JP2022185624A - Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery - Google Patents

Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery Download PDF

Info

Publication number
JP2022185624A
JP2022185624A JP2021093354A JP2021093354A JP2022185624A JP 2022185624 A JP2022185624 A JP 2022185624A JP 2021093354 A JP2021093354 A JP 2021093354A JP 2021093354 A JP2021093354 A JP 2021093354A JP 2022185624 A JP2022185624 A JP 2022185624A
Authority
JP
Japan
Prior art keywords
layer
solid electrolyte
temporary molding
manufacturing
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021093354A
Other languages
Japanese (ja)
Inventor
祐也 片山
Yuya Katayama
拓海 大塚
Takumi Otsuka
晃広 藤本
Akihiro Fujimoto
宏典 土江
Hironori Tsuchie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2021093354A priority Critical patent/JP2022185624A/en
Publication of JP2022185624A publication Critical patent/JP2022185624A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a manufacturing method of a laminated electrode body with a low internal resistance and a manufacturing method of an all-solid secondary battery excellent in load characteristic.SOLUTION: Sulfide solid electrolyte particles are compressed with a surface pressure less than 120 MPa to form a first temporary molding layer for obtaining a solid electrolyte layer. A first electrode mixture is arranged on one principal surface of the first temporary molding layer, the first electrode mixture is compressed with a surface pressure less than 1000 MPa to form a second temporary molding layer for obtaining a first electrode layer on one principal surface of the first temporary molding layer. A second electrode mixture for obtaining a second electrode layer is arranged on the other principal surface of the first temporary molding layer, and the second electrode mixture, the first temporary molding layer and the second temporary molding layer are compressed a the prescribed surface pressure to form a laminated electrode body. The laminated electrode body with a low internal resistance can be manufactured by suppressing a crack on each layer and making the thickness of each layer uniform. An all-solid secondary battery excellent in load characteristic can be manufactured by storing the laminated electrode body in a case.SELECTED DRAWING: Figure 1

Description

本開示は、固体電解質層を有する積層電極体及び全固体二次電池の製造方法に関する。 TECHNICAL FIELD The present disclosure relates to a laminated electrode body having a solid electrolyte layer and a manufacturing method of an all-solid secondary battery.

近年、携帯電話又はノート型パソコン等の携帯電子機器の発達、及び、電気自動車の実用化等に伴い、小型及び軽量、かつ、高容量及び高エネルギー密度の二次電池の必要性が増している。 In recent years, with the development of mobile electronic devices such as mobile phones and laptop computers, and the practical use of electric vehicles, the need for secondary batteries that are small and lightweight, and that have high capacity and high energy density is increasing. .

従来、この必要性を満たす二次電池として、リチウム二次電池、特にリチウムイオン二次電池が用いられている。しかしながら、リチウムイオン二次電池は、非水電解質として可燃性物質である有機溶媒を含んでいる。また、上述した機器及び電気自動車等の発達によってリチウムイオン二次電池が高エネルギー密度化し、また、可燃性物質である有機溶媒の量が増加傾向にある。その結果、リチウムイオン二次電池には、より一層の信頼性が求められている。 Conventionally, lithium secondary batteries, particularly lithium ion secondary batteries, have been used as secondary batteries that satisfy this need. However, lithium-ion secondary batteries contain an organic solvent, which is a combustible substance, as a non-aqueous electrolyte. In addition, with the development of the above-described devices and electric vehicles, the energy density of lithium ion secondary batteries has increased, and the amount of organic solvents, which are combustible substances, tends to increase. As a result, lithium ion secondary batteries are required to have much higher reliability.

このような状況において、有機溶媒を用いない全固体型のリチウム二次電池(全固体二次電池)が注目されている。全固体二次電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものである。 Under these circumstances, an all-solid lithium secondary battery (all-solid secondary battery) that does not use an organic solvent has attracted attention. The all-solid secondary battery uses a molded body of a solid electrolyte that does not use an organic solvent, instead of a conventional organic solvent-based electrolyte.

全固体二次電池は、種々の改良が試みられている。特開2017-10816号公報(特許文献1)は、全固体電池の製造方法を開示している。この全固体電池の製造方法は、正極積層体をプレスする第一プレス工程、負極積層体をプレスする第二プレス工程、並びに、正極積層体、中間固体電解質層及び負極積層体をプレスする第三プレス工程を含む。正極積層体及び負極積層体の少なくとも一方は、中間固体電解質層とは別に第一又は第二固体電解質層を有している。第三プレス工程のプレス圧力は、第一プレス工程のプレス圧力及び第二プレス工程のプレス圧力より高い。中間固体電解質層が第三プレス工程でプレスされる前には、第三プレス工程のプレス圧力を超える圧力でプレスされない。また、各プレス工程においてプレス温度が調整されている。すなわち、各プレス工程におけるプレス圧力及びプレス温度を調整し、かつ、第一又は第二固体電解質層を有することにより、短絡を抑制し、かつ内部抵抗値が低下した全固体電池を提供している。 Various improvements have been attempted for all-solid secondary batteries. Japanese Patent Laying-Open No. 2017-10816 (Patent Document 1) discloses a method for manufacturing an all-solid-state battery. The method for manufacturing this all-solid-state battery includes a first pressing step of pressing the positive electrode laminate, a second pressing step of pressing the negative electrode laminate, and a third pressing step of pressing the positive electrode laminate, the intermediate solid electrolyte layer and the negative electrode laminate. Including pressing process. At least one of the positive electrode laminate and the negative electrode laminate has a first or second solid electrolyte layer apart from the intermediate solid electrolyte layer. The pressing pressure of the third pressing step is higher than the pressing pressure of the first pressing step and the pressing pressure of the second pressing step. Before the intermediate solid electrolyte layer is pressed in the third pressing step, it is not pressed with a pressure exceeding the pressing pressure in the third pressing step. Also, the press temperature is adjusted in each press step. That is, by adjusting the pressing pressure and pressing temperature in each pressing step and having the first or second solid electrolyte layer, short circuits are suppressed and an all-solid-state battery with a reduced internal resistance value is provided. .

国際公開2020/66323号公報は、一例として、固体電解質層に対して正極及び負極のそれぞれを積層することによって電極積層体を作製する扁平形全固体電池の製造方法を開示している。 As an example, WO2020/66323 discloses a method for manufacturing a flat all-solid-state battery in which an electrode laminate is produced by laminating a positive electrode and a negative electrode on a solid electrolyte layer.

特開2017-10816号公報JP 2017-10816 A 国際公開2020/66323号公報WO2020/66323

しかしながら、特許文献1の全固体電池の製造方法は、例えば、第二固体電解質層を省略する場合は、中間固体電解質層を構成する固体電解質を負極活物質層の表面にプレスすることになる。そのため、第二固体電解質層と負極活物質層との接合状態が良好になり難くい。その結果、第二固体電解質層と負極活物質層との界面での抵抗が高くなり、電池の負荷特性が低下する要因となる。 However, in the manufacturing method of the all-solid-state battery of Patent Document 1, for example, when the second solid electrolyte layer is omitted, the solid electrolyte constituting the intermediate solid electrolyte layer is pressed onto the surface of the negative electrode active material layer. Therefore, it is difficult to improve the bonding state between the second solid electrolyte layer and the negative electrode active material layer. As a result, the resistance at the interface between the second solid electrolyte layer and the negative electrode active material layer increases, which causes deterioration in the load characteristics of the battery.

一方、特許文献2は、固体電解質層に対して正極及び負極のそれぞれを積層することによって電極積層体を作製することを開示しているが、内部抵抗が低い積層電極体を形成するための具体的な提案は何ら示されていない。 On the other hand, Patent Document 2 discloses that an electrode laminate is produced by laminating a positive electrode and a negative electrode on a solid electrolyte layer. No suggestions are given.

そこで、本開示は、内部抵抗が低い積層電極体の製造方法、及び、負荷特性に優れた全固体二次電池の製造方法を提供することを課題とする。 Therefore, an object of the present disclosure is to provide a method for manufacturing a laminated electrode body with low internal resistance and a method for manufacturing an all-solid secondary battery with excellent load characteristics.

上記課題を解決するために、本開示は次のように構成した。すなわち、本開示に係る積層電極体の製造方法は、固体電解質層と、固体電解質層の一方の主面に積層された第1電極層と、固体電解質層の他方の主面に積層された第2電極層とを有する積層電極体の製造方法であってよい。硫化系固体電解質粒子を120MPa未満の面圧で加圧して前記固体電解質層を得るための第1仮成形層を形成する工程を含んでよい。第1仮成形層の一方の主面に第1電極合剤を配置する工程を含んでよい。第1電極合剤を500MPa未満の面圧で加圧して第1仮成形層の一方の主面に前記第1電極層を得るための第2仮成形層を形成する工程を含んでよい。第1仮成形層の他方の主面に第2電極層を得るための第2電極合剤を配置する工程を含んでよい。第2電極合剤、第1仮成形層及び第2仮成形層を所定の面圧で加圧して積層電極体を形成する工程を含んでよい。 In order to solve the above problems, the present disclosure is configured as follows. That is, the method for manufacturing a laminated electrode body according to the present disclosure includes a solid electrolyte layer, a first electrode layer laminated on one main surface of the solid electrolyte layer, and a first electrode layer laminated on the other main surface of the solid electrolyte layer. It may be a method for manufacturing a laminated electrode body having two electrode layers. A step of pressing the sulfide-based solid electrolyte particles with a surface pressure of less than 120 MPa to form a first temporary molding layer for obtaining the solid electrolyte layer may be included. A step of disposing the first electrode mixture on one main surface of the first temporary molding layer may be included. A step of pressing the first electrode mixture with a surface pressure of less than 500 MPa to form a second temporary molding layer for obtaining the first electrode layer on one main surface of the first temporary molding layer may be included. A step of disposing a second electrode mixture for obtaining a second electrode layer on the other main surface of the first temporary molding layer may be included. A step of pressing the second electrode mixture, the first temporary molding layer and the second temporary molding layer with a predetermined surface pressure to form a laminated electrode body may be included.

第1仮成形層を形成する工程において、硫化系固体電解質粒子は、30MPa以上の面圧で加圧されてよい。 In the step of forming the first temporary molding layer, the sulfide-based solid electrolyte particles may be pressed with a surface pressure of 30 MPa or more.

第2仮成形層を形成する工程において、第1電極合剤は、30MPa以上の面圧で加圧されてよい。 In the step of forming the second temporary molding layer, the first electrode mixture may be pressed with a surface pressure of 30 MPa or more.

第1電極合剤は、負極合剤であってよい。第1電極層は、負極層であってよい。 The first electrode mixture may be a negative electrode mixture. The first electrode layer may be a negative electrode layer.

積層電極体を形成する工程において、第2電極合剤、第1仮成形層及び第2仮成形層は、1000MPa以上の面圧で加圧されてよい。 In the step of forming the laminated electrode body, the second electrode mixture, the first temporary molding layer and the second temporary molding layer may be pressed with a surface pressure of 1000 MPa or more.

本開示に係る全固体二次電池の製造方法は、上述の積層電極体の製造方法によって製造された積層電極体をケースの内部に収容する工程を含んでよい。 The method for manufacturing an all-solid secondary battery according to the present disclosure may include a step of housing the stacked electrode body manufactured by the above-described method for manufacturing a stacked electrode body inside a case.

本開示に係る積層電極体の製造方法によれば、内部抵抗が低い積層電極体を形成することができる。全固体二次電池の製造方法によれば、負荷特性に優れた全固体二次電池を製造することができる。 According to the method for manufacturing a laminated electrode body according to the present disclosure, a laminated electrode body with low internal resistance can be formed. According to the method for manufacturing an all-solid secondary battery, it is possible to manufacture an all-solid secondary battery with excellent load characteristics.

図1は、本開示に係る積層電極体及び全固体二次電池の製造方法を示すフローチャートである。FIG. 1 is a flow chart showing a method for manufacturing a laminated electrode body and an all-solid secondary battery according to the present disclosure. 図2は、本開示に係る積層電極体の製造方法を示す概略図である。FIG. 2 is a schematic diagram showing a method of manufacturing a laminated electrode assembly according to the present disclosure. 図3は、積層電極体の製造方法を示す概略図である。FIG. 3 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図4は、積層電極体の製造方法を示す概略図である。FIG. 4 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図5は、積層電極体の製造方法を示す概略図である。FIG. 5 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図6は、積層電極体の製造方法を示す概略図である。FIG. 6 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図7は、積層電極体の製造方法を示す概略図である。FIG. 7 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図8は、積層電極体の製造方法を示す概略図である。FIG. 8 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図9は、積層電極体の製造方法を示す概略図である。FIG. 9 is a schematic diagram showing a method of manufacturing a laminated electrode body. 図10は、本開示に係る製造方法によって製造された全固体二次電池の構造を示す断面図である。FIG. 10 is a cross-sectional view showing the structure of an all-solid secondary battery manufactured by the manufacturing method according to the present disclosure.

以下、本開示に係る積層電極体1及び全固体二次電池10の製造方法について、図1~10を用いて具体的に説明する。図1は、積層電極体1及び全固体二次電池10の製造方法を示すフローチャートである。まず、本開示に係る積層電極体1の製造方法について、図1を参照しながら、図2~9を用いて具体的に説明する。なお、製造された積層電極体1は、後述するように、固体電解質層23と、固体電解質層23の一方の主面に積層された負極層(電極層)33と、固体電解質層23の他方の主面に積層された正極層(電極層)42を有する。なお、本開示に係る積層電極体1の製造方法は、例えば120μm以下の厚みを有する固体電解質層23を含む積層電極体1の製造に好適に用いることができる。 1 to 10, the manufacturing method of the laminated electrode body 1 and the all-solid secondary battery 10 according to the present disclosure will be specifically described below. FIG. 1 is a flow chart showing a method of manufacturing a laminated electrode body 1 and an all-solid secondary battery 10. As shown in FIG. First, the manufacturing method of the laminated electrode body 1 according to the present disclosure will be specifically described using FIGS. 2 to 9 while referring to FIG. As will be described later, the manufactured laminated electrode body 1 includes the solid electrolyte layer 23, the negative electrode layer (electrode layer) 33 laminated on one main surface of the solid electrolyte layer 23, and the other main surface of the solid electrolyte layer 23. has a positive electrode layer (electrode layer) 42 laminated on the main surface of the . Note that the method for manufacturing the laminated electrode body 1 according to the present disclosure can be suitably used for manufacturing the laminated electrode body 1 including the solid electrolyte layer 23 having a thickness of 120 μm or less, for example.

(工程1(S1))
図2に示すように、まず、加圧装置100を準備する。加圧装置100は、上下に貫通した臼孔101aを有するダイス101と、臼孔101aの下方から挿入されて臼孔101a内を摺動する下杵102と、臼孔101aの上方から挿入されて臼孔101a内を摺動する上杵103とを備えている。ダイス101は、板状に形成されている。臼孔101aは、ダイス101の上面から下面にかけて円筒状に開口形成されている。下杵102と上杵103とは各々、臼杵の開口形状に沿う円柱形状に形成されている。加圧装置100は、プレス機を用いて下杵102及び上杵103を上下方向に摺動させることにより、臼孔101aに充填された材料を加圧する。加圧装置100は、本実施形態では、粉末成形金型である。加圧装置100は、粉末成形金型に限られず、後述する所定の面圧で加圧して積層電極体1を成形できれば、錠剤成型機などであってもよい。
(Step 1 (S1))
As shown in FIG. 2, first, the pressure device 100 is prepared. The pressurizing device 100 includes a die 101 having a die hole 101a penetrating vertically, a lower punch 102 inserted from below the die hole 101a and sliding in the die hole 101a, and a die inserted from above the die hole 101a. and an upper punch 103 that slides in the die hole 101a. The die 101 is formed in a plate shape. The die 101a has a cylindrical opening extending from the upper surface to the lower surface of the die 101. As shown in FIG. Each of the lower punch 102 and the upper punch 103 is formed in a cylindrical shape along the shape of the opening of the mortar and pestle. The pressing device 100 presses the material filled in the die hole 101a by vertically sliding the lower punch 102 and the upper punch 103 using a press machine. The pressurizing device 100 is a powder molding die in this embodiment. The pressurizing device 100 is not limited to a powder molding die, and may be a tablet molding machine or the like as long as the laminated electrode body 1 can be molded by applying pressure with a predetermined surface pressure, which will be described later.

(工程2(S2))
図3に示すように、臼孔101aに下杵102を挿入し、臼孔101aの下方の開口を下杵102により閉じた状態で、臼孔101aの上方から硫化物系固体電解質粒子21を充填する。硫化物系固体電解質粒子21は、特に図示しないが、ダイス101の上面を平行に移動するホッパーから臼孔101aに充填される(以下、臼孔101aに充填される負極合剤31及び正極合剤41においても同じ。)。ホッパーは、硫化物系固体電解質粒子21を充填する際に臼孔101aの上方に移動し、硫化物系固体電解質粒子21を充填しないときは臼孔101aの上方以外の場所で待機している。硫化物系固体電解質粒子21は、例えば、1mgの硫化物系固体電解質材料(LiPSCl)である。なお、硫化物系固体電解質粒子21は、特に限定はされず、イオン伝導性の点から他のアルジロダイト型等の硫化物系固体電解質材料であってもよい。
(Step 2 (S2))
As shown in FIG. 3, a lower punch 102 is inserted into the die hole 101a, and with the lower opening of the die hole 101a closed by the lower punch 102, the sulfide-based solid electrolyte particles 21 are filled from above the die hole 101a. do. Although not shown, the sulfide-based solid electrolyte particles 21 are filled into the die hole 101a from a hopper that moves parallel to the upper surface of the die 101 (hereinafter referred to as a negative electrode mixture 31 and a positive electrode mixture filled in the die hole 101a). 41 as well). The hopper moves above the die hole 101a when the sulfide-based solid electrolyte particles 21 are filled, and stands by at a location other than above the die hole 101a when the sulfide-based solid electrolyte particles 21 are not filled. The sulfide-based solid electrolyte particles 21 are, for example, 1 mg of sulfide-based solid electrolyte material (Li 6 PS 5 Cl). The sulfide-based solid electrolyte particles 21 are not particularly limited, and may be other sulfide-based solid electrolyte materials such as aldirodite type in terms of ion conductivity.

(工程3(S3))
図4に示すように、硫化物系固体電解質粒子21を120MPa未満の面圧で上方から上杵103によって加圧(仮プレス)し、後述する固体電解質層23を得るための仮成形層22を形成する。この面圧が120MPa以上である場合、仮成形層22にひび割れが生じ得る。その結果、仮成形層22から得られる固体電解質層23の内部抵抗が高くなってしまう。また、負極層33と正極層42とが接触しやすくなり全固体二次電池10において内部短絡が生じ得る。一方、面圧が120MPa未満である場合、仮成形層22のひび割れを抑制できる。その結果、内部抵抗が低く、また、内部短絡を抑制できる固体電解質層23を形成することができる。ただし、この面圧が低すぎると、仮成形層22の形状を維持できず、後述する(工程6)において、仮成形層22の位置がズレたり仮成形層22の一部が脱落するなどして、加圧後に固体電解質層23の厚みが均一になり難い。固体電解質層23の厚みの不均一は、電池性能の低下の原因となる。このような観点から、硫化物系固体電解質粒子21を加圧する面圧は、30MPa以上、好ましくは40MPa以上、より好ましくは50MPa以上とするのがよく、120MPa未満、好ましくは100MPa未満、より好ましくは90MPa未満とするのがよい。
(Step 3 (S3))
As shown in FIG. 4, the sulfide-based solid electrolyte particles 21 are pressed (temporarily pressed) from above by an upper punch 103 with a surface pressure of less than 120 MPa to form a temporary molded layer 22 for obtaining a solid electrolyte layer 23 described later. Form. If this surface pressure is 120 MPa or more, cracks may occur in the temporary molding layer 22 . As a result, the internal resistance of the solid electrolyte layer 23 obtained from the temporary molding layer 22 becomes high. Moreover, the negative electrode layer 33 and the positive electrode layer 42 are likely to come into contact with each other, and an internal short circuit may occur in the all-solid secondary battery 10 . On the other hand, when the surface pressure is less than 120 MPa, cracking of the temporary molding layer 22 can be suppressed. As a result, it is possible to form the solid electrolyte layer 23 that has a low internal resistance and can suppress internal short circuits. However, if the surface pressure is too low, the shape of the temporary molding layer 22 cannot be maintained, and in (step 6) described later, the position of the temporary molding layer 22 may shift or part of the temporary molding layer 22 may fall off. Therefore, it is difficult to make the thickness of the solid electrolyte layer 23 uniform after pressurization. Non-uniformity in the thickness of the solid electrolyte layer 23 causes degradation of battery performance. From such a viewpoint, the surface pressure for pressing the sulfide-based solid electrolyte particles 21 is preferably 30 MPa or more, preferably 40 MPa or more, more preferably 50 MPa or more, and is less than 120 MPa, preferably less than 100 MPa, more preferably It should be less than 90 MPa.

(工程4(S4))
図5に示すように、負極合剤(電極合剤)31を臼孔101aに充填し、仮成形層22の一方の主面、すなわち、図中の仮成形層22の上面に負極合剤31を配置する。負極合剤31は、例えば、リチウムイオン二次電池に用いられる負極活物質として、LTO(LiTi12、チタン酸リチウム)と、硫化物系固体電解質(LiPSCl)と、カーボンナノチューブとを重量比で50:41:9の割合で含有した129mgの混合物である。なお、負極合剤31は、特に限定されるものではなく、例えば、金属リチウム、リチウム合金などの金属材料や、黒鉛、低結晶カーボンなどの炭素材料や、SiO、LTO(LiTi12、チタン酸リチウム)等であってもよく、これらを適宜混合したものであってもよい。
(Step 4 (S4))
As shown in FIG. 5, a negative electrode mixture (electrode mixture) 31 is filled in the die hole 101a, and the negative electrode mixture 31 is applied to one main surface of the temporary molding layer 22, that is, the upper surface of the temporary molding layer 22 in the figure. to place. The negative electrode mixture 31 includes, for example, LTO (Li 4 Ti 5 O 12 , lithium titanate), a sulfide-based solid electrolyte (Li 6 PS 5 Cl), and 129 mg of a mixture containing carbon nanotubes at a weight ratio of 50:41:9. The negative electrode mixture 31 is not particularly limited, and examples thereof include metal materials such as metallic lithium and lithium alloys, carbon materials such as graphite and low-crystalline carbon, SiO, LTO (Li 4 Ti 5 O 12 , lithium titanate), etc., or an appropriate mixture thereof.

(工程5(S5))
図6に示すように、仮成形層22の上面に配置された負極合剤31を上方から500MPa未満の面圧で上杵103によって加圧(仮プレス)し、負極層33を得るための仮成形層32を形成する。この面圧が500MPa以上である場合、仮成形層32にひび割れが生じたり、後述する(工程8)における正極合剤41の加圧の際に、固体電解質層23と正極層42との接合が不十分になったりする。その結果、最終的に得られる積層電極体1の内部抵抗が高くなってしまう。一方、この面圧が500MPa未満である場合、仮成形層32のひび割れを抑制でき、かつ、固体電解質層23と正極層42との接合を良好な状態とすることができるため、最終的に得られる積層電極体1の内部抵抗を低くすることができる。ただし、この面圧が低すぎると、仮成形層32の形状を維持できず、後述する(工程6)において、仮成形層32の位置がズレたり仮成形層32の一部が脱落するなどして、加圧後に負極層33の厚みが均一になり難い。負極層33の厚みの不均一は、電池性能の低下の原因となる。このような観点から、負極合剤31を加圧する面圧は、30MPa以上、好ましくは100MPa以上、より好ましくは150MPa以上とするのがよく、500MPa未満、好ましくは450MPa未満、より好ましくは400MPa未満とするのがよい。
(Step 5 (S5))
As shown in FIG. 6 , the negative electrode mixture 31 placed on the upper surface of the temporary molding layer 22 is pressed (temporarily pressed) from above by an upper punch 103 with a surface pressure of less than 500 MPa, thereby obtaining a temporary mold for obtaining the negative electrode layer 33 . A molding layer 32 is formed. If the surface pressure is 500 MPa or more, cracks may occur in the temporary molded layer 32, or bonding between the solid electrolyte layer 23 and the positive electrode layer 42 may be impaired when the positive electrode mixture 41 is pressurized in (Step 8) described later. become insufficient. As a result, the internal resistance of the finally obtained laminated electrode body 1 becomes high. On the other hand, when the surface pressure is less than 500 MPa, cracking of the temporary molding layer 32 can be suppressed, and the solid electrolyte layer 23 and the positive electrode layer 42 can be bonded in a good state, so that the final product can be obtained. The internal resistance of the stacked electrode body 1 can be lowered. However, if the surface pressure is too low, the shape of the temporary molding layer 32 cannot be maintained, and in (step 6) described later, the position of the temporary molding layer 32 may shift or part of the temporary molding layer 32 may fall off. Therefore, it is difficult to make the thickness of the negative electrode layer 33 uniform after pressurization. Non-uniformity in the thickness of the negative electrode layer 33 causes deterioration in battery performance. From this point of view, the surface pressure for pressing the negative electrode mixture 31 is preferably 30 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, and is less than 500 MPa, preferably less than 450 MPa, and more preferably less than 400 MPa. Better to

(工程6(S6))
図7に示すように、仮成形層22及び仮成形層32の上下を反転させる。すなわち、図中の上方に仮成形層22が配置され、下方に仮成形層32が配置されるように、上下を反転させる。(工程6)で作成した仮成形層22及び仮成形層32を一旦臼孔101aから取り出し、これらの上下を反転させてから再度臼孔101aに配置してもよい。或いは、加圧装置100自体を上下に反転させて仮成形層22及び仮成形層32の上下を反転させてもよい。このように、仮成形層22及び仮成形層32の上下を反転させることにより、臼孔101a内に残存した負極合剤31が後述する(工程7-1)において正極合剤41に接触することがないため短絡を抑制することができる。この場合、上杵103と下杵102の上下も入れ替わる。ここでは、加圧装置100自体を上下に反転させた場合であっても、図示の上方を上杵103とし、下方を下杵102として説明する。
(Step 6 (S6))
As shown in FIG. 7, the temporary molding layer 22 and the temporary molding layer 32 are turned upside down. That is, the top and bottom are reversed so that the temporary molding layer 22 is arranged on the upper side in the figure and the temporary molding layer 32 is arranged on the lower side. The temporary molding layer 22 and the temporary molding layer 32 formed in (Step 6) may be taken out from the mortar hole 101a once, turned upside down, and placed in the mortar hole 101a again. Alternatively, the pressure device 100 itself may be turned upside down to turn the temporary molding layer 22 and the temporary molding layer 32 upside down. In this way, by inverting the temporary molding layer 22 and the temporary molding layer 32, the negative electrode mixture 31 remaining in the die hole 101a is brought into contact with the positive electrode mixture 41 in (step 7-1) described later. Since there is no short circuit, short circuits can be suppressed. In this case, the upper and lower punches 103 and 102 are also interchanged. Here, even if the pressurizing device 100 itself is turned upside down, the upper punch 103 is the upper punch and the lower punch 102 is the lower punch.

(工程7-1(S7-1))
図8に示すように、臼孔101aに正極合剤(電極合剤)41を充填し、仮成形層22の他方の主面、すなわち、上下反転させた後の仮成形層22の上面に、正極合剤(電極合剤)41を配置する。正極合剤41は、例えば、リチウムイオン二次電池に用いられる正極活物質として、平均粒径5μmのコバルト酸リチウムと、硫化物系固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブとを質量比で70:26:4の割合で含有した92mgの混合物である。なお、正極合剤41は、特に限定されるものではなく、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、スピネル型マンガン複合酸化物、オリビン型複合酸化物等であってもよく、これらを適宜混合したものであってもよい。
(Step 7-1 (S7-1))
As shown in FIG. 8, the positive electrode mixture (electrode mixture) 41 is filled in the die hole 101a, and on the other main surface of the temporary molded layer 22, that is, on the upper surface of the temporary molded layer 22 after being turned upside down, A positive electrode mixture (electrode mixture) 41 is placed. The positive electrode mixture 41 is, for example, lithium cobalt oxide having an average particle size of 5 μm, a sulfide-based solid electrolyte (Li 6 PS 5 Cl), and a conductive aid as positive electrode active materials used in a lithium-ion secondary battery. 92 mg of a mixture containing carbon nanotubes at a mass ratio of 70:26:4. The positive electrode material mixture 41 is not particularly limited, and may be, for example, lithium cobaltate, lithium nickelate, lithium manganate, spinel-type manganese composite oxide, olivine-type composite oxide, or the like. may be appropriately mixed.

(工程8(S8))
図9に示すように、上述の正極合剤41、仮成形層22及び仮成形層32を1000MPa以上の面圧で加圧(本プレス)する。これにより、仮成形層22、仮成形層32及び正極合剤41が圧縮され、固体電解質層23と、固体電解質層23の一方の主面に積層された負極層33と、固体電解質層23の他方の主面に積層された正極層42を有する積層電極体1を形成することができる。積層電極体1は、ダイス101と下杵102とを相対的に移動させることにより、臼孔101aから取り出すことができる。なお、積層電極体1を臼孔101aから取り出すには、ダイス101と上杵103とを相対的に移動させてもよい。また、上杵103及び下杵102によって積層電極体1を挟んだ状態で、上杵103と下杵102をダイス101に対して相対的に移動させ、積層電極体1を臼孔101aから取り出すようにすれば、積層電極体1に割れや欠けが生じるのを抑制することができるので好ましい。また、ダイス101を分割して積層電極体1を移動させることなくダイス101から取り出してもよい。このようにして、積層電極体1を製造することができる。なお、固体電解質層23、負極層33及び正極層42の各々の充填性を向上させる、すなわち、空隙率を減らすため、この面圧は高い方が好ましい。
(Step 8 (S8))
As shown in FIG. 9, the positive electrode mixture 41, the temporary molding layer 22, and the temporary molding layer 32 are pressed (main pressing) with a surface pressure of 1000 MPa or more. As a result, the temporary molding layer 22, the temporary molding layer 32, and the positive electrode mixture 41 are compressed, and the solid electrolyte layer 23, the negative electrode layer 33 laminated on one main surface of the solid electrolyte layer 23, and the solid electrolyte layer 23 are formed. A laminated electrode body 1 having a positive electrode layer 42 laminated on the other main surface can be formed. The laminated electrode body 1 can be removed from the die hole 101a by relatively moving the die 101 and the lower punch 102. As shown in FIG. In order to take out the laminated electrode body 1 from the die hole 101a, the die 101 and the upper punch 103 may be moved relative to each other. The upper and lower punches 103 and 102 are moved relative to the die 101 to remove the laminated electrode body 1 from the die hole 101a. This is preferable because it is possible to suppress the occurrence of cracks and chips in the laminated electrode body 1 . Alternatively, the die 101 may be divided and the laminated electrode body 1 may be removed from the die 101 without being moved. Thus, the laminated electrode body 1 can be manufactured. In order to improve the packing property of each of the solid electrolyte layer 23, the negative electrode layer 33, and the positive electrode layer 42, that is, to reduce the porosity, the contact pressure is preferably high.

また、(工程7-1)と(工程8)との間に、正極層を得るための仮成形層を形成する(工程7-2)を含むことができる。すなわち、特に図示はしないが、(工程7-1)で仮成形層22の他方の主面に配置された正極合剤41を加圧(仮プレス)し、正極層を得るための仮成形層を形成してもよい。この際、正極合剤41を加圧(仮プレス)する面圧は、上述した負極合剤31を加圧(仮プレス)する際の面圧と同様の観点から、30MPa以上、好ましくは100MPa以上、より好ましくは150MPa以上とするのがよく、500MPa未満、好ましくは450MPa未満、より好ましくは400MPa未満とするのがよい。 In addition, between (Step 7-1) and (Step 8), forming a temporary molding layer for obtaining a positive electrode layer (Step 7-2) can be included. That is, although not shown in the figure, the positive electrode mixture 41 arranged on the other main surface of the temporary molded layer 22 in (Step 7-1) is pressurized (temporarily pressed) to obtain a temporary molded layer for obtaining a positive electrode layer. may be formed. At this time, the surface pressure for pressurizing (temporary pressing) the positive electrode mixture 41 is 30 MPa or more, preferably 100 MPa or more, from the same viewpoint as the surface pressure for pressurizing (temporary pressing) the negative electrode mixture 31 described above. , more preferably 150 MPa or more, less than 500 MPa, preferably less than 450 MPa, more preferably less than 400 MPa.

この場合、(工程8)においては、正極層42を得るための仮成形層、仮成形層22及び仮成形層32を1000MPa以上の面圧で加圧(本プレス)する。これにより、仮成形層22、仮成形層32及び正極層42を得るための仮成形層が圧縮され、固体電解質層23と、固体電解質層23の一方の主面に積層された負極層33と、固体電解質層23の他方の主面に積層された正極層42を有する積層電極体1を形成することができる。 In this case, in (step 8), the temporary molding layer for obtaining the positive electrode layer 42, the temporary molding layer 22, and the temporary molding layer 32 are pressed with a surface pressure of 1000 MPa or more (main pressing). As a result, the temporary molding layer 22, the temporary molding layer 32, and the temporary molding layer for obtaining the positive electrode layer 42 are compressed, and the solid electrolyte layer 23 and the negative electrode layer 33 laminated on one main surface of the solid electrolyte layer 23 are formed. , the laminated electrode body 1 having the positive electrode layer 42 laminated on the other main surface of the solid electrolyte layer 23 can be formed.

また、(工程4)において正極合剤41を配置し、(工程7-1)において負極合剤31を配置してもよい。すなわち、正極合剤41及び負極合剤31を仮成形層22の主面に配置する順番を入れ替えてもよい。この場合、(工程5)において正極合剤41の仮成形層32を得るするための面圧として、(工程7-2)における面圧を適用すればよく、(工程7-2)において負極合剤31の仮成形層を得るための面圧として、(工程5)における面圧を適用すればよい。ただし、正極活物質及び負極活物質の種類にもよるが、一般に、正極活物質に比べ負極活物質の方が硬く、負極合剤31の方が正極合剤41に比べて充填されにくい場合が多い。そのため、負極合剤の充填性を高めるためには、負極合剤31を段階的に圧縮成形することが好ましい。すなわち、(工程4)において負極層33を得るための仮成形層32を形成し、(工程8)において負極層33を形成することが好ましい。また、仮成形層22の他方の主面に正極層42を得るための仮成形層を形成していないため、効率的に積層電極体1を形成することができる。一方で、(工程7-2)のように、仮成形層22の他方の主面にも電極層を得るための仮成形層を形成する場合は、負極合剤31及び正極合剤41のいずれを先に仮成形層22の主面に配置してもよい。 Alternatively, the positive electrode mixture 41 may be placed in (Step 4), and the negative electrode mixture 31 may be placed in (Step 7-1). That is, the order in which the positive electrode mixture 41 and the negative electrode mixture 31 are arranged on the main surface of the temporary molding layer 22 may be changed. In this case, the surface pressure in (Step 7-2) may be applied as the surface pressure for obtaining the temporary molded layer 32 of the positive electrode mixture 41 in (Step 5). As the surface pressure for obtaining the temporary molded layer of the agent 31, the surface pressure in (Step 5) may be applied. However, depending on the types of the positive electrode active material and the negative electrode active material, in general, the negative electrode active material is harder than the positive electrode active material, and the negative electrode mixture 31 may be more difficult to fill than the positive electrode mixture 41. many. Therefore, in order to improve the filling property of the negative electrode mixture, it is preferable to compress the negative electrode mixture 31 in stages. That is, it is preferable to form the temporary molding layer 32 for obtaining the negative electrode layer 33 in (Step 4) and form the negative electrode layer 33 in (Step 8). Moreover, since no temporary molding layer for obtaining the positive electrode layer 42 is formed on the other main surface of the temporary molding layer 22, the laminated electrode body 1 can be efficiently formed. On the other hand, as in (Step 7-2), when forming a temporary molding layer for obtaining an electrode layer also on the other main surface of the temporary molding layer 22, either the negative electrode mixture 31 or the positive electrode mixture 41 may be placed on the main surface of the temporary molding layer 22 first.

このような積層電極体1の製造方法は、固体電解質層23、負極層33及び正極層42の各々の厚みを均一にすることができ、かつ、固体電解質層23、負極層33及び正極層42の各々のひび割れを抑制できる。したがって、負極層33及び固体電解質層23の界面の接合性、並びに、正極層42及び固体電解質層23の界面の接合性に優れ、内部抵抗の低い積層電極体1を形成することができる。 Such a method for manufacturing the laminated electrode body 1 can make the thickness of each of the solid electrolyte layer 23, the negative electrode layer 33 and the positive electrode layer 42 uniform, and the thickness of the solid electrolyte layer 23, the negative electrode layer 33 and the positive electrode layer 42 can suppress cracks in each of Therefore, it is possible to form the laminated electrode body 1 having excellent interface bondability between the negative electrode layer 33 and the solid electrolyte layer 23 and interface bondability between the positive electrode layer 42 and the solid electrolyte layer 23 and low internal resistance.

次に、全固体二次電池10の製造方法について、図10を参照しながら説明する。なお、ここでは、全固体二次電池10は、扁平形電池である。 Next, a method for manufacturing the all-solid secondary battery 10 will be described with reference to FIG. Here, the all-solid secondary battery 10 is a flat battery.

(工程9(S9))
上述の(工程8)で製造された積層電極体1をケースの内部に収容する。
(Step 9 (S9))
The laminated electrode body 1 manufactured in the above (step 8) is housed inside the case.

具体的には、まず、ケースを準備する。ケースは、外装缶11、封口缶12及びガスケット13を有している。 Specifically, first, a case is prepared. The case has an outer can 11 , a sealing can 12 and a gasket 13 .

外装缶11は、円形状の底部11aと、底部11aの外周から連続して形成される円筒状の周壁部11bとを備えている。周壁部11bは、縦断面視で、底部11aに対して略垂直に延びるように設けられている。外装缶11は、ステンレス、ニッケル、鉄などの金属材料によって形成されている。なお、外装缶11の形状は、円形状の底部11aを備えた円筒形状に限られない。例えば、外装缶11の形状は、底部11aを四角形状などの多角状に形成し、周壁部11bを底部11aの形状に合わせた四角筒状などの多角筒状に形成してもよく、積層電極体1及び全固体二次電池10のサイズや形状に応じて、種々変更することができる。そのため、周壁部11bの形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。なお、積層電極体1の形状は、例えば、円柱状、四角柱状等の多角柱状である。 The outer can 11 includes a circular bottom portion 11a and a cylindrical peripheral wall portion 11b formed continuously from the outer circumference of the bottom portion 11a. The peripheral wall portion 11b is provided so as to extend substantially perpendicularly to the bottom portion 11a in a vertical cross-sectional view. The outer can 11 is made of a metal material such as stainless steel, nickel, or iron. The shape of the outer can 11 is not limited to a cylindrical shape with a circular bottom portion 11a. For example, the outer can 11 may be shaped such that the bottom portion 11a is formed in a polygonal shape such as a square shape, and the peripheral wall portion 11b is formed in a polygonal tubular shape such as a square tubular shape matching the shape of the bottom portion 11a. Various changes can be made according to the size and shape of the body 1 and the all-solid secondary battery 10 . Therefore, the shape of the peripheral wall portion 11b includes not only a cylindrical shape but also a polygonal cylindrical shape such as a rectangular cylindrical shape. In addition, the shape of the laminated electrode body 1 is, for example, a polygonal columnar shape such as a columnar shape or a square columnar shape.

封口缶12は、円形状の平面部12aと、平面部12aの外周から連続して形成される円筒状の周壁部12bとを備える。封口缶12の開口は、外装缶11の開口と対向する。封口缶12は、ステンレスなどの金属材料によって形成されている。なお、封口缶12の形状は、円形状の平面部12aを備えた円筒形状に限られない。例えば、封口缶12の形状は、平面部12aを四角形状などの多角状に形成し、周壁部12bを平面部12aの形状に合わせた四角筒状などの多角筒状に形成してもよく、積層電極体1及び全固体二次電池10のサイズや形状に応じて、種々変更することができる。そのため、周壁部12bの形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。 The sealing can 12 includes a circular flat portion 12a and a cylindrical peripheral wall portion 12b formed continuously from the outer circumference of the flat portion 12a. The opening of the sealed can 12 faces the opening of the outer can 11 . The sealing can 12 is made of a metal material such as stainless steel. In addition, the shape of the sealing can 12 is not limited to the cylindrical shape provided with the circular flat portion 12a. For example, the shape of the sealed can 12 may be such that the plane portion 12a is formed in a polygonal shape such as a square shape, and the peripheral wall portion 12b is formed in a polygonal tube shape such as a square tube shape matching the shape of the plane portion 12a. Various changes can be made according to the size and shape of the laminated electrode body 1 and the all-solid secondary battery 10 . Therefore, the shape of the peripheral wall portion 12b includes not only a cylindrical shape but also a polygonal cylindrical shape such as a rectangular cylindrical shape.

ガスケット13は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、PFA樹脂などの水分低透過性樹脂によって形成されている。ガスケット13は、外装缶11の周壁部11bの内周面に沿う筒状に形成され、外装缶11の周壁部11bと封口缶12の周壁部12bとの間に配置されている。ガスケット13は、外装缶11と封口缶12とを絶縁できれば、特に限定されるものではないが、水分透過性や耐熱性の点から、ポリフェニレンサルファイド樹脂、あるいはPFA樹脂などのフッ素樹脂が好ましく用いられる。 The gasket 13 is made of a low-moisture-permeable resin such as polypropylene resin, polyphenylene sulfide resin, or PFA resin. The gasket 13 is formed in a tubular shape along the inner peripheral surface of the peripheral wall portion 11 b of the outer can 11 and is arranged between the peripheral wall portion 11 b of the outer can 11 and the peripheral wall portion 12 b of the sealing can 12 . The gasket 13 is not particularly limited as long as it can insulate the outer can 11 and the sealing can 12, but from the viewpoint of moisture permeability and heat resistance, polyphenylene sulfide resin or fluororesin such as PFA resin is preferably used. .

外装缶11と封口缶12とは、積層電極体1を内部空間に収容したのち、外装缶11の周壁部11bと封口缶12の周壁部12bとの間にガスケット13を介してカシメられる。具体的には、外装缶11と封口缶12とは、外装缶11と封口缶12の互いの開口を対向させ、外装缶11の周壁部11bの内側に封口缶12の周壁部11bを挿入したのち、周壁部11bと周壁部12bとの間にガスケット13を介してカシメられる。このようにして外装缶20と封口缶30とにより積層電極体1を内部空間に収容するケースが構成される。なお、全固体二次電池10の製造方法は、これに限られず、積層電極体1をケースに収容して二次電池として機能するように製造できればよい。 The outer can 11 and the sealing can 12 are caulked via a gasket 13 between the peripheral wall portion 11b of the outer can 11 and the peripheral wall portion 12b of the sealing can 12 after accommodating the laminated electrode body 1 in the internal space. Specifically, the exterior can 11 and the sealing can 12 are arranged such that the openings of the exterior can 11 and the sealing can 12 face each other, and the peripheral wall portion 11b of the sealing can 12 is inserted inside the peripheral wall portion 11b of the exterior can 11. After that, the peripheral wall portion 11b and the peripheral wall portion 12b are crimped via a gasket 13. As shown in FIG. In this manner, the outer can 20 and the sealing can 30 constitute a case that accommodates the laminated electrode body 1 in the internal space. The manufacturing method of the all-solid secondary battery 10 is not limited to this, as long as the laminated electrode assembly 1 can be housed in a case and manufactured so as to function as a secondary battery.

これにより、負荷特性に優れた全固体二次電池10を製造することができる。 Thereby, the all-solid secondary battery 10 having excellent load characteristics can be manufactured.

以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the scope of the present disclosure.

以下、実施例1及び2、並びに、比較例1~3の扁平形全固体二次電池を作製し、各々の扁平形全固体二次電池の内部抵抗を測定した。 Flat all-solid secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were produced, and the internal resistance of each flat all-solid secondary battery was measured.

(実施例1)
実施例1の扁平形全固体二次電池を以下の通り作製した。まず、平均粒子径が0.7μmの硫化物系固体電解質(Li5.4PS4.4Cl0.8Br0.8)の粉末9.6mgを粉末成形金型に入れ、プレス機を用いて70MPa(0.7tf/cm)の面圧で加圧成形を行い、固体電解質層を得るための仮成形層を形成した。次に、固体電解質層を得るための仮成形層の上面(一方の主面)に、平均粒子径が2μmのチタン酸リチウム(LiTi12、負極活物質)と、平均粒子径が0.7μmの硫化物系固体電解質(Li5.4PS4.4Cl0.8Br0.8)と、グラフェン(導電助剤)とを、質量比で50:41:9の割合で混合して作製した負極合剤101mgを配置し、300MPa(3tf/cm)の面圧で加圧成形を行い、固体電解質層を得るための仮成形層の一方の主面に負極層を得るための仮成形層を形成した。金型を上下反転させた後、金型とともに上下反転した固体電解質層を得るための仮成形層の上面(他方の主面)に、表面にLiNbOの被覆層が形成された平均粒子径が5μmのLiCoO(正極活物質)と、平均粒子径が3μmの硫化物系固体電解質(Li7.0PS5.4Cl1.2)と、カーボンブラック及び気相成長炭素繊維(VGCF)とを、質量比で70:26.8:1.1:2.1で混合して作製した正極合剤73mgを配置した。負極層を得るための仮成形層、固体電解質層を得るための仮成形層、及び、正極合剤を1300MPa(13tf/cm)の面圧で加圧成形を行うことにより圧縮して、830μmの厚みを有する負極層と110μmの厚みを有する固体電解質層と550μmの厚みを有する正極層とが一体化された積層電極体を得た。なお、被覆層を含む正極活物質粉末の全体の重量に対する、前記被覆層の重量の割合は、2質量%であった。最後に、ステンレス鋼製の封口缶及び外装缶をケースとして用い、封口缶と外装缶との間に積層電極体を収容するとともに、封口缶及び積層電極体の間、並びに、外装缶及び積層電極体の間の各々に、0.1mmの厚みを有する多孔質カーボンシートが配置されるようにして封止を行うことにより、扁平形全固体二次電池を組み立てた。
(Example 1)
A flat all-solid secondary battery of Example 1 was produced as follows. First, 9.6 mg of powder of a sulfide-based solid electrolyte (Li 5.4 PS 4.4 Cl 0.8 Br 0.8 ) having an average particle size of 0.7 μm was placed in a powder molding die and pressed using a press. Pressure molding was performed with a surface pressure of 70 MPa (0.7 tf/cm 2 ) to form a temporary molding layer for obtaining a solid electrolyte layer. Next, lithium titanate (Li 4 Ti 5 O 12 , negative electrode active material) having an average particle size of 2 μm and an average particle size of A 0.7 μm sulfide-based solid electrolyte (Li 5.4 PS 4.4 Cl 0.8 Br 0.8 ) and graphene (a conductive agent) are mixed at a mass ratio of 50:41:9. 101 mg of the negative electrode mixture prepared by the above method is placed and pressure-molded at a surface pressure of 300 MPa (3 tf/cm 2 ) to obtain the negative electrode layer on one main surface of the temporary molded layer for obtaining the solid electrolyte layer. was formed. After the mold is turned upside down, the upper surface (the other main surface) of the temporary molding layer for obtaining the solid electrolyte layer turned upside down together with the mold is coated with a LiNbO3 coating layer on the surface, and the average particle size is 5 μm LiCoO 2 (positive electrode active material), a sulfide-based solid electrolyte (Li 7.0 PS 5.4 Cl 1.2 ) having an average particle size of 3 μm, carbon black and vapor grown carbon fiber (VGCF) were mixed at a mass ratio of 70:26.8:1.1:2.1 to prepare 73 mg of a positive electrode mixture. The temporary molding layer for obtaining the negative electrode layer, the temporary molding layer for obtaining the solid electrolyte layer, and the positive electrode mixture were compressed by performing pressure molding at a surface pressure of 1300 MPa (13 tf/cm 2 ) to obtain a thickness of 830 μm. , a solid electrolyte layer having a thickness of 110 μm, and a positive electrode layer having a thickness of 550 μm were integrated. The ratio of the weight of the coating layer to the total weight of the positive electrode active material powder including the coating layer was 2% by mass. Finally, using a stainless steel sealing can and an outer can as a case, the laminated electrode body is accommodated between the sealing can and the outer can, and between the sealing can and the laminated electrode body and between the outer can and the laminated electrode. A flat all-solid secondary battery was assembled by placing a porous carbon sheet having a thickness of 0.1 mm between each of the bodies for sealing.

(実施例2)
実施例1で作製した固体電解質層を得るための仮成形層の上面(一方の主面)に、実施例1で作製した正極合剤73mgを配置し、300MPa(3tf/cm)の面圧で加圧成形を行い、固体電解質層を得るための仮成形層の一方の主面に正極層を得るための仮成形層を形成した。金型を上下反転させた後、金型とともに上下反転した固体電解質層を得るための仮成形層の上面(他方の主面)に、実施例1で作製した負極合剤101mgを配置し、1300MPa(13tf/cm)の面圧で加圧成形を行うことにより、正極層を得るための仮成形層、固体電解質層を得るための仮成形層、及び、負極合剤を圧縮して、825μmの厚みを有する負極層と110μmの厚みを有する固体電解質層と540μmの厚みを有する正極層とが一体化された積層電極体を得た。最後に、実施例1と同様にして扁平形全固体電池を組み立てた。
(Example 2)
73 mg of the positive electrode mixture prepared in Example 1 was placed on the upper surface (one main surface) of the temporary molding layer for obtaining the solid electrolyte layer prepared in Example 1, and a surface pressure of 300 MPa (3 tf/cm 2 ) was applied. to form a temporary molded layer for obtaining a positive electrode layer on one main surface of the temporary molded layer for obtaining a solid electrolyte layer. After the mold was turned upside down, 101 mg of the negative electrode mixture prepared in Example 1 was placed on the upper surface (the other main surface) of the temporary molding layer for obtaining the solid electrolyte layer turned upside down together with the mold, and the pressure was 1300 MPa. By performing pressure molding with a surface pressure of (13 tf/cm 2 ), the temporary molding layer for obtaining the positive electrode layer, the temporary molding layer for obtaining the solid electrolyte layer, and the negative electrode mixture are compressed to a thickness of 825 μm. , a solid electrolyte layer having a thickness of 110 μm, and a positive electrode layer having a thickness of 540 μm were integrated. Finally, a flat all-solid-state battery was assembled in the same manner as in Example 1.

(比較例1)
実施例1で作製した負極合剤101mgを粉末成形金型に入れ、プレス機を用いて300MPa(3tf/cm)の面圧で加圧成形を行い、負極層を得るための仮成形層を形成した。前記負極層を得るための仮成形層の上面に、平均粒子径が0.7μmの硫化物系固体電解質(Li5.4PS4.4Cl0.8Br0.8)の粉末9.6mgを配置し、70MPa(0.7tf/cm)の面圧で加圧成形を行い、負極層を得るための仮成形層の一方の上面に固体電解質層を得るための仮成形層を形成した。さらに、前記固体電解質層を得るための仮成形層の上面に、実施例1で作製した正極合剤73mgを配置し、1300MPa(13tf/cm)の面圧で加圧成形を行うことにより、負極層を得るための仮成形層、固体電解質層を得るための仮成形層、及び、正極合剤を圧縮して、負極層と固体電解質層と正極層とが一体化された積層電極体を得た。最後に、実施例1と同様にして扁平形全固体二次電池を組み立てた。
(Comparative example 1)
101 mg of the negative electrode mixture prepared in Example 1 was placed in a powder molding die, and pressure molding was performed using a pressing machine at a surface pressure of 300 MPa (3 tf/cm 2 ) to form a temporary molding layer for obtaining a negative electrode layer. formed. 9.6 mg of powder of a sulfide-based solid electrolyte (Li 5.4 PS 4.4 Cl 0.8 Br 0.8 ) having an average particle size of 0.7 μm on the upper surface of the temporary molding layer for obtaining the negative electrode layer was placed, pressure molding was performed at a surface pressure of 70 MPa (0.7 tf/cm 2 ), and a temporary molding layer for obtaining a solid electrolyte layer was formed on one upper surface of the temporary molding layer for obtaining the negative electrode layer. . Furthermore, 73 mg of the positive electrode mixture prepared in Example 1 was placed on the upper surface of the temporary molding layer for obtaining the solid electrolyte layer, and pressure molding was performed at a surface pressure of 1300 MPa (13 tf/cm 2 ), A laminated electrode body in which the negative electrode layer, the solid electrolyte layer, and the positive electrode layer are integrated by compressing the temporary molded layer for obtaining the negative electrode layer, the temporary molded layer for obtaining the solid electrolyte layer, and the positive electrode mixture. Obtained. Finally, a flat all-solid secondary battery was assembled in the same manner as in Example 1.

(比較例2)
固体電解質の仮成形層を形成する際の面圧を、130MPa(1.3tf/cm)に変更し、その他の工程は、実施例1と同様にして扁平形全固体二次電池を組み立てた。
(Comparative example 2)
A flat all-solid secondary battery was assembled in the same manner as in Example 1 except that the surface pressure during formation of the temporary solid electrolyte layer was changed to 130 MPa (1.3 tf/cm 2 ). .

(比較例3)
負極層を得るための仮成形層を形成する際の圧力を、600MPa(6tf/cm)に変更し、その他の工程は、実施例1と同様にして扁平形全固体二次電池を組み立てた。
(Comparative Example 3)
A flat all-solid secondary battery was assembled in the same manner as in Example 1 except that the pressure in forming the temporary molding layer for obtaining the negative electrode layer was changed to 600 MPa (6 tf/cm 2 ). .

(評価結果)
実施例1及び2並びに比較例1~3の扁平形全固体二次電池に対し、1kHzの交流電圧を印加して内部抵抗を測定した。評価結果は以下の通りであった。実施例1の扁平形全固体二次電池の内部抵抗は、230Ωであった。実施例2の扁平形全固体二次電池の内部抵抗は、260Ωであった。比較例1の扁平形全固体二次電池の内部抵抗は、316Ωであった。比較例2の扁平形全固体二次電池の内部抵抗は、519Ωであった。比較例3の扁平形全固体二次電池の内部抵抗は、432Ωであった。
(Evaluation results)
An AC voltage of 1 kHz was applied to the flat all-solid secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 to measure the internal resistance. The evaluation results were as follows. The internal resistance of the flat all-solid secondary battery of Example 1 was 230Ω. The internal resistance of the flat all-solid secondary battery of Example 2 was 260Ω. The internal resistance of the flat all-solid secondary battery of Comparative Example 1 was 316Ω. The internal resistance of the flat all-solid secondary battery of Comparative Example 2 was 519Ω. The internal resistance of the flat all-solid secondary battery of Comparative Example 3 was 432Ω.

実施例1及び2の扁平形全固体二次電池は、適切な工程順及び適切な面圧で加圧成形したことにより、固体電解質層、負極層及び正極層の各々の厚みを均一にすることができ、かつ、それらのひび割れを抑制できた。そのため、固体電解質層、負極層及び正極層の工程順が異なる比較例1の扁平形全固体二次電池や、固体電解質層を得るための仮成形層又は負極層を得るための仮成形層を形成する際の面圧が高すぎる比較例2及び比較例3の扁平形全固体二次電池に比べ、内部抵抗を低減することができた。このため、実施例1及び2の扁平形全固体二次電池は、比較例1~比較例3の電池に比べ、優れた負荷特性を得ることができた。なお、実施例1及び2において、上述の(工程7-2)を設けた場合であっても、同様の結果が得られるものと考えられる。 In the flat all-solid-state secondary batteries of Examples 1 and 2, the thickness of each of the solid electrolyte layer, the negative electrode layer, and the positive electrode layer was made uniform by pressure molding in an appropriate order of steps and an appropriate surface pressure. It was possible to suppress cracks in them. Therefore, the flat all-solid secondary battery of Comparative Example 1 in which the order of steps of the solid electrolyte layer, the negative electrode layer and the positive electrode layer is different, the temporary molded layer for obtaining the solid electrolyte layer, or the temporary molded layer for obtaining the negative electrode layer. Compared to the flat all-solid-state secondary batteries of Comparative Examples 2 and 3 in which the surface pressure during formation was too high, the internal resistance could be reduced. Therefore, the flat all-solid secondary batteries of Examples 1 and 2 were able to obtain better load characteristics than the batteries of Comparative Examples 1-3. It is considered that similar results can be obtained even when the above-mentioned (step 7-2) is provided in Examples 1 and 2.

1 積層電極体、10 全固体二次電池、11 外装缶、11a 底部、11b 周壁部、12 封口缶、12a 平面部、12b 周壁部、13 ガスケット、21 硫化物系固体電解質粒子、22 仮成形層、23 固体電解質層、31 負極合剤、32 仮成形層、33 負極層、41 正極合剤、42 正極層、100 加圧装置、101 ダイス、101a 臼孔、102 下杵、103 上杵材 1 laminated electrode body 10 all-solid secondary battery 11 outer can 11a bottom 11b peripheral wall 12 sealing can 12a flat surface 12b peripheral wall 13 gasket 21 sulfide-based solid electrolyte particles 22 temporary molding layer , 23 solid electrolyte layer 31 negative electrode mixture 32 temporary molding layer 33 negative electrode layer 41 positive electrode mixture 42 positive electrode layer 100 pressure device 101 die 101a die hole 102 lower punch 103 upper punch material

Claims (6)

固体電解質層と、前記固体電解質層の一方の主面に積層された第1電極層と、前記固体電解質層の他方の主面に積層された第2電極層とを有する積層電極体の製造方法であって、
硫化系固体電解質粒子を120MPa未満の面圧で加圧して前記固体電解質層を得るための第1仮成形層を形成する工程と、
前記第1仮成形層の一方の主面に第1電極合剤を配置する工程と、
前記第1電極合剤を500MPa未満の面圧で加圧して前記第1仮成形層の一方の主面に前記第1電極層を得るための第2仮成形層を形成する工程と、
前記第1仮成形層の他方の主面に前記第2電極層を得るための第2電極合剤を配置する工程と、
前記第2電極合剤、前記第1仮成形層及び前記第2仮成形層を所定の面圧で加圧して前記積層電極体を形成する工程と、を含む積層電極体の製造方法。
A method for manufacturing a laminated electrode body having a solid electrolyte layer, a first electrode layer laminated on one main surface of the solid electrolyte layer, and a second electrode layer laminated on the other main surface of the solid electrolyte layer and
A step of pressing the sulfide-based solid electrolyte particles with a surface pressure of less than 120 MPa to form a first temporary molding layer for obtaining the solid electrolyte layer;
disposing a first electrode mixture on one main surface of the first temporary molding layer;
pressing the first electrode mixture with a surface pressure of less than 500 MPa to form a second temporary molding layer for obtaining the first electrode layer on one main surface of the first temporary molding layer;
disposing a second electrode mixture for obtaining the second electrode layer on the other main surface of the first temporary molding layer;
and pressing the second electrode mixture, the first temporary molding layer, and the second temporary molding layer with a predetermined surface pressure to form the laminated electrode body.
請求項1に記載の積層電極体の製造方法であって、
前記第1仮成形層を形成する工程において、前記硫化系固体電解質粒子は、30MPa以上の面圧で加圧される、積層電極体の製造方法。
A method for manufacturing a laminated electrode body according to claim 1,
A method for manufacturing a laminated electrode body, wherein in the step of forming the first temporary molding layer, the sulfide-based solid electrolyte particles are pressed with a surface pressure of 30 MPa or more.
請求項1又は2に記載の積層電極体の製造方法であって、
前記第2仮成形層を形成する工程において、前記第1電極合剤は、30MPa以上の面圧で加圧される、積層電極体の製造方法。
3. A method for manufacturing a laminated electrode body according to claim 1 or 2,
A method for manufacturing a laminated electrode body, wherein in the step of forming the second temporary molding layer, the first electrode mixture is pressed with a surface pressure of 30 MPa or more.
請求項1~3のいずれか1項に記載の積層電極体の製造方法であって、
前記第1電極合剤は、負極合剤であり、
前記第1電極層は、負極層である、積層電極体の製造方法。
A method for manufacturing a laminated electrode body according to any one of claims 1 to 3,
The first electrode mixture is a negative electrode mixture,
The first electrode layer is a method for manufacturing a laminated electrode body, which is a negative electrode layer.
請求項1~4のいずれか1項に記載の積層電極体の製造方法であって、
前記積層電極体を形成する工程において、前記第2電極合剤、前記第1仮成形層及び前記第2仮成形層は、1000MPa以上の面圧で加圧される、積層電極体の製造方法。
A method for manufacturing a laminated electrode body according to any one of claims 1 to 4,
A method of manufacturing a laminated electrode body, wherein in the step of forming the laminated electrode body, the second electrode mixture, the first temporary molding layer, and the second temporary molding layer are pressed with a surface pressure of 1000 MPa or more.
全固体二次電池の製造方法であって、
請求項1~5のいずれか1項に記載の積層電極体の製造方法によって製造された前記積層電極体をケースの内部に収容する工程を含む、全固体二次電池の製造方法。
A method for manufacturing an all-solid secondary battery,
A method for producing an all-solid secondary battery, comprising the step of housing the laminated electrode assembly produced by the method for producing a laminated electrode assembly according to any one of claims 1 to 5 in a case.
JP2021093354A 2021-06-03 2021-06-03 Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery Pending JP2022185624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021093354A JP2022185624A (en) 2021-06-03 2021-06-03 Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021093354A JP2022185624A (en) 2021-06-03 2021-06-03 Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery

Publications (1)

Publication Number Publication Date
JP2022185624A true JP2022185624A (en) 2022-12-15

Family

ID=84441817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021093354A Pending JP2022185624A (en) 2021-06-03 2021-06-03 Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery

Country Status (1)

Country Link
JP (1) JP2022185624A (en)

Similar Documents

Publication Publication Date Title
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
CN110249467B (en) All-solid-state battery and method for manufacturing same
EP3654438B1 (en) Coin-shaped battery and method for producing same
JP5679748B2 (en) Manufacturing method of all solid state battery
CN110226255B (en) All-solid-state battery and method for manufacturing same
JP5321196B2 (en) Manufacturing method of all-solid lithium secondary battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP2009193728A (en) All-solid battery and its manufacturing method
JPWO2020017467A1 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
JP2021136214A (en) Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body
US20220200004A1 (en) Negative electrode plate, lithium secondary battery, and apparatus containing such lithium secondary battery
JP2011216295A (en) Cylindrical nonaqueous electrolyte secondary battery
JPWO2012160661A1 (en) Battery and manufacturing method thereof
JP2013065531A (en) Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2022185624A (en) Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery
JP2015041538A (en) All-solid-state battery and method for manufacturing the same
US20220302504A1 (en) All-solid-state battery and method of producing all-solid-state battery
JP2014086213A (en) Method of manufacturing all-solid-state battery
JP2011216276A (en) Cylindrical nonaqueous electrolyte secondary battery
JP6071225B2 (en) Manufacturing method of all-solid-state secondary battery
JP4121260B2 (en) Method for producing flat battery electrode
JP7168360B2 (en) Method for manufacturing all-solid-state battery
WO2024018982A1 (en) All-solid-state battery
JP2019046722A (en) Method for manufacturing all-solid battery
JP2004356041A (en) Manufacturing method of all solid battery and mold for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240328