JP2021136214A - Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body - Google Patents

Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body Download PDF

Info

Publication number
JP2021136214A
JP2021136214A JP2020034002A JP2020034002A JP2021136214A JP 2021136214 A JP2021136214 A JP 2021136214A JP 2020034002 A JP2020034002 A JP 2020034002A JP 2020034002 A JP2020034002 A JP 2020034002A JP 2021136214 A JP2021136214 A JP 2021136214A
Authority
JP
Japan
Prior art keywords
solid electrolyte
layer
electrode layer
electrolyte layer
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020034002A
Other languages
Japanese (ja)
Inventor
宏典 土江
Hironori Tsuchie
宏典 土江
晃広 藤本
Akihiro Fujimoto
晃広 藤本
祐也 片山
Yuya Katayama
祐也 片山
新吾 中村
Shingo Nakamura
新吾 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2020034002A priority Critical patent/JP2021136214A/en
Publication of JP2021136214A publication Critical patent/JP2021136214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide: a multilayer electrode body which enables the increase in battery capacity by reducing the thickness of a solid electrolyte layer which covers a peripheral side face of a positive electrode layer and a peripheral side face of a negative electrode layer, and which can suppress an internal short circuit; an all-solid battery with the multilayer electrode body; and a method for manufacturing the multilayer electrode body.SOLUTION: A multilayer electrode body 1 comprises: a positive electrode layer 2; a negative electrode layer 3; a solid electrolyte layer 4; and a solid electrolyte layer 5. The solid electrolyte layers 4, 5 are relatively thin and therefore, the battery capacity is increased. The solid electrolyte layer 5 covers a peripheral side face of the positive electrode layer 2 or negative electrode layer 3 and as such, an internal short circuit is suppressed. The multilayer electrode body 1 is manufactured by: filling a powdery electrode material X in a mortar hole 101a to form the negative electrode layer 3; thinly spraying a powdery solid electrolyte material W to an upper face of the negative electrode layer 3 and an inner peripheral face of the mortar hole 101a to form the solid electrolyte layers 4, 5; and filling a powdery electrode material Y in a space surrounded by the solid electrolyte layer 4 and the solid electrolyte layer 5 to form the positive electrode layer 2.SELECTED DRAWING: Figure 1

Description

本開示は、固体電解質層を有する積層電極体、積層電極体を備えた全固体電池及び積層電極体の製造方法に関する。 The present disclosure relates to a laminated electrode body having a solid electrolyte layer, an all-solid-state battery provided with the laminated electrode body, and a method for manufacturing the laminated electrode body.

全固体電池は、正極層と負極層との間に固体電解質層を配置した積層電極体を電池容器内に収容して組み立てられる。積層電極体は、正極層を形成するための粉状の電極材、負極層を形成するための粉状の電極材及び粉状の固体電解質材を加圧することにより成形される。 An all-solid-state battery is assembled by accommodating a laminated electrode body in which a solid electrolyte layer is arranged between a positive electrode layer and a negative electrode layer in a battery container. The laminated electrode body is formed by pressurizing a powdery electrode material for forming a positive electrode layer, a powdery electrode material for forming a negative electrode layer, and a powdery solid electrolyte material.

積層電極体の固体電解質層は、電池容量を向上させるため、比較的薄い方がよい。しかし、固体電解質層を薄く形成しようとすると、積層電極体は、加圧成形する際に割れが生じやすい。また、固体電解質層は、比較的厚く形成した場合に比べ、加圧成形してもムラが生じやすい。そのため、固体電解質層の厚みは、均一になりにくい。積層電極体の割れ及び固体電解質層の厚みの不均一は、全固体電池の電池性能を低下させる。 The solid electrolyte layer of the laminated electrode body should be relatively thin in order to improve the battery capacity. However, if the solid electrolyte layer is to be formed thinly, the laminated electrode body is likely to be cracked during pressure molding. Further, the solid electrolyte layer is more likely to cause unevenness even when pressure-molded than when it is formed to be relatively thick. Therefore, the thickness of the solid electrolyte layer is unlikely to be uniform. Cracks in the laminated electrode body and non-uniform thickness of the solid electrolyte layer reduce the battery performance of the all-solid-state battery.

また、電池容器内に積層電極体を収容した状態で、積層電極体の外周面と電池容器の内周面との間には隙間を有している。そのため、正極層から正極活物質粒子が脱離した場合、または、負極層から負極活物質粒子が脱離した場合、それぞれ対極の電極層に接触すると内部短絡が生じ得る。 Further, with the laminated electrode body housed in the battery container, there is a gap between the outer peripheral surface of the laminated electrode body and the inner peripheral surface of the battery container. Therefore, when the positive electrode active material particles are desorbed from the positive electrode layer, or when the negative electrode active material particles are desorbed from the negative electrode layer, an internal short circuit may occur when they come into contact with the opposite electrode layers.

特開2009−64644号公報は、少なくとも正極および負極のいずれか一方の電極を覆った形状のリチウムイオン伝導型固体電解質層を備えた全固体リチウム二次電池を開示している(特許文献1)。全固体リチウム二次電池は、電極の周側面を覆うリチウムイオン伝導型固体電解質層を備えたことにより、正極活物質粒子又は負極活物質粒子の離脱による内部短絡の発生を抑制することができる。 Japanese Unexamined Patent Publication No. 2009-64644 discloses an all-solid-state lithium secondary battery provided with a lithium ion-conducting solid electrolyte layer having a shape covering at least one of the positive electrode and the negative electrode (Patent Document 1). .. Since the all-solid-state lithium secondary battery is provided with a lithium ion conductive solid electrolyte layer that covers the peripheral side surface of the electrode, it is possible to suppress the occurrence of an internal short circuit due to the detachment of the positive electrode active material particles or the negative electrode active material particles.

特開2010−282803号公報は、集電体の表面に極材の粉末材料および固体電解質の粉末材料を帯電させて吹き付ける全固体リチウムイオン二次電池の製造方法を開示している(特許文献2)。これにより、全固体リチウムイオン二次電池の製造方法は、均一な厚さで粉体の層を形成でき、成形加工時の圧力が全体にかかるため、加圧成形時の割れを抑制することができる。したがって、全固体リチウムイオン二次電池の製造方法によれば、正極層と負極層との間に配置される固体電解質層を薄く形成することができる。 Japanese Unexamined Patent Publication No. 2010-282803 discloses a method for manufacturing an all-solid-state lithium ion secondary battery in which a powder material of an electrode material and a powder material of a solid electrolyte are charged and sprayed onto the surface of a current collector (Patent Document 2). ). As a result, in the manufacturing method of the all-solid-state lithium-ion secondary battery, a layer of powder can be formed with a uniform thickness, and pressure during molding is applied to the entire surface, so that cracking during pressure molding can be suppressed. can. Therefore, according to the method for manufacturing an all-solid-state lithium-ion secondary battery, the solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer can be formed thinly.

また、特開2019−21428号公報は、積層体の固体電解質層が5μm以上100μm以下の平均厚みを有するコイン形電池を開示している(特許文献3)。コイン形電池の積層体は、固体電解質層の形成材料である粉体を各々スクリーンに刷り込ませることにより帯電させ、被印刷物に付着させて形成される。これにより、正極層と負極層との間に配置される固体電解質層を薄く形成することができる。 Further, Japanese Patent Application Laid-Open No. 2019-21428 discloses a coin-shaped battery in which the solid electrolyte layer of the laminated body has an average thickness of 5 μm or more and 100 μm or less (Patent Document 3). The laminate of the coin-shaped battery is formed by imprinting powder, which is a material for forming the solid electrolyte layer, on the screen to charge the mixture and adhering the powder to the printed matter. As a result, the solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer can be formed thinly.

特開2009−64644号公報Japanese Unexamined Patent Publication No. 2009-64644 特開2010−282803号公報Japanese Unexamined Patent Publication No. 2010-282803 特開2019−21428号公報Japanese Unexamined Patent Publication No. 2019-21428

しかしながら、特許文献1に記載された全固体リチウム二次電池の固体電解質層のうち電極の側面を覆う側面側の固体電解質層は、円柱形状の固体電解質層の上面を電極充填用空間部を形成するための凸部を備えた金型で加圧することによって形成される。そのため、側面側の固体電解質層を径方向に薄く形成しようとして、金型の凸部の径を固体電解質層の上面の径よりも僅かに小さくすると、側面側の固体電解質層は、適切に形成されずに潰れてしまう。したがって、全固体リチウム二次電池は、側面側の固体電解質層を薄く形成することは難しかった。 However, among the solid electrolyte layers of the all-solid-state lithium secondary battery described in Patent Document 1, the solid electrolyte layer on the side surface covering the side surface of the electrode forms a space for filling the electrode on the upper surface of the columnar solid electrolyte layer. It is formed by pressurizing with a mold provided with a convex portion for forming. Therefore, if the diameter of the convex portion of the mold is made slightly smaller than the diameter of the upper surface of the solid electrolyte layer in an attempt to form the solid electrolyte layer on the side surface side thin in the radial direction, the solid electrolyte layer on the side surface side is appropriately formed. It collapses without being done. Therefore, in the all-solid-state lithium secondary battery, it was difficult to form the solid electrolyte layer on the side surface side thinly.

また、特許文献2に記載された全固体リチウムイオン二次電池及び特許文献3に記載されたコイン形電池は、正極層と負極層との間に配置される固体電解質層を薄く形成できるものの、固体電解質層を形成するための粉末を単に上方から噴射又は付着させるだけでは正極層の周側面及び負極層の周側面を覆う固体電解質層を薄く形成することは難しかった。また、コイン形電池は、正極層の周側面側を覆う固体電解質層を備えてはいるものの、噴射又は付着の後に加圧成形する際、周側面側の固体電解質層の厚みを調整することは難しかった。また、正極層の周側面と周側面側の固体電解質層との接合性、または、負極層の周側面と周側面側の固体電解質層との接合性が悪く、周側面側の固体電解質層が正極層又は負極層から剥離する可能性があった。 Further, although the all-solid lithium ion secondary battery described in Patent Document 2 and the coin-shaped battery described in Patent Document 3 can form a thin solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer, It has been difficult to form a thin solid electrolyte layer that covers the peripheral side surface of the positive electrode layer and the peripheral side surface of the negative electrode layer by simply injecting or adhering the powder for forming the solid electrolyte layer from above. Further, although the coin-type battery is provided with a solid electrolyte layer that covers the peripheral side surface side of the positive electrode layer, the thickness of the solid electrolyte layer on the peripheral side surface side cannot be adjusted when pressure molding is performed after injection or adhesion. was difficult. Further, the bondability between the peripheral side surface of the positive electrode layer and the solid electrolyte layer on the peripheral side surface side or the bondability between the peripheral side surface and the solid electrolyte layer on the peripheral side surface side of the negative electrode layer is poor, and the solid electrolyte layer on the peripheral side surface side becomes poor. There was a possibility of peeling from the positive electrode layer or the negative electrode layer.

そこで、本開示は、正極層の周側面及び負極層の周側面を覆う固体電解質層の厚みを薄くして電池容量を増大させ、且つ、内部短絡を抑制できる、高容量で信頼性の高い積層電極体、積層電極体を備えた全固体電池及び積層電極体の製造方法を提供することを課題とする。 Therefore, in the present disclosure, a high-capacity and highly reliable laminate capable of reducing the thickness of the solid electrolyte layer covering the peripheral side surface of the positive electrode layer and the peripheral side surface of the negative electrode layer to increase the battery capacity and suppress an internal short circuit. An object of the present invention is to provide an all-solid-state battery provided with an electrode body and a laminated electrode body, and a method for manufacturing the laminated electrode body.

上記課題を解決するために、本開示は次のように構成した。すなわち、本開示に係る全固体電池は、正極層及び負極層の一方の第1電極層と、正極層及び負極層の他方の第2電極層と、第1電極層と第2電極層との間に配置される第1固体電解質層と、第1固体電解質層の周端から第1電極層及び第2電極層の少なくとも一方の周側面に沿って延びる第2固体電解質層と備えてよい。第1固体電解質層は、5〜180μmの厚みを有してよい。第2固体電解質層は、径方向に1〜180μmの厚みを有してよい。 In order to solve the above problems, the present disclosure is structured as follows. That is, the all-solid-state battery according to the present disclosure includes one first electrode layer of the positive electrode layer and the negative electrode layer, the other second electrode layer of the positive electrode layer and the negative electrode layer, and the first electrode layer and the second electrode layer. A first solid electrolyte layer arranged between them and a second solid electrolyte layer extending from the peripheral end of the first solid electrolyte layer along at least one peripheral side surface of the first electrode layer and the second electrode layer may be provided. The first solid electrolyte layer may have a thickness of 5 to 180 μm. The second solid electrolyte layer may have a thickness of 1 to 180 μm in the radial direction.

好ましくは、正極層の厚みに対する第1固体電解質層の厚みの比率は、0.03以上であってよい。 Preferably, the ratio of the thickness of the first solid electrolyte layer to the thickness of the positive electrode layer may be 0.03 or more.

好ましくは、正極層の厚みに対する第1固体電解質層の厚みの比率は、0.3以下であってよい。 Preferably, the ratio of the thickness of the first solid electrolyte layer to the thickness of the positive electrode layer may be 0.3 or less.

好ましくは、第2固体電解質層は、正極層の周側面に沿って延びてよい。負極層の周側面は、露出してよい。 Preferably, the second solid electrolyte layer may extend along the peripheral side surface of the positive electrode layer. The peripheral side surface of the negative electrode layer may be exposed.

本開示に係る全固体電池は、電池容器と、電池容器の内部空間に収容された積層電極体とを備えてよい。 The all-solid-state battery according to the present disclosure may include a battery container and a laminated electrode body housed in the internal space of the battery container.

本開示に係る積層電極体の製造方法は、上下に貫通した臼孔を有するダイスと、臼孔の下方から挿入されて臼孔内を摺動する下杵と、臼孔の上方から挿入されて臼孔内を摺動する上杵とを備える加圧装置を準備する工程を含んでよい。臼孔の下方の開口を下杵により閉じた状態で、臼孔に第1電極材を充填することにより、正極層及び負極層の一方の第1電極層を形成する工程を含んでよい。臼孔の上方から第1電極層の上面及び臼孔の内周面に対し、固体電解質材を付着させることにより、第1電極層の上面に第1固体電解質層を形成し、臼孔の内周面に第2固体電解質層を形成する工程を含んでよい。第1固体電解質層及び第2固体電解質層によって囲まれた空間に第2電極材を充填することにより、正極層及び負極層の他方の第2電極層を形成する工程を含んでよい。下杵及び上杵により第1電極層、第2電極層、第1固体電解質層及び第2固体電解質層を加圧することにより、積層電極体を形成する工程を含んでよい。上杵及び下杵の少なくとも一方とダイスとを相対的に移動させることにより、臼孔から積層電極体を取り出す工程を含んでよい。 The method for manufacturing a laminated electrode body according to the present disclosure includes a die having a mortar hole penetrating vertically, a lower pestle that is inserted from below the mortar hole and slides in the mortar hole, and is inserted from above the mortar hole. It may include a step of preparing a pressurizing device including an upper pestle that slides in the mortar. The step of forming one of the positive electrode layer and the negative electrode layer by filling the mortar hole with the first electrode material in a state where the lower opening of the mortar hole is closed by the lower punch may be included. By adhering a solid electrolyte material to the upper surface of the first electrode layer and the inner peripheral surface of the ulcer from above the acetabulum, the first solid electrolyte layer is formed on the upper surface of the first electrode layer, and the inside of the acetabulum is formed. A step of forming a second solid electrolyte layer on the peripheral surface may be included. The step of forming the other second electrode layer of the positive electrode layer and the negative electrode layer by filling the space surrounded by the first solid electrolyte layer and the second solid electrolyte layer with the second electrode material may be included. The step of forming a laminated electrode body by pressurizing the first electrode layer, the second electrode layer, the first solid electrolyte layer, and the second solid electrolyte layer with the lower and upper punches may be included. The step of taking out the laminated electrode body from the mortar by moving at least one of the upper and lower pestle and the die relative to each other may be included.

好ましくは、さらに、臼孔に第1電極材を充填することにより、第1電極層を形成したのち、固体電解質材を付着させる前に、第1電極層を上杵及び下杵によって加圧する工程を含んでよい。 Preferably, the step of forming the first electrode layer by filling the mortar with the first electrode material and then pressurizing the first electrode layer with the upper and lower pestle before attaching the solid electrolyte material. May include.

好ましくは、第1固体電解質層及び第2固体電解質層を形成する工程では、第1電極層の上面に対向する上杵の下面に予め固体電解質材を付着させてよい。上杵を第1電極層の上面に向かって移動させて加圧することにより第1電極層の上面に第1固体電解質層を形成してよい。臼孔の内周面に対して固体電解質材を付着させることにより第2固体電解質層を形成してよい。 Preferably, in the step of forming the first solid electrolyte layer and the second solid electrolyte layer, the solid electrolyte material may be attached in advance to the lower surface of the upper punch facing the upper surface of the first electrode layer. The first solid electrolyte layer may be formed on the upper surface of the first electrode layer by moving the upper punch toward the upper surface of the first electrode layer and applying pressure. A second solid electrolyte layer may be formed by adhering a solid electrolyte material to the inner peripheral surface of the acetabulum.

好ましくは、さらに、第1電極材を臼孔に充填する前に、臼孔の下方の開口を第1下杵によって閉じた状態で、固体電解質材を付着させることにより、臼孔の内周面に第1電極層側の第2固体電解質層を形成し、第1下杵の上面に第3固体電解質層を形成する工程を含んでよい。第3固体電解質層とともに第1下杵を臼孔の下方から取り外し、第1電極層側の第2固体電解質層の下端に接するように第2下杵を臼孔の下方から挿入する工程を含んでよい。第1電極材を臼孔に充填する工程では、臼孔の内周面の第2固体電解質層と第2下杵の上面とによって囲まれた空間に第1電極材を充填することにより、第1電極層を形成してよい。第1固体電解質層と第2電極層側の第2固体電解質層とを形成する前に、臼孔の内周面及び第1電極層の上面に固体電解質材を付着させるための空間を臼孔に形成する工程を含んでよい。 Preferably, further, before filling the mortar with the first electrode material, the inner peripheral surface of the mortar is adhered by adhering the solid electrolyte material in a state where the opening below the mortar is closed by the first lower punch. May include a step of forming a second solid electrolyte layer on the side of the first electrode layer and forming a third solid electrolyte layer on the upper surface of the first lower punch. The step of removing the first lower pestle together with the third solid electrolyte layer from below the mortar and inserting the second lower pestle from below the mortar so as to contact the lower end of the second solid electrolyte layer on the first electrode layer side is included. It's fine. In the step of filling the mortar with the first electrode material, the first electrode material is filled in the space surrounded by the second solid electrolyte layer on the inner peripheral surface of the mortar and the upper surface of the second lower pestle. One electrode layer may be formed. Before forming the first solid electrolyte layer and the second solid electrolyte layer on the second electrode layer side, a space for adhering the solid electrolyte material is provided on the inner peripheral surface of the molar hole and the upper surface of the first electrode layer. May include the step of forming in.

本開示に係る積層電極体、積層電極体を備えた全固体電池によれば、正極層の周側面及び負極層の周側面の少なくとも一方を覆う固体電解質層の径方向の厚みを薄くして電池容量を増大させ、且つ、内部短絡を抑制できる。積層電極体の製造方法によれば、正極層の周側面及び負極層の周側面の少なくとも一方を覆う固体電解質層の径方向の厚みを薄くして電池容量を増大させ、且つ、内部短絡を抑制できる積層電極体を提供することができる。 According to the laminated electrode body and the all-solid-state battery provided with the laminated electrode body according to the present disclosure, the thickness of the solid electrolyte layer covering at least one of the peripheral side surface of the positive electrode layer and the peripheral side surface of the negative electrode layer is reduced in the radial direction of the battery. The capacity can be increased and an internal short circuit can be suppressed. According to the method for manufacturing a laminated electrode body, the radial thickness of the solid electrolyte layer covering at least one of the peripheral side surface of the positive electrode layer and the peripheral side surface of the negative electrode layer is thinned to increase the battery capacity and suppress an internal short circuit. It is possible to provide a laminated electrode body capable of providing a laminated electrode body.

図1は、本開示に係る全固体電池の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the all-solid-state battery according to the present disclosure. 図2は、図1に示す積層電極体の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the laminated electrode body shown in FIG. 図3は、図2に示す積層電極体の製造方法を示す概略図である。FIG. 3 is a schematic view showing a method for manufacturing the laminated electrode body shown in FIG. 図4は、図2に示す積層電極体の製造方法を示す概略図である。FIG. 4 is a schematic view showing a method for manufacturing the laminated electrode body shown in FIG. 図5は、図2に示す積層電極体の製造方法を示す概略図である。FIG. 5 is a schematic view showing a method for manufacturing the laminated electrode body shown in FIG. 図6は、図2に示す積層電極体の製造方法を示す概略図である。FIG. 6 is a schematic view showing a method for manufacturing the laminated electrode body shown in FIG. 図7は、図2に示す積層電極体の製造方法を示す概略図である。FIG. 7 is a schematic view showing a method for manufacturing the laminated electrode body shown in FIG. 図8は、他の積層電極体の構造を示す断面図である。FIG. 8 is a cross-sectional view showing the structure of another laminated electrode body. 図9は、図8に示す積層電極体の他の製造方法を示す概略図である。FIG. 9 is a schematic view showing another manufacturing method of the laminated electrode body shown in FIG. 図10は、図8に示す積層電極体の他の製造方法を示す概略図である。FIG. 10 is a schematic view showing another manufacturing method of the laminated electrode body shown in FIG. 図11は、図8に示す積層電極体の他の製造方法を示す概略図である。FIG. 11 is a schematic view showing another manufacturing method of the laminated electrode body shown in FIG. 図12は、図8に示す積層電極体の他の製造方法を示す概略図である。FIG. 12 is a schematic view showing another manufacturing method of the laminated electrode body shown in FIG. 図13は、図8に示す積層電極体の他の製造方法を示す概略図である。FIG. 13 is a schematic view showing another manufacturing method of the laminated electrode body shown in FIG.

以下、本開示に係る積層電極体1、積層電極体1を備えた全固体電池10及び積層電極体1の製造方法について、図1〜13を用いて具体的に説明する。まず、本開示に係る全固体電池10と全固体電池10に含まれる積層電極体1について、図1及び図2を用いて具体的に説明する。図1に示すように、全固体電池10は、外装缶20と、封口缶30と、積層電極体1と、ガスケット40とを備えている。全固体電池10は、扁平形電池である。 Hereinafter, a method for manufacturing the all-solid-state battery 10 and the laminated electrode body 1 including the laminated electrode body 1 and the laminated electrode body 1 according to the present disclosure will be specifically described with reference to FIGS. 1 to 13. First, the all-solid-state battery 10 and the laminated electrode body 1 included in the all-solid-state battery 10 according to the present disclosure will be specifically described with reference to FIGS. 1 and 2. As shown in FIG. 1, the all-solid-state battery 10 includes an outer can 20, a sealing can 30, a laminated electrode body 1, and a gasket 40. The all-solid-state battery 10 is a flat battery.

外装缶20は、円形状の底部21と、底部21の外周から連続して形成される円筒状の周壁部22とを備えている。周壁部22は、縦断面視で、底部21に対して略垂直に延びるように設けられている。外装缶20は、ステンレス、ニッケル、鉄などの金属材料によって形成されている。なお、外装缶20の形状は、円形状の底部21を備えた円筒形状に限られない。例えば、外装缶20の形状は、底部21を四角形状などの多角状に形成し、周壁部22を底部21の形状に合わせた四角筒状などの多角筒状に形成してもよく、全固体電池10のサイズや形状に応じて、種々変更することができる。そのため、周壁部22の形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。 The outer can 20 includes a circular bottom portion 21 and a cylindrical peripheral wall portion 22 formed continuously from the outer periphery of the bottom portion 21. The peripheral wall portion 22 is provided so as to extend substantially perpendicular to the bottom portion 21 in a vertical cross-sectional view. The outer can 20 is made of a metal material such as stainless steel, nickel, or iron. The shape of the outer can 20 is not limited to the cylindrical shape provided with the circular bottom portion 21. For example, the shape of the outer can 20 may be such that the bottom portion 21 is formed in a polygonal shape such as a quadrangular shape, and the peripheral wall portion 22 is formed in a polygonal tubular shape such as a square cylinder that matches the shape of the bottom portion 21. Various changes can be made according to the size and shape of the battery 10. Therefore, the shape of the peripheral wall portion 22 includes not only a cylindrical shape but also a polygonal tubular shape such as a square tubular shape.

封口缶30は、円形状の平面部31と、平面部31の外周から連続して形成される円筒状の周壁部32とを備える。封口缶30の開口は、外装缶20の開口と対向している。封口缶30は、ステンレスなどの金属材料によって形成されている。なお、封口缶30の形状は、円形状の平面部31を備えた円筒形状に限られない。例えば、封口缶30の形状は、平面部31を四角形状などの多角状に形成し、周壁部32を平面部31の形状に合わせた四角筒状などの多角筒状に形成してもよく、全固体電池10のサイズや形状に応じて、種々変更することができる。そのため、周壁部32の形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。 The sealing can 30 includes a circular flat surface portion 31 and a cylindrical peripheral wall portion 32 formed continuously from the outer periphery of the flat surface portion 31. The opening of the sealing can 30 faces the opening of the outer can 20. The sealing can 30 is made of a metal material such as stainless steel. The shape of the sealing can 30 is not limited to the cylindrical shape provided with the circular flat surface portion 31. For example, the shape of the sealing can 30 may be such that the flat surface portion 31 is formed in a polygonal shape such as a quadrangular shape, and the peripheral wall portion 32 is formed in a polygonal tubular shape such as a square tubular shape that matches the shape of the flat surface portion 31. Various changes can be made according to the size and shape of the all-solid-state battery 10. Therefore, the shape of the peripheral wall portion 32 includes not only a cylindrical shape but also a polygonal tubular shape such as a square tubular shape.

封口缶30の周壁部32は、平面部31側の基端部32aと、基端部32aの外径よりも大きく形成された開口端側の拡径部32bと、基端部32aと拡径部32bとの間の段部32cとを有している。そのため、周壁部32は、基端部32aよりも拡径部32bが外側に広くなる段状に形成されている。 The peripheral wall portion 32 of the sealing can 30 has a base end portion 32a on the flat surface portion 31 side, a diameter-expanded portion 32b on the opening end side formed larger than the outer diameter of the base end portion 32a, and a base end portion 32a. It has a stepped portion 32c between the portion 32b and the portion 32b. Therefore, the peripheral wall portion 32 is formed in a stepped shape in which the enlarged diameter portion 32b is wider outward than the base end portion 32a.

外装缶20と封口缶30とは、積層電極体1を内部空間に収容したのち、外装缶20の周壁部22と封口缶30の周壁部32との間にガスケット40を介してカシメられる。具体的には、外装缶20と封口缶30とは、外装缶20と封口缶30の互いの開口を対向させ、外装缶20の周壁部22の内側に封口缶30の周壁部32を挿入したのち、周壁部22と周壁部32との間にガスケット40を介してカシメられる。周壁部22の縁端部は、周壁部32の段部32cの方向へ内側に向くようにカシメられる。そのため、周壁部22の縁端部は、筒状側壁部22の径方向に対して略垂直の方向、すなわち、縦方向へと充分にカシメることができる。このようにして外装缶20と封口缶30とにより電池容器が構成される。 The outer can 20 and the sealing can 30 are accommodated in the internal space of the laminated electrode body 1 and then caulked between the peripheral wall portion 22 of the outer can 20 and the peripheral wall portion 32 of the sealing can 30 via a gasket 40. Specifically, the outer can 20 and the sealing can 30 have the openings of the outer can 20 and the sealing can 30 facing each other, and the peripheral wall portion 32 of the sealing can 30 is inserted inside the peripheral wall portion 22 of the outer can 20. Later, it is crimped between the peripheral wall portion 22 and the peripheral wall portion 32 via the gasket 40. The edge portion of the peripheral wall portion 22 is crimped so as to face inward in the direction of the step portion 32c of the peripheral wall portion 32. Therefore, the edge portion of the peripheral wall portion 22 can be sufficiently crimped in a direction substantially perpendicular to the radial direction of the tubular side wall portion 22, that is, in the vertical direction. In this way, the battery container is formed by the outer can 20 and the sealing can 30.

ガスケット40は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、PFA樹脂などの水分低透過性樹脂によって形成されている。ガスケット40は、外装缶20の周壁部22の内周面に沿う筒状に形成され、外装缶20の周壁部22と封口缶30の周壁部32との間に配置されている。ガスケット40は、外装缶20と封口缶30とを絶縁できれば、特に限定されるものではないが、水分透過性や耐熱性の点から、ポリフェニレンサルファイド樹脂、あるいはPFA樹脂などのフッ素樹脂が好ましく用いられる。 The gasket 40 is formed of a low moisture permeable resin such as polypropylene resin, polyphenylene sulfide resin, and PFA resin. The gasket 40 is formed in a tubular shape along the inner peripheral surface of the peripheral wall portion 22 of the outer can 20, and is arranged between the peripheral wall portion 22 of the outer can 20 and the peripheral wall portion 32 of the sealing can 30. The gasket 40 is not particularly limited as long as it can insulate the outer can 20 and the sealing can 30, but a polyphenylene sulfide resin or a fluororesin such as a PFA resin is preferably used from the viewpoint of moisture permeability and heat resistance. ..

図1及び図2に示すように、積層電極体1は、正極層(電極層)2と、負極層(電極層)3と、正極層2と負極層3との間に配置されている固体電解質層4と、固体電解質層4の周端から正極層2の周側面に沿って延びる固体電解質層5とを備えている。正極層2、負極層3及び固体電解質層4は、平面視において略相似の円形状であり、正極缶20の底面21側から図示の下方から正極層2、固体電解質層4及び負極層3の順で積層されている。すなわち、積層電極体1は、円柱形状である。積層電極体1の正極層2は、外装缶20の底部21の上面に配置されている。よって、外装缶20は、正極缶として機能する。また、積層電極体1の負極層3は、封口缶30の平面部31の下面に対向している。よって、封口缶30は、負極缶として機能する。なお、積層電極体1は、円柱形状に限られず、直方体形状や多角柱形状等、全固体電池10のサイズや形状に応じて、種々変更することができる。また、外装缶20側に負極層3を位置付け、封口缶30側に正極層2を位置付けるように積層電極体1を配置してもよい。その場合、外装缶20が負極缶として機能し、封口缶30が正極缶として機能する。 As shown in FIGS. 1 and 2, the laminated electrode body 1 is a solid arranged between a positive electrode layer (electrode layer) 2, a negative electrode layer (electrode layer) 3, and a positive electrode layer 2 and a negative electrode layer 3. It includes an electrolyte layer 4 and a solid electrolyte layer 5 extending from the peripheral end of the solid electrolyte layer 4 along the peripheral side surface of the positive electrode layer 2. The positive electrode layer 2, the negative electrode layer 3, and the solid electrolyte layer 4 have substantially similar circular shapes in a plan view, and the positive electrode layer 2, the solid electrolyte layer 4, and the negative electrode layer 3 are formed from the bottom surface 21 side of the positive electrode can 20 from the lower side shown in the drawing. They are stacked in order. That is, the laminated electrode body 1 has a cylindrical shape. The positive electrode layer 2 of the laminated electrode body 1 is arranged on the upper surface of the bottom portion 21 of the outer can 20. Therefore, the outer can 20 functions as a positive electrode can. Further, the negative electrode layer 3 of the laminated electrode body 1 faces the lower surface of the flat surface portion 31 of the sealing can 30. Therefore, the sealing can 30 functions as a negative electrode can. The laminated electrode body 1 is not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 10, such as a rectangular parallelepiped shape and a polygonal prism shape. Further, the laminated electrode body 1 may be arranged so that the negative electrode layer 3 is positioned on the outer can 20 side and the positive electrode layer 2 is positioned on the sealing can 30 side. In that case, the outer can 20 functions as a negative electrode can, and the sealing can 30 functions as a positive electrode can.

正極層2は、例えば、リチウムイオン二次電池に用いられる正極活物質として、平均粒径5μmのコバルト酸リチウムと、硫化物系固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブとを質量比で70:26:4の割合で含有した92mgの正極合剤を直径8mmの金型に入れて円柱形状に成形した正極ペレットである。なお、正極層2は、積層電極体1の正極層2として機能することができれば、特に限定されるものではなく、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、スピネル型マンガン複合酸化物、オリビン型複合酸化物等であってもよく、これらを適宜混合したものであってもよい。また、正極層2のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。 The positive electrode layer 2 contains, for example, lithium cobalt oxide having an average particle size of 5 μm, a sulfide-based solid electrolyte (Li 6 PS 5 Cl), and carbon as a conductive auxiliary agent as positive electrode active materials used in a lithium ion secondary battery. It is a positive electrode pellet formed into a columnar shape by putting a 92 mg positive electrode mixture containing an nanotube in a mass ratio of 70:26: 4 into a mold having a diameter of 8 mm. The positive electrode layer 2 is not particularly limited as long as it can function as the positive electrode layer 2 of the laminated electrode body 1, and is, for example, lithium cobalt oxide, lithium nickel oxide, lithium manganate, or spinel-type manganese composite oxide. , Olivin type composite oxide and the like, and these may be appropriately mixed. Further, the size and shape of the positive electrode layer 2 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1.

負極層3は、例えば、リチウムイオン二次電池に用いられる負極活物質として、LTO(LiTi12、チタン酸リチウム)と、硫化物系固体電解質(LiPSCl)と、カーボンナノチューブとを重量比で50:41:9の割合で含有した129mgの負極合剤を円柱形状に成形した負極ペレットである。なお、負極層3は、積層電極体1の負極層3として機能することができれば、特に限定されるものではなく、例えば、金属リチウム、リチウム合金などの金属材料や、黒鉛、低結晶カーボンなどの炭素材料や、SiO、LTO(LiTi12、チタン酸リチウム)等であってもよく、これらを適宜混合したものであってもよい。また、負極層3のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。 The negative electrode layer 3 contains, for example, LTO (Li 4 Ti 5 O 12 , lithium titanate), a sulfide-based solid electrolyte (Li 6 PS 5 Cl), and carbon as negative electrode active materials used in a lithium ion secondary battery. It is a negative electrode pellet obtained by molding 129 mg of a negative electrode mixture containing an nanotube in a weight ratio of 50:41: 9 into a cylindrical shape. The negative electrode layer 3 is not particularly limited as long as it can function as the negative electrode layer 3 of the laminated electrode body 1, and is not particularly limited, for example, a metal material such as metallic lithium or lithium alloy, graphite, low crystal carbon, or the like. It may be a carbon material, SiO, LTO (Li 4 Ti 5 O 12 , lithium titanate) or the like, or a mixture thereof as appropriate. Further, the size and shape of the negative electrode layer 3 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1.

固体電解質層4及び固体電解質層5は、例えば、1mgの硫化物系固体電解質(LiPSCl)を円柱形状に成形したものである。なお、固体電解質層4及び固体電解質層5は、特に限定はされないが、イオン伝導性の点から他のアルジロダイト型などの硫化物系固体電解質であってもよい。硫化物系固体電解質を用いる場合には、正極活物質との反応を防ぐために、正極活物質の表面をニオブ酸化物で被覆することが好ましい。また、固体電解質層4及び固体電解質層5は、水素化物系固体電解質や酸化物系固体電解質等であってもよい。また、固体電解質層4のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。 The solid electrolyte layer 4 and the solid electrolyte layer 5 are, for example, formed by molding 1 mg of a sulfide-based solid electrolyte (Li 6 PS 5 Cl) into a cylindrical shape. The solid electrolyte layer 4 and the solid electrolyte layer 5 are not particularly limited, but may be other sulfide-based solid electrolytes such as algyrodite type from the viewpoint of ionic conductivity. When a sulfide-based solid electrolyte is used, it is preferable to coat the surface of the positive electrode active material with niobium oxide in order to prevent the reaction with the positive electrode active material. Further, the solid electrolyte layer 4 and the solid electrolyte layer 5 may be a hydride-based solid electrolyte, an oxide-based solid electrolyte, or the like. Further, the size and shape of the solid electrolyte layer 4 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1.

固体電解質層4は、正極層2と負極層3との間に配置されている。図2に示すように、固体電解質層4の厚みt1は、5μm〜180μmである。固体電解質層4の厚みt1は、固体電解質層4を均一な厚みで形成し、正極層と負極層との間で生じる短絡を防止するために、5μm以上、好ましくは10μm以上、より好ましくは20μm以上とするのがよい。一方、固体電解質層4が厚くなりすぎると、積層電極体1全体に占める正極層2及び負極層3の割合が低下してしまい、積層電極体1の体積当たりの電池容量が低下する。また、固体電解質層4による抵抗の増加によって放電特性が低下する。そのため、固体電解質層4の厚みt1は、180μm以下、好ましくは100μm以下、より好ましくは50μm以下とするのがよい。 The solid electrolyte layer 4 is arranged between the positive electrode layer 2 and the negative electrode layer 3. As shown in FIG. 2, the thickness t1 of the solid electrolyte layer 4 is 5 μm to 180 μm. The thickness t1 of the solid electrolyte layer 4 is 5 μm or more, preferably 10 μm or more, more preferably 20 μm in order to form the solid electrolyte layer 4 with a uniform thickness and prevent a short circuit occurring between the positive electrode layer and the negative electrode layer. It is better to do the above. On the other hand, if the solid electrolyte layer 4 becomes too thick, the ratio of the positive electrode layer 2 and the negative electrode layer 3 to the entire laminated electrode body 1 decreases, and the battery capacity per volume of the laminated electrode body 1 decreases. In addition, the discharge characteristics deteriorate due to the increase in resistance due to the solid electrolyte layer 4. Therefore, the thickness t1 of the solid electrolyte layer 4 is preferably 180 μm or less, preferably 100 μm or less, and more preferably 50 μm or less.

固体電解質層5は、固体電解質層4の周端から正極層2及び負極層3の少なくとも一方の周側面に沿って延びていればよい。図2に示すように、正極層2の周側面に固体電解質層5を設けた場合、平面視において、負極層3の径方向の大きさを正極層2よりも大きくすることができる。すなわち、正極層2と固体電解質層5とを合わせた径方向の大きさが、負極層3の径方向の大きさと同じになるように、固体電解質層4の周端から正極層2の周側面に沿って固体電解質層5を延ばすこともできる。固体電解質層4と固体電解質層5とは、図2に示すように、縦断面視において略コ字形状を有している。固体電解質層5は、正極層2の周側面を覆う円筒状である。これにより、正極層2の周側面から正極活物質粒子が脱離し、負極層3の周側面に接触することによって生じ得る短絡を抑制することができる。固体電解質層5の径方向の厚みt2は、正極層2又は負極層3からの活物質粒子の脱離を防止するためには、1μm以上、好ましくは5μm以上、より好ましくは10μm以上とするのがよい。一方、固体電解質層5が厚くなりすぎると、積層電極体1全体に占める正極層2及び負極層3の割合が低下してしまい、積層電極体1の体積当たりの電池容量が低下する。そのため、固体電解質層5の径方向の厚みt2は、180μm以下、好ましくは50μm以下、より好ましくは30μm以下とするのがよい。なお、固体電解質層5は、必ずしも固体電解質のみで構成されていなくともよく、例えば、固体電解質層5が形成されている電極層の活物質が多少混在していても、その機能を発揮することが可能である。 The solid electrolyte layer 5 may extend from the peripheral end of the solid electrolyte layer 4 along at least one peripheral side surface of the positive electrode layer 2 and the negative electrode layer 3. As shown in FIG. 2, when the solid electrolyte layer 5 is provided on the peripheral side surface of the positive electrode layer 2, the radial size of the negative electrode layer 3 can be made larger than that of the positive electrode layer 2 in a plan view. That is, from the peripheral end of the solid electrolyte layer 4 to the peripheral side surface of the positive electrode layer 2 so that the radial size of the positive electrode layer 2 and the solid electrolyte layer 5 combined is the same as the radial size of the negative electrode layer 3. The solid electrolyte layer 5 can also be extended along the line. As shown in FIG. 2, the solid electrolyte layer 4 and the solid electrolyte layer 5 have a substantially U-shape in a vertical cross-sectional view. The solid electrolyte layer 5 has a cylindrical shape that covers the peripheral side surface of the positive electrode layer 2. As a result, it is possible to suppress a short circuit that may occur when the positive electrode active material particles are desorbed from the peripheral side surface of the positive electrode layer 2 and come into contact with the peripheral side surface of the negative electrode layer 3. The radial thickness t2 of the solid electrolyte layer 5 is set to 1 μm or more, preferably 5 μm or more, and more preferably 10 μm or more in order to prevent the active material particles from being detached from the positive electrode layer 2 or the negative electrode layer 3. Is good. On the other hand, if the solid electrolyte layer 5 becomes too thick, the ratio of the positive electrode layer 2 and the negative electrode layer 3 to the entire laminated electrode body 1 decreases, and the battery capacity per volume of the laminated electrode body 1 decreases. Therefore, the radial thickness t2 of the solid electrolyte layer 5 is preferably 180 μm or less, preferably 50 μm or less, and more preferably 30 μm or less. The solid electrolyte layer 5 does not necessarily have to be composed of only the solid electrolyte. For example, the solid electrolyte layer 5 exhibits its function even if some active materials of the electrode layer on which the solid electrolyte layer 5 is formed are mixed. Is possible.

正極層2の厚みt3に対する固体電解質層4の厚みt1の比率Rである(t1/t3)は、0.03以上とするのがよい。正極層2は、成形時、一定以上の充填密度となるように加圧される。正極層2への圧力は、正極層2の厚みt3が厚くなるにしたがって大きくなる。そのため、正極層2の厚みt3が厚すぎる、すなわち、比率Rが小さくなりすぎると、正極層2と固体電解質層4とを併せて加圧する際、固体電解質層4に対して必要以上の圧力が加えられる。そうすると、正極層2の正極活物質粒子が固体電解質層4に食い込み、正極層2と負極層3との間で短絡が生じる危険性が高くなる。したがって、比率Rは、0.03以上とするのがよく、好ましくは0.1以上とするのがよい。一方、固体電解質層4の厚みt1が厚すぎる、すなわち、比率Rが大きくなりすぎると、積層電極体1全体に占める正極層2及び負極層3の割合が低下してしまい、積層電極体1の体積当たりの電池容量が低下する。また、固体電解質層4による抵抗の増加によって放電特性が低下する。そのため、比率Rは、0.3以下とするのがよく、好ましくは0.2以下とするのがよい。 The ratio R (t1 / t3) of the thickness t1 of the solid electrolyte layer 4 to the thickness t3 of the positive electrode layer 2 is preferably 0.03 or more. At the time of molding, the positive electrode layer 2 is pressurized so as to have a filling density of a certain level or higher. The pressure on the positive electrode layer 2 increases as the thickness t3 of the positive electrode layer 2 increases. Therefore, if the thickness t3 of the positive electrode layer 2 is too thick, that is, if the ratio R is too small, when the positive electrode layer 2 and the solid electrolyte layer 4 are pressed together, an excessive pressure is applied to the solid electrolyte layer 4. Is added. Then, the positive electrode active material particles of the positive electrode layer 2 bite into the solid electrolyte layer 4, and there is a high risk that a short circuit occurs between the positive electrode layer 2 and the negative electrode layer 3. Therefore, the ratio R is preferably 0.03 or more, preferably 0.1 or more. On the other hand, if the thickness t1 of the solid electrolyte layer 4 is too thick, that is, if the ratio R becomes too large, the ratio of the positive electrode layer 2 and the negative electrode layer 3 to the entire laminated electrode body 1 decreases, and the laminated electrode body 1 Battery capacity per volume decreases. In addition, the discharge characteristics deteriorate due to the increase in resistance due to the solid electrolyte layer 4. Therefore, the ratio R is preferably 0.3 or less, and preferably 0.2 or less.

図1に示すように、封口缶30の周壁部32は、外装缶20の周壁部22よりも内側に位置している。固体電解質層5は、正極層2の周側面に沿って形成されている。すなわち、固体電解質層5は、正極層2の周側面を覆っている。これにより、正極層2から正極活物質粒子が脱離し、封口缶30に接触して生じ得る短絡を抑制することができる。一方で、外装缶20側に負極層3を位置付け、封口缶30側に正極層2を位置付けるように積層電極体1を配置した場合は、負極層3の周側面に沿って固体電解質層5を形成するようにしてもよい。このように、外装缶20側に配置される正極層2又は負極層3のいずれかの周側面を固体電解質層5で覆うことにより、封口缶2と活物質粒子との接触による内部短絡を抑制することができる。 As shown in FIG. 1, the peripheral wall portion 32 of the sealing can 30 is located inside the peripheral wall portion 22 of the outer can 20. The solid electrolyte layer 5 is formed along the peripheral side surface of the positive electrode layer 2. That is, the solid electrolyte layer 5 covers the peripheral side surface of the positive electrode layer 2. As a result, the positive electrode active material particles are separated from the positive electrode layer 2, and a short circuit that may occur in contact with the sealing can 30 can be suppressed. On the other hand, when the laminated electrode body 1 is arranged so that the negative electrode layer 3 is positioned on the outer can 20 side and the positive electrode layer 2 is positioned on the sealing can 30 side, the solid electrolyte layer 5 is provided along the peripheral side surface of the negative electrode layer 3. It may be formed. In this way, by covering the peripheral side surface of either the positive electrode layer 2 or the negative electrode layer 3 arranged on the outer can 20 side with the solid electrolyte layer 5, internal short circuits due to contact between the sealing can 2 and the active material particles are suppressed. can do.

次に、積層電極体1の製造方法について、図3〜7を参照しながら具体的に説明する。 Next, a method for manufacturing the laminated electrode body 1 will be specifically described with reference to FIGS. 3 to 7.

まず、図3に示すように、加圧装置100を準備する。加圧装置100は、上下に貫通した臼孔101aを有するダイス101と、臼孔101aの下方から挿入されて臼孔101a内を摺動する下杵102と、臼孔101aの上方から挿入されて臼孔101a内を摺動する上杵103とを備えている。ダイス101は、板状に形成されている。臼孔101aは、ダイス101の上面から下面にかけて円筒状に開口形成されている。下杵102と上杵103とは各々、臼杵の開口形状に沿う円柱形状に形成されている。加圧装置100は、下杵102及び上杵103を上下方向に摺動させることにより、臼孔101aに充填された材料を加圧する。 First, as shown in FIG. 3, the pressurizing device 100 is prepared. The pressurizing device 100 is inserted from above the die 101 having a mortar hole 101a penetrating vertically, the lower pestle 102 inserted from below the mortar hole 101a and sliding in the mortar hole 101a, and the mortar hole 101a. It is provided with an upper pestle 103 that slides in the mortar hole 101a. The die 101 is formed in a plate shape. The mortar hole 101a is formed with a cylindrical opening from the upper surface to the lower surface of the die 101. The lower pestle 102 and the upper pestle 103 are each formed in a cylindrical shape that follows the opening shape of the usuki. The pressurizing device 100 pressurizes the material filled in the mortar hole 101a by sliding the lower pestle 102 and the upper pestle 103 in the vertical direction.

次に、図4に示すように、臼孔101aに下杵102を挿入し、臼孔101aの下方の開口を下杵102により閉じた状態で、臼孔101aの上方から電極材Xを充填する。これにより、成形前の負極層3が形成される。本製法において、電極材Xは、負極層3を形成するための粉状の負極配合剤である。粉状の電極材Xは、特に図示しないが、ダイス101の上面を平行に移動するホッパーから臼孔101aに充填される。ホッパーは、電極材Xを充填する際に臼孔101aの上方に移動し、電極材Xを充填しないときは臼孔101aの上方以外の場所で待機している。臼孔101aに充填された電極材Xは、上方から上杵103によって加圧される。電極材Xは、粉状であってもよく、予め加圧処理がなされ、臼孔101aの内径と略同じ外径で形成されたペレットであってもよい。電極材Xがペレットである場合、電極材Xは、上方から上杵103によって加圧されてもよく、加圧されなくてもよい。また、粉状の電極材Xであっても、ここでは加圧せず、後述するように、さらに固体電解質材W及び電極材Yを臼孔101aに入れたのち、電極材X、固体電解質材W及び電極材Yをまとめて加圧するようにしてもよい。 Next, as shown in FIG. 4, the lower punch 102 is inserted into the mortar hole 101a, and the electrode material X is filled from above the mortar hole 101a with the lower opening of the mortar hole 101a closed by the lower pestle 102. .. As a result, the negative electrode layer 3 before molding is formed. In this production method, the electrode material X is a powdery negative electrode compounding agent for forming the negative electrode layer 3. Although not particularly shown, the powdery electrode material X is filled in the mortar hole 101a from a hopper that moves in parallel on the upper surface of the die 101. The hopper moves above the mortar hole 101a when the electrode material X is filled, and stands by at a place other than above the mortar hole 101a when the electrode material X is not filled. The electrode material X filled in the mortar hole 101a is pressurized by the upper pestle 103 from above. The electrode material X may be in the form of powder, or may be pellets that have been pressure-treated in advance and formed to have an outer diameter substantially the same as the inner diameter of the mortar hole 101a. When the electrode material X is a pellet, the electrode material X may or may not be pressurized by the upper pestle 103 from above. Further, even if the electrode material X is in the form of powder, the pressure is not applied here, and as will be described later, the solid electrolyte material W and the electrode material Y are further put into the mill hole 101a, and then the electrode material X and the solid electrolyte material are used. W and the electrode material Y may be pressurized together.

また、図4では、臼孔101aの上側の空間を利用して負極層3を形成しているが、実際には、臼孔101aの下側の空間を利用して負極層3を形成するのが好ましい。その際、下杵102の上面は、臼孔101aの下方開口側に、例えば、ダイス101の下面に沿うように位置付けられる。臼孔101aの下側の空間に負極層3を形成したのち、負極層3の上側の空間(図4において、負極層3が形成されている部分)を利用して、固体電解質層4、固体電解質層5及び正極層2を形成する。これにより、後述する臼孔101aの上側の負極層3を下側に配するという工程を省略でき、積層電極体1の製造工程を簡略化することができる。 Further, in FIG. 4, the negative electrode layer 3 is formed by using the space above the mortar hole 101a, but in reality, the negative electrode layer 3 is formed by using the space below the mortar hole 101a. Is preferable. At that time, the upper surface of the lower pestle 102 is positioned on the lower opening side of the mortar hole 101a, for example, along the lower surface of the die 101. After forming the negative electrode layer 3 in the space below the mill hole 101a, the solid electrolyte layer 4 and the solid are used in the space above the negative electrode layer 3 (the portion where the negative electrode layer 3 is formed in FIG. 4). The electrolyte layer 5 and the positive electrode layer 2 are formed. As a result, the step of arranging the negative electrode layer 3 on the upper side of the mortar hole 101a, which will be described later, on the lower side can be omitted, and the manufacturing process of the laminated electrode body 1 can be simplified.

なお、図4に示すように、臼孔101aの上側の空間を利用して負極層3を形成する場合には、次に、負極層3(成形体、あるいは、成形前の充填物)を、上杵103により、あるいは上杵103と下杵102で挟んだ状態で、臼孔101aの下側に移動させ、下記の図5で示すように臼孔101aの上側に固体電解質層4、固体電解質層5及び正極層2を作製するための空間を形成する。あるいは、下杵102を臼孔101aの下方から取り外した後、ダイス101を反転させ、負極層3を臼孔101aの下側に配置することにより、前記空間を形成してもよい。すなわち、負極層3を形成したのちに、さらに臼孔101aの内周面及び負極層3の上面に固体電解質材Wを噴射できる空間を臼孔101aに形成できればよい。 As shown in FIG. 4, when the negative electrode layer 3 is formed by utilizing the space above the mortar hole 101a, the negative electrode layer 3 (molded body or pre-molded filler) is then subjected to. Move it to the lower side of the mortar hole 101a with the upper pestle 103 or sandwiched between the upper pestle 103 and the lower pestle 102, and as shown in FIG. 5 below, the solid electrolyte layer 4 and the solid electrolyte are on the upper side of the mortar hole 101a. A space for forming the layer 5 and the positive electrode layer 2 is formed. Alternatively, the space may be formed by removing the lower punch 102 from below the mortar hole 101a, inverting the die 101, and arranging the negative electrode layer 3 below the mortar hole 101a. That is, after the negative electrode layer 3 is formed, it is sufficient that a space in which the solid electrolyte material W can be injected can be further formed in the mortar hole 101a on the inner peripheral surface of the mortar hole 101a and the upper surface of the negative electrode layer 3.

次に、図5に示すように、臼孔101aの上方から負極層3と臼孔101aの内周面とに対し、噴射装置104によって粉状の固体電解質材Wを噴射する。噴射装置104は、上述のホッパーと同様に、ダイス101の上面を平行に移動する。噴射装置104は、固体電解質材Wを噴射する際に臼孔101aの上方に移動し、固体電解質材Wを噴射しないときは臼孔101aの上方以外の場所で待機している。噴射装置104は、先端が針状またはテーパ状に形成された静電気発生電極(図示しない)を備えている。前記電極に例えば−20kV程度の直流高電圧を印加することによって前記電極の先端に形成される電界により固体電解質材Wを負に帯電させることができる。ダイス101及び下杵102は、帯電した固体電解質材Wとは反対極性で帯電させており、これにより、固体電解質材Wの付着層が形成される。固体電解質層4及び固体電解質層5における固体電解質材Wの付着量を調整することにより、固体電解質層4及び固体電解質層5の厚みを調整することができ、成形後には、電極材Xの上面に固体電解質層4を薄く、かつ、厚みを均一に形成することができ、臼孔101aの内周面に固体電解質層5を薄く、且つ、厚みを均一に形成することができる。 Next, as shown in FIG. 5, the powdery solid electrolyte material W is injected from above the mortar hole 101a onto the negative electrode layer 3 and the inner peripheral surface of the mortar hole 101a by the injection device 104. The injection device 104 moves in parallel on the upper surface of the die 101 in the same manner as the above-mentioned hopper. The injection device 104 moves above the mortar hole 101a when injecting the solid electrolyte material W, and stands by at a place other than above the mortar hole 101a when the solid electrolyte material W is not injected. The injection device 104 includes an electrostatic generating electrode (not shown) having a needle-shaped or tapered tip. By applying a high DC voltage of, for example, about −20 kV to the electrode, the solid electrolyte material W can be negatively charged by the electric field formed at the tip of the electrode. The die 101 and the lower pestle 102 are charged with the opposite polarity to the charged solid electrolyte material W, whereby an adhesive layer of the solid electrolyte material W is formed. By adjusting the amount of the solid electrolyte material W adhered to the solid electrolyte layer 4 and the solid electrolyte layer 5, the thicknesses of the solid electrolyte layer 4 and the solid electrolyte layer 5 can be adjusted, and after molding, the upper surface of the electrode material X can be adjusted. The solid electrolyte layer 4 can be formed thin and the thickness can be made uniform, and the solid electrolyte layer 5 can be formed thin and the thickness can be made uniform on the inner peripheral surface of the mill hole 101a.

なお、前記の方法で固体電解質層4の厚み、すなわち、固体電解質層4における固体電解質材Wの付着量を調整しにくい場合には、固体電解質層4を形成した後に、固体電解質層5を形成してもよい。すなわち、図示はしないが、負に帯電させた固体電解質材Wを、これと反対の極性に帯電させた上杵103の下面に付着させ、更にこの上杵103で上方から電極材Xを加圧することにより、前記固体電解質材Wを負極層3の上面に固定し、固体電解質層4を形成する。次に、帯電させた固体電解質材Wを臼孔101aの内部に噴射して、臼孔101aの内周面に固体電解質材Wを付着させ、固体電解質層5を形成する。 When it is difficult to adjust the thickness of the solid electrolyte layer 4, that is, the amount of the solid electrolyte material W adhered to the solid electrolyte layer 4 by the above method, the solid electrolyte layer 4 is formed and then the solid electrolyte layer 5 is formed. You may. That is, although not shown, the negatively charged solid electrolyte material W is attached to the lower surface of the upper punch 103 charged to the opposite polarity, and the electrode material X is further pressed by the upper punch 103 from above. As a result, the solid electrolyte material W is fixed to the upper surface of the negative electrode layer 3 to form the solid electrolyte layer 4. Next, the charged solid electrolyte material W is injected into the mortar hole 101a to adhere the solid electrolyte material W to the inner peripheral surface of the mortar hole 101a to form the solid electrolyte layer 5.

次に、図6に示すように、固体電解質層4と固体電解質層5とによって囲まれた空間に電極材Yを充填する。これにより、成形前の正極層2が形成される。本製法において、電極材Yは、正極層2を形成するための粉状の正極配合剤である。粉状の電極材Yは、特に図示しないが、ダイス101の上面を平行に移動するホッパーから臼孔101aに充填される。ホッパーは、電極材Yを充填する際に臼孔101aの上方に移動し、電極材Yを充填しないときは臼孔101aの上方以外の場所で待機している。なお、加圧装置100は、電極材Xを充填するホッパーと電極材Yを充填するホッパーとをそれぞれ備えている。充填された電極材Yは、上方から上杵103によって加圧される。これにより、積層電極体1の成形体が形成される。 Next, as shown in FIG. 6, the space surrounded by the solid electrolyte layer 4 and the solid electrolyte layer 5 is filled with the electrode material Y. As a result, the positive electrode layer 2 before molding is formed. In this production method, the electrode material Y is a powdery positive electrode compounding agent for forming the positive electrode layer 2. Although not particularly shown, the powdery electrode material Y is filled into the mortar hole 101a from a hopper that moves in parallel on the upper surface of the die 101. The hopper moves above the mortar hole 101a when the electrode material Y is filled, and stands by at a place other than above the mortar hole 101a when the electrode material Y is not filled. The pressurizing device 100 includes a hopper filled with the electrode material X and a hopper filled with the electrode material Y, respectively. The filled electrode material Y is pressurized by the upper pestle 103 from above. As a result, a molded body of the laminated electrode body 1 is formed.

充填された電極材Yが上方から加圧される際、上述の負極層3、固体電解質層4及び固体電解質層5も一緒に加圧される。この際、臼孔101aの内周面によって固体電解質層5の径方向への移動は抑制されており、また、積層電極体1の下方への移動も下杵102によって抑制されている。そのため、上杵103による上方からの圧力が積層電極体1に加わると、正極層2の外周面が固体電解質層5を臼孔101aの内周面に対して径方向に押し当てる。これにより加圧による固体電解質層5の成形を充分に行うことができる。また、正極層2と固体電解質層5との接合性を向上させることができ、これにより、正極層2から固体電解質層5が剥離するのを抑制することができるため、成形後の固体電解質層5の厚みを薄くすることができる。 When the filled electrode material Y is pressurized from above, the above-mentioned negative electrode layer 3, the solid electrolyte layer 4 and the solid electrolyte layer 5 are also pressed together. At this time, the inner peripheral surface of the mortar hole 101a suppresses the movement of the solid electrolyte layer 5 in the radial direction, and the lower punch 102 also suppresses the downward movement of the laminated electrode body 1. Therefore, when the pressure from above by the upper punch 103 is applied to the laminated electrode body 1, the outer peripheral surface of the positive electrode layer 2 presses the solid electrolyte layer 5 against the inner peripheral surface of the mortar hole 101a in the radial direction. As a result, the solid electrolyte layer 5 can be sufficiently formed by pressurization. Further, the bondability between the positive electrode layer 2 and the solid electrolyte layer 5 can be improved, and thus the solid electrolyte layer 5 can be prevented from peeling from the positive electrode layer 2, so that the solid electrolyte layer after molding can be suppressed. The thickness of 5 can be reduced.

最後に、図7に示すように、ダイス101と下杵102とを相対的に移動させることにより、臼孔101aから積層電極体1を取り出すことができる。そして、図1に示すように、積層電極体1を外装缶20と封口缶30との間に収容し、全固体電池10が組み立てられる。なお、積層電極体1を臼孔101aから取り出すには、ダイス101と上杵103とを相対的に移動させてもよい。また、積層電極体1を挟んだ状態で、上杵103と下杵102をダイス101に対して相対的に移動させ、積層電極体1を臼孔101aから取り出すようにすれば、積層電極体1に割れや欠けが生じるのを防ぐことができるので好ましい。なお、固体電解質層5の材料によっては、固体電解質が滑沢剤として作用し、ダイス101から積層電極体1の取り出しがより容易になることも期待できる。 Finally, as shown in FIG. 7, the laminated electrode body 1 can be taken out from the mortar hole 101a by relatively moving the die 101 and the lower punch 102. Then, as shown in FIG. 1, the laminated electrode body 1 is housed between the outer can 20 and the sealing can 30, and the all-solid-state battery 10 is assembled. In order to take out the laminated electrode body 1 from the mortar hole 101a, the die 101 and the upper punch 103 may be relatively moved. Further, if the upper punch 103 and the lower punch 102 are moved relative to the die 101 with the laminated electrode body 1 sandwiched therein, and the laminated electrode body 1 is taken out from the mortar hole 101a, the laminated electrode body 1 can be taken out. It is preferable because it can prevent cracks and chips from being generated. Depending on the material of the solid electrolyte layer 5, it can be expected that the solid electrolyte acts as a lubricant, making it easier to take out the laminated electrode body 1 from the die 101.

このように、積層電極体1の製造方法によれば、固体電解質層4及び固体電解質層5を薄く、且つ均一に形成することができ、固体電解質層5の厚みを調整することができる。また、正極層2の周側面と固体電解質層5との接合性を向上させることができる。その結果、全固体電池1の電池容量を増大させることができる。また、正極活物質粒子が正極層2から脱離するのをより確実に抑制して、正極活物質粒子と負極層3あるいは負極缶30との接触による内部短絡を抑制することができる。すなわち、この製造方法によって得られる積層電極体1によれば、高容量で信頼性の高い全固体電池1を提供することができる。 As described above, according to the method for producing the laminated electrode body 1, the solid electrolyte layer 4 and the solid electrolyte layer 5 can be formed thinly and uniformly, and the thickness of the solid electrolyte layer 5 can be adjusted. Further, the bondability between the peripheral side surface of the positive electrode layer 2 and the solid electrolyte layer 5 can be improved. As a result, the battery capacity of the all-solid-state battery 1 can be increased. Further, it is possible to more reliably suppress the positive electrode active material particles from desorbing from the positive electrode layer 2, and to suppress an internal short circuit due to contact between the positive electrode active material particles and the negative electrode layer 3 or the negative electrode can 30. That is, according to the laminated electrode body 1 obtained by this manufacturing method, it is possible to provide an all-solid-state battery 1 having a high capacity and high reliability.

なお、本製法では、電極材Xが負極層3を形成し、電極材Yが正極層2を形成したが、電極材Xが正極層2を形成し、電極材Yが負極層3を形成するようにすることもできる。 In this production method, the electrode material X forms the negative electrode layer 3 and the electrode material Y forms the positive electrode layer 2, but the electrode material X forms the positive electrode layer 2 and the electrode material Y forms the negative electrode layer 3. You can also do it.

次に、他の積層電極体1について、図8を用いて具体的に説明する。他の積層電極体1は、上述の積層電極体1と基本的な構成は共通する。そのため、上述の積層電極体1と相違する構成について説明する。 Next, the other laminated electrode body 1 will be specifically described with reference to FIG. The other laminated electrode body 1 has the same basic configuration as the above-mentioned laminated electrode body 1. Therefore, a configuration different from the above-mentioned laminated electrode body 1 will be described.

他の積層電極体1は、図8に示すように、固体電解質層4の周端から正極層2の周側面及び負極層3の周側面に沿って延びる固体電解質層5を有している。固体電解質層5の径方向の厚みは、図2に示す上述の固体電解質層5と同様である。固体電解質層4と固体電解質層5とは、縦断面視において略H字型形状を有している。これにより、正極層2及び負極層3の両方から活物質粒子が脱離するのを抑制することができ、より確実に内部短絡を抑制することができる。その結果、他の積層電極体1によれば、電池容量を増大でき、より信頼性の高い全固体電池1を提供することができる。特に、複数の積層電極体1を直列に積層するバイポーラ型電池では、隣接する積層電極体1の一方の積層電極体1の負極層3と他方の積層電極体1の正極層2とが隣り合うため、隣接する積層電極体1同士の内部短絡を抑制することができる。 As shown in FIG. 8, the other laminated electrode body 1 has a solid electrolyte layer 5 extending from the peripheral end of the solid electrolyte layer 4 along the peripheral side surface of the positive electrode layer 2 and the peripheral side surface of the negative electrode layer 3. The radial thickness of the solid electrolyte layer 5 is the same as that of the above-mentioned solid electrolyte layer 5 shown in FIG. The solid electrolyte layer 4 and the solid electrolyte layer 5 have a substantially H-shaped shape in a vertical cross-sectional view. As a result, it is possible to suppress the desorption of the active material particles from both the positive electrode layer 2 and the negative electrode layer 3, and it is possible to more reliably suppress the internal short circuit. As a result, according to the other laminated electrode body 1, the battery capacity can be increased, and a more reliable all-solid-state battery 1 can be provided. In particular, in a bipolar battery in which a plurality of laminated electrode bodies 1 are laminated in series, the negative electrode layer 3 of one laminated electrode body 1 of the adjacent laminated electrode bodies 1 and the positive electrode layer 2 of the other laminated electrode body 1 are adjacent to each other. Therefore, it is possible to suppress an internal short circuit between adjacent laminated electrode bodies 1.

積層電極体1の他の製造方法について、図9〜13を参照して説明する。 Another manufacturing method of the laminated electrode body 1 will be described with reference to FIGS. 9 to 13.

まず、上述の製造方法と同様に、加圧装置100を準備する。なお、本製法においては、下杵102に代えて図9に示す交換される下杵105が臼孔101aの下方から挿入されている。 First, the pressurizing device 100 is prepared in the same manner as in the above-mentioned manufacturing method. In this manufacturing method, the replacement lower pestle 105 shown in FIG. 9 is inserted from below the mortar hole 101a instead of the lower pestle 102.

次に、図9に示すように、交換用の下杵105の上面と臼孔101aの内周面とに対し、臼孔101aの上方から噴射装置104によって粉状の固体電解質材Wを噴射する。固体電解質材Wは、負に帯電している。ダイス101及び交換用の下杵105は、帯電した固体電解質材Wとは反対極性で帯電している。これにより、固体電解質材Wの付着層が形成され、臼孔101aの内周面に固体電解質層5を薄く形成することができる。一方、交換用の下杵105の上面に形成された固体電解質層6は、積層電極体1の製造には利用しないため、図10に示すように、固体電解質層6とともに交換用の下杵105を臼孔101aの下方から取り外す。その後、臼孔101aの下方から下杵105とは別の下杵102を挿入する。下杵102の上面端部は、固体電解質層5の下端に接するように臼孔101aに挿入することができる。 Next, as shown in FIG. 9, the powdery solid electrolyte material W is injected from above the mortar hole 101a onto the upper surface of the replacement lower pestle 105 and the inner peripheral surface of the mortar hole 101a by the injection device 104. .. The solid electrolyte material W is negatively charged. The die 101 and the replacement lower pestle 105 are charged with the opposite polarity to the charged solid electrolyte material W. As a result, an adhesion layer of the solid electrolyte material W is formed, and the solid electrolyte layer 5 can be thinly formed on the inner peripheral surface of the mortar hole 101a. On the other hand, since the solid electrolyte layer 6 formed on the upper surface of the replacement lower pestle 105 is not used for manufacturing the laminated electrode body 1, as shown in FIG. 10, the replacement lower pestle 105 is used together with the solid electrolyte layer 6. Is removed from below the mortar 101a. After that, a lower pestle 102 different from the lower pestle 105 is inserted from below the mortar hole 101a. The upper end of the lower pestle 102 can be inserted into the mortar 101a so as to be in contact with the lower end of the solid electrolyte layer 5.

次に、図11に示すように、固体電解質層5と下杵102の上面とによって囲まれた空間に、電極材Xを充填する。これにより、成形前の負極層3が形成される。本製法において、電極材Xは、負極層3を形成するための粉状の負極配合剤である。粉状の電極材Xは、特に図示しないが、上述と同様のホッパーによって臼孔101aに充填される。臼孔101aに充填された電極材Xおよび固体電解質層5は、上方から上杵103によって加圧され、負極層3と負極層3の周側面に配置された固体電解質層5の成形体とが形成される。なお、負極層3及び固体電解質層5をここでは加圧せず、更に固体電解質材W及び電極材Yを臼孔101aに入れたのち、これらをまとめて加圧するようにしてもよい。 Next, as shown in FIG. 11, the space surrounded by the solid electrolyte layer 5 and the upper surface of the lower pestle 102 is filled with the electrode material X. As a result, the negative electrode layer 3 before molding is formed. In this production method, the electrode material X is a powdery negative electrode compounding agent for forming the negative electrode layer 3. Although not particularly shown, the powdery electrode material X is filled in the mortar hole 101a by the same hopper as described above. The electrode material X and the solid electrolyte layer 5 filled in the mortar hole 101a are pressed by the upper punch 103 from above, and the negative electrode layer 3 and the molded body of the solid electrolyte layer 5 arranged on the peripheral side surface of the negative electrode layer 3 are formed. It is formed. The negative electrode layer 3 and the solid electrolyte layer 5 may not be pressurized here, and the solid electrolyte material W and the electrode material Y may be put into the mortar hole 101a and then pressed together.

次に、前記負極層3及び固体電解質層5(成形体、あるいは、成形前の充填物)を、上杵103により、あるいは上杵103と下杵102とで挟んだ状態で、臼孔101aの下側に移動させ、臼孔101aの上側に下記の図12で示す固体電解質層4及び固体電解質層5並びに図13で示す正極層2を作製するための空間を形成する。あるいは、下杵102を臼孔101aの下方から取り外した後、ダイス101を反転させ、負極層3を臼孔101aの下側に配置することにより、前記空間を形成してもよい。すなわち、負極層3及び負極層3側の固体電解質層5を形成したのちに、さらに臼孔101aの内周面及び負極層3の上面に固体電解質材Wを噴射できる空間を臼孔101aに形成できればよい。 Next, the negative electrode layer 3 and the solid electrolyte layer 5 (molded body or filler before molding) are sandwiched between the upper punch 103 or the upper punch 103 and the lower punch 102, and the mortar hole 101a is formed. It is moved downward to form a space on the upper side of the mortar hole 101a for producing the solid electrolyte layer 4 and the solid electrolyte layer 5 shown in FIG. 12 and the positive electrode layer 2 shown in FIG. Alternatively, the space may be formed by removing the lower punch 102 from below the mortar hole 101a, inverting the die 101, and arranging the negative electrode layer 3 below the mortar hole 101a. That is, after the negative electrode layer 3 and the solid electrolyte layer 5 on the negative electrode layer 3 side are formed, a space in which the solid electrolyte material W can be injected is further formed in the mortar hole 101a on the inner peripheral surface of the mortar hole 101a and the upper surface of the negative electrode layer 3. I hope I can.

次に、図12に示すように、上述の空間において、臼孔101aの上方から負極層3と臼孔101aの内周面とに対し、噴射装置104によって粉状の固体電解質材Wを噴射することにより、あるいは、上杵103により固体電解質材Wを負極層3の上面に固定した後、噴射装置104によって粉状の固体電解質材Wを噴射することにより、固体電解質層4及び正極層2側の固体電解質層5を形成する。この工程は前述したものと同じであり、詳細な説明は省略する。 Next, as shown in FIG. 12, in the above-mentioned space, the powdery solid electrolyte material W is injected by the injection device 104 from above the molar hole 101a onto the negative electrode layer 3 and the inner peripheral surface of the molar hole 101a. Alternatively, or by fixing the solid electrolyte material W to the upper surface of the negative electrode layer 3 with the upper punch 103 and then injecting the powdery solid electrolyte material W with the injection device 104, the solid electrolyte layer 4 and the positive electrode layer 2 side. The solid electrolyte layer 5 of the above is formed. This step is the same as that described above, and detailed description thereof will be omitted.

次に、図13に示すように、固体電解質層4と固体電解質層5とによって囲まれた空間に電極材Yを充填する。これにより、成形前の正極層2が形成される。充填された電極材Yは、上方から上杵103によって加圧される。この際、上述の負極層3、固体電解質層4及び固体電解質層5も一緒に加圧される。これにより、積層電極体1の成形体が形成される。この工程についても、前述したものと同じであり、詳細な説明は省略する。なお、負極層3の周側面に形成された固体電解質層5と、正極層2の周側面に形成された固体電解質層5とは、厚みが異なっていてもよい。 Next, as shown in FIG. 13, the space surrounded by the solid electrolyte layer 4 and the solid electrolyte layer 5 is filled with the electrode material Y. As a result, the positive electrode layer 2 before molding is formed. The filled electrode material Y is pressurized by the upper pestle 103 from above. At this time, the negative electrode layer 3, the solid electrolyte layer 4, and the solid electrolyte layer 5 described above are also pressurized together. As a result, a molded body of the laminated electrode body 1 is formed. This step is also the same as that described above, and detailed description thereof will be omitted. The solid electrolyte layer 5 formed on the peripheral side surface of the negative electrode layer 3 and the solid electrolyte layer 5 formed on the peripheral side surface of the positive electrode layer 2 may have different thicknesses.

最後に、ダイス101と下杵102とを相対的に移動させることにより、臼孔101aから積層電極体1を取り出すことができる。なお、積層電極体1を臼孔101aから取り出すには、ダイス101と上杵103とを相対的に移動させてもよい。また、積層電極体1を挟んだ状態で、上杵103と下杵102をダイス101に対して相対的に移動させ、積層電極体1を臼孔101aから取り出すようにすれば、積層電極体1に割れや欠けが生じるのを防ぐことができるので好ましい。この製造方法よって得られる積層電極体1によれば、より確実に短絡を防止でき、より信頼性の高い全固体電池1を提供することができる。なお、本製法でも、電極材Xが正極層2を形成し、電極材Yが負極層3を形成するようにすることもできる。 Finally, by relatively moving the die 101 and the lower punch 102, the laminated electrode body 1 can be taken out from the mortar hole 101a. In order to take out the laminated electrode body 1 from the mortar hole 101a, the die 101 and the upper punch 103 may be relatively moved. Further, if the upper punch 103 and the lower punch 102 are moved relative to the die 101 with the laminated electrode body 1 sandwiched therein, and the laminated electrode body 1 is taken out from the mortar hole 101a, the laminated electrode body 1 can be taken out. It is preferable because it can prevent cracks and chips from being generated. According to the laminated electrode body 1 obtained by this manufacturing method, a short circuit can be prevented more reliably, and a more reliable all-solid-state battery 1 can be provided. Also in this manufacturing method, the electrode material X may form the positive electrode layer 2 and the electrode material Y may form the negative electrode layer 3.

以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the embodiments.

次に、積層電極体1の固体電解質層4又は5の厚みと、積層電極体1を収容した全固体電池10(扁平形電池)における内部短絡の有無について、試験を行った。 Next, a test was conducted on the thickness of the solid electrolyte layer 4 or 5 of the laminated electrode body 1 and the presence or absence of an internal short circuit in the all-solid-state battery 10 (flat battery) containing the laminated electrode body 1.

(実施例1)
市販の錠剤成形用の粉体圧縮成形機を用い、以下の方法により積層電極体を作製した。なお、電極体の作製は、充分に湿度を低減した雰囲気中で行った。
(Example 1)
A laminated electrode body was produced by the following method using a commercially available powder compression molding machine for tablet molding. The electrode body was manufactured in an atmosphere in which the humidity was sufficiently reduced.

<負極層および固体電解質層の形成>
平均粒子径が2μmのチタン酸リチウム粉末:50質量部、カーボンナノチューブ:9質量部、硫化物系固体電解質(LiPSCl):41質量部の割合で混合し、負極合剤を作製した。前記負極合剤を粉体圧縮成形機に備えられた粉体供給機構(ホッパー)にセットし、直径が8mmの臼孔を有するダイスの前記臼孔の内部に、下方の開口を下杵により閉じた状態で、前記負極合剤:129mgを充填した。
<Formation of negative electrode layer and solid electrolyte layer>
Lithium titanate powder having an average particle size of 2 μm was mixed at a ratio of 50 parts by mass, carbon nanotubes: 9 parts by mass, and sulfide-based solid electrolyte (Li 6 PS 5 Cl): 41 parts by mass to prepare a negative electrode mixture. .. The negative electrode mixture is set in a powder supply mechanism (hopper) provided in a powder compression molding machine, and a lower opening is closed with a lower punch inside the mortar of a die having a mortar having a diameter of 8 mm. In this state, the negative electrode mixture was filled with 129 mg.

次に、上杵を先端が針状に形成された静電気発生電極を備えた噴射装置に硫化物系固体電解質材(LiPSCl)をセットし、前記電極に−20kV程度の直流高電圧を印加した状態で反対極性に帯電させた上杵の下面に噴射し、前記固体電解質材を付着させた。このときの固体電解質材の付着量は、約2mgであった。 Next, a sulfide-based solid electrolyte material (Li 6 PS 5 Cl) is set in an injection device equipped with an electrostatic generating electrode having a needle-shaped tip of the upper pestle only, and a high DC voltage of about -20 kV is set on the electrode. Was sprayed onto the lower surface of the upper pestle only, which was charged with the opposite polarity, to attach the solid electrolyte material. The amount of the solid electrolyte material adhered at this time was about 2 mg.

更に、下面に固体電解質材が付着した状態の上杵により、前記臼孔内の負極合剤を加圧し、負極層と固体電解質層(固体電解質層4)を形成した。 Further, the negative electrode mixture in the mortar was pressed by the upper pestle with the solid electrolyte material attached to the lower surface to form the negative electrode layer and the solid electrolyte layer (solid electrolyte layer 4).

<積層電極体の形成>
負極層および固体電解質層4を形成した臼孔の内部に、前記噴射装置から負に帯電した硫化物系固体電解質材を噴射し、反対極性に帯電させた臼孔の内周面に固体電解質材を付着させ、固体電解質層(固体電解質層5)を形成した。
<Formation of laminated electrode body>
A negatively charged sulfide-based solid electrolyte material is injected from the injection device into the inner peripheral surface of the ulcer hole on which the negative electrode layer and the solid electrolyte layer 4 are formed, and the solid electrolyte material is applied to the inner peripheral surface of the ulcer hole charged to the opposite polarity. Was adhered to form a solid electrolyte layer (solid electrolyte layer 5).

次に、平均粒子径が5μmのコバルト酸リチウム粉末:70質量部、カーボンナノチューブ:4質量部、平均粒子径が3μmの硫化物系固体電解質(LiPSCl):26質量部の割合で混合し、正極合剤を作製した。前記正極合剤をホッパーにセットし、内周面に固体電解質材を付着させた臼孔の内部に前記正極合剤を充填し、積層電極体を形成した。 Next, the ratio of lithium cobalt oxide powder having an average particle size of 5 μm: 70 parts by mass, carbon nanotubes: 4 parts by mass, and sulfide-based solid electrolyte (Li 6 PS 5 Cl) having an average particle size of 3 μm: 26 parts by mass. The mixture was mixed to prepare a positive electrode mixture. The positive electrode mixture was set in a hopper, and the positive electrode mixture was filled inside a mortar having a solid electrolyte material attached to the inner peripheral surface to form a laminated electrode body.

更に前記積層電極体を上杵により加圧し、積層電極体の成形体を作製した。前記積層電極体の負極層、正極層、固体電解質層4および固体電解質層5の厚みを、断面の電子顕微鏡観察により確認した。負極層の厚みは1.3mmであり、正極層の厚みは0.7mmであり、固体電解質層4の厚みは25μmであり、固体電解質層5の厚みは20μmであった。 Further, the laminated electrode body was pressed with an upper punch to prepare a molded body of the laminated electrode body. The thicknesses of the negative electrode layer, the positive electrode layer, the solid electrolyte layer 4 and the solid electrolyte layer 5 of the laminated electrode body were confirmed by observing the cross section with an electron microscope. The thickness of the negative electrode layer was 1.3 mm, the thickness of the positive electrode layer was 0.7 mm, the thickness of the solid electrolyte layer 4 was 25 μm, and the thickness of the solid electrolyte layer 5 was 20 μm.

(比較例1)
実施例1で作製した負極合剤:129mgを直径8mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行い、負極層を形成した。次に、硫化物系固体電解質材(LiPSCl):2mgを前記負極層の上面に投入し、加圧成形して負極層の上面に固体電解質層を形成した。更に、実施例1で作製した正極合剤:92mgを前記固体電解質層の上面に投入し、加圧成形して積層電極体の成形体を作製した。前記積層電極体の負極層の厚みは1.3mmであり、正極層の厚みは0.7mmであった。一方、固体電解質層の厚みは不均一で、負極層と正極層とが接触して短絡している箇所が見受けられた。
(Comparative Example 1)
The negative electrode mixture prepared in Example 1 (129 mg) was placed in a powder molding die having a diameter of 8 mm and pressure-molded using a press to form a negative electrode layer. Next, 2 mg of a sulfide-based solid electrolyte material (Li 6 PS 5 Cl) was charged onto the upper surface of the negative electrode layer and pressure-molded to form a solid electrolyte layer on the upper surface of the negative electrode layer. Further, 92 mg of the positive electrode mixture prepared in Example 1 was put into the upper surface of the solid electrolyte layer and pressure-molded to prepare a molded body of a laminated electrode body. The thickness of the negative electrode layer of the laminated electrode body was 1.3 mm, and the thickness of the positive electrode layer was 0.7 mm. On the other hand, the thickness of the solid electrolyte layer was non-uniform, and there were some places where the negative electrode layer and the positive electrode layer were in contact with each other and short-circuited.

(比較例2)
実施例1で作製した負極合剤:129mgを直径8mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行い、負極層を形成した。次に、硫化物系固体電解質(LiPSCl):16mgを前記負極層の上面に投入し、加圧成形して負極層の上面に固体電解質層を形成した。更に、実施例1で作製した正極合剤:92mgを前記固体電解質層の上面に投入し、加圧成形して積層電極体の成形体を作製した。前記積層電極体の負極層の厚みは1.3mmであり、正極層の厚みは0.7mmであり、固体電解質層の厚みは0.2mmであった。
(Comparative Example 2)
The negative electrode mixture prepared in Example 1 (129 mg) was placed in a powder molding die having a diameter of 8 mm and pressure-molded using a press to form a negative electrode layer. Next, 16 mg of a sulfide-based solid electrolyte (Li 6 PS 5 Cl) was charged onto the upper surface of the negative electrode layer and pressure-molded to form a solid electrolyte layer on the upper surface of the negative electrode layer. Further, 92 mg of the positive electrode mixture prepared in Example 1 was put into the upper surface of the solid electrolyte layer and pressure-molded to prepare a molded body of a laminated electrode body. The thickness of the negative electrode layer of the laminated electrode body was 1.3 mm, the thickness of the positive electrode layer was 0.7 mm, and the thickness of the solid electrolyte layer was 0.2 mm.

帯電した固体電解質材を用いる本発明の製造方法により作製された実施例1の積層電極体では、固体電解質層4および固体電解質層5のいずれも、薄く均一な厚みで形成することができた。一方、従来の方法により作製された比較例の積層電極体では、固体電解質層を薄く形成しようとした比較例1の積層電極体において、厚みが不均一となり、負極層と正極層との絶縁が不十分になるという問題が生じた。 In the laminated electrode body of Example 1 produced by the production method of the present invention using a charged solid electrolyte material, both the solid electrolyte layer 4 and the solid electrolyte layer 5 could be formed with a thin and uniform thickness. On the other hand, in the laminated electrode body of the comparative example produced by the conventional method, the thickness of the laminated electrode body of the comparative example 1 in which the solid electrolyte layer was to be formed thinly became non-uniform, and the insulation between the negative electrode layer and the positive electrode layer was increased. The problem of inadequacy arose.

次に、実施例1及び比較例2の積層電極体を、負極層側および正極層側にそれぞれ膨張黒鉛製シートよりなる集電体を配置した状態で、ステンレス鋼製の外装缶および封口缶と、ポリフェニレンサルファイド樹脂製のガスケットにより構成された電池容器内に封入することにより、コイン形の電池を組み立てた。なお、実施例1の積層電極体の厚み(2.025mm)と、比較例2の積層電極体の厚み(2.2mm)との差が解消できるよう、実施例1の積層電極体に配置した膨張黒鉛製シートの厚みを、比較例2のものより合計で0.18mm厚くした。 Next, the laminated electrode bodies of Example 1 and Comparative Example 2 were combined with a stainless steel outer can and a sealing can in a state where collectors made of expanded graphite sheets were arranged on the negative electrode layer side and the positive electrode layer side, respectively. , A coin-shaped battery was assembled by encapsulating it in a battery container composed of a gasket made of polyphenylene sulfide resin. The laminated electrode body of Example 1 was arranged so that the difference between the thickness of the laminated electrode body of Example 1 (2.025 mm) and the thickness of the laminated electrode body of Comparative Example 2 (2.2 mm) could be eliminated. The thickness of the expanded graphite sheet was made 0.18 mm thicker in total than that of Comparative Example 2.

実施例1の積層電極体を収容した扁平形電池と比較例2の積層電極体を収容した扁平形電池とを、それぞれ10個ずつ組み立てて充放電を行い、放電容量の確認を行い、内部短絡の有無を調べた。その結果、実施例1の積層電極体を収容した扁平形電池では、10個すべてにおいて短絡を認めることはできなかった。一方、比較例2の積層電極体を収容した扁平形電池では、10個のうち9個において短絡が認められた。すなわち、比較例2の積層電極体を収容した扁平形電池では、90%の割合で短絡による不良が生じた。 A flat battery containing the laminated electrode body of Example 1 and a flat battery containing the laminated electrode body of Comparative Example 2 are assembled 10 by 10 each, charged and discharged, the discharge capacity is confirmed, and an internal short circuit occurs. I checked for the presence of. As a result, in the flat battery containing the laminated electrode body of Example 1, a short circuit could not be recognized in all ten of them. On the other hand, in the flat battery containing the laminated electrode body of Comparative Example 2, a short circuit was observed in 9 out of 10. That is, in the flat battery containing the laminated electrode body of Comparative Example 2, defects due to short circuits occurred at a rate of 90%.

これは、実施例1の積層電極体を収容した扁平形電池では、正極層の周側面に形成された固体電解質層5によって正極層の脱落を防止でき、比較例2の積層電極体を収容した扁平形電池では、正極層の周側面に固体電解質層が形成されておらず、正極層が脱落したことに起因する。 This is because in the flat battery containing the laminated electrode body of Example 1, the solid electrolyte layer 5 formed on the peripheral side surface of the positive electrode layer can prevent the positive electrode layer from falling off, and the laminated electrode body of Comparative Example 2 is housed. In the flat battery, the solid electrolyte layer is not formed on the peripheral side surface of the positive electrode layer, which is caused by the positive electrode layer falling off.

1 積層電極体、2 正極層、3 負極層、4 固体電解質層、5 固体電解質層、6 固体電解質層 10 全固体電池、20 外装缶、21 底部、22 周壁部、30 封口缶、31 平面部、32 周壁部、40 ガスケット 100 加圧装置、101 ダイス、101a 臼孔、102 下杵、103 上杵、104 噴射装置、105 下杵、X 電極材、Y 電極材、W 固体電解質材 1 Laminated electrode body, 2 Positive electrode layer, 3 Negative electrode layer, 4 Solid electrolyte layer, 5 Solid electrolyte layer, 6 Solid electrolyte layer 10 All-solid-state battery, 20 Exterior can, 21 Bottom, 22 Peripheral wall, 30 Seal can, 31 Flat surface , 32 Peripheral wall, 40 gasket 100 pressurizing device, 101 die, 101a mortar, 102 lower punch, 103 upper punch, 104 injection device, 105 lower punch, X electrode material, Y electrode material, W solid electrolyte material

Claims (9)

正極層及び負極層の一方の第1電極層と、
正極層及び負極層の他方の第2電極層と、
前記第1電極層と第2電極層との間に配置される第1固体電解質層と、
前記第1固体電解質層の周端から第1電極層及び第2電極層の少なくとも一方の周側面に沿って延びる第2固体電解質層とを備え、
前記第1固体電解質層は、5〜180μmの厚みt1を有し、
前記第2固体電解質層は、1〜180μmの厚みt2を有する、積層電極体。
The first electrode layer, which is one of the positive electrode layer and the negative electrode layer,
The other second electrode layer of the positive electrode layer and the negative electrode layer,
A first solid electrolyte layer arranged between the first electrode layer and the second electrode layer,
A second solid electrolyte layer extending from the peripheral end of the first solid electrolyte layer along at least one peripheral side surface of the first electrode layer and the second electrode layer is provided.
The first solid electrolyte layer has a thickness t1 of 5 to 180 μm.
The second solid electrolyte layer is a laminated electrode body having a thickness t2 of 1 to 180 μm.
請求項1に記載の積層電極体であって、
前記正極層の厚みt3に対する前記第1固体電解質層の厚みt1の比率(t1/t3)は、0.03以上である、積層電極体。
The laminated electrode body according to claim 1.
A laminated electrode body in which the ratio (t1 / t3) of the thickness t1 of the first solid electrolyte layer to the thickness t3 of the positive electrode layer is 0.03 or more.
請求項2に記載の積層電極体であって、
前記正極層の厚みt3に対する前記第1固体電解質層の厚みt1の比率(t1/t3)は、0.3以下である、積層電極体。
The laminated electrode body according to claim 2.
A laminated electrode body in which the ratio (t1 / t3) of the thickness t1 of the first solid electrolyte layer to the thickness t3 of the positive electrode layer is 0.3 or less.
請求項1〜3のいずれか1項に記載の積層電極体であって、
前記第2固体電解質層は、正極層の周側面に沿って延び、
前記負極層の周側面は、露出している、積層電極体。
The laminated electrode body according to any one of claims 1 to 3.
The second solid electrolyte layer extends along the peripheral side surface of the positive electrode layer.
The peripheral side surface of the negative electrode layer is an exposed laminated electrode body.
電池容器と、
電池容器の内部空間に収容された請求項1〜4のいずれか1項に記載の積層電極体とを備える、全固体電池。
Battery container and
An all-solid-state battery comprising the laminated electrode body according to any one of claims 1 to 4 housed in an internal space of a battery container.
上下に貫通した臼孔を有するダイスと、前記臼孔の下方から挿入されて臼孔内を摺動する下杵と、前記臼孔の上方から挿入されて臼孔内を摺動する上杵とを備える加圧装置を準備する工程と、
前記臼孔の下方の開口を前記下杵により閉じた状態で、前記臼孔に第1電極材を充填することにより、正極層及び負極層の一方の第1電極層を形成する工程と、
前記臼孔の上方から前記第1電極層の上面及び臼孔の内周面に対し、固体電解質材を付着させることにより、前記第1電極層の上面に第1固体電解質層を形成し、前記臼孔の内周面に第2固体電解質層を形成する工程と、
前記第1固体電解質層及び第2固体電解質層によって囲まれた空間に第2電極材を充填することにより、正極層及び負極層の他方の第2電極層を形成する工程と、
前記下杵及び上杵によって前記第1電極層、第2電極層、第1固体電解質層及び第2固体電解質層を加圧することにより、積層電極体を形成する工程と、
前記上杵及び下杵の少なくとも一方と前記ダイスとを相対的に移動させることにより、前記臼孔から前記積層電極体を取り出す工程とを含む、積層電極体の製造方法。
A die having a mortar that penetrates up and down, a lower pestle that is inserted from below the mortar and slides in the mortar, and an upper pestle that is inserted from above the mortar and slides in the mortar. And the process of preparing a pressurizing device
A step of forming one of the positive electrode layer and the negative electrode layer by filling the mortar hole with a first electrode material in a state where the opening below the mortar hole is closed by the lower pestle.
By adhering a solid electrolyte material from above the ulcer to the upper surface of the first electrode layer and the inner peripheral surface of the ulcer, a first solid electrolyte layer is formed on the upper surface of the first electrode layer. The process of forming the second solid electrolyte layer on the inner peripheral surface of the acetabulum,
A step of forming the other second electrode layer of the positive electrode layer and the negative electrode layer by filling the space surrounded by the first solid electrolyte layer and the second solid electrolyte layer with the second electrode material.
A step of forming a laminated electrode body by pressurizing the first electrode layer, the second electrode layer, the first solid electrolyte layer, and the second solid electrolyte layer with the lower and upper punches.
A method for manufacturing a laminated electrode body, which comprises a step of taking out the laminated electrode body from the mortar hole by relatively moving at least one of the upper and lower punches and the die.
請求項6に記載の積層電極体の製造方法であって、さらに、
前記臼孔に前記第1電極材を充填することにより前記第1電極層を形成したのち、固体電解質材を付着させる前に、前記第1電極層を上杵及び下杵によって加圧する工程を含む、積層電極体の製造方法。
The method for manufacturing a laminated electrode body according to claim 6, further
The step of forming the first electrode layer by filling the mortar with the first electrode material and then pressurizing the first electrode layer with an upper and lower pestle before attaching the solid electrolyte material is included. , Manufacturing method of laminated electrode body.
請求項6に記載の積層電極体の製造方法であって、
前記第1固体電解質層及び第2固体電解質層を形成する工程では、前記第1電極層の上面に対向する上杵の下面に予め固体電解質材を付着させ、該上杵を第1電極層の上面に向かって移動させて加圧することにより前記第1電極層の上面に第1固体電解質層を形成したのち、前記臼孔の内周面に対して固体電解質材を付着させることにより第2固体電解質層を形成する、積層電極体の製造方法。
The method for manufacturing a laminated electrode body according to claim 6.
In the step of forming the first solid electrolyte layer and the second solid electrolyte layer, a solid electrolyte material is previously attached to the lower surface of the upper punch facing the upper surface of the first electrode layer, and the upper punch is attached to the first electrode layer. A first solid electrolyte layer is formed on the upper surface of the first electrode layer by moving it toward the upper surface and pressurizing it, and then a solid electrolyte material is adhered to the inner peripheral surface of the molar hole to form a second solid. A method for manufacturing a laminated electrode body that forms an electrolyte layer.
請求項6に記載の積層電極体の製造方法であって、さらに、
前記第1電極材を臼孔に充填する前に、前記臼孔の下方の開口を第1下杵によって閉じた状態で、固体電解質材を付着させることにより、前記臼孔の内周面に第1電極層側の第2固体電解質層を形成し、前記第1下杵の上面に第3固体電解質層を形成する工程と、
前記第3固体電解質層とともに前記第1下杵を臼孔の下方から取り外し、前記第1電極層側の第2固体電解質層の下端に接するように第2下杵を前記臼孔の下方から挿入する工程とを含み、
前記第1電極材を臼孔に充填する工程では、前記臼孔の内周面の第2固体電解質層と第2下杵の上面とによって囲まれた空間に第1電極材を充填することにより、前記第1電極層を形成し、
前記第1固体電解質層と前記第2電極層側の第2固体電解質層とを形成する前に、前記臼孔の内周面及び前記第1電極層の上面に固体電解質材を付着させるための空間を臼孔に形成する工程を含む、積層電極体の製造方法。
The method for manufacturing a laminated electrode body according to claim 6, further
Before filling the mortar with the first electrode material, a solid electrolyte material is attached to the inner peripheral surface of the mortar in a state where the opening below the mortar is closed by the first lower punch. A step of forming a second solid electrolyte layer on the one electrode layer side and forming a third solid electrolyte layer on the upper surface of the first lower punch.
The first lower pestle together with the third solid electrolyte layer is removed from below the mortar, and the second lower pestle is inserted from below the mortar so as to be in contact with the lower end of the second solid electrolyte layer on the first electrode layer side. Including the process of
In the step of filling the mortar with the first electrode material, the space surrounded by the second solid electrolyte layer on the inner peripheral surface of the mortar and the upper surface of the second lower punch is filled with the first electrode material. , The first electrode layer is formed,
Before forming the first solid electrolyte layer and the second solid electrolyte layer on the side of the second electrode layer, the solid electrolyte material is adhered to the inner peripheral surface of the molar hole and the upper surface of the first electrode layer. A method for manufacturing a laminated electrode body, which comprises a step of forming a space in a molar hole.
JP2020034002A 2020-02-28 2020-02-28 Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body Pending JP2021136214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020034002A JP2021136214A (en) 2020-02-28 2020-02-28 Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034002A JP2021136214A (en) 2020-02-28 2020-02-28 Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body

Publications (1)

Publication Number Publication Date
JP2021136214A true JP2021136214A (en) 2021-09-13

Family

ID=77661544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034002A Pending JP2021136214A (en) 2020-02-28 2020-02-28 Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body

Country Status (1)

Country Link
JP (1) JP2021136214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162834A1 (en) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Battery
WO2023162833A1 (en) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Electrode and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162834A1 (en) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Battery
WO2023162833A1 (en) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Electrode and battery

Similar Documents

Publication Publication Date Title
CN110249467B (en) All-solid-state battery and method for manufacturing same
KR102517364B1 (en) All-solid-state battery and production method of the same
JP5239375B2 (en) All-solid battery and method for manufacturing the same
EP3654438B1 (en) Coin-shaped battery and method for producing same
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
WO2014136714A1 (en) Non-aqueous electrolyte secondary battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
US20200099019A1 (en) Aluminum Laminated Packaging Film, and Lithium-Ion Battery Using Same
JP2021136214A (en) Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body
JP2010238484A (en) Method of manufacturing all solid lithium secondary battery
JP2009146602A (en) Method for manufacturing lamination type secondary battery
JP2009193728A (en) All-solid battery and its manufacturing method
JP3402002B2 (en) All-solid lithium battery
WO2024045688A1 (en) Anti-short-circuit solid-state battery and preparation method therefor
JP2013065531A (en) Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2013012338A (en) Lithium secondary battery
US10886527B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the negative electrode
JP2008288037A (en) Manufacturing method of all solid lithium secondary battery
JP2022185624A (en) Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery
WO2018147019A1 (en) Nickel hydrogen battery
JP2608561B2 (en) Stacked battery
CN1409419A (en) Alkaline accumulator and its producing method
JP2752158B2 (en) Stacked battery
JP7280882B2 (en) solid electrolyte material
JP4121260B2 (en) Method for producing flat battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240417