において、発電要素の積層方向に適度な圧力を加えると、充放電サイクル特性が向上することを見出した。そして、この知見に基づき、本発明を完成するに至った。   However, as a result of intensive studies by the present inventors, when a moderate pressure is applied in the stacking direction of the power generation element in a thin film type battery using a sulfide-based solid electrolyte for the solid electrolyte layer, the charge / discharge cycle characteristics are improved. I found. And based on this knowledge, it came to complete this invention.

本発明の非水電解質電池は、正極、固体電解質層及び負極を積層してなる発電要素を有する非水電解質電池である。固体電解質層は、硫化物固体電解質であり、かつ、気相法により形成されており、また、負極は、金属リチウム又はリチウム合金である。そして、発電要素の積層方向に0.01〜1.0MPaの圧力が加えられていることを特徴とする。   The nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery having a power generation element formed by laminating a positive electrode, a solid electrolyte layer, and a negative electrode. The solid electrolyte layer is a sulfide solid electrolyte and is formed by a vapor phase method, and the negative electrode is metallic lithium or a lithium alloy. And the pressure of 0.01-1.0 MPa is applied to the lamination direction of an electric power generation element, It is characterized by the above-mentioned.

本発明の非水電解質電池の使用方法は、正極、固体電解質層及び負極を積層してなる発電要素を有する非水電解質電池の使用方法である。固体電解質層は、硫化物固体電解質であり、かつ、気相法により形成されており、また、負極は、金属リチウム又はリチウム合金である。そして、発電要素の積層方向に0.01〜1.0MPaの圧力を加えた状態で使用することを特徴とする。   The method of using the nonaqueous electrolyte battery of the present invention is a method of using a nonaqueous electrolyte battery having a power generation element formed by laminating a positive electrode, a solid electrolyte layer, and a negative electrode. The solid electrolyte layer is a sulfide solid electrolyte and is formed by a vapor phase method, and the negative electrode is metallic lithium or a lithium alloy. And it is used in the state which applied the pressure of 0.01-1.0 MPa to the lamination direction of an electric power generation element, It is characterized by the above-mentioned.

この構成によれば、非水電解質電池の充放電サイクル特性を向上させることができる。より好ましい圧力範囲は、0.01〜0.7MPaである。   According to this configuration, the charge / discharge cycle characteristics of the nonaqueous electrolyte battery can be improved. A more preferable pressure range is 0.01 to 0.7 MPa.

発電要素に積層方向の圧力を負荷することで、充放電サイクル特性が向上する理由は明らかではないが、次のように考えられる。   The reason why the charge / discharge cycle characteristics are improved by applying pressure in the stacking direction to the power generation element is not clear, but is considered as follows.

図1は、本発明の非水電解質電池における負極‐固体電解質層界面の様子の想像図である。なお、ここでは、負極2が金属リチウムである場合を例に説明する。まず、初期の状態では、負極2のLi原子が整列した状態で、負極2と固体電解質層3との間に界面が形成されている(図1(A)を参照)。放電時、Li原子は電子を放出してイオン化し、Liイオンになる。Liイオンは負極2から放出され、固体電解質層3中を移動して正極に到達し、正極に吸蔵される(図1(B)を参照)。このとき、負極2が図中白抜き矢印方向に押圧されていることで、Li原子が抜けた空乏箇所に後段のLi原子が移動し易くなる(図1(C)を参照)。そのため、本発明の電池では、負極‐固体電解質層界面において、Li原子の空乏箇所が生じ難く、Liイオンの移動が阻害され難いと考えられ、充放電サイクル特性が向上する。   FIG. 1 is an imaginary view of a negative electrode-solid electrolyte layer interface in the nonaqueous electrolyte battery of the present invention. Here, a case where the negative electrode 2 is metallic lithium will be described as an example. First, in the initial state, an interface is formed between the negative electrode 2 and the solid electrolyte layer 3 with the Li atoms of the negative electrode 2 aligned (see FIG. 1A). During discharge, Li atoms emit electrons and ionize to become Li ions. Li ions are released from the negative electrode 2, move through the solid electrolyte layer 3, reach the positive electrode, and are stored in the positive electrode (see FIG. 1B). At this time, since the negative electrode 2 is pressed in the direction of the white arrow in the figure, the Li atom in the subsequent stage can easily move to the depleted portion from which the Li atom has escaped (see FIG. 1C). Therefore, in the battery of the present invention, it is considered that Li atom depletion is less likely to occur at the negative electrode-solid electrolyte layer interface, and Li ion migration is unlikely to be inhibited, and charge / discharge cycle characteristics are improved.

これに対し、負極が押圧されていない場合は、押圧した場合と比較して空乏箇所へのLi原子の移動がスムーズに行われず、充放電を繰り返し行ううちに、負極‐固体電解質層界面においてLi原子の空乏箇所が除々に増加していくと考えられる。   On the other hand, when the negative electrode is not pressed, the movement of Li atoms to the depletion site is not smoothly performed as compared with the case where the negative electrode is pressed. It is thought that the number of atomic depletion points will gradually increase.

本発明の非水電解質電池は、発電要素の積層方向に0.01〜1.0MPaの圧力が加えられていることで、充放電サイクル特性に優れる。また、本発明の非水電解質電池の使用方法は、発電要素の積層方向に0.01〜1.0MPaの圧力を加えた状態で使用することで、充放電サイクル特性を向上させることができる。   The nonaqueous electrolyte battery of the present invention is excellent in charge / discharge cycle characteristics because a pressure of 0.01 to 1.0 MPa is applied in the stacking direction of the power generation elements. Moreover, the usage method of the nonaqueous electrolyte battery of this invention can improve a charge / discharge cycle characteristic by using it in the state which applied the pressure of 0.01-1.0 MPa to the lamination direction of an electric power generation element.

本発明の非水電解質電池における負極‐固体電解質層界面の様子の想像図である。It is an imaginary figure of the mode of the negative electrode-solid electrolyte layer interface in the nonaqueous electrolyte battery of the present invention. 実施例1に係る非水電解質二次電池の構成を示す模式断面図である。1 is a schematic cross-sectional view showing a configuration of a nonaqueous electrolyte secondary battery according to Example 1. FIG.

本発明の非水電解質電池の基本構造は、正極1、固体電解質層3、負極2が順に積層されてなる発電要素Eを有する構造である(図2を参照)。そして、発電要素には積層方向に0.01〜1.0MPaの圧力が加えられている。以下、各構成部材について説明する。   The basic structure of the nonaqueous electrolyte battery of the present invention is a structure having a power generation element E in which a positive electrode 1, a solid electrolyte layer 3, and a negative electrode 2 are laminated in this order (see FIG. 2). A pressure of 0.01 to 1.0 MPa is applied to the power generation element in the stacking direction. Hereinafter, each component will be described.

(正極)
正極は、特に限定されるものではないが、LiCoO2、LiNiO2、LiMn2O4、LiNi0.5Mn0.5O2、LiNi0.33Co0.33Mn0.33O2及びMnO2などの酸化物、LiFePO4などのリン酸化合物、或いはこれらの混合物で構成することができる。その他、硫黄単体や、FeS、FeS2、Li2S及びTiS2などの硫化物で構成してもよい。
(Positive electrode)
The positive electrode is not particularly limited, but includes LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 and oxides such as MnO 2 , LiFePO 4, etc. It can be composed of a phosphoric acid compound or a mixture thereof. In addition, it may be composed of sulfur alone or sulfides such as FeS, FeS 2 , Li 2 S, and TiS 2 .

(負極)
負極は、金属リチウム(Li金属単体)又はリチウム合金(Liと添加元素からなる合金)で構成する。リチウム合金の添加元素としては、Al、Si、Sn、Bi、Zn及びInが挙げられる。
(Negative electrode)
The negative electrode is made of metallic lithium (Li metal alone) or a lithium alloy (alloy consisting of Li and an additive element). Examples of the additive element of the lithium alloy include Al, Si, Sn, Bi, Zn, and In.

(固体電解質層)
固体電解質層は、硫化物系固体電解質で構成する。硫化物系固体電解質としては、Li2SとP2S5を主成分とするLi2S‐P2S5系のものや、Li2SとSiS2を主成分とするLi2S‐SiS2系のものが挙げられる。その他、Li2S‐P2S5‐SiS2‐Al2S3系のもの、Li2S‐P2S5‐P2O5系のものが挙げられる。
(Solid electrolyte layer)
The solid electrolyte layer is composed of a sulfide-based solid electrolyte. The sulfide-based solid electrolyte, those Li 2 S-P 2 S 5 based mainly composed of Li 2 S and P 2 S 5 or, Li 2 S-SiS mainly composed of Li 2 S and SiS 2 There are two types. Other examples include Li 2 S—P 2 S 5 —SiS 2 —Al 2 S 3 series and Li 2 S—P 2 S 5 —P 2 O 5 series.

硫化物系固体電解質には、酸素を不可避的、或いは意図的に含有させてもよい。ただし、この場合は、酸素は硫黄の含有量よりも少ない範囲で含有しており、酸素の含有量は硫化物系固体電解質を構成する全元素に対してモル比で20%以下とする。   The sulfide-based solid electrolyte may contain oxygen inevitably or intentionally. However, in this case, oxygen is contained in a range smaller than the sulfur content, and the oxygen content is 20% or less in terms of molar ratio with respect to all elements constituting the sulfide-based solid electrolyte.

また、固体電解質層は、スパッタリング法、真空蒸着法、及びイオンプレーティング法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法といった気相法により形成する。このような成膜技術を用いて固体電解質層を形成することで、固体電解質層の厚さを50μm未満、更には20μm以下にすることが可能である。   The solid electrolyte layer is formed by a physical vapor deposition (PVD) method such as a sputtering method, a vacuum vapor deposition method, or an ion plating method, or a vapor phase method such as a chemical vapor deposition (CVD) method. By forming the solid electrolyte layer using such a film formation technique, the thickness of the solid electrolyte layer can be less than 50 μm, and further 20 μm or less.

<実施例1>
図2に示すような実験用の全固体リチウム二次電池を作製し、発電要素の積層方向の圧力を変化させて、圧力と容量維持率との関係を検証した。
<Example 1>
An experimental all-solid lithium secondary battery as shown in FIG. 2 was produced, and the relationship between the pressure and the capacity retention rate was verified by changing the pressure in the stacking direction of the power generation elements.

電池Bは、次のようにして作製した。まず、厚さ500μmのステンレスの基材sの上に、レーザアブレーション法を用いてLiCoO2を成膜することで、厚さ5μmの正極1を形成した。また成膜後、500℃のアニール処理を行った。 Battery B was produced as follows. First, a 5 μm thick positive electrode 1 was formed by depositing LiCoO 2 on a 500 μm thick stainless steel substrate s using a laser ablation method. Further, after the film formation, annealing treatment at 500 ° C. was performed.

次いで、正極1の上に、スパッタリング法を用いてLiNbO3を成膜することで、厚さ20nmの緩衝層4を形成した。この緩衝層4は、正極1と固体電解質層3との界面における界面抵抗の低減に寄与する。 Next, a LiNbO 3 film was formed on the positive electrode 1 by using a sputtering method to form a buffer layer 4 having a thickness of 20 nm. The buffer layer 4 contributes to a reduction in interface resistance at the interface between the positive electrode 1 and the solid electrolyte layer 3.

次いで、緩衝層4の上に、レーザアブレーション法を用いてLi2S‐P2S5系固体電解質を成膜することで、厚さ10μmの固体電解質層3を形成した。 Next, a Li 2 S—P 2 S 5 solid electrolyte was formed on the buffer layer 4 by using a laser ablation method, thereby forming a solid electrolyte layer 3 having a thickness of 10 μm.

次いで、固体電解質層3の上に、真空蒸着法を用いてLiを成膜することで、厚さ1μmの負極2を形成した。以上により、正極1、固体電解質層3、負極2が順に積層された構造の発電要素Eが完成する。   Next, a negative electrode 2 having a thickness of 1 μm was formed by depositing Li on the solid electrolyte layer 3 using a vacuum deposition method. As described above, the power generation element E having a structure in which the positive electrode 1, the solid electrolyte layer 3, and the negative electrode 2 are sequentially laminated is completed.

最後に、この発電要素Eをコイン型ケース(図示せず)の下蓋に収容し、発電要素Eの負極2側にスペーサ10と波状の板ばね11(どちらもステンレス製)とを配置した後、上蓋を取り付け、上蓋と下蓋とをかしめてケースを封止することで、コイン型の電池Bが完成する。この電池は、下蓋を正極端子、上蓋を負極端子として兼用しており、上蓋と下蓋とは電気的に絶縁されている。   Finally, after this power generation element E is accommodated in the lower lid of a coin-shaped case (not shown), the spacer 10 and the wavy leaf spring 11 (both made of stainless steel) are arranged on the negative electrode 2 side of the power generation element E The coin-type battery B is completed by attaching the upper lid and caulking the upper lid and the lower lid to seal the case. In this battery, the lower lid serves as a positive electrode terminal and the upper lid serves as a negative electrode terminal, and the upper lid and the lower lid are electrically insulated.

そして、スペーサ10の厚さを変えることで板ばね11の弾性変形量を調節することにより、発電要素Eの積層方向の圧力を変化させた表1に示す各電池を作製した。また、スペーサ10を配置することで発電要素Eに均一な圧力が負荷されるようになっている。また、表1の圧力値は板ばね11の弾性変形量から算出した。なお、ここでは、圧力が0の状態は、ケースの上蓋と板ばね11の上面とは接するが、板ばね11が変形しない程度にスペーサ10の厚さを設定することで実現しており、大気圧を基準とし、スペーサ10及び板ばね11の重さは無視できるものとした。   Then, each battery shown in Table 1 in which the pressure in the stacking direction of the power generating element E was changed by adjusting the elastic deformation amount of the leaf spring 11 by changing the thickness of the spacer 10 was manufactured. Further, by arranging the spacer 10, a uniform pressure is applied to the power generation element E. The pressure values in Table 1 were calculated from the amount of elastic deformation of the leaf spring 11. Here, the state in which the pressure is zero is realized by setting the thickness of the spacer 10 to such an extent that the upper cover of the case and the upper surface of the leaf spring 11 are in contact but the leaf spring 11 is not deformed. Based on the atmospheric pressure, the weight of the spacer 10 and the leaf spring 11 can be ignored.

発電要素Eに積層方向の種々の圧力を負荷した各電池について、カットオフ電圧:3.0〜4.2V、電流密度:0.05mA/cm2の条件で、充電・放電を1サイクルとする充放電サイクル試験を行い、各電池の100サイクル後の容量維持率を測定した。圧力(MPa)と容量維持率(%)との関係を表1に示す。100サイクル後の容量維持率は、次式により求めた。
100サイクル後の容量維持率=(100サイクル時の放電容量/最大放電容量)
Charging / discharging cycle test with 1 cycle of charge / discharge under the conditions of cutoff voltage: 3.0-4.2V, current density: 0.05mA / cm 2 for each battery loaded with various pressures in the stacking direction on the power generation element E The capacity maintenance rate after 100 cycles of each battery was measured. Table 1 shows the relationship between pressure (MPa) and capacity retention rate (%). The capacity retention rate after 100 cycles was determined by the following equation.
Capacity maintenance rate after 100 cycles = (discharge capacity at 100 cycles / maximum discharge capacity)

Figure 2010225356
Figure 2010225356

圧力が1.5MPa以下のものは100サイクル以上安定した動作を示したが、圧力が2.0MPaのものは、100サイクルに達するまでに充電電圧が4.2Vまで上昇しない現象が発生したため、容量維持率を測定することができなかった。   When the pressure was 1.5 MPa or less, stable operation was performed for 100 cycles or more.However, when the pressure was 2.0 MPa, the phenomenon that the charging voltage did not rise to 4.2 V occurred before reaching 100 cycles. It could not be measured.

表1の結果から、圧力が0.01〜1.0MPaのものは容量維持率が80%以上であり、圧力が0のもの(従来例)に比較して充放電サイクル特性に優れていることが分かる。特に、圧力が0.01〜0.7MPaのものは容量維持率が85%以上であり、より優れた充放電サイクル特性を示すことが分かる。また、圧力が1.5MPa以上のものは容量維持率が低下しており、充放電サイクル特性が悪化していることが分かる。これは、圧力が大きくなるほど固体電解質層にクラックが生じ易くなり、正負極間で短絡が発生するなどして、容量維持率が低下したものと考えられる。   From the results shown in Table 1, it can be seen that the one with a pressure of 0.01 to 1.0 MPa has a capacity retention rate of 80% or more, and is superior in charge / discharge cycle characteristics as compared with one having a pressure of 0 (conventional example). In particular, when the pressure is 0.01 to 0.7 MPa, the capacity retention rate is 85% or more, and it can be seen that more excellent charge / discharge cycle characteristics are exhibited. In addition, it can be seen that the capacity retention rate is reduced when the pressure is 1.5 MPa or more, and the charge / discharge cycle characteristics are deteriorated. This is presumably because cracks were more likely to occur in the solid electrolyte layer as the pressure increased, and the capacity retention rate decreased due to the occurrence of a short circuit between the positive and negative electrodes.

上記の例では、発電要素をケースに収容し、スペーサと板ばねとを用いて発電要素の積層方向の圧力を調整する圧力調整機構を構成したが、これに限定されるものではない。例えば、板ばねに代えてコイルばねやゴム材などの弾性部材を用いてもよい。また、圧力の調整は、ケースをかしめる際のかしめ力(かしめ量)を調節し、最終的なケース(電池)の高さを調整することで、実現してもよい。   In the above example, the power generation element is housed in the case, and the pressure adjustment mechanism that adjusts the pressure in the stacking direction of the power generation elements using the spacer and the leaf spring is configured. However, the present invention is not limited to this. For example, an elastic member such as a coil spring or a rubber material may be used instead of the leaf spring. The pressure may be adjusted by adjusting the caulking force (caulking amount) when caulking the case and adjusting the final height of the case (battery).

その他、発電要素をアルミラミネートフィルムに収容し封止した構成の非水電解質電池としてもよい。この場合、アルミラミネートフィルム内の空間を真空引きして、空間内の真空度を調整することにより、発電要素の積層方向に大気圧との差圧を負荷することができる。   In addition, it is good also as a nonaqueous electrolyte battery of the structure which accommodated the electric power generation element in the aluminum laminate film, and sealed. In this case, a pressure difference from the atmospheric pressure can be applied in the stacking direction of the power generation elements by evacuating the space in the aluminum laminate film and adjusting the degree of vacuum in the space.

また、非水電解質電池を使用する際にのみ発電要素の積層方向に所定の圧力を加えることでも、本発明の効果を奏することができる。具体的には、電池の製造時には発電要素に圧力を負荷しない状態としておき、電池を使用するときに発電要素に所定の圧力を負荷した状態で使用する場合である。例えば、変形可能な外装体に発電要素を収容しておき、発電要素の積層方向に圧力を負荷する圧力負荷手段により所定の圧力を負荷した状態で使用することが挙げられる。   The effect of the present invention can also be achieved by applying a predetermined pressure in the stacking direction of the power generation elements only when using a nonaqueous electrolyte battery. Specifically, this is a case where no pressure is applied to the power generation element when the battery is manufactured, and the power generation element is used with a predetermined pressure applied when the battery is used. For example, the power generation element is accommodated in a deformable exterior body and used in a state in which a predetermined pressure is applied by pressure load means for applying pressure in the stacking direction of the power generation elements.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、固体電解質層及び負極の種類や厚さを適宜変更してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, you may change suitably the kind and thickness of a solid electrolyte layer and a negative electrode.

本発明の非水電解質電池及びその使用方法は、携帯電話、ノートパソコン、デジタルカメラの他、電動車両などの電源にも好適に利用することができる。   The nonaqueous electrolyte battery and the method of using the same of the present invention can be suitably used for a power source of an electric vehicle as well as a mobile phone, a notebook computer, and a digital camera.

B 電池 E 発電要素
1 正極
2 負極
3 固体電解質層
4 緩衝層
10 スペーサ 11 板ばね
s 基板
B Battery E Power generation element
1 Positive electrode
2 Negative electrode
3 Solid electrolyte layer
4 Buffer layer
10 Spacer 11 Leaf spring
s board

Claims (2)

正極、固体電解質層及び負極を積層してなる発電要素を有する非水電解質電池であって、
前記固体電解質層は、硫化物固体電解質であり、かつ、気相法により形成されており、
前記負極は、金属リチウム又はリチウム合金であり、
前記発電要素の積層方向に0.01〜1.0MPaの圧力が加えられていることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery having a power generation element formed by laminating a positive electrode, a solid electrolyte layer, and a negative electrode,
The solid electrolyte layer is a sulfide solid electrolyte and is formed by a vapor phase method,
The negative electrode is metallic lithium or a lithium alloy,
A nonaqueous electrolyte battery, wherein a pressure of 0.01 to 1.0 MPa is applied in the stacking direction of the power generation elements.
正極、固体電解質層及び負極を積層してなる発電要素を有する非水電解質電池の使用方法であって、
前記固体電解質層は、硫化物固体電解質であり、かつ、気相法により形成されており、
前記負極は、金属リチウム又はリチウム合金であり、
前記発電要素の積層方向に0.01〜1.0MPaの圧力を加えた状態で使用することを特徴とする非水電解質電池の使用方法。
A method of using a nonaqueous electrolyte battery having a power generation element formed by laminating a positive electrode, a solid electrolyte layer, and a negative electrode,
The solid electrolyte layer is a sulfide solid electrolyte and is formed by a vapor phase method,
The negative electrode is metallic lithium or a lithium alloy,
A method for using a non-aqueous electrolyte battery, wherein the battery is used in a state where a pressure of 0.01 to 1.0 MPa is applied in the stacking direction of the power generation elements.
JP2009069763A 2009-03-23 2009-03-23 Nonaqueous electrolyte battery and using method for the same Ceased JP2010225356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069763A JP2010225356A (en) 2009-03-23 2009-03-23 Nonaqueous electrolyte battery and using method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069763A JP2010225356A (en) 2009-03-23 2009-03-23 Nonaqueous electrolyte battery and using method for the same

Publications (1)

Publication Number Publication Date
JP2010225356A true JP2010225356A (en) 2010-10-07

Family

ID=43042343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069763A Ceased JP2010225356A (en) 2009-03-23 2009-03-23 Nonaqueous electrolyte battery and using method for the same

Country Status (1)

Country Link
JP (1) JP2010225356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099476A (en) * 2010-11-03 2012-05-24 Sb Limotive Co Ltd Rechargeable battery
JP2016122650A (en) * 2014-12-24 2016-07-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド All-solid metal-metal battery
CN112055911A (en) * 2018-02-07 2020-12-08 株式会社Lg化学 Lithium metal secondary battery and battery module including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140077A (en) * 1992-09-11 1994-05-20 Mitsubishi Electric Corp Electrochemical element, lithium secondary battery and set battery and manufacture thereof
JPH1083838A (en) * 1996-09-06 1998-03-31 Nippon Telegr & Teleph Corp <Ntt> Whole solid lithium battery
JP2002100346A (en) * 2000-07-19 2002-04-05 Sumitomo Electric Ind Ltd Manufacturing method of negative electrode for lithium secondary battery
JP2003132941A (en) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd Solid electrolyte secondary battery having capacitors formed integrally therewith
JP2008053135A (en) * 2006-08-28 2008-03-06 Sumitomo Electric Ind Ltd Thin film battery
JP2008140705A (en) * 2006-12-04 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery
JP2008310987A (en) * 2007-06-12 2008-12-25 Toyota Motor Corp Battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140077A (en) * 1992-09-11 1994-05-20 Mitsubishi Electric Corp Electrochemical element, lithium secondary battery and set battery and manufacture thereof
JPH1083838A (en) * 1996-09-06 1998-03-31 Nippon Telegr & Teleph Corp <Ntt> Whole solid lithium battery
JP2002100346A (en) * 2000-07-19 2002-04-05 Sumitomo Electric Ind Ltd Manufacturing method of negative electrode for lithium secondary battery
JP2003132941A (en) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd Solid electrolyte secondary battery having capacitors formed integrally therewith
JP2008053135A (en) * 2006-08-28 2008-03-06 Sumitomo Electric Ind Ltd Thin film battery
JP2008140705A (en) * 2006-12-04 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery
JP2008310987A (en) * 2007-06-12 2008-12-25 Toyota Motor Corp Battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099476A (en) * 2010-11-03 2012-05-24 Sb Limotive Co Ltd Rechargeable battery
JP2016122650A (en) * 2014-12-24 2016-07-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド All-solid metal-metal battery
CN112055911A (en) * 2018-02-07 2020-12-08 株式会社Lg化学 Lithium metal secondary battery and battery module including the same
JP2020537309A (en) * 2018-02-07 2020-12-17 エルジー・ケム・リミテッド Lithium metal secondary battery and battery module containing it
JP7267269B2 (en) 2018-02-07 2023-05-01 エルジー エナジー ソリューション リミテッド Lithium metal secondary battery and battery module containing the same

Similar Documents

Publication Publication Date Title
CN106716686B (en) Negative electrode, lithium secondary battery comprising same, battery module comprising same, and method for manufacturing same
US10608249B2 (en) Conformal coating of lithium anode via vapor deposition for rechargeable lithium ion batteries
CN106716690B (en) Multi-layer lithium metal electrode and method for manufacturing same
JP5348607B2 (en) All-solid lithium secondary battery
JP5217195B2 (en) Thin-film solid lithium ion secondary battery and composite device including the same
JP2006244734A (en) All-solid lithium secondary battery
WO2012099178A1 (en) Nonaqueous electrolyte battery
JP2012014892A (en) Nonaqueous electrolyte battery
WO2011043267A1 (en) Non-aqueous electrolyte cell
CN105789688B (en) Electrolyte solution and lithium ion secondary battery
JP2009199920A (en) Lithium battery
WO2019132449A1 (en) Lithium secondary battery
CN102097648A (en) Lithium-ion secondary battery, anode for lithium-ion secondary battery, power tool, electric vehicle and energy storage system
CN107256980A (en) A kind of method for improving the resistance to over-discharge property of lithium ion battery
US20120231345A1 (en) Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP2011113735A (en) Nonaqueous electrolyte battery
CN111095649A (en) High performance thin film battery with interfacial layer
JP2010225356A (en) Nonaqueous electrolyte battery and using method for the same
JP2011159467A (en) Nonaqueous electrolyte battery
KR20200113338A (en) A surface-treated negative electrode current collector, a lithium metal all-solid secondary battery including the same and manufacturing method thereof
JP2014010948A (en) All solid lithium ion secondary battery
JP2011054438A (en) All-solid lithium secondary battery
JP5454459B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130306

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20130326