JP2020098669A - Electrode encapsulation body and power storage device - Google Patents

Electrode encapsulation body and power storage device Download PDF

Info

Publication number
JP2020098669A
JP2020098669A JP2018235136A JP2018235136A JP2020098669A JP 2020098669 A JP2020098669 A JP 2020098669A JP 2018235136 A JP2018235136 A JP 2018235136A JP 2018235136 A JP2018235136 A JP 2018235136A JP 2020098669 A JP2020098669 A JP 2020098669A
Authority
JP
Japan
Prior art keywords
electrode
peripheral portion
container
laminated body
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018235136A
Other languages
Japanese (ja)
Other versions
JP7173855B2 (en
Inventor
健作 中島
Kensaku Nakajima
健作 中島
真 今野
Makoto Konno
真 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2018235136A priority Critical patent/JP7173855B2/en
Publication of JP2020098669A publication Critical patent/JP2020098669A/en
Application granted granted Critical
Publication of JP7173855B2 publication Critical patent/JP7173855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

To provide an electrode encapsulation body for creating a power storage device having stable performances.SOLUTION: An electrode encapsulation body 1 comprises an electrode laminate 2 and a container 3 in which the electrode laminate 2 is accommodated. The electrode laminate 2 includes a cathode 21, an anode 22 and a solid electrolyte 23. The container 3 includes: a pair of first wall parts 31 opposed with outermost surfaces of the electrode laminate 2 in a lamination direction X; and a second wall part 32 opposed with an end face of the electrode laminate 2. On a peripheral part 2b of the electrode laminate 2, a compression stress greater than that in a central part 2a of the electrode laminate 2 is applied in the lamination direction X of the electrode laminate 2.SELECTED DRAWING: Figure 1

Description

本発明は、電極封入体及び蓄電デバイスに関する。 The present invention relates to an electrode enclosure and an electricity storage device.

リチウムイオン二次電池などの蓄電デバイスは、ハイブリッド自動車や携帯端末の電源として使用されている。また、固体電解質を使用する蓄電デバイスは、電解液を使用しないため液漏れ等のおそれがなく、安全性が高いことが知られている。このような蓄電デバイスは、主として、電極積層体と、電極積層体を収容する外装部材(容器)とを備えている(例えば特許文献1)。 Storage devices such as lithium-ion secondary batteries are used as power sources for hybrid vehicles and mobile terminals. In addition, it is known that an electricity storage device using a solid electrolyte has high safety because it does not use an electrolytic solution and thus there is no risk of liquid leakage. Such an electricity storage device mainly includes an electrode laminate and an exterior member (container) that houses the electrode laminate (for example, Patent Document 1).

特開2013−062174号公報JP, 2013-062174, A

ところで、蓄電デバイスを製造する際には、電極積層体を外装部材内に収容した後、外装部材内を減圧して密閉する方法が用いられることがある。外装部材の壁部は適度な剛性を有しているため、外装部材内を減圧した場合、外装部材は外圧によって均一に撓まず、外装部材の壁部が電極積層体に及ぼす応力に偏りが生じる。特に、壁部の中央部は撓みやすく、一方、壁部の周辺部は撓みにくいため、壁部の中央部から電極積層体の中央部へは応力が伝播されやすいのに対し、壁部の周辺部から電極積層体の周辺部へは応力が伝播されにくい。その結果、電極積層体の中央部に比べて周辺部に掛かる圧縮応力は小さくなり、固体電解質と正極及び負極との間の界面抵抗が均一にならず、特に電解液を持たない蓄電デバイスの性能が安定しないという問題がある。 By the way, when manufacturing an electricity storage device, a method may be used in which the electrode laminate is housed in an exterior member, and then the interior member is depressurized and hermetically sealed. Since the wall portion of the exterior member has an appropriate rigidity, when the pressure inside the exterior member is reduced, the exterior member does not flex uniformly due to external pressure, and the stress exerted by the wall portion of the exterior member on the electrode laminate is biased. .. In particular, since the central portion of the wall portion is easily bent, while the peripheral portion of the wall portion is not easily bent, stress is likely to be propagated from the central portion of the wall portion to the central portion of the electrode laminate, whereas the peripheral portion of the wall portion The stress is unlikely to propagate from the portion to the peripheral portion of the electrode laminate. As a result, the compressive stress applied to the peripheral portion is smaller than that in the central portion of the electrode laminate, the interfacial resistance between the solid electrolyte and the positive electrode and the negative electrode is not uniform, and the performance of the electricity storage device having no electrolytic solution is particularly low. Is not stable.

本発明は、安定した性能を有する蓄電デバイスを作製するための電極封入体、及び、当該電極封入体から作製された蓄電デバイスを提供することを目的とする。 An object of the present invention is to provide an electrode enclosure for producing an electricity storage device having stable performance, and an electricity storage device produced from the electrode enclosure.

本発明は、
正極と、負極と、固体電解質とを含む電極積層体と、前記電極積層体を収容する容器と、を備える電極封入体であって、
前記容器は、前記電極積層体の積層方向における最外面とそれぞれ対向する一対の第一壁部と、前記電極積層体の端面と対向する第二壁部と、を備え、
前記電極積層体の周辺部には前記電極積層体の中央部よりも大きな圧縮応力が前記電極積層体の積層方向に印加されている、
ことを特徴とする。
The present invention is
An electrode enclosure including a positive electrode, a negative electrode, an electrode laminate including a solid electrolyte, and a container that houses the electrode laminate,
The container includes a pair of first wall portions facing the outermost surface in the stacking direction of the electrode stack, and a second wall portion facing the end surface of the electrode stack,
A larger compressive stress is applied to the peripheral portion of the electrode laminated body in the laminating direction of the electrode laminated body than the central portion of the electrode laminated body.
It is characterized by

前記の通り、容器に対して容器外から応力が印加されたとき、電極積層体の中央部は容器から応力が伝播されやすいのに対し、電極積層体の周辺部は容器から応力が伝播されにくい。そこで、容器に応力が印加される前に、あらかじめ電極積層体の周辺部に電極積層体の中央部よりも大きな圧縮応力を積層方向に印加しておくことで、容器に応力が印加されたときに、電極積層体の中央部に掛かる圧縮応力と周辺部に掛かる圧縮応力とを均一にすることができる。その結果、固体電解質と正極及び負極との間の界面抵抗が均一になり、蓄電デバイスの性能を安定化することができる。 As described above, when stress is applied to the container from the outside of the container, stress is likely to be propagated from the container in the central portion of the electrode laminate, whereas stress is less likely to be propagated from the container in the peripheral portion of the electrode laminate. .. Therefore, when stress is applied to the container by applying a larger compressive stress in the stacking direction to the peripheral part of the electrode stack in advance in the stacking direction before applying the stress to the container. In addition, the compressive stress applied to the central part of the electrode laminate and the compressive stress applied to the peripheral part can be made uniform. As a result, the interface resistance between the solid electrolyte and the positive and negative electrodes becomes uniform, and the performance of the electricity storage device can be stabilized.

本発明の電極封入体において、前記固体電解質は高分子を含有することが好ましい。 In the electrode enclosure of the present invention, the solid electrolyte preferably contains a polymer.

高分子は弾性を有しているため、固体電解質と正極及び負極との間の界面抵抗が均一になりやすい。 Since the polymer has elasticity, the interface resistance between the solid electrolyte and the positive electrode and the negative electrode tends to be uniform.

本発明の電極封入体において、前記電極積層体は複数積層されていることが好ましい。 In the electrode enclosure of the present invention, it is preferable that a plurality of the electrode laminated bodies are laminated.

電極積層体が複数積層されていることにより、高電圧が得られ大きな電力を取り出すことできる。 By stacking a plurality of electrode laminates, a high voltage can be obtained and a large amount of power can be taken out.

本発明の電極封入体において、前記容器は角型であることが好ましい。 In the electrode enclosure of the present invention, the container is preferably rectangular.

容器が角型の場合には、第一壁部の中央部に比べて第一壁部の周辺部は特に撓みにくくなり、電極積層体の周辺部には応力が伝播されにくい。そのため、あらかじめ電極積層体の周辺部に中央部よりも大きな圧縮応力を積層方向に印加しておく方法は容器が角型の場合に特に有効である。 When the container has a rectangular shape, the peripheral portion of the first wall portion is more difficult to bend than the central portion of the first wall portion, and the stress is less likely to propagate to the peripheral portion of the electrode laminate. Therefore, the method of applying a larger compressive stress to the peripheral portion of the electrode laminated body in advance in the laminating direction than that of the central portion is particularly effective when the container has a rectangular shape.

本発明の電極封入体において、前記第二壁部と前記電極積層体の端面との間にはクリアランスが設けられており、前記クリアランスは前記電極封入体の長さの0.3〜5.0%であることが好ましい。 In the electrode enclosure of the present invention, a clearance is provided between the second wall portion and the end surface of the electrode laminate, and the clearance is 0.3 to 5.0 of the length of the electrode enclosure. % Is preferable.

上記特徴により、電極積層体の端面はクリアランス分だけ中心寄りに位置することになる。これにより、応力が伝播されにくい電極積層体の周辺部の領域を小さくすることができる。よって、容器に応力が印加されたときに、電極積層体の中央部と周辺部との圧縮応力が均一になりやすい。 Due to the above characteristics, the end surface of the electrode laminate is located closer to the center by the clearance. As a result, it is possible to reduce the area of the peripheral portion of the electrode laminate in which stress is less likely to propagate. Therefore, when stress is applied to the container, the compressive stress in the central portion and the peripheral portion of the electrode laminated body tends to be uniform.

本発明の電極封入体において、前記積層方向に対向する前記第一壁部の周辺部の内面間の間隔は、圧縮応力が印加されていない状態の前記電極積層体の周辺部の厚みよりも小さいことが好ましい。 In the electrode enclosure of the present invention, the distance between the inner surfaces of the peripheral portion of the first wall portion facing in the stacking direction is smaller than the thickness of the peripheral portion of the electrode laminated body in the state where no compressive stress is applied. It is preferable.

本発明の電極封入体において、前記第一壁部の周辺部と前記電極積層体の周辺部との間には、前記電極積層体の周辺部を積層方向に押圧する弾性部材が配置されていることが好ましい。 In the electrode enclosure of the present invention, an elastic member for pressing the peripheral portion of the electrode laminated body in the laminating direction is arranged between the peripheral portion of the first wall portion and the peripheral portion of the electrode laminated body. It is preferable.

本発明の電極封入体において、前記第一壁部の周辺部はその外面側から前記積層方向に押圧されていることが好ましい。 In the electrode enclosure of the present invention, it is preferable that the peripheral portion of the first wall portion is pressed from the outer surface side in the stacking direction.

これらの特徴により、電極積層体の周辺部に中央部よりも大きな圧縮応力を積層方向に印加することができる。 Due to these characteristics, it is possible to apply a larger compressive stress to the peripheral portion of the electrode laminated body in the laminating direction than the central portion.

本発明は、上記いずれかの電極封入体から作製された蓄電デバイスにも関する。 The present invention also relates to an electricity storage device made from any of the above electrode enclosures.

上記電極封入体を使用して蓄電デバイスを作製すれば、固体電解質と正極及び負極との間の界面抵抗が均一である蓄電デバイスを得ることができる。 When an electricity storage device is manufactured using the above electrode enclosure, an electricity storage device having a uniform interface resistance between the solid electrolyte and the positive electrode and the negative electrode can be obtained.

本発明では、安定した性能を有する蓄電デバイスを作製するための電極封入体を提供できる。また、安定した性能を有する蓄電デバイスを提供できる。 The present invention can provide an electrode enclosure for producing an electricity storage device having stable performance. Further, an electricity storage device having stable performance can be provided.

(a)電極封入体の斜視図、(b)(a)のIb−Ib線断面図である。(A) A perspective view of an electrode enclosure, (b) A cross-sectional view taken along line Ib-Ib of (a). (a)及び(b)は電極封入体の変形例を示す断面図である。(A) And (b) is sectional drawing which shows the modification of an electrode enclosure. 電極封入体の変形例を示す断面図である。It is sectional drawing which shows the modification of an electrode enclosure. 電極封入体の変形例を示す断面図である。It is sectional drawing which shows the modification of an electrode enclosure.

本発明の電極封入体及び蓄電デバイスについて図面を参照しながら説明する。以下で説明する実施形態は、本発明の好ましい一具体例を示すものである。本発明は、以下の実施形態に限定されず、その主旨を逸脱しない範囲で適宜変更可能である。なお、図面の明確化のため、断面図におけるハッチングを省略することがある。 The electrode enclosure and the electricity storage device of the present invention will be described with reference to the drawings. The embodiment described below shows a preferred specific example of the present invention. The present invention is not limited to the following embodiments and can be modified as appropriate without departing from the spirit of the invention. Note that hatching in cross-sectional views may be omitted for clarity of the drawing.

<1 電極封入体>
図1(a)は電極封入体1の斜視図であり、図1(b)は図1(a)のIb−Ib線断面図である。電極封入体1は、電極積層体2と、容器3と、正極端子4と、負極端子5とを備えている。容器3(すなわち、電極封入体1)は、外観視で角型であり、具体的には薄型の直方体形状である。電極封入体1は後述する減圧工程を経て、蓄電デバイスに成形される。蓄電デバイスは、例えば全固体電池である。
<1 Electrode enclosure>
1A is a perspective view of the electrode enclosure 1, and FIG. 1B is a sectional view taken along the line Ib-Ib of FIG. 1A. The electrode enclosure 1 includes an electrode stack 2, a container 3, a positive electrode terminal 4, and a negative electrode terminal 5. The container 3 (that is, the electrode enclosure 1) is rectangular in appearance, and specifically, is a thin rectangular parallelepiped shape. The electrode enclosure 1 is molded into an electricity storage device through a depressurizing process described below. The electricity storage device is, for example, an all-solid-state battery.

<1−1 電極積層体>
図1(b)を参照して電極積層体2について説明する。電極積層体2は、正極21と、負極22と、固体電解質23と、絶縁部材24とを含み、これらが積層された積層体から成る。電極積層体2は矩形状であり、全体にわたって略均一な厚みを有する。
<1-1 electrode laminate>
The electrode laminate 2 will be described with reference to FIG. The electrode laminated body 2 includes a positive electrode 21, a negative electrode 22, a solid electrolyte 23, and an insulating member 24, and is a laminated body in which these are laminated. The electrode laminated body 2 has a rectangular shape and has a substantially uniform thickness throughout.

正極21は、正極集電体211と、正極活物質層212と、から構成されている。正極活物質層212は、正極集電体211の負極22側に配置されている。正極集電体211には、正極端子4が接続されている。正極集電体211は、例えばアルミニウム又はニッケルから作製することができる。正極活物質層212を構成する正極活物質には、例えばコバルト酸リチウムを使用することができる。 The positive electrode 21 includes a positive electrode current collector 211 and a positive electrode active material layer 212. The positive electrode active material layer 212 is arranged on the negative electrode 22 side of the positive electrode current collector 211. The positive electrode terminal 4 is connected to the positive electrode current collector 211. The positive electrode current collector 211 can be made of, for example, aluminum or nickel. As the positive electrode active material forming the positive electrode active material layer 212, for example, lithium cobalt oxide can be used.

負極22は、負極集電体221と、負極活物質層222と、から構成されている。負極活物質層222は、負極集電体221の正極21側に配置されている。負極集電体221には、負極端子5が接続されている。負極集電体221は、例えば銅又はニッケルから作製することができる。負極活物質層222を構成する負極活物質には、例えば黒鉛などの炭素材料を使用することができる。 The negative electrode 22 includes a negative electrode current collector 221 and a negative electrode active material layer 222. The negative electrode active material layer 222 is arranged on the positive electrode 21 side of the negative electrode current collector 221. The negative electrode terminal 5 is connected to the negative electrode current collector 221. The negative electrode current collector 221 can be made of, for example, copper or nickel. As the negative electrode active material forming the negative electrode active material layer 222, a carbon material such as graphite can be used.

固体電解質23は正極21と負極22との間に配置され、イオン伝導性を有すると共に、電気的な絶縁性を有している。固体電解質23は、高分子系固体電解質又は無機系固体電解質のいずれであってもよい。例えば、高分子系固体電解質であれば、ポリエチレンオキシドなどのポリアルキレンオキシド、無機系固体電解質であれば、イットリア安定化ジルコニアなどの酸化物系固体電解質やLiS−Pなどの硫化物系固体電解質などを使用することができる。 The solid electrolyte 23 is arranged between the positive electrode 21 and the negative electrode 22 and has ion conductivity and electrical insulation. The solid electrolyte 23 may be either a polymer solid electrolyte or an inorganic solid electrolyte. For example, in the case of a polymer solid electrolyte, a polyalkylene oxide such as polyethylene oxide, and in the case of an inorganic solid electrolyte, an oxide solid electrolyte such as yttria-stabilized zirconia or a sulfurization such as Li 2 S-P 2 S 5 A physical solid electrolyte or the like can be used.

絶縁部材24は、正極集電体211と容器3との間、及び、負極集電体221と容器3との間に配置され、正極集電体211及び負極集電体221が容器3と直接接触することを防止している。絶縁部材24には、例えば高分子フィルムなどを使用することができる。2つの絶縁部材24は、電極積層体2の積層方向Xにおける最外面をそれぞれ構成している。なお、絶縁部材24は、絶縁部材24を除いた電極積層体2の積層方向Xにおける最外面が容器3と接触しても短絡が生じなければ、不要である。 The insulating member 24 is disposed between the positive electrode current collector 211 and the container 3 and between the negative electrode current collector 221 and the container 3, and the positive electrode current collector 211 and the negative electrode current collector 221 are directly connected to the container 3. Prevents contact. For the insulating member 24, for example, a polymer film or the like can be used. The two insulating members 24 form the outermost surfaces of the electrode stack 2 in the stacking direction X, respectively. It should be noted that the insulating member 24 is unnecessary if a short circuit does not occur even if the outermost surface in the stacking direction X of the electrode laminate 2 excluding the insulating member 24 contacts the container 3.

以下では、積層方向Xと直交する方向(すなわち、面方向)における電極積層体2の最外面を「端面」と表記する。また、電極積層体2のうち、面方向における中央部分を「中央部2a」と表記し、面方向において中央部2aよりも外側で且つ端面に近接する部分を「周辺部2b」と表記する。 Hereinafter, the outermost surface of the electrode laminate 2 in the direction orthogonal to the stacking direction X (that is, the surface direction) will be referred to as an “end surface”. In addition, in the electrode laminate 2, the central portion in the surface direction is described as “central portion 2a”, and the portion outside the central portion 2a in the surface direction and close to the end face is represented as “peripheral portion 2b”.

<1−2 容器>
主に図1(b)を参照して容器3について説明する。容器3は、2つの第一壁部31と、4つの第二壁部32と、を備える。容器3は例えばアルミニウムやステンレス鋼などの金属製の薄板から成り、電極積層体2を保護するのに適した弾性及び剛性を有する。2つの第一壁部31は積層方向Xに間隔をあけて互いに対向しており、各第一壁部31はそれぞれ電極積層体2の絶縁部材24と対向している。4つの第二壁部32は、電極積層体2の端面とクリアランスをあけて対向している。第二壁部32と電極積層体2の端面との間のクリアランスは、電極封入体1の長さに対して0.3〜5.0%であることが好ましい。第二壁部32には、容器3内の気体を吸引装置によって吸引するための開口部(不図示)が形成されている。
<1-2 container>
The container 3 will be described mainly with reference to FIG. The container 3 includes two first wall portions 31 and four second wall portions 32. The container 3 is made of a metal thin plate such as aluminum or stainless steel, and has elasticity and rigidity suitable for protecting the electrode stack 2. The two first wall portions 31 are opposed to each other at intervals in the stacking direction X, and each first wall portion 31 is opposed to the insulating member 24 of the electrode stack 2. The four second wall portions 32 face the end faces of the electrode laminate 2 with a clearance. The clearance between the second wall portion 32 and the end surface of the electrode laminate 2 is preferably 0.3 to 5.0% with respect to the length of the electrode enclosure 1. The second wall 32 has an opening (not shown) for sucking the gas in the container 3 with a suction device.

各第一壁部31は、中央部31aと、周辺部31bとから構成されている。中央部31aは、面方向における第一壁部31の中央部分である。周辺部31bは、第一壁部31のうち、面方向において中央部31aの外側に存在し、且つ、第二壁部32に近接する部分である。第一壁部31の中央部31aは電極積層体2の中央部2aと対向し、第一壁部31の周辺部31bは電極積層体2の周辺部2bと対向している。 Each first wall portion 31 is composed of a central portion 31a and a peripheral portion 31b. The central portion 31a is a central portion of the first wall portion 31 in the plane direction. The peripheral portion 31b is a portion of the first wall portion 31 that is outside the central portion 31a in the surface direction and that is close to the second wall portion 32. The central portion 31a of the first wall portion 31 faces the central portion 2a of the electrode laminated body 2, and the peripheral portion 31b of the first wall portion 31 faces the peripheral portion 2b of the electrode laminated body 2.

積層方向Xに対向する2つの周辺部31bは、第二壁部32に近づくにしたがい、周辺部31bの内面間の間隔が次第に小さくなるよう直線的に傾斜している。そして、第一壁部31の周辺部31bは電極積層体2の周辺部2bを積層方向Xに圧縮している。つまり、積層方向Xに対向する周辺部31bの内面間の間隔は、圧縮応力が印加されていない状態の電極積層体2の周辺部2bの厚みよりも小さくなっている。この傾斜した周辺部31bは、電極積層体2を容器3内に収容した後、周辺部31bをその外面側から積層方向Xに押圧して塑性変形させることによって形成することができる。 The two peripheral portions 31b facing each other in the stacking direction X are linearly inclined so that the distance between the inner surfaces of the peripheral portions 31b gradually decreases as the second wall portion 32 approaches. The peripheral portion 31b of the first wall portion 31 compresses the peripheral portion 2b of the electrode stack 2 in the stacking direction X. That is, the distance between the inner surfaces of the peripheral portion 31b facing in the stacking direction X is smaller than the thickness of the peripheral portion 2b of the electrode laminate 2 in the state where no compressive stress is applied. The inclined peripheral portion 31b can be formed by housing the electrode laminated body 2 in the container 3 and then pressing the peripheral portion 31b from the outer surface side in the laminating direction X to plastically deform the peripheral portion 31b.

2つの中央部31aの内面はそれぞれ電極積層体2の中央部2aと接触している。2つの中央部31aの内面間の間隔は、圧縮応力が印加されていない状態の電極積層体2の中央部2aの厚みと略同じであり、且つ、周辺部31bの内面間の間隔よりも大きくなっている。 The inner surfaces of the two central portions 31a are in contact with the central portion 2a of the electrode stack 2. The distance between the inner surfaces of the two central portions 31a is substantially the same as the thickness of the central portion 2a of the electrode laminate 2 in the state where no compressive stress is applied, and is larger than the distance between the inner surfaces of the peripheral portion 31b. Has become.

したがって、電極積層体2の周辺部2bが第一壁部31の周辺部31bから積層方向Xに受ける圧縮応力は、電極積層体2の中央部2aが第一壁部31の中央部31aから積層方向Xに受ける圧縮応力よりも大きくなっている。このように、電極封入体1において、電極積層体2の周辺部2bには、中央部2aよりも大きな圧縮応力が積層方向Xに印加されている。 Therefore, the compressive stress that the peripheral portion 2b of the electrode laminated body 2 receives from the peripheral portion 31b of the first wall portion 31 in the laminating direction X is such that the central portion 2a of the electrode laminated body 2 is laminated from the central portion 31a of the first wall portion 31. It is larger than the compressive stress received in the direction X. As described above, in the electrode enclosure 1, the peripheral portion 2b of the electrode laminate 2 is applied with a larger compressive stress in the laminating direction X than the central portion 2a.

<2 蓄電デバイス及びその製造方法>
蓄電デバイスは、電極封入体1の容器3内を減圧した後、容器3を密閉することで製造できる。容器3内の圧力はポンプなどの吸引装置によって容器3外の圧力よりも低い圧力に減圧される。減圧工程が大気圧下で行われる場合には、容器3内の圧力は大気圧よりも低くなるよう減圧される。容器3内が減圧されると、容器3外に存在する気体によって容器3が加圧されるため、電極積層体2は第一壁部31によって積層方向Xに押圧される。
<2 Storage Device and Manufacturing Method Thereof>
The electricity storage device can be manufactured by depressurizing the container 3 of the electrode enclosure 1 and then sealing the container 3. The pressure inside the container 3 is reduced to a pressure lower than the pressure outside the container 3 by a suction device such as a pump. When the depressurizing step is performed under the atmospheric pressure, the pressure inside the container 3 is reduced to be lower than the atmospheric pressure. When the pressure inside the container 3 is reduced, the gas existing outside the container 3 pressurizes the container 3, so that the electrode stack 2 is pressed in the stacking direction X by the first wall portion 31.

<3 特徴>
本発明の電極封入体1では、容器3内を減圧する前の状態において、電極積層体2の周辺部2bには、電極積層体2の中央部2aよりも大きな圧縮応力が積層方向Xに印加されている。通常、容器3が容器3外から加圧された場合、第一壁部31の中央部31aは周辺部31bに比べて撓みやすい。そのため、第一壁部31の中央部31aから電極積層体2の中央部2aへは応力が伝播されやすいのに対し、第一壁部31の周辺部31bから電極積層体2の周辺部2bへは応力が伝播されにくい。これにより、作製された蓄電デバイスにおいて、電極積層体2の中央部2aに掛かる圧縮応力に比べ周辺部2bに掛かる圧縮応力は小さくなり、中央部2aと周辺部2bとの間に応力差が生じてしまうことになる。そこで、本発明のように、電極封入体1の段階であらかじめ電極積層体2の周辺部2bに掛かる圧縮応力を中央部2aに掛かる圧縮応力よりも大きくしておくことで、電極封入体1の容器3が容器3外から加圧されたときに、電極積層体2の積層方向Xに掛かる圧縮応力を、中央部2aと周辺部2bとに亘ってより均一にすることができる。その結果、電極積層体2の中央部2aと周辺部2bとの界面抵抗がより均一で、性能が安定した蓄電デバイスを得ることができる。
<3 Features>
In the electrode enclosure 1 of the present invention, a compressive stress larger than that in the central portion 2a of the electrode laminate 2 is applied in the laminating direction X to the peripheral portion 2b of the electrode laminate 2 in a state before depressurizing the inside of the container 3. Has been done. Normally, when the container 3 is pressurized from outside the container 3, the central portion 31a of the first wall portion 31 is more likely to bend than the peripheral portion 31b. Therefore, while stress is likely to be propagated from the central portion 31a of the first wall portion 31 to the central portion 2a of the electrode laminated body 2, from the peripheral portion 31b of the first wall portion 31 to the peripheral portion 2b of the electrode laminated body 2. Is less likely to transmit stress. As a result, in the manufactured electricity storage device, the compressive stress applied to the peripheral portion 2b is smaller than the compressive stress applied to the central portion 2a of the electrode laminate 2, and a stress difference occurs between the central portion 2a and the peripheral portion 2b. Will be lost. Therefore, as in the present invention, the compressive stress applied to the peripheral portion 2b of the electrode laminate 2 is made larger than the compressive stress applied to the central portion 2a of the electrode laminated body 1 in advance at the stage of the electrode encapsulated body 1, so that When the container 3 is pressurized from the outside of the container 3, the compressive stress applied in the stacking direction X of the electrode stack 2 can be made more uniform over the central portion 2a and the peripheral portion 2b. As a result, it is possible to obtain an electricity storage device in which the interface resistance between the central portion 2a and the peripheral portion 2b of the electrode laminate 2 is more uniform and the performance is stable.

容器3が角型の場合、第一壁部31の周辺部31bは特に撓みにくくなるため、電極積層体2の周辺部2bには一層応力が伝播しにくい。そのため、本発明の電極封入体1のように、あらかじめ電極積層体2の周辺部2bに中央部2aよりも大きな圧縮応力を印加しておく方法は、角型の容器3を使用して蓄電デバイスを作製する場合に特に有効である。 When the container 3 has a rectangular shape, the peripheral portion 31b of the first wall portion 31 is particularly difficult to bend, so that stress is less likely to propagate to the peripheral portion 2b of the electrode laminate 2. Therefore, as in the case of the electrode enclosure 1 of the present invention, a method of applying a compressive stress larger than that in the central portion 2a to the peripheral portion 2b of the electrode laminated body 2 in advance uses the rectangular container 3 to store the electricity storage device. It is particularly effective for producing.

容器3の第二壁部32と電極積層体2の端面との間にクリアランスを設けることで、電極積層体2の端面が第一壁部31の中央部31a寄りに位置するようになる。これにより、応力が伝播されにくい電極積層体2の周辺部2bの領域は小さくなる。その結果、作製された蓄電デバイスでは、電極積層体2の中央部2aと周辺部2bとで界面抵抗が均一となって活物質の利用効率が高くなり、性能が安定する。 By providing a clearance between the second wall portion 32 of the container 3 and the end surface of the electrode laminated body 2, the end surface of the electrode laminated body 2 is located closer to the central portion 31 a of the first wall portion 31. As a result, the area of the peripheral portion 2b of the electrode laminate 2 in which stress is less likely to propagate is reduced. As a result, in the manufactured electricity storage device, the interface resistance becomes uniform between the central portion 2a and the peripheral portion 2b of the electrode laminate 2, the utilization efficiency of the active material is increased, and the performance is stabilized.

<4 変形例>
以下では、電極封入体1及び蓄電デバイスの変形例について説明する。上記実施形態との相違点を中心に説明し、上記で既に説明した構成要素については同一の符号を付し、その説明を省略する。なお、以下で説明する変形例は本発明の主旨を逸脱しない範囲で適宜組み合わせ可能である。
<4 modification>
Hereinafter, modified examples of the electrode enclosure 1 and the electricity storage device will be described. The differences from the above embodiment will be mainly described, and the same reference numerals will be given to the components already described above, and the description thereof will be omitted. The modifications described below can be combined as appropriate without departing from the spirit of the present invention.

(1)容器3の形状は角型に限定されず、円形又はその他の形状であってもよい。 (1) The shape of the container 3 is not limited to the rectangular shape, and may be circular or any other shape.

(2)上記の実施形態では、電極積層体2が1つのみの場合について説明したが、電極積層体2は複数積層されていてもよい。これにより、高電圧が得られより大きな電力を出力することができる。 (2) In the above embodiment, the case where there is only one electrode laminated body 2 has been described, but a plurality of electrode laminated bodies 2 may be laminated. As a result, a high voltage can be obtained and larger power can be output.

(3)図2(a)に示すように、第一壁部31の周辺部31bは、第二壁部32に近づくにしたがい、電極積層体2に向けて内側に凹みながら曲線状に変形するよう構成されていてもよい。この実施形態でも、積層方向Xに対向する2つの周辺部31bの内面間の間隔は、圧縮応力が印加されていない状態の電極積層体2の周辺部2bの厚みよりも小さくなっている。そして、第一壁部31の周辺部31bは電極積層体2の周辺部2bを積層方向Xに押圧している。これにより、電極積層体2の周辺部2bには中央部2aよりも大きな圧縮応力が積層方向Xに印加されている。 (3) As shown in FIG. 2A, as the peripheral portion 31b of the first wall portion 31 approaches the second wall portion 32, the peripheral portion 31b is deformed into a curved shape while being recessed inward toward the electrode laminated body 2. It may be configured as follows. Also in this embodiment, the distance between the inner surfaces of the two peripheral portions 31b facing each other in the stacking direction X is smaller than the thickness of the peripheral portion 2b of the electrode laminate 2 in the state where no compressive stress is applied. The peripheral portion 31b of the first wall portion 31 presses the peripheral portion 2b of the electrode stack 2 in the stacking direction X. As a result, a larger compressive stress is applied to the peripheral portion 2b of the electrode stack 2 in the stacking direction X than the central portion 2a.

(4)図2(b)に示すように、第一壁部31の周辺部31bを溝状に電極積層体2に向けて凹ませ、周辺部31bが電極積層体2に向けて突出するようにしてもよい。この実施形態でも、積層方向Xに対向する2つの周辺部31bの内面間の間隔は、圧縮応力が印加されていない状態の電極積層体2の周辺部2bの厚みよりも小さくなっている。そして、第一壁部31の周辺部31bは電極積層体2の周辺部2bを積層方向Xに押圧している。これにより、電極積層体2の周辺部2bには中央部2aよりも大きな圧縮応力が積層方向Xに印加されている。 (4) As shown in FIG. 2B, the peripheral portion 31b of the first wall portion 31 is recessed in a groove shape toward the electrode laminated body 2 so that the peripheral portion 31b protrudes toward the electrode laminated body 2. You may Also in this embodiment, the distance between the inner surfaces of the two peripheral portions 31b facing each other in the stacking direction X is smaller than the thickness of the peripheral portion 2b of the electrode laminate 2 in the state where no compressive stress is applied. The peripheral portion 31b of the first wall portion 31 presses the peripheral portion 2b of the electrode stack 2 in the stacking direction X. As a result, a larger compressive stress is applied to the peripheral portion 2b of the electrode stack 2 in the stacking direction X than the central portion 2a.

(5)図3に示すように、第一壁部31の周辺部31bと電極積層体2の周辺部2bとの間には弾性部材6が配置されていてもよい。弾性部材6は、第一壁部31の周辺部31b及び電極積層体2の周辺部2bに密着すると共に、第一壁部31の周辺部31bと電極積層体2の周辺部2bとによって積層方向Xに圧縮された状態となっている。したがって、電極積層体2の周辺部2bは弾性部材6によって積層方向Xに押圧されており、電極積層体2の周辺部2bには中央部2aよりも大きな圧縮応力が積層方向Xに印加されている。弾性部材6を介して電極積層体2の周辺部2bを押圧することで、電極積層体2の周辺部2bを均一かつ高応力で押圧することができる。なお、この実施形態において、第一壁部31の周辺部31bは、図1(b)、図2(a)及び図2(b)に示す実施形態のように、あらかじめ電極積層体2側に向けて傾斜するか又は凹むよう塑性変形されていなくてもよい。 (5) As shown in FIG. 3, the elastic member 6 may be arranged between the peripheral portion 31b of the first wall portion 31 and the peripheral portion 2b of the electrode laminate 2. The elastic member 6 is in close contact with the peripheral portion 31b of the first wall portion 31 and the peripheral portion 2b of the electrode laminated body 2, and the peripheral direction of the peripheral portion 31b of the first wall portion 31 and the peripheral portion 2b of the electrode laminated body 2 is the lamination direction. It has been compressed to X. Therefore, the peripheral portion 2b of the electrode laminated body 2 is pressed by the elastic member 6 in the laminating direction X, and a larger compressive stress is applied to the peripheral portion 2b of the electrode laminated body 2 than the central portion 2a in the laminating direction X. There is. By pressing the peripheral portion 2b of the electrode laminated body 2 via the elastic member 6, the peripheral portion 2b of the electrode laminated body 2 can be pressed uniformly and with high stress. In this embodiment, the peripheral portion 31b of the first wall portion 31 is provided in advance on the electrode laminate 2 side as in the embodiment shown in FIGS. 1(b), 2(a) and 2(b). It does not have to be plastically deformed so as to incline or dent.

(6)図4に示すように、第一壁部31の周辺部31bはその外面側から押圧されて電極積層体2に向けて変形され、電極積層体2の周辺部2bを積層方向Xに押圧していてもよい。これにより、電極積層体2の周辺部2bに中央部2aよりも大きな圧縮応力を積層方向Xに印加した状態で容器3内を減圧することができる。なお、この実施形態でも、第一壁部31の周辺部31bは、図1(b)、図2(a)及び図2(b)に示す実施形態のように、あらかじめ電極積層体2側に向けて傾斜するか又は凹むよう塑性変形されていなくてもよい。 (6) As shown in FIG. 4, the peripheral portion 31b of the first wall portion 31 is pressed from the outer surface side thereof to be deformed toward the electrode laminated body 2, and the peripheral portion 2b of the electrode laminated body 2 is moved in the laminating direction X. It may be pressed. As a result, the interior of the container 3 can be depressurized in a state where a larger compressive stress is applied to the peripheral portion 2b of the electrode laminate 2 than the central portion 2a in the laminating direction X. In addition, also in this embodiment, the peripheral portion 31b of the first wall portion 31 is provided in advance on the electrode laminated body 2 side as in the embodiment shown in FIGS. 1(b), 2(a) and 2(b). It does not have to be plastically deformed so as to incline or dent.

第一壁部31の周辺部31bを押圧する方法としては、例えば、押圧具7によって積層方向Xに対向する2つの周辺部31bをその外面側から挟み込む方法が挙げられる。押圧具7は、例えば、一対の挟持部71と、接続部72と、弾性部材73と、を備える。弾性部材73は周辺部31bの外面上を覆っている。一対の挟持部71は弾性部材73を介して、周辺部31bの外面上に配置されている。接続部72は、一対の挟持部71を接続している。一対の挟持部71によって弾性部材73を介して第一壁部31の周辺部31bを積層方向Xに押圧することで、第一壁部31の周辺部31bを電極積層体2に向けて変形させ、電極積層体2の周辺部2bに積層方向Xに圧縮応力を印加することができる。 As a method of pressing the peripheral portion 31b of the first wall portion 31, for example, there is a method of sandwiching two peripheral portions 31b facing each other in the stacking direction X from the outer surface side by the pressing tool 7. The pressing tool 7 includes, for example, a pair of holding portions 71, a connecting portion 72, and an elastic member 73. The elastic member 73 covers the outer surface of the peripheral portion 31b. The pair of sandwiching portions 71 are arranged on the outer surface of the peripheral portion 31b via the elastic member 73. The connecting portion 72 connects the pair of holding portions 71. By pressing the peripheral portion 31b of the first wall portion 31 in the stacking direction X via the elastic member 73 by the pair of sandwiching portions 71, the peripheral portion 31b of the first wall portion 31 is deformed toward the electrode stacked body 2. A compressive stress can be applied to the peripheral portion 2b of the electrode stack 2 in the stacking direction X.

1 電極封入体
2 電極積層体
2a 中央部
2b 周辺部
21 正極
22 負極
23 固体電解質
24 絶縁部材
3 容器
31 第一壁部
31a 中央部
31b 周辺部
32 第二壁部
6 弾性部材
7 押圧具
X 積層方向
DESCRIPTION OF SYMBOLS 1 Electrode enclosure 2 Electrode laminated body 2a Central part 2b Peripheral part 21 Positive electrode 22 Negative electrode 23 Solid electrolyte 24 Insulating member 3 Container 31 First wall part 31a Central part 31b Peripheral part 32 Second wall part 6 Elastic member 7 Press tool X Lamination direction

Claims (9)

正極と、負極と、固体電解質とを含む電極積層体と、前記電極積層体を収容する容器と、を備える電極封入体であって、
前記容器は、前記電極積層体の積層方向における最外面とそれぞれ対向する一対の第一壁部と、前記電極積層体の端面と対向する第二壁部と、を備え、
前記電極積層体の周辺部には前記電極積層体の中央部よりも大きな圧縮応力が前記電極積層体の積層方向に印加されている、
ことを特徴とする電極封入体。
An electrode enclosure including a positive electrode, a negative electrode, an electrode laminate including a solid electrolyte, and a container that houses the electrode laminate,
The container includes a pair of first wall portions facing the outermost surface in the stacking direction of the electrode stack, and a second wall portion facing the end surface of the electrode stack,
A larger compressive stress is applied to the peripheral portion of the electrode laminated body in the laminating direction of the electrode laminated body than the central portion of the electrode laminated body.
An electrode inclusion body characterized by the above.
前記固体電解質は、高分子を含有する、
請求項1に記載の電極封入体。
The solid electrolyte contains a polymer,
The electrode enclosure according to claim 1.
前記電極積層体は複数積層されている、
請求項1又は2に記載の電極封入体。
A plurality of the electrode laminated bodies are laminated,
The electrode enclosure according to claim 1 or 2.
前記容器は、角型である、
請求項1から3のいずれか1項に記載の電極封入体。
The container has a rectangular shape,
The electrode enclosure according to any one of claims 1 to 3.
前記第二壁部と前記電極積層体の端面との間にはクリアランスが設けられており、前記クリアランスは前記電極封入体の長さの0.3〜5.0%である、
請求項1から4のいずれか1項に記載の電極封入体。
A clearance is provided between the second wall portion and the end surface of the electrode laminated body, and the clearance is 0.3 to 5.0% of the length of the electrode enclosure.
The electrode enclosure according to any one of claims 1 to 4.
前記積層方向に対向する前記第一壁部の周辺部の内面間の間隔は、圧縮応力が印加されていない状態の前記電極積層体の周辺部の厚みよりも小さい、
請求項1から5のいずれか1項に記載の電極封入体。
The distance between the inner surfaces of the peripheral portion of the first wall portion facing in the stacking direction is smaller than the thickness of the peripheral portion of the electrode stack in a state where no compressive stress is applied,
The electrode enclosure according to any one of claims 1 to 5.
前記第一壁部の周辺部と前記電極積層体の周辺部との間には、前記電極積層体の周辺部を積層方向に押圧する弾性部材が配置されている、
請求項1から6のいずれか1項に記載の電極封入体。
Between the peripheral portion of the first wall portion and the peripheral portion of the electrode laminated body, an elastic member for pressing the peripheral portion of the electrode laminated body in the laminating direction is arranged,
The electrode enclosure according to any one of claims 1 to 6.
前記第一壁部の周辺部はその外面側から前記積層方向に押圧されている、
請求項1から7のいずれか1項に記載の電極封入体。
The peripheral portion of the first wall portion is pressed in the stacking direction from the outer surface side thereof,
The electrode enclosure according to any one of claims 1 to 7.
請求項1から8のいずれか1項に記載の電極封入体から作製された蓄電デバイス。 An electricity storage device made from the electrode enclosure according to claim 1.
JP2018235136A 2018-12-17 2018-12-17 Electrode encapsulation and power storage device Active JP7173855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235136A JP7173855B2 (en) 2018-12-17 2018-12-17 Electrode encapsulation and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235136A JP7173855B2 (en) 2018-12-17 2018-12-17 Electrode encapsulation and power storage device

Publications (2)

Publication Number Publication Date
JP2020098669A true JP2020098669A (en) 2020-06-25
JP7173855B2 JP7173855B2 (en) 2022-11-16

Family

ID=71106585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235136A Active JP7173855B2 (en) 2018-12-17 2018-12-17 Electrode encapsulation and power storage device

Country Status (1)

Country Link
JP (1) JP7173855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176568A1 (en) * 2022-03-17 2023-09-21 株式会社Gsユアサ Power storage element and power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222128A (en) * 2010-04-02 2011-11-04 Sharp Corp Secondary battery
JP2011238504A (en) * 2010-05-12 2011-11-24 Sharp Corp Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222128A (en) * 2010-04-02 2011-11-04 Sharp Corp Secondary battery
JP2011238504A (en) * 2010-05-12 2011-11-24 Sharp Corp Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176568A1 (en) * 2022-03-17 2023-09-21 株式会社Gsユアサ Power storage element and power storage device

Also Published As

Publication number Publication date
JP7173855B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
KR101792572B1 (en) Battery Cell Having Electrode Coated with Insulating Material
KR101072681B1 (en) Laminate secondary battery
KR20130133639A (en) Electrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
JP2006338992A (en) Square lithium ion battery
JP2019533285A (en) Method of manufacturing electrode stack for battery cell and battery cell
CN109037501A (en) Buckle type lithium-ion battery shell and button laminated lithium ion battery
JP2019036422A (en) All-solid battery
KR20160107416A (en) Rechargeable battery having cover
JP2005142115A (en) Secondary battery
JP7173855B2 (en) Electrode encapsulation and power storage device
CN109037502A (en) Buckle type lithium-ion battery shell and button laminated lithium ion battery
KR100542196B1 (en) Seperator for Lithium Secondary Battery and Lithium Secondary Battery
JP2016066457A (en) All-solid battery and method for manufacturing the same
JP5458841B2 (en) Solid battery module manufacturing method and solid battery module obtained by the manufacturing method
JP2012084541A (en) Film-enclosed battery
KR20170027579A (en) A battery module having an improved cooling structure
EP4142004A1 (en) Battery and battery manufacturing method
CN109148742A (en) Fastening lithium ionic cell and its shell and button laminated lithium ion battery
KR20170050445A (en) Pouch type secondary battery
JP6217066B2 (en) Storage element, power supply module, and storage element manufacturing method
KR101577186B1 (en) Battery Cell Having Position-changeable Electrode Lead
CN107591565B (en) Secondary battery
JP2021174621A (en) Battery and production method thereof
JP2013062174A (en) All-solid-state battery
KR20190112582A (en) Battery cell cartridge having uniformity surface pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221104

R150 Certificate of patent or registration of utility model

Ref document number: 7173855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150