JP2013065531A - Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery - Google Patents

Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2013065531A
JP2013065531A JP2011204933A JP2011204933A JP2013065531A JP 2013065531 A JP2013065531 A JP 2013065531A JP 2011204933 A JP2011204933 A JP 2011204933A JP 2011204933 A JP2011204933 A JP 2011204933A JP 2013065531 A JP2013065531 A JP 2013065531A
Authority
JP
Japan
Prior art keywords
layer
active material
negative electrode
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011204933A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011204933A priority Critical patent/JP2013065531A/en
Publication of JP2013065531A publication Critical patent/JP2013065531A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery which includes an active material layer obtained by pressure molding an active material powder and a solid electrode powder and in which reduction of a short circuit and a discharge capacity hardly occur even if a battery is thinned by forming solid electrolyte layer by a gas phase method.SOLUTION: The nonaqueous electrolyte battery includes: a positive electrode active material layer 12 obtained by pressure molding an active material powder and a solid electrolyte powder; a negative electrode active material layer 22 obtained by pressure molding an active material powder and a solid electrolyte powder; and a solid electrolyte layer (SE layer 3) provided between the active material layers. The nonaqueous electrolyte battery includes an interface layer (negative electrode interface layer 23) consisting of only an active material formed by a gas phase method, provided on at least either between the positive electrode active material layer 12 and the SE layer 3, or between the negative electrode active material layer 22 and the SE layer 3.

Description

本発明は、活物質粉末と固体電解質粉末を加圧成形して得られた正極活物質層および負極活物質層と、これら活物質層の間に介在される固体電解質層と、を備える非水電解質電池、及びその製造方法に関するものである。   The present invention provides a non-aqueous solution comprising a positive electrode active material layer and a negative electrode active material layer obtained by pressure molding an active material powder and a solid electrolyte powder, and a solid electrolyte layer interposed between these active material layers. The present invention relates to an electrolyte battery and a manufacturing method thereof.

充放電を繰り返すことを前提とした電源として、正極層と負極層とこれら電極層の間に配される電解質層とを備える非水電解質電池が利用されている。この電池に備わる電極層はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。このような非水電解質電池のなかでも特に、正・負極体間のLiイオンの移動により充放電を行なう非水電解質電池は、小型でありながら高い放電容量を備える。   A nonaqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between these electrode layers is used as a power source on the premise that charging and discharging are repeated. The electrode layer included in the battery further includes a current collector having a current collecting function and an active material layer containing an active material. Among such non-aqueous electrolyte batteries, in particular, a non-aqueous electrolyte battery that charges and discharges by movement of Li ions between the positive and negative electrode bodies has a high discharge capacity while being small.

上述した非水電解質電池において、デンドライトに起因する正・負極間の短絡を抑制するために、電解質層を固体とすることが提案されている。例えば、特許文献1には、硫化物固体電解質粉末を加圧成形して得られる固体電解質層を備える非水電解質電池が開示されている。また、この特許文献1の非水電解質電池では、活物質粉末と硫化物固体電解質粉末を加圧成形することで活物質層を形成しており、それによって電池の放電容量を向上させている。   In the non-aqueous electrolyte battery described above, it has been proposed to make the electrolyte layer solid in order to suppress a short circuit between the positive electrode and the negative electrode caused by dendrites. For example, Patent Document 1 discloses a nonaqueous electrolyte battery including a solid electrolyte layer obtained by pressure-molding sulfide solid electrolyte powder. Moreover, in the nonaqueous electrolyte battery of this patent document 1, the active material layer is formed by press-molding the active material powder and the sulfide solid electrolyte powder, thereby improving the discharge capacity of the battery.

特開2009−238636号公報JP 2009-238636 A

近年では、電気機器が小型化・薄型化しており、その電気機器の電源である非水電解質電池も小型化・薄型化することが望まれている。しかし、上記特許文献1の非水電解質電池は、その構成要素が全て粉末を加圧成形することで得られたものであるため、薄型化することが難しい。   In recent years, electric devices have been reduced in size and thickness, and it is desired that non-aqueous electrolyte batteries serving as power sources for the electric devices be also reduced in size and thickness. However, the non-aqueous electrolyte battery of Patent Document 1 is difficult to reduce in thickness because all of its constituent elements are obtained by pressure-molding powder.

そこで、活物質粉末と固体電解質粉末を加圧成形して得られた活物質層を備える非水電解質電池において、固体電解質層を気相法により形成し、固体電解質層を薄型化することで、電池の薄型化を達成することが検討されている。しかし、本発明者の検討の結果、気相法で形成した固体電解質層とすると、短絡や放電容量の低下を招く恐れがあることがわかった。   Therefore, in a non-aqueous electrolyte battery including an active material layer obtained by pressure molding an active material powder and a solid electrolyte powder, the solid electrolyte layer is formed by a vapor phase method, and the solid electrolyte layer is thinned. It has been studied to achieve a thin battery. However, as a result of the study by the present inventors, it has been found that a solid electrolyte layer formed by a vapor phase method may cause a short circuit or a reduction in discharge capacity.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、活物質粉末と固体電解質粉末を加圧成形して得られた活物質層を備える非水電解質電池において、固体電解質層を気相法で形成することで電池を薄型化しても、短絡や放電容量の低下が生じ難い非水電解質電池、およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is a solid electrolyte in a non-aqueous electrolyte battery including an active material layer obtained by pressure molding an active material powder and a solid electrolyte powder. It is an object of the present invention to provide a non-aqueous electrolyte battery that is unlikely to cause a short circuit or a reduction in discharge capacity even when the battery is thinned by forming a layer by a vapor phase method, and a method for manufacturing the same.

本発明者が上記問題を検討した結果、加圧成形で得られた活物質層を備える電池では、電流の面内分布が生じており、その電流の面内分布が短絡や放電容量の低下の原因であることが分かった。その原因を図4に基づいて説明する。   As a result of the inventor's investigation of the above problems, in a battery including an active material layer obtained by pressure molding, an in-plane distribution of current occurs, and the in-plane distribution of the current is short-circuited or reduced in discharge capacity. It turned out to be the cause. The cause will be described with reference to FIG.

まず、図4(A)に示すように、正極活物質層12中では正極活物質粒子(例えば、LiCoO)が分散しており、負極活物質層22中では負極活物質粒子(例えば、TiS)が分散している。そのため、正極活物質粒子と負極活物質粒子との間の距離にバラツキが生じ、その結果として電流の面内分布が生じる。ここで、図4(A)に示すように、固体電解質層(SE層)3が厚い場合(例えば、100μm)、各距離の差の相対値が小さいため、電流の面内分布も殆ど問題とならない程度である。しかし、図4(B)に示すように、SE層3を気相法で形成してSE層3を薄くしてしまうと(例えば、10μm)、各距離の差の相対値が大きくなって、電流の面内分布が大きくなってしまう。上記知見に基づいて本発明を以下に規定する。 First, as shown in FIG. 4A, positive electrode active material particles (for example, LiCoO 2 ) are dispersed in the positive electrode active material layer 12, and negative electrode active material particles (for example, TiS) are dispersed in the negative electrode active material layer 22. 2 ) is dispersed. Therefore, the distance between the positive electrode active material particles and the negative electrode active material particles varies, and as a result, an in-plane distribution of current occurs. Here, as shown in FIG. 4 (A), when the solid electrolyte layer (SE layer) 3 is thick (for example, 100 μm), the relative value of the difference between the distances is small, so the in-plane distribution of current is almost a problem. It is not to the extent. However, as shown in FIG. 4B, when the SE layer 3 is formed by a vapor phase method and the SE layer 3 is thinned (for example, 10 μm), the relative value of the difference between the distances increases. The in-plane distribution of current becomes large. The present invention is defined below based on the above findings.

(1)本発明非水電解質電池は、活物質粉末と固体電解質粉末を加圧成形して得られた正極活物質層および負極活物質層と、これら活物質層の間に配される固体電解質層と、を備える。この本発明非水電解質電池は、正極活物質層と固体電解質層との間、および負極活物質層と固体電解質層との間、の少なくとも一方に、気相法で形成された活物質のみからなる界面層を備えることを特徴とする。 (1) The non-aqueous electrolyte battery of the present invention includes a positive electrode active material layer and a negative electrode active material layer obtained by pressure molding an active material powder and a solid electrolyte powder, and a solid electrolyte disposed between these active material layers. A layer. This non-aqueous electrolyte battery of the present invention is composed only of an active material formed by a vapor phase method at least one of between a positive electrode active material layer and a solid electrolyte layer and between a negative electrode active material layer and a solid electrolyte layer. An interface layer is provided.

上記本発明の構成によれば、電流の面内分布を小さくすることができる。電流の面内分布を小さくできる理由を、例えば図1に示す負極活物質層22とSE層3との間に、負極活物質からなる負極界面層23を備える構成を例に説明すると次のようになる。この図1に示すように、負極界面層23が存在することで、正負間の活物質同士の距離(即ち、負極活物質からなる負極界面層23と、正極活物質層12中の各正極活物質粒子との間の距離)のバラツキを図4(B)の状態よりも小さくすることができることが分かる。   According to the configuration of the present invention, the in-plane distribution of current can be reduced. The reason why the in-plane distribution of the current can be reduced will be described by taking, for example, a configuration in which the negative electrode interface layer 23 made of the negative electrode active material is provided between the negative electrode active material layer 22 and the SE layer 3 shown in FIG. become. As shown in FIG. 1, the presence of the negative electrode interface layer 23 allows the distance between the positive and negative active materials (that is, the negative electrode interface layer 23 made of the negative electrode active material and each positive electrode active material in the positive electrode active material layer 12). It can be seen that the variation in the distance between the substance particles) can be made smaller than in the state of FIG.

図1を参照した説明から明らかなように、正極活物質層12とSE層3との間に、正極活物質からなる正極界面層を形成した場合も、電流の面内分布を小さくする効果があることが分かる。電流の面内分布をより小さくするのであれば、正極界面層と負極界面層の両方を備える構成とすれば良い。   As is apparent from the description with reference to FIG. 1, even when a positive electrode interface layer made of a positive electrode active material is formed between the positive electrode active material layer 12 and the SE layer 3, the effect of reducing the in-plane distribution of current is obtained. I understand that there is. If the in-plane distribution of current is to be made smaller, a configuration including both the positive electrode interface layer and the negative electrode interface layer may be used.

(2)本発明非水電解質電池の一形態として、負極活物質層と固体電解質層との間にのみ界面層(負極界面層)が形成されている形態とすることができる。 (2) As one form of the nonaqueous electrolyte battery of the present invention, an interface layer (negative electrode interface layer) can be formed only between the negative electrode active material layer and the solid electrolyte layer.

電流の面内分布を小さくするには、正極界面層と負極界面層の両方を設けることが好ましいが、薄型化の観点からすれば、界面層は1層とする方が良い。その場合、正極界面層よりも負極界面層を採用することが好ましい。正極界面層よりも負極界面層の方が、界面層に隣接する活物質層および固体電解質層との密着性が良く、層間剥離による電池性能の低下が生じ難いからである。それは、正極活物質としてはLiCoOなどの酸化物が良く用いられ、負極活物質としてはTiSなどの硫化物が良く用いられ、また活物質層と固体電解質層に含有される固体電解質としては硫化物が良く用いられるため、硫化物からなる負極界面層とすれば、負極界面層と負極活物質層および固体電解質層との間に高い密着性を持たせることができる。 In order to reduce the in-plane distribution of current, it is preferable to provide both the positive electrode interface layer and the negative electrode interface layer. However, from the viewpoint of reducing the thickness, it is better to use one interface layer. In that case, it is preferable to employ the negative electrode interface layer rather than the positive electrode interface layer. This is because the negative electrode interface layer has better adhesion to the active material layer and the solid electrolyte layer adjacent to the interface layer than the positive electrode interface layer, and the battery performance is less likely to deteriorate due to delamination. As the positive electrode active material, an oxide such as LiCoO 2 is often used, and as the negative electrode active material, a sulfide such as TiS 2 is often used, and as the solid electrolyte contained in the active material layer and the solid electrolyte layer, Since sulfide is often used, if the negative electrode interface layer is made of sulfide, high adhesion can be provided between the negative electrode interface layer, the negative electrode active material layer, and the solid electrolyte layer.

(3)本発明非水電解質電池の一形態として、界面層の厚さは、1〜10μmであることが好ましい。 (3) As one form of this invention nonaqueous electrolyte battery, it is preferable that the thickness of an interface layer is 1-10 micrometers.

上記範囲の厚さであれば、界面層に十分な活物質を含有させることができ、しかも界面層が厚くなり過ぎることを回避できる。   If it is the thickness of the said range, sufficient active material can be contained in an interface layer, and it can avoid that an interface layer becomes thick too much.

(4)また、本発明非水電解質電池の製造方法は、活物質粉末と固体電解質粉末を加圧成形して得られた正極活物質層および負極活物質層と、これら活物質層の間に配される固体電解質層と、を備える非水電解質電池を製造する非水電解質電池の製造方法であって、次の工程α〜γを備える。
[工程α]…正極活物質層と、固体電解質層の一部となる第一固体層と、を備える正極体を作製する。
[工程β]…負極活物質層と、固体電解質層の一部となる第二固体層とを備える負極体を作製する。
[工程γ]…第一固体層と第二固体層とが互いに対向するように正極体と負極体とを重ね合わせて加圧・熱処理することで、第一固体層と第二固体層とを一体化させて固体電解質層を形成する。
そして、本発明非水電解質電池の製造方法は、工程αおよび工程βの少なくとも一方が、活物質層と固体層との間に、活物質のみからなる界面層を気相法により形成する工程を含むことを特徴とする。
(4) Moreover, the manufacturing method of the nonaqueous electrolyte battery of the present invention includes a positive electrode active material layer and a negative electrode active material layer obtained by pressure molding an active material powder and a solid electrolyte powder, and between these active material layers. A non-aqueous electrolyte battery manufacturing method for manufacturing a non-aqueous electrolyte battery including: a solid electrolyte layer disposed; and including the following steps α to γ.
[Step α] A positive electrode body comprising a positive electrode active material layer and a first solid layer that becomes a part of the solid electrolyte layer is produced.
[Step β] A negative electrode body including a negative electrode active material layer and a second solid layer that becomes a part of the solid electrolyte layer is prepared.
[Step γ]... The first solid layer and the second solid layer are formed by pressing and heat-treating the positive electrode body and the negative electrode body so that the first solid layer and the second solid layer face each other. A solid electrolyte layer is formed by integration.
In the method for producing a nonaqueous electrolyte battery of the present invention, at least one of step α and step β includes a step of forming an interface layer made of only the active material by a vapor phase method between the active material layer and the solid layer. It is characterized by including.

上記本発明非水電解質電池の製造方法によれば、本発明非水電解質電池を作製することができる。   According to the above method for producing a nonaqueous electrolyte battery of the present invention, the nonaqueous electrolyte battery of the present invention can be produced.

本発明非水電解質電池の構成によれば、充放電を繰り返しても短絡や放電容量の低下が生じ難い電池とすることができる。   According to the configuration of the non-aqueous electrolyte battery of the present invention, it is possible to obtain a battery in which short-circuiting or reduction in discharge capacity does not easily occur even after repeated charge and discharge.

本発明の構成の効果を説明する説明図である。It is explanatory drawing explaining the effect of the structure of this invention. 実施形態1に示す非水電解質電池の概略図である。1 is a schematic diagram of a nonaqueous electrolyte battery shown in Embodiment 1. FIG. 実施形態1に示す非水電解質電池の作製方法を説明する説明図である。FIG. 3 is an explanatory view illustrating a method for manufacturing the nonaqueous electrolyte battery shown in Embodiment 1. (A)、(B)は、従来技術の問題点を説明する説明図である。(A), (B) is explanatory drawing explaining the problem of a prior art.

以下、図に基づいて、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<非水電解質電池の全体構成>
本実施形態1の非水電解質電池100は、図2に示すように、正極層1、固体電解質層(SE層)3、および負極層2を備える。正極層1はさらに正極集電体11と正極活物質層12を、負極層2はさらに負極集電体21と負極活物質層22とを備える。この非水電解質電池100の最も特徴とするところは、正極活物質層12とSE層3との間、および負極活物質層22とSE層3との間の少なくとも一方に、活物質のみからなる界面層を備えることである(図2では、負極活物質層22とSE層3との間の負極界面層23のみを例示する)。以下、電池100に備わる各構成を詳細に説明する。
<Overall configuration of nonaqueous electrolyte battery>
As shown in FIG. 2, the nonaqueous electrolyte battery 100 of Embodiment 1 includes a positive electrode layer 1, a solid electrolyte layer (SE layer) 3, and a negative electrode layer 2. The positive electrode layer 1 further includes a positive electrode current collector 11 and a positive electrode active material layer 12, and the negative electrode layer 2 further includes a negative electrode current collector 21 and a negative electrode active material layer 22. The most characteristic feature of the nonaqueous electrolyte battery 100 is that only at least one of the active material is formed between the positive electrode active material layer 12 and the SE layer 3 and between the negative electrode active material layer 22 and the SE layer 3. The interface layer is provided (in FIG. 2, only the negative electrode interface layer 23 between the negative electrode active material layer 22 and the SE layer 3 is illustrated). Hereinafter, each configuration provided in the battery 100 will be described in detail.

≪正極集電体≫
正極集電体11としては、AlやNi、これらの合金、ステンレスなどの導電材料を用いることができる。
≪Positive electrode current collector≫
As the positive electrode current collector 11, a conductive material such as Al, Ni, alloys thereof, and stainless steel can be used.

≪正極活物質層≫
正極活物質層12は、正極活物質粉末と固体電解質粉末を加圧成形することで得られる粉末成形層である。なお、正極活物質層12は、正極活物質粉末と固体電解質粉末の他に、導電助材や結着剤を含有していても良い。
≪Positive electrode active material layer≫
The positive electrode active material layer 12 is a powder molding layer obtained by pressure molding a positive electrode active material powder and a solid electrolyte powder. The positive electrode active material layer 12 may contain a conductive additive and a binder in addition to the positive electrode active material powder and the solid electrolyte powder.

正極活物質層12の厚さは、必要とされる電池100の放電容量によって適宜選択すると良い。例えば、正極活物質層12の厚さを30〜200μmとすることが挙げられる。   The thickness of the positive electrode active material layer 12 may be appropriately selected depending on the required discharge capacity of the battery 100. For example, the thickness of the positive electrode active material layer 12 may be 30 to 200 μm.

正極活物質粉末としては、層状岩塩型の結晶構造を有する物質、例えば、Liαβ(1−X)(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Bi,Co,Ni,Mnから選択される1種、α≠β、Xは0.5以上)で表わされる物質を挙げることができる。特に、正極活物質にはLiCoOが好ましい。その他、スピネル型の結晶構造を有する正極活物質や、オリビン型の結晶構造を有する正極活物質を用いることもできる。これら正極活物質粉末を構成する各粒子の平均粒径は2〜20μmとすることが好ましい。 As the positive electrode active material powder, a material having a layered rock salt type crystal structure, for example, Liα X β (1-X) O 2 (α is one selected from Co, Ni, Mn, β is Fe, Al, A material selected from Ti, Cr, Zn, Mo, Bi, Co, Ni, and Mn, α ≠ β, and X is 0.5 or more. In particular, LiCoO 2 is preferable for the positive electrode active material. In addition, a positive electrode active material having a spinel crystal structure and a positive electrode active material having an olivine crystal structure can also be used. The average particle diameter of each particle constituting these positive electrode active material powders is preferably 2 to 20 μm.

一方、固体電解質粉末としては、例えば、LiS−Pなどの硫化物を利用することができる。その他、Vなどの酸化物を利用することもできる。これら固体電解質粉末を構成する各粒子の平均粒径は1〜10μmとすることが好ましい。特に硫化物は、高Liイオン伝導性であるため好ましい。硫化物は、酸素、ゲルマニウム、シリコンなどの元素を含んでいても良い。 On the other hand, as the solid electrolyte powder, for example, a sulfide such as Li 2 S—P 2 S 5 can be used. In addition, oxides such as V 2 O 5 can be used. The average particle diameter of each particle constituting these solid electrolyte powders is preferably 1 to 10 μm. In particular, sulfide is preferable because of its high Li ion conductivity. The sulfide may contain elements such as oxygen, germanium, and silicon.

≪負極集電体≫
負極集電体21としては、Cu、Ni、Fe、Cr、Al、及びこれらの合金(例えば、ステンレスなど)などの導電材料を好適に利用できる。
≪Negative electrode current collector≫
As the negative electrode current collector 21, a conductive material such as Cu, Ni, Fe, Cr, Al, and alloys thereof (for example, stainless steel) can be suitably used.

≪負極活物質層≫
負極活物質層22も、正極活物質層12と同様に、負極活物質粉末と固体電解質粉末を加圧成形することで得られる粉末成形層である。この負極活物質層22も導電助材、結着剤などを含んでいても良い。
≪Negative electrode active material layer≫
Similarly to the positive electrode active material layer 12, the negative electrode active material layer 22 is also a powder molding layer obtained by pressure molding a negative electrode active material powder and a solid electrolyte powder. The negative electrode active material layer 22 may also contain a conductive additive, a binder, and the like.

負極活物質層22の厚さは、必要とされる電池100の放電容量によって適宜選択すると良い。例えば、負極活物質層22の厚さを30〜200μmとすることが挙げられる。   The thickness of the negative electrode active material layer 22 may be appropriately selected depending on the required discharge capacity of the battery 100. For example, the thickness of the negative electrode active material layer 22 may be 30 to 200 μm.

負極活物質粉末としては、TiSやFeSなどの硫化物を利用することができる。負極活物質粉末を構成する各粒子の平均粒径は2〜20μmとすることが好ましい。 As the negative electrode active material powder, sulfides such as TiS 2 and FeS 2 can be used. The average particle diameter of each particle constituting the negative electrode active material powder is preferably 2 to 20 μm.

固体電解質粉末としては、正極活物質層12に使用するものと同じものを利用することができる。固体電解質粉末を構成する各粒子の平均粒径は1〜10μmとすることが好ましい。   As the solid electrolyte powder, the same powder as that used for the positive electrode active material layer 12 can be used. The average particle diameter of each particle constituting the solid electrolyte powder is preferably 1 to 10 μm.

≪SE層≫
SE層3は、気相法により形成した固体電解質からなる層である。使用する固体電解質としては、活物質層12,22に使用する固体電解質粉末と同じ物質を利用できる。このSE層3と活物質層12,22に使用する固体電解質は全て同じものであっても、異なるものであっても良いが、前者の方が好ましい。
≪SE layer≫
The SE layer 3 is a layer made of a solid electrolyte formed by a vapor phase method. As the solid electrolyte to be used, the same material as the solid electrolyte powder used for the active material layers 12 and 22 can be used. The solid electrolytes used for the SE layer 3 and the active material layers 12 and 22 may be the same or different, but the former is preferred.

SE層3の厚さは、1〜20μmの範囲とすることが好ましい。SE層3の厚さを1μm以上とすることで、活物質層12,22間の絶縁を十分に確保できる。また、SE層3の厚さを20μm以下とすることで、電池100を薄型にすることができる。   The thickness of the SE layer 3 is preferably in the range of 1 to 20 μm. By setting the thickness of the SE layer 3 to 1 μm or more, sufficient insulation between the active material layers 12 and 22 can be secured. Moreover, the battery 100 can be made thin by setting the thickness of the SE layer 3 to 20 μm or less.

≪界面層≫
界面層は、活物質のみからなる気相法で形成された層であって、次の[1]および[2]の位置の少なくとも一方に設けられる。
[1]正極活物質層12とSE層3との間…正極界面層
[2]負極活物質層22とSE層3との間…負極界面層
※図1では、上記[2]の位置に設けた負極界面層23のみを図示する。
≪Interface layer≫
The interface layer is a layer formed by a vapor phase method made of only an active material, and is provided at at least one of the following positions [1] and [2].
[1] Between positive electrode active material layer 12 and SE layer 3 ... Positive electrode interface layer [2] Between negative electrode active material layer 22 and SE layer 3 ... Negative electrode interface layer * In FIG. 1, at the position [2] above Only the provided negative electrode interface layer 23 is shown.

正極界面層を構成する活物質は、正極活物質層12に含有させる正極活物質と同じものとする。例えば、正極活物質がLiCoOであれば、正極界面層もLiCoOとする。同様に、負極界面層23を構成する活物質は、負極活物質層22に含有させる負極活物質と同じものとする。例えば、負極活物質がTiSであれば、負極界面層23もTiSとする。 The active material constituting the positive electrode interface layer is the same as the positive electrode active material contained in the positive electrode active material layer 12. For example, if the positive electrode active material is LiCoO 2 , the positive electrode interface layer is also LiCoO 2 . Similarly, the active material constituting the negative electrode interface layer 23 is the same as the negative electrode active material contained in the negative electrode active material layer 22. For example, if the negative electrode active material is TiS 2 , the negative electrode interface layer 23 is also TiS 2 .

図1を参照して既に説明したように、界面層を設けることで、電流の面内分布を小さくすることができ、その結果として短絡や放電容量の低下を抑制することができる。電流の面内分布を小さくする観点からすれば、正極界面層と負極界面層23の両方を設けることが好ましい。一方、電流の面内分布を小さくし、かつ電池100を薄型化する観点からすれば、正極界面層または負極界面層23のいずれか一方のみを設けることが好ましい。いずれか一方のみとするのであれば、負極界面層23を選択することが好ましい。その理由は、代表的な負極活物質が硫化物であり、代表的な固体電解質もまた硫化物であるため、硫化物からなる負極界面層23が、負極界面層23に隣接する負極活物質層22とSE層3の両方になじみが良く、高い密着性を持つからである。   As already described with reference to FIG. 1, by providing the interface layer, the in-plane distribution of current can be reduced, and as a result, a short circuit and a reduction in discharge capacity can be suppressed. From the viewpoint of reducing the in-plane current distribution, it is preferable to provide both the positive electrode interface layer and the negative electrode interface layer 23. On the other hand, from the viewpoint of reducing the in-plane distribution of current and making the battery 100 thinner, it is preferable to provide only one of the positive electrode interface layer and the negative electrode interface layer 23. If only one of them is selected, the negative electrode interface layer 23 is preferably selected. The reason is that a typical negative electrode active material is sulfide, and a typical solid electrolyte is also sulfide. Therefore, the negative electrode interface layer 23 made of sulfide is adjacent to the negative electrode interface layer 23. This is because both the material 22 and the SE layer 3 are familiar and have high adhesion.

上記正極界面層と負極界面層23の平均厚さは1〜10μmとすることが好ましい。界面層の厚さを1μm以上とすることで、界面層としての機能を十分に発揮することができる。また、界面層の厚さを10μm以下とすることで、界面層によって電池100の厚み方向のLiイオン伝導度が低下することなく、かつ電池100が厚くなることを回避することができる。   The average thickness of the positive electrode interface layer and the negative electrode interface layer 23 is preferably 1 to 10 μm. By setting the thickness of the interface layer to 1 μm or more, the function as the interface layer can be sufficiently exhibited. In addition, by setting the thickness of the interface layer to 10 μm or less, it is possible to prevent the battery 100 from becoming thicker without lowering the Li ion conductivity in the thickness direction of the battery 100 by the interface layer.

<非水電解質電池の製造方法>
以上説明した非水電解質電池は、次の工程を備える製造方法により製造することができる(図3を参照)
[工程α]正極活物質層12と、固体電解質層3の一部となる第一固体層31と、を備える正極体(正極層1)を作製する。
[工程β]負極活物質層22と、固体電解質層3の一部となる第二固体層32とを備える負極体(負極層2)を作製する。
[工程γ]第一固体層31と第二固体層32とが互いに対向するように正極体(正極層1)と負極体(負極層2)とを重ね合わせて加圧・熱処理することで、第一固体層31と第二固体層32とを一体化させて固体電解質層3を形成する。
<Method for producing non-aqueous electrolyte battery>
The non-aqueous electrolyte battery described above can be manufactured by a manufacturing method including the following steps (see FIG. 3).
[Step α] A positive electrode body (positive electrode layer 1) including the positive electrode active material layer 12 and the first solid layer 31 that becomes a part of the solid electrolyte layer 3 is produced.
[Step β] A negative electrode body (negative electrode layer 2) including the negative electrode active material layer 22 and the second solid layer 32 that becomes a part of the solid electrolyte layer 3 is prepared.
[Step γ] The positive electrode body (positive electrode layer 1) and the negative electrode body (negative electrode layer 2) are superposed and pressurized and heat-treated so that the first solid layer 31 and the second solid layer 32 face each other, The solid electrolyte layer 3 is formed by integrating the first solid layer 31 and the second solid layer 32.

≪工程α:正極体の作製≫
正極体(正極層1)を作製する場合、まず金型内に正極集電体11を配置し、その上に正極活物質層12の原料となる粉末(正極活物質粉末+固体電解質粉末)を配置して加圧成形すれば良い。なお、正極集電体11は、上記加圧成形後、正極活物質層12に後付けしても構わない。
<< Step α: Production of positive electrode body >>
When producing a positive electrode body (positive electrode layer 1), first, a positive electrode current collector 11 is placed in a mold, and a powder (positive electrode active material powder + solid electrolyte powder) as a raw material of the positive electrode active material layer 12 is placed thereon. What is necessary is just to arrange and press-mold. The positive electrode current collector 11 may be retrofitted to the positive electrode active material layer 12 after the above pressure forming.

次に、正極界面層を設ける場合、上記正極活物質層12上に、真空蒸着法やレーザーアブレーション法などの気相法により正極活物質を蒸着させる。使用する正極活物質は、正極活物質層12に含まれる正極活物質と同じものを使用する。   Next, when providing a positive electrode interface layer, a positive electrode active material is vapor-deposited on the positive electrode active material layer 12 by a vapor phase method such as a vacuum vapor deposition method or a laser ablation method. The positive electrode active material to be used is the same as the positive electrode active material included in the positive electrode active material layer 12.

最後に、正極界面層を備えない場合は正極活物質層12の上に、正極界面層を備える場合はその正極界面層の上に、気相法により第一固体層31を形成する。   Finally, the first solid layer 31 is formed by a vapor phase method on the positive electrode active material layer 12 when the positive electrode interface layer is not provided, and on the positive electrode interface layer when the positive electrode interface layer is provided.

≪工程β:負極体の作製≫
負極体(負極層2)を作製する場合、まず金型内に負極集電体21を配置し、その上に負極活物質層22の原料となる粉末(負極活物質粉末+固体電解質粉末)を配置して加圧成形すれば良い。なお、負極集電体21は、上記加圧成形後、負極活物質層22に後付けしても構わない。
<< Step β: Production of negative electrode body >>
When producing a negative electrode body (negative electrode layer 2), first, a negative electrode current collector 21 is placed in a mold, and a powder (negative electrode active material powder + solid electrolyte powder) as a raw material of the negative electrode active material layer 22 is placed thereon. What is necessary is just to arrange | position and press-mold. The negative electrode current collector 21 may be retrofitted to the negative electrode active material layer 22 after the above pressure forming.

次に、負極界面層23を設ける場合、上記負極活物質層22上に、真空蒸着法やレーザーアブレーション法などの気相法により負極活物質を蒸着させる。使用する負極活物質は、負極活物質層22に含まれる負極活物質と同じものを使用する。   Next, when providing the negative electrode interface layer 23, a negative electrode active material is vapor-deposited on the said negative electrode active material layer 22 by vapor phase methods, such as a vacuum evaporation method and a laser ablation method. The negative electrode active material used is the same as the negative electrode active material contained in the negative electrode active material layer 22.

最後に、負極界面層を備えない場合は負極活物質層22の上に、負極界面層23を備える場合はその負極界面層23の上に、気相法により第二固体層32を形成する。   Finally, the second solid layer 32 is formed by a vapor phase method on the negative electrode active material layer 22 when the negative electrode interface layer is not provided, and on the negative electrode interface layer 23 when the negative electrode interface layer 23 is provided.

≪工程γ:正極体と負極体との接合≫
第一固体層31と第二固体層32とが互いに対向するように正極体(正極層1)と負極体(負極層2)とを積層して積層体を作製する。その際、第一固体層31と第二固体層32とを圧接させつつ熱処理を施して、第一固体層31と第二固体層32とを一体化させる。
<< Step γ: Joining of positive electrode body and negative electrode body >>
A positive electrode body (positive electrode layer 1) and a negative electrode body (negative electrode layer 2) are laminated so that the first solid layer 31 and the second solid layer 32 face each other to produce a laminate. At that time, heat treatment is performed while the first solid layer 31 and the second solid layer 32 are pressed together, and the first solid layer 31 and the second solid layer 32 are integrated.

工程γにおける熱処理条件は、第一固体層31と第二固体層32の組成などの影響を受けて変化するが、概ね150〜300℃×1〜60分で行なうことが好ましい。より好ましい熱処理条件は、180〜250℃×30〜60分である。   The heat treatment conditions in the step γ vary depending on the effects of the composition of the first solid layer 31 and the second solid layer 32, but are preferably about 150 to 300 ° C. for 1 to 60 minutes. More preferable heat treatment conditions are 180 to 250 ° C. × 30 to 60 minutes.

上記熱処理と同時に行なう加圧の圧力は、非常に小さくとも第一固体層31と第二固体層32との一体化を促進する効果はあるものの、高くする方が当該一体化を促進し易い。但し、加圧の圧力を高くすると、正極体(正極層1)と負極体(負極層2)に備わる各層に割れなどの不具合が生じる虞がある。特に、粉末成形層である正極活物質層12や負極活物質層22には割れが生じ易い。第一固体層31と第二固体層32との一体化はあくまで熱処理により生じるものであるので、加圧の圧力は10〜20MPaで十分である。   Although the pressure applied at the same time as the heat treatment is very small, there is an effect of promoting the integration of the first solid layer 31 and the second solid layer 32. However, the higher the pressure, the easier the integration is. However, when the pressure of the pressurization is increased, there is a possibility that defects such as cracking may occur in each layer provided in the positive electrode body (positive electrode layer 1) and the negative electrode body (negative electrode layer 2). In particular, the positive electrode active material layer 12 and the negative electrode active material layer 22 that are powder molding layers are likely to crack. Since the integration of the first solid layer 31 and the second solid layer 32 is only caused by heat treatment, a pressure of 10 to 20 MPa is sufficient.

以上、例示した工程α〜γを備える非水電解質電池の製造方法によれば、図2を参照して説明した本発明非水電解質電池100を作製することができる。   As described above, according to the method for manufacturing a nonaqueous electrolyte battery including the steps α to γ illustrated, the nonaqueous electrolyte battery 100 of the present invention described with reference to FIG. 2 can be manufactured.

≪非水電解質電池の効果≫
以上説明した工程を経て得られた非水電解質電池100は、例えば、活物質粉末と固体電解質粉末を加圧成形した活物質層を備える非水電解質電池であって、気相法により形成した固体電解質層(SE層)を備える電池よりも短絡が生じ難い。それは、非水電解質電池100は、活物質層とSE層との間に活物質からなる界面層が存在することで、正負間の活物質同士の距離のバラツキを低減できるからである。正負間の活物質同士の距離のバラツキを低減することで、面内電流分布が均一化するため、容量特性などの電池性能が向上する。
≪Effect of nonaqueous electrolyte battery≫
The non-aqueous electrolyte battery 100 obtained through the steps described above is, for example, a non-aqueous electrolyte battery including an active material layer obtained by pressure-forming an active material powder and a solid electrolyte powder, and a solid formed by a gas phase method. A short circuit is less likely to occur than a battery including an electrolyte layer (SE layer). This is because the non-aqueous electrolyte battery 100 has an interface layer made of an active material between the active material layer and the SE layer, thereby reducing variations in the distance between the active materials between positive and negative. By reducing the variation in the distance between the positive and negative active materials, the in-plane current distribution becomes uniform, so that battery performance such as capacity characteristics is improved.

負極界面層23を備える図1の非水電解質電池100を作製すると共に、負極界面層23を備えない従来の非水電解質電池を作製し、両者の電池特性を比較した。   While preparing the nonaqueous electrolyte battery 100 of FIG. 1 provided with the negative electrode interface layer 23, a conventional nonaqueous electrolyte battery not provided with the negative electrode interface layer 23 was prepared, and the battery characteristics of the two were compared.

<本発明品>
[正極体]
・正極集電体11…厚さ20μmのAl箔
・正極活物質層12…平均粒径10μmのLiCoO:平均粒径4μmのLiS−P=70:30(質量%);厚み100μmの粉末成形層
・第一固体層31…レーザーアブレーション法で得られた平均厚さ5μmのLiS−P
[負極体]
・負極集電体21…厚さ20μmのAl箔
・負極活物質層22…平均粒径10μmのTiS:平均粒径4μmのLiS−P=70:30(質量%);厚み100μmの粉末成形層
・負極界面層23…レーザーアブレーション法で得られた平均厚さ5μmのTiS
・第二固体層32…レーザーアブレーション法で得られた平均厚さ5μmのLiS−P
[接合条件]
・圧力…16MPa
・熱処理…190℃×2h
<Invention product>
[Positive electrode body]
Positive electrode current collector 11: Al foil having a thickness of 20 μm Positive electrode active material layer 12 LiCoO 2 having an average particle diameter of 10 μm: Li 2 S—P 2 S 5 = 70: 30 (mass%) having an average particle diameter of 4 μm; Powder molded layer / first solid layer 31 having a thickness of 100 μm. Li 2 SP—S 2 S 5 film having an average thickness of 5 μm obtained by a laser ablation method [negative electrode body]
Negative electrode current collector 21: Al foil having a thickness of 20 μm Negative electrode active material layer 22: TiS 2 having an average particle diameter of 10 μm: Li 2 S—P 2 S 5 having an average particle diameter of 4 μm = 70: 30 (mass%); Powder molded layer / negative electrode interface layer 23 having a thickness of 100 μm: TiS 2 film having an average thickness of 5 μm obtained by the laser ablation method, second solid layer 32, Li 2 S- having an average thickness of 5 μm obtained by the laser ablation method P 2 S 5 film [Bonding conditions]
・ Pressure: 16 MPa
・ Heat treatment ... 190 ℃ × 2h

<比較品>
負極界面層23を備えないこと以外、上記本発明品と同じ。
<Comparative product>
Same as the product of the present invention except that the negative electrode interface layer 23 is not provided.

<試験結果>
作製した本発明品と比較品について、放電容量を測定すると共に、100サイクルのサイクル試験を行なった。サイクル試験の条件は、電流密度0.6mA/cm、カットオフ電圧1.0V−2.2Vであった。また、サンプル数はそれぞれ10個であった。
<Test results>
About the produced this invention product and the comparative product, while measuring discharge capacity, the cycle test of 100 cycles was done. The conditions of the cycle test were a current density of 0.6 mA / cm 2 and a cut-off voltage of 1.0 V to 2.2 V. The number of samples was 10 for each.

その結果、本発明品の平均放電容量は2.3mAh/cmで、100サイクルの間に短絡を起こしたサンプルはなかった。これに対して、比較品の平均放電容量は1.7mAh/cmで、100サイクルの間に短絡を起こしたサンプルが10個中3つあった。 As a result, the average discharge capacity of the product of the present invention was 2.3 mAh / cm 2 , and no sample caused a short circuit during 100 cycles. On the other hand, the average discharge capacity of the comparative product was 1.7 mAh / cm 2 , and there were 3 out of 10 samples that caused a short circuit during 100 cycles.

なお、本発明は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲で適宜変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the gist of the present invention.

本発明の非水電解質電池は、充放電を繰り返すことを前提とした電気機器の電源、例えば各種電子機器の電源に好適に利用できる他、ハイブリッド自動車、電気自動車の電源としての利用も期待できる。   The non-aqueous electrolyte battery of the present invention can be suitably used as a power source for electric devices based on repeated charge and discharge, for example, a power source for various electronic devices, and can also be expected to be used as a power source for hybrid vehicles and electric vehicles.

100 非水電解質電池
1 正極層
11 正極集電体 12 正極活物質層
2 負極層
21 負極集電体 22 負極活物質層 23 負極界面層
3 固体電解質層(SE層)
31 第一固体層 32 第二固体層
DESCRIPTION OF SYMBOLS 100 Nonaqueous electrolyte battery 1 Positive electrode layer 11 Positive electrode collector 12 Positive electrode active material layer 2 Negative electrode layer 21 Negative electrode collector 22 Negative electrode active material layer 23 Negative electrode interface layer 3 Solid electrolyte layer (SE layer)
31 1st solid layer 32 2nd solid layer

Claims (4)

活物質粉末と固体電解質粉末を加圧成形して得られた正極活物質層および負極活物質層と、これら活物質層の間に配される固体電解質層と、を備える非水電解質電池であって、
前記正極活物質層と前記固体電解質層との間、および前記負極活物質層と前記固体電解質層との間、の少なくとも一方に、気相法で形成された活物質のみからなる界面層を備えることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode active material layer and a negative electrode active material layer obtained by pressure molding an active material powder and a solid electrolyte powder, and a solid electrolyte layer disposed between these active material layers. And
At least one of the positive electrode active material layer and the solid electrolyte layer and between the negative electrode active material layer and the solid electrolyte layer is provided with an interface layer made of only an active material formed by a vapor phase method. The nonaqueous electrolyte battery characterized by the above-mentioned.
前記負極活物質層と前記固体電解質層との間にのみ前記界面層が形成されていることを特徴とする請求項1に記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the interface layer is formed only between the negative electrode active material layer and the solid electrolyte layer. 前記界面層の厚さは、1〜10μmであることを特徴とする請求項1または2に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the interface layer has a thickness of 1 to 10 μm. 活物質粉末と固体電解質粉末を加圧成形して得られた正極活物質層および負極活物質層と、これら活物質層の間に配される固体電解質層と、を備える非水電解質電池を製造する非水電解質電池の製造方法であって、
前記正極活物質層と、前記固体電解質層の一部となる第一固体層と、を備える正極体を作製する工程αと、
前記負極活物質層と、前記固体電解質層の一部となる第二固体層とを備える負極体を作製する工程βと、
前記第一固体層と第二固体層とが互いに対向するように前記正極体と負極体とを重ね合わせて加圧・熱処理することで、前記第一固体層と第二固体層とを一体化させて前記固体電解質層を形成する工程γと、
を備え、
前記工程αおよび工程βの少なくとも一方は、活物質層と固体層との間に、活物質のみからなる界面層を気相法により形成する工程を含むことを特徴とする非水電解質電池の製造方法。
Manufacturing a non-aqueous electrolyte battery comprising a positive electrode active material layer and a negative electrode active material layer obtained by pressure molding an active material powder and a solid electrolyte powder, and a solid electrolyte layer disposed between these active material layers A non-aqueous electrolyte battery manufacturing method comprising:
Producing a positive electrode body comprising the positive electrode active material layer and a first solid layer that becomes a part of the solid electrolyte layer; and
Producing a negative electrode body comprising the negative electrode active material layer and a second solid layer that is part of the solid electrolyte layer; and
The first solid layer and the second solid layer are integrated by superimposing the positive electrode body and the negative electrode body so that the first solid layer and the second solid layer face each other, and applying pressure and heat treatment. Step γ to form the solid electrolyte layer,
With
At least one of the step α and the step β includes a step of forming an interface layer made of only the active material by a vapor phase method between the active material layer and the solid layer. Method.
JP2011204933A 2011-09-20 2011-09-20 Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery Withdrawn JP2013065531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204933A JP2013065531A (en) 2011-09-20 2011-09-20 Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204933A JP2013065531A (en) 2011-09-20 2011-09-20 Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2013065531A true JP2013065531A (en) 2013-04-11

Family

ID=48188845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204933A Withdrawn JP2013065531A (en) 2011-09-20 2011-09-20 Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2013065531A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401017A (en) * 2013-08-02 2013-11-20 北京理工大学 Li2S-P2S5-TiS2 amorphous electrolyte material
JP2014127435A (en) * 2012-12-27 2014-07-07 Toyota Motor Corp Method of manufacturing all solid battery
JP2017130281A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery manufacturing method
JP2017147205A (en) * 2016-02-19 2017-08-24 富士通株式会社 All-solid battery
JP2017191750A (en) * 2016-04-15 2017-10-19 国立研究開発法人産業技術総合研究所 All-solid type lithium secondary battery and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127435A (en) * 2012-12-27 2014-07-07 Toyota Motor Corp Method of manufacturing all solid battery
CN103401017A (en) * 2013-08-02 2013-11-20 北京理工大学 Li2S-P2S5-TiS2 amorphous electrolyte material
JP2017130281A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery manufacturing method
JP2017147205A (en) * 2016-02-19 2017-08-24 富士通株式会社 All-solid battery
JP2017191750A (en) * 2016-04-15 2017-10-19 国立研究開発法人産業技術総合研究所 All-solid type lithium secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5626654B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
WO2012090601A1 (en) Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2013161350A1 (en) Method for manufacturing non-aqueous electrolyte cell, and non-aqueous electrolyte cell
WO2012026480A1 (en) Nonaqueous electrolyte battery and method for manufacturing same
JP5311283B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
WO2011148824A1 (en) Nonaqueous electrolyte battery and method for producing same
JP2012160379A (en) Nonaqueous electrolyte battery and method for manufacturing the same
WO2018139448A1 (en) All-solid-state battery and method for producing same
JP2013089470A (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JPWO2016208314A1 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2013065531A (en) Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2013182790A (en) Method of manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP6070471B2 (en) All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
JP2013054949A (en) Nonaqueous electrolyte battery
JP5648978B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP2012146395A (en) Electrode body, manufacturing method for the same, and nonaqueous electrolyte battery
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
JP6251974B2 (en) Battery manufacturing method
JP2013016280A (en) Nonaqueous electrolyte battery
JP2013125636A (en) Nonaqueous electrolyte battery
JP2012185974A (en) Nonaqueous electrolyte battery
JP6213340B2 (en) Solid electrolyte and all-solid battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202