JP2008310987A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2008310987A
JP2008310987A JP2007155491A JP2007155491A JP2008310987A JP 2008310987 A JP2008310987 A JP 2008310987A JP 2007155491 A JP2007155491 A JP 2007155491A JP 2007155491 A JP2007155491 A JP 2007155491A JP 2008310987 A JP2008310987 A JP 2008310987A
Authority
JP
Japan
Prior art keywords
battery
frame
electrode
unit
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007155491A
Other languages
Japanese (ja)
Inventor
Yukinari Kotani
幸成 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007155491A priority Critical patent/JP2008310987A/en
Publication of JP2008310987A publication Critical patent/JP2008310987A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide batteries in which pressure can be added appropriately so as to increase contact inside the batteries and reduce internal resistance, in a battery, a unit cell, or a laminated battery, and a manufacturing method of them. <P>SOLUTION: The unit cell includes: a planar electrode in which a positive electrode 14 and a negative electrode 16 are laminated in a form of pinching a solid or gelatinous electrolyte 12; and a frame 18 of an electric insulator for retaining the peripheral edge of the electrode. The thickness of the frame is larger than that of the laminating direction of the electrode body. Thus, the electrode is hard to be collapsed even if a sufficient pressure is added to a face of the electrode in a form of pinching the positive electrode and the negative electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電池に関し、単位電池もしくは積層電池に関する。   The present invention relates to a battery, and relates to a unit battery or a laminated battery.

従来、例えば、特開2003−168416号公報に、単位電池の周囲を絶縁基板で挟んで封止する構造を有する単位電池が開示されている。単位電池は、固体電解質膜を挟む形で、正極と負極を備える。単位電池の周囲を囲んで、正極と負極を挟む形で、絶縁基板を備える。電池の動作の際、正極と負極付近で電気化学反応が行われる。絶縁基板に備えられた取り出し口により集電される。上記従来の公報では、絶縁基板を積み重ねることにより、単位電池を簡易に積層している。
特開2003−168416号公報
Conventionally, for example, Japanese Patent Application Laid-Open No. 2003-168416 discloses a unit cell having a structure in which the periphery of a unit cell is sealed with an insulating substrate. The unit battery includes a positive electrode and a negative electrode with a solid electrolyte membrane interposed therebetween. An insulating substrate is provided so as to surround the unit cell and sandwich the positive electrode and the negative electrode. During battery operation, an electrochemical reaction takes place near the positive and negative electrodes. Current is collected by a take-out port provided in the insulating substrate. In the above conventional publication, unit cells are simply stacked by stacking insulating substrates.
JP 2003-168416 A

ところで、電池に圧力を加えると、電池内部での接触が多くなり、内部抵抗が減少することが知られている。しかしながら、上記従来の技術では、単位電池は絶縁基板に囲まれて封止されているため、電池に圧力を加えることが難しい。そのため、電池内部での接触が少なく、電池の内部抵抗が大きくなるおそれがあった。   By the way, it is known that when pressure is applied to the battery, the contact inside the battery increases and the internal resistance decreases. However, in the above conventional technique, the unit battery is enclosed and sealed by the insulating substrate, and it is difficult to apply pressure to the battery. For this reason, there is little contact inside the battery, and the internal resistance of the battery may be increased.

この発明は、上記のような課題を解決するためになされたもので、圧力を適切に加えることのできる電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a battery capable of appropriately applying pressure.

第1の発明は、上記の目的を達成するため、固体またはゲル状の電解質を挟む形で正極と負極とを積層した平面状の電極体と、電気絶縁体の枠とを備えた単位電池であって、前記枠の厚みは、前記電極体の積層方向の厚みより大きいことを特徴とする。   In order to achieve the above object, a first invention is a unit battery comprising a planar electrode body in which a positive electrode and a negative electrode are stacked with a solid or gel electrolyte interposed therebetween, and a frame of an electrical insulator. And the thickness of the said frame is larger than the thickness of the lamination direction of the said electrode body, It is characterized by the above-mentioned.

第2の発明は、第1の発明記載の単位電池であって、前記電極体に備えられた正極または負極に接し、前記枠内に嵌合する集電体を備えることを特徴とする。   A second invention is a unit battery according to the first invention, characterized in that it comprises a current collector that is in contact with a positive electrode or a negative electrode provided in the electrode body and fits in the frame.

第3の発明は、第1の発明または第2の発明記載の単位電池であって、前記単位電池の周囲に前記電池を封止する封止材を備えることを特徴とする。 3rd invention is a unit battery of 1st invention or 2nd invention, Comprising: The sealing material which seals the said battery around the said unit battery is provided, It is characterized by the above-mentioned.

第4の発明は、第2もしくは第3の発明記載の単位電池を、集電体を挟む形で複数積層する電池であって、複数積層された単位電池のうちの隣り合う2つの単位電池のあいだに、一方の単位電池に備えられた正極と他方の単位電池に備えられた負極に接し、一方の単位電池に備えられた枠内及び他方の単位電池に備えられた枠内に嵌合する集電体と、を備えることを特徴とする。   A fourth invention is a battery in which a plurality of unit batteries according to the second or third invention are stacked with a current collector sandwiched between two unit batteries adjacent to each other. Meanwhile, the positive electrode provided in one unit battery and the negative electrode provided in the other unit battery are in contact with each other, and are fitted in the frame provided in one unit battery and the frame provided in the other unit battery. And a current collector.

第5の発明は、電池であって、固体またはゲル状の電解質を挟む形で正極と負極とを積層した平面状の電極体を備え、集電体を挟む形で前記電極体を複数積層した電極積層体と、前記電極積層体の周縁を保持する電気絶縁体の枠と、を備えることを特徴とする。   5th invention is a battery, Comprising: The planar electrode body which laminated | stacked the positive electrode and the negative electrode in the form which pinched | interposed the solid or gel-like electrolyte was equipped, and the said electrode body was laminated | stacked by the form which pinched | interposed the collector It has an electrode laminated body, and the frame of the electrical insulator holding the periphery of the said electrode laminated body, It is characterized by the above-mentioned.

第6の発明は、第4もしくは第5の発明記載の電池であって、前記電池の周囲に、前記電池を封止する封止材を備えることを特徴とする。   6th invention is a battery of the 4th or 5th invention, Comprising: The sealing material which seals the said battery is provided around the said battery, It is characterized by the above-mentioned.

第7の発明は、第6の発明記載の電池であって、前記封止材は、前記電池に備えられた正極と負極を挟む向きに前記電池を加圧させることを特徴とする。   7th invention is a battery of 6th invention, Comprising: The said sealing material pressurizes the said battery in the direction which pinches | interposes the positive electrode and negative electrode with which the said battery was equipped, It is characterized by the above-mentioned.

第8の発明は、単位電池の製造方法であって、成形金型のシリンダ内に電気絶縁体の枠を設置するステップと、該シリンダ内に正極または負極の一方の電極材料を充填するステップと、固体またはゲル状の電解質材料を充填するステップと、前記枠内に嵌合する凸部を有するピストンを用いて充填された電極材料および電解質材料を加圧して電極体を作成するステップと、を備えることを特徴とする。   An eighth invention is a method of manufacturing a unit battery, comprising: a step of installing an electric insulator frame in a cylinder of a molding die; and a step of filling one of positive electrode and negative electrode materials in the cylinder. Filling the solid or gel electrolyte material, and pressurizing the electrode material and the electrolyte material filled using a piston having a convex portion fitted into the frame, and creating an electrode body. It is characterized by providing.

第9の発明は、電池の製造方法であって、請求項8で製造した単位電池の枠内に集電体を嵌合させるステップと、該集電体を他の単位電池の枠内に嵌合させて単位電池同士を積層するステップと、を備えることを特徴とする。   A ninth invention is a method for manufacturing a battery, the step of fitting a current collector in a frame of a unit battery manufactured in claim 8, and fitting the current collector in a frame of another unit battery. And a step of stacking unit cells together.

第1の発明によれば、電極体は電気絶縁体の枠内に保持されている。よって、電極体は崩れにくい。さらに、正極と負極を挟む形で電極体の面に十分な圧力を加える場合も、電極体は崩れにくい。したがって、電極体に十分な圧力を加えることができる。   According to the first invention, the electrode body is held in the frame of the electrical insulator. Therefore, the electrode body is not easily collapsed. Furthermore, even when a sufficient pressure is applied to the surface of the electrode body with the positive electrode and the negative electrode being sandwiched, the electrode body is not easily broken. Therefore, a sufficient pressure can be applied to the electrode body.

第2の発明によれば、集電体は枠内に嵌合する。したがって、本発明の構成によれば、集電体が枠よりずれにくい。   According to the second invention, the current collector is fitted in the frame. Therefore, according to the structure of this invention, a collector is hard to shift | deviate from a frame.

第3の発明によれば、単位電池は封止されている。したがって、単位電池を移動させる場合にも、単位電池が崩れない。   According to the third invention, the unit cell is sealed. Therefore, the unit battery does not collapse even when the unit battery is moved.

第4の発明によれば、隣り合う単位電池のそれぞれの枠内に、集電体が嵌合する。よって、本発明の構成によれば、一方の単位電池の枠に嵌合した集電体に他方の単位電池の枠を嵌合させるように、簡便に単位電池を積層できる。さらに、本発明の構成によれば、隣り合う単位電池がずれにくい。   According to the fourth invention, the current collector is fitted in each frame of the adjacent unit cells. Therefore, according to the structure of this invention, a unit cell can be simply laminated | stacked so that the frame of the other unit battery may be fitted to the electrical power collector fitted to the frame of one unit battery. Furthermore, according to the configuration of the present invention, adjacent unit cells are not easily displaced.

第5の発明によれば、電気絶縁体の枠内に積層構造の電池を有する。よって、電池は崩れにくく、電極体の面に十分な圧力を加えることができる。したがって、電池の内部抵抗を低減させることができる。さらに、本発明の構成によれば、薄い集電体を用いることにより、電池を薄くすることができる。   According to the fifth invention, the battery having the laminated structure is provided in the frame of the electrical insulator. Therefore, the battery is not easily collapsed, and a sufficient pressure can be applied to the surface of the electrode body. Therefore, the internal resistance of the battery can be reduced. Furthermore, according to the structure of this invention, a battery can be made thin by using a thin electrical power collector.

第6の発明によれば、電池は封止されている。したがって、電池を移動させる場合にも、電池が崩れない。   According to the sixth invention, the battery is sealed. Therefore, the battery does not collapse even when the battery is moved.

第7の発明によれば、電池は加圧された状態で封止される。よって、電池の内部抵抗は低減している。したがって、電池の内部抵抗が低減された状態で、電池を使用することができる。   According to the seventh invention, the battery is sealed in a pressurized state. Therefore, the internal resistance of the battery is reduced. Therefore, the battery can be used in a state where the internal resistance of the battery is reduced.

第8の発明によれば、絶縁体の枠に保持された電極体を有する単位電池を製造することができる。   According to the eighth invention, it is possible to manufacture a unit cell having an electrode body held by an insulator frame.

第9の発明によれば、隣り合う単位電池のそれぞれの枠内に集電体が嵌合した電池を製造することができる。   According to the ninth aspect of the invention, it is possible to manufacture a battery in which a current collector is fitted in each frame of adjacent unit batteries.

実施の形態1.
[実施の形態1の構成]
図1は実施の形態1の単位電池の断面をあらわす図である。単位電池10は固体電解質12を備える。固体電解質12はLiS−Pガラスセラミックスの粉末を圧粉成形したものである。固体電解質12を挟む形で、正極14と負極16を備える。正極14はLiCoOである。負極はIn箔である。固体電解質12、正極14及び負極16は直径Φ10mmの円形状である。固体電解質12と正極14と負極16とを重ねた厚み(以下、『厚み』とは正極14と負極16を挟む向きの長さをあらわす。)は、0.7mmである。固体電解質12、正極14及び負極16の周縁に円形状の枠18を備える。枠18は絶縁体である。具体的には、ポリテトラフルオロエチレン樹脂である。枠18の内径はΦ10cmであり、枠18の外径はΦ16.2mmである。枠18の厚みは1.1mmである。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a diagram showing a cross section of the unit battery of the first embodiment. The unit battery 10 includes a solid electrolyte 12. The solid electrolyte 12 is obtained by compacting a Li 2 S—P 2 S 5 glass ceramic powder. A positive electrode 14 and a negative electrode 16 are provided so as to sandwich the solid electrolyte 12. The positive electrode 14 is LiCoO 2 . The negative electrode is In foil. The solid electrolyte 12, the positive electrode 14, and the negative electrode 16 have a circular shape with a diameter of 10 mm. The thickness of the solid electrolyte 12, the positive electrode 14, and the negative electrode 16 (hereinafter, “thickness” indicates the length in the direction in which the positive electrode 14 and the negative electrode 16 are sandwiched) is 0.7 mm. A circular frame 18 is provided on the periphery of the solid electrolyte 12, the positive electrode 14, and the negative electrode 16. The frame 18 is an insulator. Specifically, it is polytetrafluoroethylene resin. The inner diameter of the frame 18 is Φ10 cm, and the outer diameter of the frame 18 is Φ16.2 mm. The thickness of the frame 18 is 1.1 mm.

正極14と負極16を挟む形で、平円状の集電体20、22を備える。集電体20は正極14と接し、集電体22は負極16と接する。集電体20、22の厚みは単位電池10の積層方向に対して均一であり、それぞれ0.3mmである。集電体20から集電体22までの厚み(集電体20、正極14、固体電解質12、負極16及び集電体22を重ねた厚み)は1.3mmであり、枠18の厚みより大きい。集電体20、22の一部は、枠18内に嵌っている。集電体20、22と枠18はかしめにより封止される。集電体20、22の一部は、電極体の積層方向において、枠18の外部へ突出している。   Flat circular current collectors 20 and 22 are provided so as to sandwich the positive electrode 14 and the negative electrode 16. The current collector 20 is in contact with the positive electrode 14, and the current collector 22 is in contact with the negative electrode 16. The thicknesses of the current collectors 20 and 22 are uniform with respect to the stacking direction of the unit batteries 10 and are each 0.3 mm. The thickness from the current collector 20 to the current collector 22 (thickness in which the current collector 20, the positive electrode 14, the solid electrolyte 12, the negative electrode 16, and the current collector 22 are stacked) is 1.3 mm, which is larger than the thickness of the frame 18. . Part of the current collectors 20 and 22 is fitted in the frame 18. The current collectors 20 and 22 and the frame 18 are sealed by caulking. Part of the current collectors 20 and 22 protrudes outside the frame 18 in the stacking direction of the electrode bodies.

[実施の形態1の作用]
単位電池10の動作の際、正極14と負極16付近で化学反応が行われ、リチウムイオンの移動とともに、電子が生じる。化学反応により生じた電子は、集電体20、22に移動する。集電体20、22を挟む形で集電体20、22に圧力を加えると、正極14と負極16を挟む形で単位電池10に圧力が加わる。
[Operation of the first embodiment]
During the operation of the unit battery 10, a chemical reaction is performed in the vicinity of the positive electrode 14 and the negative electrode 16, and electrons are generated as lithium ions move. Electrons generated by the chemical reaction move to the current collectors 20 and 22. When pressure is applied to the current collectors 20 and 22 with the current collectors 20 and 22 sandwiched therebetween, pressure is applied to the unit cell 10 with the positive electrode 14 and the negative electrode 16 sandwiched therebetween.

正極と負極16を挟む形で単位電池10への圧力が大きいと、正極14と固体電解質12の接触、及び、負極16と固体電解質12との接触が強く、これらの接触界面でのリチウムイオンの移動抵抗は小さい。そのため、リチウムイオンは、正極14と固体電解質12間及び負極16と固体電解質12間を移動しやすい。また、正極14と負極16を挟む形で単位電池10への圧力が大きいと、固体電解質12、正極14及び負極16内の粒子間の接触が強い。そのため、リチウムイオンは、固体電解質12、正極14及び負極16内を移動しやすい。   If the pressure on the unit cell 10 is large with the positive electrode and the negative electrode 16 being sandwiched, the contact between the positive electrode 14 and the solid electrolyte 12 and the contact between the negative electrode 16 and the solid electrolyte 12 are strong, and lithium ions at these contact interfaces The movement resistance is small. Therefore, lithium ions easily move between the positive electrode 14 and the solid electrolyte 12 and between the negative electrode 16 and the solid electrolyte 12. Moreover, when the pressure to the unit battery 10 is large with the positive electrode 14 and the negative electrode 16 being sandwiched, the contact between the particles in the solid electrolyte 12, the positive electrode 14, and the negative electrode 16 is strong. Therefore, lithium ions easily move in the solid electrolyte 12, the positive electrode 14, and the negative electrode 16.

正極14と負極16を挟む形で単位電池10への圧力が大きいと、正極14及び負極16内の粒子間の接触が強い。正極14及び負極16内の粒子間の接触が強いと、電子は正極14及び負極16内を移動しやすい。また、集電体20、22を挟む形で集電体20、22に圧力を加えると、正極12または負極16と集電体20、22との接触が強くなる。正極12または負極16と集電体20、22との接触が強いと、正極12または負極16付近の電子は集電体20、22に移動しやすい。   When the pressure on the unit cell 10 is large with the positive electrode 14 and the negative electrode 16 being sandwiched, the contact between the particles in the positive electrode 14 and the negative electrode 16 is strong. When the contact between the particles in the positive electrode 14 and the negative electrode 16 is strong, electrons easily move in the positive electrode 14 and the negative electrode 16. In addition, when pressure is applied to the current collectors 20 and 22 with the current collectors 20 and 22 being sandwiched, the contact between the positive electrode 12 or the negative electrode 16 and the current collectors 20 and 22 becomes strong. When the contact between the positive electrode 12 or the negative electrode 16 and the current collectors 20 and 22 is strong, electrons near the positive electrode 12 or the negative electrode 16 easily move to the current collectors 20 and 22.

[実施の形態1の効果]
上述のとおり、固体電解質12、正極14及び負極16は枠18に保持されている。よって、固体電解質12、正極14及び負極16は、崩れにくく、互いに剥がれにくい。よって、単位電池10を持ち運ぶ際にも、単位電池10は崩れにくい。したがって、単位電池10を容易に持ち運ぶことができる。
[Effect of Embodiment 1]
As described above, the solid electrolyte 12, the positive electrode 14, and the negative electrode 16 are held by the frame 18. Therefore, the solid electrolyte 12, the positive electrode 14, and the negative electrode 16 are not easily collapsed and are not easily separated from each other. Therefore, when carrying the unit battery 10, the unit battery 10 is not easily collapsed. Therefore, the unit battery 10 can be easily carried.

上述のとおり、固体電解質12は枠18に保持され、崩れにくい。そのため、固体電解質12の一部は欠落しにくい。固体電解質12の欠落する場合には正極14と負極16が接触して短絡するおそれが生じるが、本発明によれば、短絡を抑制することができる。   As described above, the solid electrolyte 12 is held by the frame 18 and hardly collapses. Therefore, a part of the solid electrolyte 12 is not easily lost. When the solid electrolyte 12 is missing, the positive electrode 14 and the negative electrode 16 may come into contact with each other to cause a short circuit. However, according to the present invention, the short circuit can be suppressed.

上述のとおり、集電体20、22を挟む形で集電体20、22に圧力を加えると、リチウムイオンは、単位電池10を移動しやすく、固体電解質12を移動しやすい。また、電子は正極14と負極16を移動し、集電体20、22に移動しやすい。よって、集電体20、22を挟む形で電池12に圧力を加えることで、電池12の内部抵抗を小さくできる。   As described above, when pressure is applied to the current collectors 20 and 22 with the current collectors 20 and 22 sandwiched therebetween, the lithium ions easily move the unit battery 10 and move the solid electrolyte 12 easily. Further, the electrons move through the positive electrode 14 and the negative electrode 16 and easily move to the current collectors 20 and 22. Therefore, the internal resistance of the battery 12 can be reduced by applying pressure to the battery 12 with the current collectors 20 and 22 sandwiched therebetween.

集電体20、22を挟む形で集電体20、22一面にわたり圧力を加えると、リチウムイオン及び電子は、単位電池10内一面にわたり移動しやすい。よって、単位電池10の内部抵抗を非常に小さくできる。   When pressure is applied across the current collectors 20 and 22 across the current collectors 20 and 22, lithium ions and electrons easily move across the unit battery 10. Therefore, the internal resistance of the unit battery 10 can be made very small.

なお、本実施の形態において、集電体20、22は枠18内に嵌っているが、これに限られるものではない。例えば、枠18内に収まるように枠18の内縁から所定の隙間をあけて、集電体20、22を配置してもよい。   In the present embodiment, the current collectors 20 and 22 are fitted in the frame 18, but the present invention is not limited to this. For example, the current collectors 20 and 22 may be arranged with a predetermined gap from the inner edge of the frame 18 so as to be within the frame 18.

なお、本実施の形態において、固体電解質12はLiS−Pガラスセラミックスであるが、これに限られるものではなく、通常の電池に用いられる固体電解質またはゲル状電解質であればよい。例えば、銀イオン導電性固体電解質、銅イオン導電性固体電解質、プロトン伝導性固体電解質でもよい。リチウムイオン導電性固体電解質でもよい。 In the present embodiment, the solid electrolyte 12 is Li 2 S—P 2 S 5 glass ceramics, but is not limited to this, and any solid electrolyte or gel electrolyte used in a normal battery may be used. . For example, a silver ion conductive solid electrolyte, a copper ion conductive solid electrolyte, or a proton conductive solid electrolyte may be used. A lithium ion conductive solid electrolyte may be used.

なお、本実施の形態において、集電体20、22と枠18はかしめにより封止されるが、これに限られるものではない。例えば、溶着やO(オー)リング構造によって集電体20、22と枠18を封止してもよい。 In the present embodiment, the current collectors 20 and 22 and the frame 18 are sealed by caulking, but the present invention is not limited to this. For example, the current collectors 20 and 22 and the frame 18 may be sealed by welding or an O (O) ring structure.

なお、本実施の形態において、枠18は円形状であるがこれに限られるものではない。多角形でもよい。   In the present embodiment, the frame 18 is circular, but is not limited thereto. It may be a polygon.

正極14、固体電解質12及び負極16を積層したものが、第1の発明記載の電極体を実現する。   The laminate of the positive electrode 14, the solid electrolyte 12, and the negative electrode 16 realizes the electrode body according to the first invention.

[実施の形態1の製造方法]
実施の形態1の単位電池の製造方法について説明する。以下に説明する製造方法は、一例であり、これに限定されるものではない。図2は実施の形態1の単位電池を製造するための成形金型を説明するための図である。成形金型のシリンダ60内に、シリンダ60の一端からピストン62が、シリンダ60の他端からピストン64が挿入できるようになっている。ピストン62、64の先端(シリンダ60内に挿入される側)は凸部を有する。ピストン62、64の凸部は、枠18内に嵌るようになっている。ピストン62、64それぞれの凸部の高さは、枠18の厚みより低い
[Production Method of Embodiment 1]
A method for manufacturing the unit battery according to the first embodiment will be described. The manufacturing method described below is an example, and the present invention is not limited to this. FIG. 2 is a view for explaining a molding die for manufacturing the unit battery of the first embodiment. A piston 62 can be inserted from one end of the cylinder 60 and a piston 64 can be inserted from the other end of the cylinder 60 into the cylinder 60 of the molding die. The tips of the pistons 62 and 64 (the side inserted into the cylinder 60) have a convex portion. The convex portions of the pistons 62 and 64 are fitted in the frame 18. The height of the convex portions of the pistons 62 and 64 is lower than the thickness of the frame 18.

図3は実施の形態1の単位電池の製造方法を説明するためのフローチャートである。まず、シリンダ60内に枠18を装填する(ステップ100)。シリンダ60内にシリンダ60の一端からピストン62を挿入する。ピストン62の凸部に枠18が嵌るように、枠18を装填する。以上のように、シリンダ60内に枠18を装填する。 FIG. 3 is a flowchart for explaining the method of manufacturing the unit battery according to the first embodiment. First, the frame 18 is loaded into the cylinder 60 (step 100). A piston 62 is inserted into the cylinder 60 from one end of the cylinder 60. The frame 18 is loaded so that the frame 18 fits into the convex part of the piston 62. As described above, the frame 18 is loaded into the cylinder 60.

続いて、枠18内に単位電池を成形する(ステップ102)。枠18内に正極14の材料としてLiCo0粉末を充填する。シリンダ60内にピストン64を挿入して加圧し、枠18内に正極14を圧粉成形する。次に、一旦ピストン64をシリンダ60から外した後、アルゴンガス中において、枠18内の正極14上に固体電解質12の材料としてLiS−Pガラスセラミックス粉末を充填する。そして、ピストン64をシリンダ60に挿入する。正極14と固体電解質12材料を挟む形で(シリンダ60の上下から)ピストン62、64により圧力を加え、枠18内に固体電解質12を圧粉成形する。ここで、固体電解質12の圧粉成形をアルゴンガス中にて行うことにより、固体電解質12に含まれる硫黄成分が化学反応をおこさない。そして、一旦ピストン64をシリンダ60から外した後、固体電解質12の上に負極16の材料としてIn箔を置く。そして、ピストン64をシリンダ60に挿入する。正極14、固体電解質12及び負極16の材料を挟む形で(シリンダ60の上下から)ピストン62、64により圧力を加え、In箔を枠18内に圧着し、負極16を作成する。以上により、枠18内に単位電池を成形する。 Subsequently, a unit cell is formed in the frame 18 (step 102). Filling the LiCoO 2 powder as the material of the positive electrode 14 in the frame 18. The piston 64 is inserted into the cylinder 60 and pressurized, and the positive electrode 14 is compacted in the frame 18. Next, after the piston 64 is once removed from the cylinder 60, Li 2 S—P 2 S 5 glass ceramic powder is filled as a material of the solid electrolyte 12 on the positive electrode 14 in the frame 18 in argon gas. Then, the piston 64 is inserted into the cylinder 60. Pressure is applied by the pistons 62 and 64 so as to sandwich the positive electrode 14 and the solid electrolyte 12 material (from the top and bottom of the cylinder 60), and the solid electrolyte 12 is compacted in the frame 18. Here, by performing compacting of the solid electrolyte 12 in argon gas, the sulfur component contained in the solid electrolyte 12 does not cause a chemical reaction. Then, after the piston 64 is once removed from the cylinder 60, In foil is placed on the solid electrolyte 12 as the material of the negative electrode 16. Then, the piston 64 is inserted into the cylinder 60. Pressure is applied by pistons 62 and 64 with the positive electrode 14, the solid electrolyte 12 and the negative electrode 16 sandwiched therebetween (from the upper and lower sides of the cylinder 60), and the In foil is pressure-bonded in the frame 18 to form the negative electrode 16. Thus, the unit battery is formed in the frame 18.

続いて、シリンダより単位電池を取り出す(ステップ104)。シリンダ60内より、枠18と一体となった単位電池を取り出す。
そして、単位電池に集電体を取り付ける(ステップ106)。正極14と負極16を挟む形で、枠18に嵌合するように、集電体を取り付ける。以上により、単位電池10を製造する。
Subsequently, the unit battery is taken out from the cylinder (step 104). The unit battery integrated with the frame 18 is taken out from the cylinder 60.
Then, a current collector is attached to the unit battery (step 106). A current collector is attached so as to fit into the frame 18 with the positive electrode 14 and the negative electrode 16 sandwiched therebetween. The unit battery 10 is manufactured as described above.

上述の単位電池の製造方法によれば、シリンダ60内より枠18と一体となった単位電池10を取り出す。よって、単位電池10を取り出しやすい。したがって、単位電池10を取り出す際に、単位電池10の崩れを抑制しやすい。   According to the unit battery manufacturing method described above, the unit battery 10 integrated with the frame 18 is taken out from the cylinder 60. Therefore, it is easy to take out the unit battery 10. Therefore, when the unit battery 10 is taken out, it is easy to suppress the collapse of the unit battery 10.

なお、本実施の形態において、ステップ102では、アルゴンガス中にて固体電解質12を圧粉成形しているが、これに限られるものではない。固体電解質13を化学反応させにくい不活性ガス中であればよい。例えば、乾燥したガス中でもよい。また、化学反応性の低い固体電解質を用いる場合には、大気中でもよい。 In this embodiment, in step 102, the solid electrolyte 12 is compacted in argon gas, but the present invention is not limited to this. What is necessary is just in the inert gas which is hard to make the solid electrolyte 13 react chemically. For example, a dry gas may be used. Further, when a solid electrolyte having low chemical reactivity is used, it may be in the atmosphere.

[実施の形態2の構成]
図4は実施の形態2の積層電池をあらわす図である。積層電池24は、単位電池10を備える。上述のとおり、単位電池10において、集電体20の一部は単位電池10の枠18内に嵌り、集電体20の一部は枠18より突出している。ここで、集電体20は円形状であり、枠18内に嵌合する形状となっている。集電体20の枠18より突出している部分は、単位電池21の負極に接する。さらに、集電体20の枠18より突出している部分は、単位電池21の枠内に嵌合する。
[Configuration of Embodiment 2]
FIG. 4 is a diagram showing the laminated battery of the second embodiment. The stacked battery 24 includes the unit battery 10. As described above, in the unit battery 10, a part of the current collector 20 is fitted in the frame 18 of the unit battery 10, and a part of the current collector 20 protrudes from the frame 18. Here, the current collector 20 has a circular shape and is fitted into the frame 18. The portion of the current collector 20 that protrudes from the frame 18 is in contact with the negative electrode of the unit battery 21. Further, the portion of the current collector 20 that protrudes from the frame 18 is fitted into the frame of the unit battery 21.

単位電池21の正極に接する形で、集電体30を備える。集電体30は単位電池21の枠に嵌合する。集電体30の一部は、単位電池21の枠より突出している。集電体30は、単位電池28の枠内に嵌合し、単位電池28の負極に接する。単位電池28は、単位電池28の正極に接し、単位電池28の枠に嵌合するように、集電体32を備える。   A current collector 30 is provided in contact with the positive electrode of the unit battery 21. The current collector 30 is fitted into the frame of the unit battery 21. A part of the current collector 30 protrudes from the frame of the unit battery 21. The current collector 30 is fitted in the frame of the unit battery 28 and is in contact with the negative electrode of the unit battery 28. The unit battery 28 includes a current collector 32 so as to be in contact with the positive electrode of the unit battery 28 and fit into the frame of the unit battery 28.

[実施の形態2の作用]
集電体22、32を挟むように(図4において矢印の方向)積層電池24に圧力を加えると、単位電池18、21、28それぞれに加圧が行われ、単位電池18、24、28内の圧力が高くなる。単位電池18、21、28内の圧力が高いと、電池とリチウムイオンは単位電池18、21、28内を移動しやすい。
[Operation of Embodiment 2]
When pressure is applied to the laminated battery 24 so as to sandwich the current collectors 22 and 32 (in the direction of the arrow in FIG. 4), the unit cells 18, 21 and 28 are pressurized, and the unit cells 18, 24 and 28 The pressure increases. When the pressure in the unit cells 18, 21, and 28 is high, the battery and lithium ions easily move in the unit cells 18, 21, and 28.

集電体22、32を挟むように積層電池24に圧力を加えると、各単位電池と集電体間の圧力が高くなる。単位電池と集電体の圧力が高いと、電子が単位電池から集電体に移動しやすい。また、集電体22、32を挟むように積層電池24に圧力を加えると、集電体20、30が隣り合う単位電池の枠内に嵌合しているために、各単位電池の枠ではなく電極体に直接圧力が加わる。   When pressure is applied to the stacked battery 24 so as to sandwich the current collectors 22 and 32, the pressure between each unit battery and the current collector increases. When the pressure of the unit battery and the current collector is high, electrons easily move from the unit battery to the current collector. In addition, when pressure is applied to the stacked battery 24 so that the current collectors 22 and 32 are sandwiched, the current collectors 20 and 30 are fitted in the frame of the adjacent unit cells. Pressure is applied directly to the electrode body.

[実施の形態2の効果]
単位電池10、21を積層する際に、単位電池21の枠に集電体20を嵌合させる。つまり、単位電池の枠を位置の基準として用い、単位電池を積層する。したがって、単位電池間の位置決めを簡易に行うことができる。
[Effect of Embodiment 2]
When the unit batteries 10 and 21 are stacked, the current collector 20 is fitted into the frame of the unit battery 21. That is, the unit cells are stacked by using the frame of the unit cells as a position reference. Therefore, positioning between unit batteries can be performed easily.

上述のとおり、集電体20は、単位電池10の枠18内及び単位電池21の枠内に嵌合している。集電体30は、単位電池21の枠内及び単位電池28の枠内に嵌合している。よって、積層電池24を動かす場合にも、単位電池18、21、28がずれることがない。 As described above, the current collector 20 is fitted in the frame 18 of the unit battery 10 and the frame of the unit battery 21. The current collector 30 is fitted in the frame of the unit battery 21 and the frame of the unit battery 28. Therefore, even when the laminated battery 24 is moved, the unit batteries 18, 21, and 28 are not displaced.

図5は積層電池24の圧力と内部抵抗の関係をあらわす図である。図5において、横軸は積層電池24の集電体22、32を挟む方向の圧力をあらわす。図5において、縦軸は、積層電池24の内部抵抗をあらわし、60kgf/cmの圧力を加えたときの内部抵抗を1とする比であらわす。図5より、集電体22、32を挟むように積層電池に加える圧力が大きいと、内部抵抗は小さい。よって、集電体22、32を挟むように積層電池24に圧力を加えると、単位電池10、21、28の内部抵抗が小さくなる。したがって、積層電池24に圧力を加えることにより、積層電池24の内部抵抗を減少させることができる。 FIG. 5 is a diagram showing the relationship between the pressure of the laminated battery 24 and the internal resistance. In FIG. 5, the horizontal axis represents the pressure in the direction in which the current collectors 22 and 32 of the laminated battery 24 are sandwiched. In FIG. 5, the vertical axis represents the internal resistance of the laminated battery 24, and is a ratio with the internal resistance being 1 when a pressure of 60 kgf / cm 2 is applied. From FIG. 5, when the pressure applied to the laminated battery is large so as to sandwich the current collectors 22 and 32, the internal resistance is small. Therefore, when pressure is applied to the laminated battery 24 so as to sandwich the current collectors 22 and 32, the internal resistance of the unit batteries 10, 21, and 28 is reduced. Therefore, the internal resistance of the laminated battery 24 can be reduced by applying pressure to the laminated battery 24.

[実施の形態2の変形例]
図6は実施の形態2の変形例を示す図である。図6に示す積層電池34は、枠36を備える。枠36内は円形状である。枠36内に円形状の電極体38を備える。電極体38は、正極、固体電解質及び負極を積層したものである。電極体38は円形状の集電体40を介して電極体42と積層されている。電極体42は枠36内に備えられている。電極体42は、集電体40と反対側に、円形状の集電体44を備える。集電体44の一部は枠36内に嵌合し、集電体44の一部は枠36外に突出している。また、電極体38は集電体46を介して円形状の電極体48を備える。電極体48は枠36内に備えられている。電極体48は、集電体46と反対側に、円形状の集電体50を備える。集電体50の一部は枠36内に嵌合し、集電体50の一部は枠36より外に突出している。
[Modification of Embodiment 2]
FIG. 6 is a diagram showing a modification of the second embodiment. A laminated battery 34 shown in FIG. 6 includes a frame 36. The inside of the frame 36 is circular. A circular electrode body 38 is provided in the frame 36. The electrode body 38 is formed by laminating a positive electrode, a solid electrolyte, and a negative electrode. The electrode body 38 is laminated with the electrode body 42 via a circular current collector 40. The electrode body 42 is provided in the frame 36. The electrode body 42 includes a circular current collector 44 on the side opposite to the current collector 40. A part of the current collector 44 is fitted in the frame 36, and a part of the current collector 44 protrudes outside the frame 36. The electrode body 38 includes a circular electrode body 48 via a current collector 46. The electrode body 48 is provided in the frame 36. The electrode body 48 includes a circular current collector 50 on the side opposite to the current collector 46. A part of the current collector 50 is fitted in the frame 36, and a part of the current collector 50 protrudes outside the frame 36.

本実施の形態の構成によれば、枠34内に嵌合している集電体40、46は単位電池を積層する際の位置決めの作用は必要なく、単に集電するだけでよい。よって、通常の単位電池を積層する際に用いる集電体の厚みよりも薄い厚みの集電体40、46を用いることが可能である。したがって、厚みの薄い集電体40、46を用いることにより、積層電池34の積層方向の厚さを小さくすることができる。   According to the configuration of the present embodiment, the current collectors 40 and 46 fitted in the frame 34 do not need to be positioned when the unit cells are stacked, and may simply collect current. Therefore, it is possible to use the current collectors 40 and 46 having a thickness smaller than the thickness of the current collector used when stacking ordinary unit cells. Therefore, the thickness of the stacked battery 34 in the stacking direction can be reduced by using the thin current collectors 40 and 46.

電極体42、集電体40、電極体38、集電体46及び電極体48を積層したものが、発明5記載の電極積層体を実現する。   A laminate of the electrode body 42, the current collector 40, the electrode body 38, the current collector 46 and the electrode body 48 realizes the electrode laminate according to the fifth aspect.

[実施の形態2の変形例の製造方法]
図7は実施の形態2の変形例の製造方法を説明するためのフローチャートである。図7に示すフローチャートにおいて、図2と同様の部分には、同じ符号を用い、詳細な説明を省略する。図6に示すフローチャートにおいて、ステップ100の枠36の装填に続き、枠36内に積層電池を一体成形する(ステップ108)。枠36内に、正極、固体電解質及び負極を圧粉成形し、電極体48を作成する。電極体48の上に集電体46を置く。続けて、集電体46の上に電極体38を成形する。電極体38の上に集電体40を設置し、集電体40の上に電極体42を成形する。
[Manufacturing Method of Modified Example of Embodiment 2]
FIG. 7 is a flowchart for explaining a manufacturing method according to a modification of the second embodiment. In the flowchart shown in FIG. 7, the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In the flowchart shown in FIG. 6, following the loading of the frame 36 in step 100, the laminated battery is integrally formed in the frame 36 (step 108). In the frame 36, the positive electrode, the solid electrolyte, and the negative electrode are compacted to form an electrode body 48. A current collector 46 is placed on the electrode body 48. Subsequently, the electrode body 38 is formed on the current collector 46. The current collector 40 is installed on the electrode body 38, and the electrode body 42 is formed on the current collector 40.

上述の実施の形態2の変形例の製造方法によれば、積層電池34を枠内に一体に作成することができる。よって、簡易に積層電池34を作成することができる。   According to the manufacturing method of the modified example of the above-described second embodiment, the laminated battery 34 can be integrally formed in the frame. Therefore, the laminated battery 34 can be easily produced.

[電池の封止方法]
図8は封止された積層電池を説明するための図である。積層電池24は、積層電池24の積層方向の周囲を囲むように紫外硬化樹脂56を備える。紫外硬化樹脂56は、積層電池24の積層方向に積層電池24を加圧し、積層電池24を封止している。
[Battery sealing method]
FIG. 8 is a diagram for explaining a sealed laminated battery. The stacked battery 24 includes an ultraviolet curable resin 56 so as to surround the periphery of the stacked battery 24 in the stacking direction. The ultraviolet curable resin 56 pressurizes the stacked battery 24 in the stacking direction of the stacked battery 24 and seals the stacked battery 24.

積層電池24の封止方法を説明する。まず、積層電池24に圧縮治具を設ける(ステップ200)。積層電池24の集電体22、32に、集電体22,32を挟む形で圧縮治具52、54を設ける。
続いて、積層電池24に圧力を加える(ステップ202)。圧縮治具52、54を集電体22、32を挟む向き(図中矢印の方向)に圧力を加え、積層電池24に圧力を加える。
続いて、積層電池を封止する(ステップ204)。積層電池24に圧縮治具52、54で圧力を加えた状態で、積層電池24の周囲を封止する。ここでは、紫外硬化樹脂56により積層電池24の周囲を囲い、紫外硬化樹脂56を硬化させる。
続いて、圧縮治具を取り外す(ステップ206)。紫外硬化樹脂56の硬化後、圧縮治具52、54を取り外す。このとき、圧縮治具52、54を取り外した際に紫外硬化樹脂56に生じる圧縮治具52、54跡の穴により、積層電池24を集電する。
A method for sealing the laminated battery 24 will be described. First, a compression jig is provided in the laminated battery 24 (step 200). Compression jigs 52 and 54 are provided on the current collectors 22 and 32 of the laminated battery 24 so as to sandwich the current collectors 22 and 32.
Subsequently, pressure is applied to the laminated battery 24 (step 202). Pressure is applied to the laminated battery 24 in the direction in which the compression jigs 52 and 54 sandwich the current collectors 22 and 32 (in the direction of the arrows in the figure).
Subsequently, the laminated battery is sealed (step 204). The periphery of the laminated battery 24 is sealed in a state where pressure is applied to the laminated battery 24 with the compression jigs 52 and 54. Here, the periphery of the laminated battery 24 is surrounded by the ultraviolet curable resin 56, and the ultraviolet curable resin 56 is cured.
Subsequently, the compression jig is removed (step 206). After the ultraviolet curable resin 56 is cured, the compression jigs 52 and 54 are removed. At this time, the stacked battery 24 is collected through the holes of the compression jigs 52 and 54 generated in the ultraviolet curable resin 56 when the compression jigs 52 and 54 are removed.

上述の電池の封止方法によれば、積層電池24を加圧した状態で、積層電池24を封止する。よって、積層電池24が加圧された状態で、積層電池24を動作させることができる。したがって、積層電池24の内部抵抗が低い状態で、積層電池24を動作させることができる。   According to the battery sealing method described above, the laminated battery 24 is sealed in a state where the laminated battery 24 is pressurized. Therefore, the laminated battery 24 can be operated in a state where the laminated battery 24 is pressurized. Therefore, the laminated battery 24 can be operated with the internal resistance of the laminated battery 24 being low.

なお、本封止方法において、紫外硬化樹脂56により積層電池24を封止したが、これに限られるものではない。水分を透過しにくい絶縁材を用いて、積層電池24を封止すればよい。また、樹脂の射出成形などにより、積層電池24を封止してもよい。 In this sealing method, the laminated battery 24 is sealed with the ultraviolet curable resin 56, but the present invention is not limited to this. The laminated battery 24 may be sealed using an insulating material that does not easily transmit moisture. Alternatively, the laminated battery 24 may be sealed by resin injection molding or the like.

なお、本封止方法において、積層電池24が封止されているが、これに限られるものではなく、図1に示す単位電池10を封止してもよい。   In this sealing method, the laminated battery 24 is sealed, but the present invention is not limited to this, and the unit battery 10 shown in FIG. 1 may be sealed.

[電池の封止方法の変形例]
図9は封止された積層電池の変形例をあらわす図である。図9に示すように、積層電池24を金属ケース58でかしめて封止し、ボタン電池としている。あるいは、金属ラミネートフィルムにより封止してもよい。
[Variation of battery sealing method]
FIG. 9 is a view showing a modified example of the sealed laminated battery. As shown in FIG. 9, the laminated battery 24 is caulked and sealed with a metal case 58 to form a button battery. Or you may seal by a metal laminate film.

図1は実施の形態1の単位電池の断面をあらわす図である。FIG. 1 is a diagram showing a cross section of the unit battery of the first embodiment. 図2は実施の形態1の単位電池を製造するための成形金型を説明するための図である。FIG. 2 is a view for explaining a molding die for manufacturing the unit battery of the first embodiment. 図3は実施の形態1の製造方法を説明するためのフロー図である。FIG. 3 is a flowchart for explaining the manufacturing method of the first embodiment. 図4は実施の形態2の積層電池をあらわす図である。FIG. 4 is a diagram showing the laminated battery of the second embodiment. 図5は積層電池24の圧力と内部抵抗の関係をあらわす図である。FIG. 5 is a diagram showing the relationship between the pressure of the laminated battery 24 and the internal resistance. 図6は実施の形態2の変形例を示す図である。FIG. 6 is a diagram showing a modification of the second embodiment. 図7は実施の形態2の変形例の製造方法を説明するためのフローチャートである。FIG. 7 is a flowchart for explaining a manufacturing method according to a modification of the second embodiment. 図8は封止された積層電池を説明するための図である。FIG. 8 is a diagram for explaining a sealed laminated battery. 図9は封止された積層電池の変形例をあらわす図である。FIG. 9 is a view showing a modified example of the sealed laminated battery.

符号の説明Explanation of symbols

10 単位電池
12 固体電解質
14 正極
16 負極
18、36 枠
20、22、30、32、40、44、46、50 集電体
24 積層電池
38、42、48 電極体
52、54 圧縮治具
56 紫外硬化樹脂
10 unit cell 12 solid electrolyte 14 positive electrode 16 negative electrode 18, 36 frame 20, 22, 30, 32, 40, 44, 46, 50 current collector 24 laminated battery 38, 42, 48 electrode body 52, 54 compression jig 56 ultraviolet Cured resin

Claims (9)

固体またはゲル状の電解質を挟む形で正極と負極とを積層した平面状の電極体と、前記電極体の周縁を保持する電気絶縁体の枠とを備える単位電池であって、
前記枠の厚みは、前記電極体の積層方向の厚みより大きいことを特徴とする単位電池。
A unit cell comprising a planar electrode body in which a positive electrode and a negative electrode are stacked in a form sandwiching a solid or gel electrolyte, and an electric insulator frame that holds the periphery of the electrode body,
The unit battery is characterized in that the thickness of the frame is larger than the thickness of the electrode body in the stacking direction.
前記電極体に備えられた正極または負極に接し、前記枠内に嵌合する集電体を備えることを特徴とする請求項1記載の単位電池。   The unit battery according to claim 1, further comprising a current collector that is in contact with a positive electrode or a negative electrode provided in the electrode body and is fitted in the frame. 前記単位電池の周囲に前記電池を封止する封止材を備えることを特徴とする請求項1または2記載の単位電池。 The unit battery according to claim 1, further comprising a sealing material that seals the battery around the unit battery. 請求項2もしくは3記載の単位電池を集電体を挟む形で複数積層するにあたり、
複数積層された単位電池のうちの隣り合う2つの単位電池のあいだに、一方の単位電池に備えられた正極と他方の単位電池に備えられた負極に接し、一方の単位電池に備えられた枠内及び他方の単位電池に備えられた枠内に嵌合する集電体と、
を備えることを特徴とする電池。
In stacking a plurality of unit cells according to claim 2 or 3 in a form sandwiching a current collector,
A frame provided in one unit cell in contact with a positive electrode provided in one unit cell and a negative electrode provided in the other unit cell between two adjacent unit cells among the plurality of stacked unit cells. A current collector that fits within a frame provided in the inner and other unit cells;
A battery comprising:
固体またはゲル状の電解質を挟む形で正極と負極とを積層した平面状の電極体を備え、集電体を挟む形で前記電極体を複数積層した電極積層体と、
前記電極積層体の周縁を保持する電気絶縁体の枠と、
を備えることを特徴とする電池。
A planar electrode body in which a positive electrode and a negative electrode are stacked with a solid or gel electrolyte sandwiched therebetween, and an electrode laminate in which a plurality of the electrode bodies are stacked with a current collector sandwiched therebetween,
A frame of an electrical insulator that holds the periphery of the electrode stack;
A battery comprising:
前記電池の周囲に、前記電池を封止する封止材を備えることを特徴とする請求項4または5記載の電池。   The battery according to claim 4, further comprising a sealing material that seals the battery around the battery. 前記封止材は、前記電池に備えられた正極と負極を挟む向きに前記電池を加圧することを特徴とする請求項6記載の電池。   The battery according to claim 6, wherein the sealing material pressurizes the battery in a direction sandwiching a positive electrode and a negative electrode provided in the battery. 成形金型のシリンダ内に電気絶縁体の枠を設置するステップと、
該シリンダ内に正極または負極の一方の電極材料を充填するステップと、
固体またはゲル状の電解質材料を充填するステップと、
前記枠内に嵌合する凸部を有するピストンを用いて充填された電極材料および電解質材料を加圧して電極体を作成するステップと、
を備えることを特徴とする単位電池の製造方法。
Installing an electrical insulator frame in the cylinder of the molding die;
Filling one of the positive electrode and negative electrode electrode materials into the cylinder;
Filling a solid or gel electrolyte material;
Pressurizing the electrode material and the electrolyte material filled with a piston having a convex portion fitted into the frame to create an electrode body; and
A method for producing a unit battery, comprising:
請求項8で製造した単位電池の枠内に集電体を嵌合させるステップと、
該集電体を他の単位電池の枠内に嵌合させて単位電池同士を積層するステップと、
を備えることを特徴とする電池の製造方法。
Fitting the current collector within the frame of the unit battery manufactured in claim 8;
Fitting the current collector in a frame of another unit cell and stacking unit cells; and
A method for producing a battery, comprising:
JP2007155491A 2007-06-12 2007-06-12 Battery Pending JP2008310987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155491A JP2008310987A (en) 2007-06-12 2007-06-12 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155491A JP2008310987A (en) 2007-06-12 2007-06-12 Battery

Publications (1)

Publication Number Publication Date
JP2008310987A true JP2008310987A (en) 2008-12-25

Family

ID=40238434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155491A Pending JP2008310987A (en) 2007-06-12 2007-06-12 Battery

Country Status (1)

Country Link
JP (1) JP2008310987A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
WO2010131321A1 (en) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 Solid‑state battery manufacturing method and solid state battery
JP2012014878A (en) * 2010-06-29 2012-01-19 Toyota Motor Corp Method for manufacturing power generation element of solid battery
JP2016192256A (en) * 2015-03-30 2016-11-10 トヨタ自動車株式会社 Manufacturing method of secondary battery
CN110364650A (en) * 2018-03-26 2019-10-22 丰田自动车株式会社 Battery pack
JP2020061359A (en) * 2018-10-10 2020-04-16 パナソニックIpマネジメント株式会社 Battery and laminated battery
WO2023042579A1 (en) * 2021-09-14 2023-03-23 マクセル株式会社 Battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119261U (en) * 1985-01-10 1986-07-28
JPH07320722A (en) * 1994-05-27 1995-12-08 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte lithium secondary battery
JPH0864213A (en) * 1994-08-26 1996-03-08 Yuasa Corp Layer-built battery and manufacture thereof
JPH0878025A (en) * 1994-09-08 1996-03-22 Yuasa Corp Manufacture of stacked cell
JPH09134731A (en) * 1995-11-08 1997-05-20 Yuasa Corp Solid electrolyte battery and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119261U (en) * 1985-01-10 1986-07-28
JPH07320722A (en) * 1994-05-27 1995-12-08 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte lithium secondary battery
JPH0864213A (en) * 1994-08-26 1996-03-08 Yuasa Corp Layer-built battery and manufacture thereof
JPH0878025A (en) * 1994-09-08 1996-03-22 Yuasa Corp Manufacture of stacked cell
JPH09134731A (en) * 1995-11-08 1997-05-20 Yuasa Corp Solid electrolyte battery and its manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
WO2010131321A1 (en) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 Solid‑state battery manufacturing method and solid state battery
JP5131283B2 (en) * 2009-05-11 2013-01-30 トヨタ自動車株式会社 Solid battery manufacturing method and solid battery
US8579994B2 (en) 2009-05-11 2013-11-12 Toyota Jidosha Kabushiki Kaisha Method for producing a solid-state cell and a solid-state cell
JP2012014878A (en) * 2010-06-29 2012-01-19 Toyota Motor Corp Method for manufacturing power generation element of solid battery
JP2016192256A (en) * 2015-03-30 2016-11-10 トヨタ自動車株式会社 Manufacturing method of secondary battery
CN110364650A (en) * 2018-03-26 2019-10-22 丰田自动车株式会社 Battery pack
CN110364650B (en) * 2018-03-26 2022-02-11 丰田自动车株式会社 Battery pack
JP2020061359A (en) * 2018-10-10 2020-04-16 パナソニックIpマネジメント株式会社 Battery and laminated battery
JP7357275B2 (en) 2018-10-10 2023-10-06 パナソニックIpマネジメント株式会社 Batteries and laminated batteries
WO2023042579A1 (en) * 2021-09-14 2023-03-23 マクセル株式会社 Battery

Similar Documents

Publication Publication Date Title
JP2008310987A (en) Battery
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
WO2012124108A1 (en) Solid-state battery and solid-state battery manufacturing method
CN107305960B (en) Battery, battery manufacturing method, and battery manufacturing apparatus
JP5492653B2 (en) Secondary battery
CN112993388B (en) Solid-state battery and method for manufacturing solid-state battery
KR101533574B1 (en) Method for Manufacturing of Battery Cell Having Bent Sealing Surplus Portion
JP2013008550A (en) Secondary battery and manufacturing method thereof
JP2019036422A (en) All-solid battery
JP6275986B2 (en) ALL SOLID TYPE LITHIUM ION BATTERY AND METHOD FOR PRODUCING ALL SOLID TYPE LITHIUM ION BATTERY
US20100133348A1 (en) Electrochemical cell for use in smart cards
US6371997B1 (en) Method for manufacturing lithium polymer secondary battery and lithium polymer secondary battery made by the method
JP2003123832A (en) Laminate film-covered battery device and production process thereof
JP4463529B2 (en) Secondary battery
JP5343663B2 (en) Method and apparatus for manufacturing bipolar secondary battery
JP2002334692A (en) Battery
JP7469086B2 (en) Electricity storage device and manufacturing method thereof
JP2002280059A (en) Battery, electric double layer capacitor and their manufacturing method
JP4909508B2 (en) Battery case and secondary battery using the same
JP2020098669A (en) Electrode encapsulation body and power storage device
WO2022172613A1 (en) Battery, battery system and method for producing battery
JP2010114365A (en) Electric double layer capacitor and method of manufacturing the same
WO2022172612A1 (en) Battery, battery system, and battery manufacturing method
KR20180081911A (en) Electrolyte Injection Method Using Vacuum
KR20180081916A (en) Electrolyte Injection Method Using Vacuum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129