JP6070471B2 - All-solid lithium secondary battery and method for producing all-solid lithium secondary battery - Google Patents

All-solid lithium secondary battery and method for producing all-solid lithium secondary battery Download PDF

Info

Publication number
JP6070471B2
JP6070471B2 JP2013163031A JP2013163031A JP6070471B2 JP 6070471 B2 JP6070471 B2 JP 6070471B2 JP 2013163031 A JP2013163031 A JP 2013163031A JP 2013163031 A JP2013163031 A JP 2013163031A JP 6070471 B2 JP6070471 B2 JP 6070471B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
electrode sheet
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013163031A
Other languages
Japanese (ja)
Other versions
JP2015032535A (en
Inventor
泰正 小熊
泰正 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013163031A priority Critical patent/JP6070471B2/en
Publication of JP2015032535A publication Critical patent/JP2015032535A/en
Application granted granted Critical
Publication of JP6070471B2 publication Critical patent/JP6070471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体リチウム二次電池及び全固体リチウム二次電池の製造方法に関する。 The present invention relates to an all-solid lithium secondary battery and a method for producing an all-solid lithium secondary battery .

小型で充放電特性に優れる二次電池として、種々の機器において、全固体リチウム二次電池が期待されている。   As a secondary battery having a small size and excellent charge / discharge characteristics, an all-solid lithium secondary battery is expected in various devices.

そうしたリチウム二次電池では、Liの析出を抑制するために、電池内で正極の対向する位置にLiイオンを受け入れることのできるように、負極を配置する必要があり、通常、負電極シートは、正電極シートより大きい。   In such a lithium secondary battery, in order to suppress the precipitation of Li, it is necessary to dispose a negative electrode so that Li ions can be received at a position opposite to the positive electrode in the battery. Larger than the positive electrode sheet.

そして、従来の電解液を用いたリチウム二次電池とは異なり、全固体電池では、固体電解質によりLiイオンの経路が繋がっているため、固体電解質間において密着した界面を形成することが重要となっている。   And unlike a lithium secondary battery using a conventional electrolyte, in an all-solid battery, the Li ion path is connected by the solid electrolyte, so it is important to form a close interface between the solid electrolytes. ing.

電解質層を介して電極シートを積層した電極体において、各電極層、各電解質層が密着した層間界面を形成するには、プレスなどにより圧力をかけて、電解層中の電解質粒子を変形させて、食い込ませることによるアンカー効果を利用することが有効であった。   In the electrode body in which the electrode sheets are laminated via the electrolyte layer, in order to form an interlayer interface in which each electrode layer and each electrolyte layer are in close contact, pressure is applied by a press or the like to deform the electrolyte particles in the electrolyte layer. It was effective to use the anchor effect by biting.

特許文献1は、正極体の上に、アモルファスの固体電解質の粉末を配置し、その固体電解質のガラス転移温度超、結晶化温度未満に加熱した金型でその粉末を加圧成形することで、前記固体電解質層の一部となる第一固体層を形成する工程と、前記第一固体層の上に、気相法によって固体電解質からなる第二固体層を形成することで、これら第一固体層と第二固体層とからなる前記固体電解質層を形成する工程と、を備える非水電解質電池の製造方法(特許文献1の請求項1)を記載する。   Patent Document 1 arranges an amorphous solid electrolyte powder on a positive electrode body, and press-molds the powder with a mold heated to a temperature higher than the crystallization temperature above the glass transition temperature of the solid electrolyte, The step of forming a first solid layer that becomes a part of the solid electrolyte layer and the formation of a second solid layer made of a solid electrolyte by a vapor phase method on the first solid layer Forming a solid electrolyte layer composed of a layer and a second solid layer, a method for manufacturing a nonaqueous electrolyte battery (claim 1 of Patent Document 1) is described.

特許文献2は、正極活物質および固体電解質からなる正極合材に、または正極活物質からなる正極材に固体電解質を積層した後、加圧成形して正極部材を得る工程と、負極活物質および固体電解質からなる負極合材に、または負極活物質からなる負極材に固体電解質を積層した後、加圧成形して負極部材を得る工程と、上記各工程で得られた正極部材と負極部材とを、それぞれの固体電解質同士を合わせて加圧成形する工程とを具備することを特徴とする全固体電池の製造方法(特許文献2の請求項1)を記載する。   Patent Document 2 discloses a step of obtaining a positive electrode member by pressing a solid electrolyte on a positive electrode mixture made of a positive electrode active material and a solid electrolyte, or a positive electrode material made of a positive electrode active material, and a negative electrode active material and A step of obtaining a negative electrode member by forming a solid electrolyte on a negative electrode mixture made of a solid electrolyte or a negative electrode material made of a negative electrode active material, and a positive electrode member and a negative electrode member obtained in each of the above steps; The manufacturing method of the all-solid-state battery (Claim 1 of patent document 2) characterized by comprising combining each solid electrolyte and press-molding.

特開2013−89470号公報JP 2013-89470 A 特開2012−69248号公報JP 2012-69248 A

しかし、従来技術では、各電極シートを低いプレス圧力で、電解質層同士の間に密着した界面を形成しても、プレスにより電極端部で電解質の粒子が隆起し、それによるストレスで負極層と電解質層との間に剥離が発生して、Liイオンの経路が高抵抗の電極層内となり、出力が低下してしまっていた。   However, in the prior art, even if each electrode sheet is formed at a low pressing pressure to form an intimate interface between the electrolyte layers, the electrolyte particles are raised at the end of the electrode by pressing, and the stress caused thereby causes the negative electrode layer and Separation occurred between the electrolyte layer and the Li ion path in the high-resistance electrode layer, resulting in a decrease in output.

本発明者らは、鋭意努力することにより、第2電解質層を配置する前に、負電極シートの上に第2電解質より緻密な、すなわち電解質密度の高い第1電解質層を積層することで、Liイオンの経路を抵抗の低い電解質層内にすることができて上記課題を解決し、出力の低下を防げることを見出した。   The inventors of the present invention have made extensive efforts to stack the first electrolyte layer denser than the second electrolyte, that is, having a higher electrolyte density, on the negative electrode sheet before placing the second electrolyte layer. It has been found that the Li ion path can be in the electrolyte layer having a low resistance to solve the above-mentioned problems and prevent the output from decreasing.

本発明の態様は、以下のようである、
〈1〉負電極シートの両面上に積層されている第1固体電解質層と、前記第1固体電解質層の少なくとも一方の側上に積層されている第2固体電解質層とを有する、負電極シート積層体と、
正電極シートの少なくとも一方の側上に第2固体電解質層が積層されている正電極シート積層体とが、
それぞれの前記第2固体電解質層が対向するようにして積層されている全固体リチウム二次電池であって、
前記第1固体電解質層が前記第2固体電解質層より大きい電解質密度を有し、
前記電解質密度は、電解質層中の単位体積あたりの電解質の質量であり、かつ
前記正電極シート積層体が前記負電極シート積層体よりも小さい、
全固体リチウム二次電池。
〈2〉全固体リチウム二次電池の製造方法であって、
負電極シートの両面上に第1固体電解質層を配置し、高加圧加工し、その後、前記第1固体電解質層の少なくとも一方の側上に第2固体電解質層を配置し、低加圧加工して積層することにより、負電極シート積層体を形成すること、
正電極シートの少なくとも一方の側上に前記第2固体電解質層を配置し、低加圧加工して積層することにより正電極シート積層体を形成すること、
前記正電極シート積層体及び前記負電極シート積層体を、それぞれの前記第2固体電解質層が対向するようにして積層すること、を含み、
前記低加圧加工は、前記高加圧加工よりも低い圧力で行われ、かつ
前記正電極シート積層体が前記負電極シート積層体よりも小さい、
全固体リチウム二次電池の製造方法。
Aspects of the present invention are as follows:
<1> A negative electrode sheet having a first solid electrolyte layer laminated on both surfaces of the negative electrode sheet and a second solid electrolyte layer laminated on at least one side of the first solid electrolyte layer. A laminate,
A positive electrode sheet laminate in which a second solid electrolyte layer is laminated on at least one side of the positive electrode sheet;
An all-solid lithium secondary battery in which the second solid electrolyte layers are stacked so as to face each other,
The first solid electrolyte layer has an electrolyte density greater than the second solid electrolyte layer;
The electrolyte density is the mass of the electrolyte per unit volume in the electrolyte layer, and
The positive electrode sheet laminate is smaller than the negative electrode sheet laminate,
All-solid lithium secondary battery.
<2> A method for producing an all-solid lithium secondary battery,
The first solid electrolyte layer is disposed on both sides of the negative electrode sheet and subjected to high pressure processing, and then the second solid electrolyte layer is disposed on at least one side of the first solid electrolyte layer to perform low pressure processing. Forming a negative electrode sheet laminate by laminating
Disposing the second solid electrolyte layer on at least one side of the positive electrode sheet, forming a positive electrode sheet laminate by laminating by low pressure processing,
Laminating the positive electrode sheet laminate and the negative electrode sheet laminate so that the respective second solid electrolyte layers face each other,
The low pressure processing is performed at a lower pressure than the high pressure processing, and
The positive electrode sheet laminate is smaller than the negative electrode sheet laminate,
Manufacturing method of all-solid-state lithium secondary battery.

本発明の態様により、たとえ負極の、電極シートと電解質層との間に剥離が発生しても、電解質密度の高い第1電解質層が負電極シートと密着して形成されているため、抵抗の低いLiイオンの経路を確保でき、出力の低下を防げるものである。   According to the aspect of the present invention, even if peeling occurs between the electrode sheet and the electrolyte layer of the negative electrode, the first electrolyte layer having a high electrolyte density is formed in close contact with the negative electrode sheet. It is possible to secure a low Li ion path and prevent a decrease in output.

図1は、本発明に係る実施例1の製造工程を示す図である。FIG. 1 is a diagram showing manufacturing steps of Example 1 according to the present invention. 図2は、実施例1および比較例1それぞれのサンプルの積層電極体の構造を示す図である。FIG. 2 is a diagram showing the structure of the laminated electrode body of each sample of Example 1 and Comparative Example 1. 図3は、実施例1および比較例1のそれぞれのサンプルの出力測定結果を示す図である。FIG. 3 is a diagram showing the output measurement results of the samples of Example 1 and Comparative Example 1. 図4は、実施例1のサンプルのSEMによる画像を示す。FIG. 4 shows an SEM image of the sample of Example 1.

本明細書において、
「電解質密度」とは、第1電解質層および第2電解質層などの、電解質層中の単位体積あたりの電解質の質量をいう。
In this specification,
“Electrolyte density” refers to the mass of electrolyte per unit volume in the electrolyte layer, such as the first electrolyte layer and the second electrolyte layer.

本発明に係る正電極シートおよび負電極シートは、正極電極箔および負極電極箔を含む。
これらの正極電極箔および負極電極箔としては、厚さ約0.005mm〜約0.5mmの銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、錫、またはこれらの合金等を用いることができる。
The positive electrode sheet and the negative electrode sheet according to the present invention include a positive electrode foil and a negative electrode foil.
These positive electrode foil and negative electrode foil are copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, tin having a thickness of about 0.005 mm to about 0.5 mm. , Or an alloy of these can be used.

本発明に係る正電極シートおよび負電極シートとしては、それぞれ正極電極箔および負極電極箔上に、ヘプタンなどの溶媒中に活物質、バインダー、導電助剤、固体電解質などを適用しやすい濃度で溶解させた溶液を、刷毛塗り、スプレーなどにより塗布して、約60℃〜約150℃で約1分〜約180分間乾燥後、厚さ約10μm〜約100μmの塗布層を形成したものを用いることができる。   As the positive electrode sheet and the negative electrode sheet according to the present invention, the active material, the binder, the conductive auxiliary agent, the solid electrolyte, etc. are dissolved in a solvent such as heptane on the positive electrode foil and the negative electrode foil, respectively. Apply the prepared solution by brushing, spraying, etc., drying at about 60 ° C. to about 150 ° C. for about 1 minute to about 180 minutes, and then forming a coating layer having a thickness of about 10 μm to about 100 μm. Can do.

ここで、固体電解質には、硫化物のほか、酸化物、窒化物、ハロゲン化物、また結晶、非晶質、ガラスセラミックスのいずれを用いてもよい。
正極には、Liイオン電池に使用できる活物質なら特に限定されず、LiCoOもしくはLiNiOなどの層状またはオリビン、スピネルを用いることができる。
正極の導電助剤としては、VGCFのほか、炭素材料もしくは金属材料を用いることができる。
負極は、Liイオン電池に使用できる活物質なら特に限定なく使用でき、箔も問題を生じない限り、特に限定なく使用できる。
Here, as the solid electrolyte, any of oxide, nitride, halide, crystal, amorphous, and glass ceramics may be used in addition to sulfide.
The positive electrode is not particularly limited as long as it is an active material that can be used for a Li-ion battery, and layered layers such as LiCoO 2 or LiNiO 2, olivine, and spinel can be used.
As a conductive additive for the positive electrode, a carbon material or a metal material can be used in addition to VGCF.
The negative electrode can be used without any limitation as long as it is an active material that can be used for a Li-ion battery, and the foil can be used without any limitation as long as no problem occurs.

本発明に係る第1固体電解質層および第2固体電解質層の材料としては、特に制約無く、平均粒径約0.1μm〜約50μmの、LiS−P、LiS−SiS、LiS−P−LiPO、LiS−P−LiI,LiPON,Li1.5Al0.5Ge(POなどの有機化合物、無機化合物または有機・無機両化合物からなる材料もしくはそれらの混合物、またリチウムイオン電池分野で公知のものを使用することができる。第1固体電解質層と第2固体電解質層の材料は、同一であるか、または異なっていてもよい。 The material of the first solid electrolyte layer and the second solid electrolyte layer according to the present invention is not particularly limited, and Li 2 S—P 2 S 5 , Li 2 S—SiS having an average particle size of about 0.1 μm to about 50 μm. 2, Li 2 S-P 2 S 5 -Li 3 PO 4, Li 2 S-P 2 S 5 -LiI, LiPON, organic compounds, such as Li 1.5 Al 0.5 Ge (PO 4 ) 3, an inorganic compound Alternatively, materials composed of both organic and inorganic compounds, or a mixture thereof, or materials known in the field of lithium ion batteries can be used. The materials of the first solid electrolyte layer and the second solid electrolyte layer may be the same or different.

本発明の一態様では、正電極シートおよび/又は負電極シート上に、第1固体電解質層を配置して、冷間等方圧プレス(Cold Isostatic Pressing)などにより約192MPa〜約1000MPaの圧力で約0.1分間〜約10分間高加圧加工(本明細書中において「高加圧加工」という。)して積層する。
高加圧加工後で、第1固体電解質層の電解質密度は、第2固体電解質層より高く、第2電解質層の電解質密度は、第1固体電解質層の50%〜95%、好ましくは70%〜95%である。なお、正電極シート上に第1固体電解質層を配置しないで、正電極シートのみを高加圧加工してもよい。
In one aspect of the present invention, the first solid electrolyte layer is disposed on the positive electrode sheet and / or the negative electrode sheet, and is subjected to a pressure of about 192 MPa to about 1000 MPa by cold isostatic pressing or the like. The layers are laminated by high pressure processing (referred to as “high pressure processing” in this specification) for about 0.1 minutes to about 10 minutes.
After high pressure processing, the electrolyte density of the first solid electrolyte layer is higher than the second solid electrolyte layer, the electrolyte density of the second electrolyte layer is 50% to 95% of the first solid electrolyte layer, preferably 70% ~ 95%. Note that only the positive electrode sheet may be subjected to high pressure processing without disposing the first solid electrolyte layer on the positive electrode sheet.

本発明の一態様では、高加圧加工より圧力の低い約10MPa〜約192MPaの圧力で約0.1分間〜約10分間加圧加工(本明細書中において「低加圧加工」という。)して、第1固体電解質層の少なくとも一方の側上に第2固体電解質層を積層する。
低加圧加工前後で第1固体電解質層の密度は変化しないが、低加圧加工後の第2固体電解質層の電解質密度は、第1固体電解質層の45%〜75%である、望ましくは50〜70%である。
In one embodiment of the present invention, pressure processing is performed at a pressure of about 10 MPa to about 192 MPa, which is lower than high pressure processing, for about 0.1 minutes to about 10 minutes (hereinafter referred to as “low pressure processing”). and, laminating the second solid electrolyte layer on at least one side of the first solid electrolyte layer.
The density of the first solid electrolyte layer does not change before and after the low pressure processing, but the electrolyte density of the second solid electrolyte layer after the low pressure processing is 45% to 75% of the first solid electrolyte layer, preferably 50-70%.

本発明に係る、第1固体電解質層の厚さは、高加圧加工後で、約1μm〜約50μmであることができ、そして第2固体電解質層の厚さは、低加圧加工後で、約1μm〜約50μmであることができる。 The thickness of the first solid electrolyte layer according to the present invention can be about 1 μm to about 50 μm after high pressure processing, and the thickness of the second solid electrolyte layer is after low pressure processing. , About 1 μm to about 50 μm.

本発明に係る第1固体電解質層および第2固体電解質層は、必要に応じて、正極活物質として、平均粒径約0.1μm〜約100μmの、例えば酸化物系ではコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)などを第1固体電解質層または第2固体電解質層の体積に基づいて約30vol%〜約90vol%含むことができ、負極活物質として、平均粒径約0.1μm〜約100μmの、天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などのグラファイトなどを第1固体電解質層または第2固体電解質層の質量に基づいて約30wt%〜約90wt%含むことができる。 The first solid electrolyte layer and the second solid electrolyte layer according to the present invention may include, as necessary, a positive electrode active material having an average particle diameter of about 0.1 μm to about 100 μm, for example, lithium cobaltate (LiCoO 2 in an oxide system). ), Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), etc., based on the volume of the first solid electrolyte layer or the second solid electrolyte layer, about 30 vol% to about 90 vol%. As an average particle size of about 0.1 μm to about 100 μm, graphite such as natural graphite, artificial graphite, graphite carbon fiber, and resin-fired carbon is about 30 wt based on the mass of the first solid electrolyte layer or the second solid electrolyte layer. % To about 90 wt%.

本発明の一態様では、第1固体電解質層および/又は第2固体電解質層を積層した正電極シート積層体および負電極シート積層体を、カッター、打ち抜き機等を用いて必要な大きさに裁断する。正電極シート積層体と負電極シート積層体とは、同じ寸法であることができるが、正極中のLiイオンを負極側で必ず受け入れ、Li析出を抑制するために、通常、負電極シート積層体は正電極シート積層体より大きい。 In one aspect of the present invention, a positive electrode sheet laminate and a negative electrode sheet laminate in which the first solid electrolyte layer and / or the second solid electrolyte layer are laminated are cut into a required size using a cutter, a punching machine, or the like. To do. The positive electrode sheet laminate and the negative electrode sheet laminate can have the same dimensions, but in order to always accept Li ions in the positive electrode on the negative electrode side and suppress Li precipitation, the negative electrode sheet laminate is usually used. Is larger than the positive electrode sheet laminate .

本発明の一態様では、次に正電極シート積層体の第2固体電解質層と負電極シート積層体の第2固体電解質層とを対向させて、一軸プレスなどにより約0.05t/cm〜約2t/cmの圧力で約0.1分間〜約10分間加圧し接合(本明細書中において「接合加工」という。)させる。接合加工前後で第1固体電解質層および第2固体電解質層の電解質密度は変化しない。 In one aspect of the present invention, then a second solid electrolyte layer of the second solid electrolyte layer and the negative electrode sheet laminate of the positive electrode sheet laminate is opposed, approximately 0.05 t / cm 2 ~ due uniaxial pressing Pressurization is performed at a pressure of about 2 t / cm 2 for about 0.1 minutes to about 10 minutes for bonding (referred to herein as “bonding”). The electrolyte density of the first solid electrolyte layer and the second solid electrolyte layer does not change before and after the bonding process.

上記のように、本発明の一態様では、低プレス圧転写のように粗な電解質組織である第2電解質の配置前に、より電解質密度の高い第1固体電解質層を形成することで、たとえ第2固体電解質層間で剥離が発生しても電解質密度の高い第1固体電解質層が負電極シートに密着して形成されているため、低い抵抗のLiイオンの経路を確保でき出力の低下防げるものである。 As described above, in one aspect of the present invention, the first solid electrolyte layer having a higher electrolyte density is formed before the second electrolyte, which is a rough electrolyte structure as in low press pressure transfer, is formed. Even if delamination occurs between the second solid electrolyte layers, the first solid electrolyte layer having a high electrolyte density is formed in close contact with the negative electrode sheet, so that a low resistance Li ion path can be secured and the output can be prevented from lowering. It is.

<使用したサンプル>
第1電解質:材質LiS−P−LiI
第2電解質:材質LiS−P−LiI
<固体電解質の合成>
LiS(メーカー名:日本化学工業)とP(メーカー名:アルドリッチ)を出発原料として、LiSを0.7656g、Pを1.2344g秤量し、そこにデンカブラック(メーカー名:DENKA)を0.016g添加し、メノウ乳鉢で5分混合し、その後ヘプタンを4g入れ、遊星型ボールミル(45cc、ZrOポット、φ5mmZrOボール53g)を用い、500rpmで20時間メカニカルミリングし、110℃で1時間加熱してヘプタンを除去して平均粒径2.5μmの固体電解質を得た。
<Sample used>
The first electrolyte: Material Li 2 S-P 2 S 5 -LiI
The second electrolyte: Material Li 2 S-P 2 S 5 -LiI
<Synthesis of solid electrolyte>
Using Li 2 S (maker name: Nippon Chemical Industry) and P 2 S 5 (maker name: Aldrich) as starting materials, 0.7656 g of Li 2 S and 1.2344 g of P 2 S 5 are weighed, and Denka Black is added there. (Manufacturer name: DENKA) 0.016g, mixed for 5 minutes in an agate mortar, then 4g of heptane was added, mechanically using a planetary ball mill (45cc, ZrO 2 pot, φ5mmZrO 2 balls 53g) for 20 hours at 500rpm Milling and heating at 110 ° C. for 1 hour removed heptane to obtain a solid electrolyte having an average particle size of 2.5 μm.

<サンプルの製造方法1>
工程1:縦120mm、横100mm、厚さ20μm、材質:Alの正極集電箔1の両面上に、ドクターブレードを用いて正極活物質としてグラファイトLiNi1/3Co1/3Mn1/3(メーカー名:日亜化学)12.03mgとVGCF(メーカー名:昭和電工)を0.51mg、固体電解質を5.03mg秤量し、ヘプタンを溶媒として混合したものを塗布し、100℃で30分間乾燥させた、厚さ50μmの塗布層2を有する正電極シート3を得た。
工程2:縦120mm、横100mm、厚さ50μm、材質:Cuの負極集電箔4の両面上に、工程1と同じ手順で負極活物質としてグラファイト(メーカー名:三菱化学)9.06mgと上記固体電解質8.24mgを秤量しヘプタンを溶媒として混合したものを塗布した厚さ50μmの塗布層2を有する負電極シート5を得た。
工程3:上記固体電解質を18mg秤量し、バインダーとしてBR(ブチレンゴム)5wt%ヘプタン溶液3.6mgとヘプタン30.3mgを混合したものをアルミ箔に塗工し乾燥させ、アルミ箔を剥離させて予め形成した第1固体電解質層6を負電極シートの両面に重ね合わせ、冷間等方圧プレス機(メーカー名:KOBELCO社製、型番:DR.CIP)を用いて、室温下、392MPaの圧力下で1分間高加圧加工し、厚さ10μmの第1固体電解質層6を積層した。
工程4:正電極シートを単体で、工程3のプレスを用いて、室温、392MPaの圧力下で1分間高加圧加工した。
工程5:上記正および負電極シート上の両面に工程3の第1固体電解質層6と同じ材質の電解質を、工程3のプレスを用いて、室温、98MPaの圧力下で1分間低加圧加工し、厚さ13μmの第2固体電解質層7を積層して、正および負電極シート積層体を得た
工程6:得られた、正電極シート積層体を打ち抜き直径11.28mmとし、同様に負電極シート積層体を直径13mmとした。
工程7:正電極シート積層体と負電極シート積層体とをそれぞれの第2固体電解質層7を対向させて積層し、一軸プレス(メーカー名:理研機器(株)社製、型番:CDM−20PA)を用いて1t/cmの圧力で0.5分間接合加工した。
<Sample manufacturing method 1>
Process 1: Graphite LiNi 1/3 Co 1/3 Mn 1/3 O as a positive electrode active material on both surfaces of a positive electrode current collector foil 1 of 120 mm long, 100 mm wide, 20 μm thick, material: Al, using a doctor blade 2 (Manufacturer name: Nichia) 12.03 mg, VGCF (Manufacturer name: Showa Denko) 0.51 mg, and solid electrolyte 5.03 mg were weighed and mixed with heptane as a solvent. A positive electrode sheet 3 having a coating layer 2 having a thickness of 50 μm, which was dried for 5 minutes, was obtained.
Step 2: 120 mm in length, 100 mm in width, 50 μm in thickness, material: Cu on the negative electrode current collector foil 4 of Cu, 9.06 mg of graphite (manufacturer name: Mitsubishi Chemical) as the negative electrode active material in the same procedure as in Step 1 and the above A negative electrode sheet 5 having a coating layer 2 having a thickness of 50 μm coated with 8.24 mg of a solid electrolyte and a mixture of heptane as a solvent was obtained.
Step 3: 18 mg of the solid electrolyte is weighed, and a mixture of 3.6 mg of BR (butylene rubber) 5 wt% heptane solution and 30.3 mg of heptane as a binder is applied to an aluminum foil, dried, and the aluminum foil is peeled off in advance. The formed first solid electrolyte layer 6 is superposed on both surfaces of the negative electrode sheet, and using a cold isostatic press (manufacturer name: KOBELCO, model number: DR.CIP) at room temperature and under a pressure of 392 MPa. Was subjected to high-pressure processing for 1 minute to laminate a first solid electrolyte layer 6 having a thickness of 10 μm.
Step 4: The positive electrode sheet alone was subjected to high-pressure processing for 1 minute at room temperature under a pressure of 392 MPa using the press in Step 3.
Step 5: Applying an electrolyte made of the same material as the first solid electrolyte layer 6 of Step 3 on both surfaces of the positive and negative electrode sheets, using the press of Step 3 at a low pressure for 1 minute at room temperature and a pressure of 98 MPa. Then, the second solid electrolyte layer 7 having a thickness of 13 μm was laminated to obtain a positive and negative electrode sheet laminate .
Step 6: The obtained positive electrode sheet laminate was punched to a diameter of 11.28 mm, and the negative electrode sheet laminate was similarly made to a diameter of 13 mm.
Step 7: A positive electrode sheet laminate and a negative electrode sheet laminate are laminated with the respective second solid electrolyte layers 7 facing each other, and uniaxial press (manufactured by Riken Kikai Co., Ltd., model number: CDM-20PA) ) Using a pressure of 1 t / cm 2 for 0.5 minutes.

実施例1
上記<サンプルの製造方法1>にしたがって得た積層電極体を正極端子ピンと負極端子ピンとで固定し、その電池セルをデシケーター内でセットした。電池容量(SOC)を20%に調整した後に、充放電装置(メーカー名:東洋システム、型番:TOS−3100)を用いて、25℃の雰囲気下で5秒間出力を測定した。
実施例1の積層電極体の構造を図2に、出力測定結果を図3に示す。
Example 1
The laminated electrode body obtained according to the above <Sample Production Method 1> was fixed with a positive terminal pin and a negative terminal pin, and the battery cell was set in a desiccator. After adjusting the battery capacity (SOC) to 20%, the output was measured for 5 seconds in an atmosphere at 25 ° C. using a charge / discharge device (manufacturer name: Toyo System, model number: TOS-3100).
FIG. 2 shows the structure of the laminated electrode body of Example 1, and FIG. 3 shows the output measurement results.

SEMを用いてこの実施例1のサンプルの電極端部近傍を詳細に観察したところ、負極シート上の電解質層の電解質粒子が隆起しており、正極シート上の第2固体電解質層、負極シート上の第1固体電解質層、第2固体電解質層の内(写真中の白い部分)、この隆起8によるストレスが原因と考えられる、負電極シート上の第1固体電解質層と第2固体電解質層との間での剥離9が観察された(図4(a):倍率200倍、図4(b):倍率500倍)。 When the vicinity of the electrode edge part of the sample of this Example 1 was observed in detail using SEM, the electrolyte particles of the electrolyte layer on the negative electrode sheet were raised, and the second solid electrolyte layer on the positive electrode sheet, on the negative electrode sheet The first solid electrolyte layer and the second solid electrolyte layer on the negative electrode sheet, which are considered to be caused by the stress due to the bumps 8 (the white portion in the photograph) of the first solid electrolyte layer and the second solid electrolyte layer Was observed (FIG. 4 (a): magnification 200 times, FIG. 4 (b): magnification 500 times).

そして図4(b)に示されるように、上記剥離9が生じていても、実施例1のサンプルでは、Liイオンは、高抵抗の負電極シート中の経路10を通らずに、第1固体電解質層6中を通って剥離部分を避けて移動できるので、出力が低下しないことを確認した。 And as FIG.4 (b) shows, even if the said peeling 9 has arisen, in the sample of Example 1, Li ion does not pass the path | route 10 in a high resistance negative electrode sheet, but is 1st solid. Since it can move through the electrolyte layer 6 while avoiding the peeling portion, it was confirmed that the output does not decrease.

比較例1
上記<サンプルの製造方法1>の工程3において、第1固体電解質層6を有さない負電極シート5のみを高加圧加工した点を除き、実施例1の手順で、出力を測定した。
比較例1の積層電極体の構造を図2に、出力測定結果を図3に示す。
この場合、Liイオンは、第2固体電解質層7と負電極シート5との間の剥離により、この剥離部分を避けて移動するために、高抵抗の負電極シート中の経路を通らなければならず、出力低下の原因となっていると考えられる。
Comparative Example 1
In step 3 of <Sample production method 1>, the output was measured by the procedure of Example 1 except that only the negative electrode sheet 5 not having the first solid electrolyte layer 6 was subjected to high pressure processing.
The structure of the laminated electrode body of Comparative Example 1 is shown in FIG. 2, and the output measurement result is shown in FIG.
In this case, Li ions must pass through a path in the high-resistance negative electrode sheet in order to move away from the peeling portion due to peeling between the second solid electrolyte layer 7 and the negative electrode sheet 5. Therefore, it is thought that it is the cause of the output fall.

上記のように、実施例1のサンプルでは、第1固体電解質層と負電極シートとの間に剥離が無いため、抵抗の低い第1および/又は第2固体電解質層内のLiイオンの経路が確保され、良好な出力を得ることが確認された。
また、本発明は、下記の実施態様も含む:
負電極シートの両面上に積層した第1電解質層と、前記第1電解質層の少なくとも一方の側上の第2電解質層とを有する、負電極シートと、
正電極シートの少なくとも一方の側上に第2電解質層を積層した正電極シートとを、それぞれの前記第2電解質層を対向させて積層した積層電極体であって、
前記第1の電解質層が前記第2の電解質層より大きい電解質密度を有する、積層電極体。
As described above, in the sample of Example 1, since there is no separation between the first solid electrolyte layer and the negative electrode sheet, the path of Li ions in the first and / or second solid electrolyte layer having low resistance is reduced. It was confirmed that good output was obtained.
The present invention also includes the following embodiments:
A negative electrode sheet having a first electrolyte layer laminated on both sides of the negative electrode sheet, and a second electrolyte layer on at least one side of the first electrolyte layer;
A positive electrode sheet in which a second electrolyte layer is laminated on at least one side of the positive electrode sheet, and a laminated electrode body in which the respective second electrolyte layers are opposed to each other,
The laminated electrode body, wherein the first electrolyte layer has an electrolyte density greater than that of the second electrolyte layer.

以上のように、本発明に係る積層電極体は、良好な出力特性を有するものである。こうしたことから、本発明に係る積層電極体は、広範な用途に使用する全固体リチウム二次電池において利用することができる。   As described above, the laminated electrode body according to the present invention has good output characteristics. For these reasons, the laminated electrode body according to the present invention can be used in all solid lithium secondary batteries used in a wide range of applications.

1 正極集電箔
2 (正極集電箔1または負極集電箔4上の)塗布層
3 正電極シート
4 負極集電箔
5 負電極シート
6 第1固体電解質層
7 第2固体電解質層
8 プレスにより横方向に移動した電解質粒子の隆起
9 第1固体電解質層と第2固体電解質層との間の剥離
10 高抵抗のLiイオンの経路
DESCRIPTION OF SYMBOLS 1 Positive electrode collector foil 2 Application layer (on positive electrode collector foil 1 or negative electrode collector foil 4) 3 Positive electrode sheet 4 Negative electrode collector foil 5 Negative electrode sheet 6 First solid electrolyte layer 7 Second solid electrolyte layer 8 Press Bumps of electrolyte particles moved in the lateral direction due to 9 9 Separation between the first solid electrolyte layer and the second solid electrolyte layer 10 High-resistance Li ion path

Claims (2)

負電極シートの両面上に積層されている第1固体電解質層と、前記第1固体電解質層の少なくとも一方の側上に積層されている第2固体電解質層とを有する、負電極シート積層体と、
正電極シートの少なくとも一方の側上に第2固体電解質層積層されている正電極シート積層体とが、
それぞれの前記第2固体電解質層が対向するようにして積層されている全固体リチウム二次電池であって、
前記第1固体電解質層が前記第2固体電解質層より大きい電解質密度を有し、
前記電解質密度は、電解質層中の単位体積あたりの電解質の質量であり、かつ
前記正電極シート積層体が前記負電極シート積層体よりも小さい、
全固体リチウム二次電池
Has a first solid electrolyte layer are laminated on both surfaces of the negative electrode sheet, and a second solid electrolyte layer laminated on the first solid electrolyte layer at least one side on a negative electrode sheet laminate ,
A positive electrode sheet laminate in which the second solid electrolyte layer are laminated on at least one side of the positive electrode sheet,
An all-solid lithium secondary battery in which the second solid electrolyte layers are stacked so as to face each other,
The first solid electrolyte layer have a greater electrolyte density and the second solid electrolyte layer,
The electrolyte density is the mass of the electrolyte per unit volume in the electrolyte layer, and
The positive electrode sheet laminate is smaller than the negative electrode sheet laminate,
All-solid lithium secondary battery .
全固体リチウム二次電池の製造方法であって、  A method for producing an all-solid lithium secondary battery, comprising:
負電極シートの両面上に第1固体電解質層を配置し、高加圧加工し、その後、前記第1固体電解質層の少なくとも一方の側上に第2固体電解質層を配置し、低加圧加工して積層することにより、負電極シート積層体を形成すること、  The first solid electrolyte layer is disposed on both sides of the negative electrode sheet and subjected to high pressure processing, and then the second solid electrolyte layer is disposed on at least one side of the first solid electrolyte layer to perform low pressure processing. Forming a negative electrode sheet laminate by laminating
正電極シートの少なくとも一方の側上に前記第2固体電解質層を配置し、低加圧加工して積層することにより正電極シート積層体を形成すること、  Disposing the second solid electrolyte layer on at least one side of the positive electrode sheet, forming a positive electrode sheet laminate by laminating by low pressure processing,
前記正電極シート積層体及び前記負電極シート積層体を、それぞれの前記第2固体電解質層が対向するようにして積層すること、を含み、Laminating the positive electrode sheet laminate and the negative electrode sheet laminate so that the respective second solid electrolyte layers face each other,
前記低加圧加工は、前記高加圧加工よりも低い圧力で行われ、かつ  The low pressure processing is performed at a lower pressure than the high pressure processing, and
前記正電極シート積層体が前記負電極シート積層体よりも小さい、  The positive electrode sheet laminate is smaller than the negative electrode sheet laminate,
全固体リチウム二次電池の製造方法。Manufacturing method of all-solid-state lithium secondary battery.
JP2013163031A 2013-08-06 2013-08-06 All-solid lithium secondary battery and method for producing all-solid lithium secondary battery Active JP6070471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163031A JP6070471B2 (en) 2013-08-06 2013-08-06 All-solid lithium secondary battery and method for producing all-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163031A JP6070471B2 (en) 2013-08-06 2013-08-06 All-solid lithium secondary battery and method for producing all-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2015032535A JP2015032535A (en) 2015-02-16
JP6070471B2 true JP6070471B2 (en) 2017-02-01

Family

ID=52517684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163031A Active JP6070471B2 (en) 2013-08-06 2013-08-06 All-solid lithium secondary battery and method for producing all-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6070471B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380254B2 (en) * 2015-06-23 2018-08-29 トヨタ自動車株式会社 Manufacturing method of all solid state battery
JP6233372B2 (en) * 2015-09-14 2017-11-22 トヨタ自動車株式会社 Manufacturing method of all solid state battery
JP6833648B2 (en) * 2017-09-20 2021-02-24 株式会社東芝 Rechargeable batteries, battery packs and vehicles
JP6889125B2 (en) 2018-03-16 2021-06-18 株式会社東芝 Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply
WO2020054099A1 (en) 2018-09-13 2020-03-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply
US11811088B2 (en) 2019-09-19 2023-11-07 Kabushiki Kaisha Toshiba Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206942A (en) * 2002-12-24 2004-07-22 Ion Engineering Research Institute Corp All solid lithium battery
JP2008135287A (en) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd All-solid battery member and manufacturing method of the member, and all-solid battery
JP5348607B2 (en) * 2008-06-16 2013-11-20 住友電気工業株式会社 All-solid lithium secondary battery
JPWO2011148824A1 (en) * 2010-05-25 2013-07-25 住友電気工業株式会社 Nonaqueous electrolyte battery and manufacturing method thereof
DE112011102818T5 (en) * 2010-08-26 2013-06-06 Sumitomo Electric Industries, Ltd. Non-aqueous electrolyte battery and method of making the same
JP2012169200A (en) * 2011-02-16 2012-09-06 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery electrode and solid electrolyte membrane deposition method and nonaqueous electrolyte battery
JP2012221749A (en) * 2011-04-08 2012-11-12 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2013125636A (en) * 2011-12-14 2013-06-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2015032535A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US9634358B2 (en) Method for producing all-solid-state battery, and all-solid-state battery
JP6175934B2 (en) Manufacturing method of all solid state battery
JP6070471B2 (en) All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
US10658704B2 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
US20140234725A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
JP6296030B2 (en) Electrode laminate and method for producing all solid state battery
JP6683165B2 (en) Method for manufacturing all-solid-state battery
JP2014216131A (en) All solid battery and manufacturing method therefor
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
JPWO2014010042A1 (en) Manufacturing method of all solid state battery
KR20200134688A (en) High energy density all-solid state battery and process for preparing thereof
JPWO2015147122A1 (en) All solid state secondary battery
JP6943208B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
JP2012243472A (en) Method for manufacturing all-solid battery
JP2018206486A (en) Laminate green sheet, all-solid secondary battery and manufacturing method thereof
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
JP7052710B2 (en) Laminate
JP2015153647A (en) Method for manufacturing solid battery
JP2013054949A (en) Nonaqueous electrolyte battery
JP7070329B2 (en) Manufacturing method of all-solid-state battery
WO2018116983A1 (en) Method and apparatus for producing all-solid-state battery
JP6981378B2 (en) Manufacturing method of all-solid-state battery
CN111029634A (en) Method for manufacturing solid battery
JP2015103432A (en) Method for manufacturing all solid state battery
JP7433004B2 (en) all solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6070471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151