JP2004206942A - All solid lithium battery - Google Patents

All solid lithium battery Download PDF

Info

Publication number
JP2004206942A
JP2004206942A JP2002372272A JP2002372272A JP2004206942A JP 2004206942 A JP2004206942 A JP 2004206942A JP 2002372272 A JP2002372272 A JP 2002372272A JP 2002372272 A JP2002372272 A JP 2002372272A JP 2004206942 A JP2004206942 A JP 2004206942A
Authority
JP
Japan
Prior art keywords
lithium
solid electrolyte
lithium ion
battery
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002372272A
Other languages
Japanese (ja)
Inventor
Shigeo Kondo
繁雄 近藤
Yasuyuki Kurisu
保之 栗栖
Hiroyuki Kageyama
博之 蔭山
Tomonari Takeuchi
友成 竹内
Riyouji Sugano
了次 菅野
Taro Inada
太郎 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ion Engineering Research Institute Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ion Engineering Research Institute Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ion Engineering Research Institute Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002372272A priority Critical patent/JP2004206942A/en
Publication of JP2004206942A publication Critical patent/JP2004206942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe battery having high reliability and large charge-discharge current density, even in a battery using lithium as a negative electrode active material. <P>SOLUTION: This battery is composed by using a sulfide-based lithium ion conducting solid electrolyte as a first solid electrolyte of the all solid lithium battery, and by interlaying a second lithium ion conducting solid electrolyte in contact with the electrolyte without including a transition metal between negative electrodes each containing lithium as an active material. Thereby, local deposition of lithium is generated in the negative electrodes; and when it pierces a second lithium ion conducting thin film, lithium deposited at that position comes into contact with the sulfide-based lithium ion conducting solid electrolyte, so that a layer lacking lithium ion conductivity is chemically formed. Thereby, a flow of a current is blocked at that position, and as a result, a smoothing phenomenon occurs in the lithium deposition as the whole negative electrode surface, so that lithium can be used as a stable negative electrode active material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン伝導性固体電解質を用いたリチウム電池に関するものである.
【0002】
【従来の技術】
携帯情報端末に使用される二次電池は長時間の使用が可能な小型・軽量の高エネルギー密度電池が強く要望されており,中でもリチウム二次電池の高エネルギー密度化の開発研究が活発化している.
しかし,現在開発されているリチウム二次電池の多くは,その内部に可燃性の有機電解液や酸化剤として作用する正極活物質さらには還元剤として作用する負極活物質が共存している.そのため,例えば電池が過充電状態となると,負極に金属リチウムが析出し,正極と負極が短絡するような不測の事態が起こる可能性を有している.このような事態が起こると,電池は発熱をおこし,甚だしい時には破裂爆発を引き起こす.こうしたことから,電池の高エネルギー密度化にともないリチウム二次電池の安全性を確保することが,現在重要な課題となって来ている.
リチウム二次電池の安全性を高める方法の1つとして,可燃性の有機電解液の代わりに、不燃性のリチウムイオン伝導性固体電解質を用いた全固体リチウム二次電池の研究が行われている.これまで様々な無機の固体電解質が研究されてきたが,その多くはイオン伝導度が10-5〜10-6S/cmと、有機電解液に比べ2〜3桁低く,実用化には至っていなかった.これに対し,硫化物系リチウムイオン伝導性固体電解質は、そのイオン伝導度が10-3S/cm(粉体化すると10-4S/cm程度)と有機電解液と同程度のイオン伝導度を有している.従って,この種固体電解質を用いる事によって,安全な全固体リチウム二次電池の開発可能性が高くなってきており,その実用化が望まれていた.
しかし、このような有機電解液と同程度のイオン伝導度を有する固体電解質と例えば、コバルト酸リチウム、二硫化チタン等のような正極活物質を含む正極と、カーボンあるいは金属リチウム等からなる負極の間に介在させ電池を構成しても、液体電解質を用いたリチウム電池と同等の作動性能の電池を構成する事が困難であった。
【0003】
【発明が解決しようとする課題】
リチウムイオン伝導性固体電解質として、例えば、硫化リチウムイオン伝導性固体電解質を正極と負極の間に介在させた従来の固体リチウム電池では、電池の充放電において、数百マイクロアンペア/cm以下の低い電流密度でしか、作動しなく、とりわけ、この現象は室温以下では更に劣っていた。特に、負極活物質としてカーボン、正極活物質としてコバルト酸リチウムを用い、硫化物リチウムイオン伝導体として、Li2S・SiS2・LiPO4系固体電解質を用い全固体リチウム電池を構成した場合、充電初期において、負極カーボン結晶層内へのリチウムの挿入が、殆ど起こらず、充電効率が極めて悪いものであった。しかし、放電電流密度が数10ないし100μA/cm2程度で、約30サイクル程度、充放電を繰り返すと、その充放電効率は徐々に改善され、100%近い効率を示すようになる。発明者は上記現象が次の要因によって引き起こされている事を見いだした。
即ち、リチウムイオン伝導性固体電解質としてシリコン、ゲルマニウムなどの遷移金属を含んだLi2S・SiS2・LiPO4ガラス電解質あるいはLi2S・GeS2・P2S5系の結晶性硫化物リチウムイオン伝導体を用いた場合、低電流密度による充電時においては、電子伝導性をもつカーボン電極表面で電解質中に含まれる遷移金属であるシリコン、ゲルマニウム等が電気化学的に還元され、電池の充放電に使われるリチウムイオンの電気化学的還元,酸化反応を阻害し,充放電効率を悪くしていた。この反応を継続して行わせると、その表面ではリチウムイオン伝導性固体電解質に存在するシリコンやゲルマニウムが還元され,その結果,電子伝導性を有した樹枝状のリチウムシリコン合金あるいはリチウムゲルマニウム合金となって析出成長し、最後には正極と負極を短絡させる。
一方、この電池を高電流密度で充放電させた場合、負極カーボン表面では局部的に電流の集中する部位において,リチウムイオンが電気化学的に還元され,リチウム金属が析出する。析出したリチウム金属は固体電解質中の硫黄成分と化学的に反応し、そこではリチウムイオン伝導性に欠ける薄いリチウム硫黄化合物皮膜が化学的に形成される。その結果、充放電サイクルを繰り返すに従い、カーボン表面は、こうしたイオン伝導性の欠ける被膜で覆われるようになり、充放電サイクル寿命は良いが、高電流密度で充放電の出来ない電池となる。このように、この種の電池で用いられるリチウムイオン伝導性固体電解質のイオン伝導率は10−3S/cmと優れたものであるにもかかわらず、負極表面に析出したリチウム金属とリチウムイオン伝導性固体電解質との化学的反応で出来るリチウムイオン伝導性に欠ける薄い皮膜によって、充放電電流密度が低い実用性に欠ける電池としていた。とりわけ、この被膜のイオン導電率が室温以下の温度域で低いため、より一層,室温以下での電池充放電性能を悪くしていた。
この事は、負極として金属リチウムを用いた場合も同様であり、その表面では硫化物系リチウムイオン伝導性固体電解質との接触により,化学的に硫化リチウムを含むリチウムイオン伝導性の悪い皮膜が自動的に形成される。その結果、負極として金属リチウムを用いた全固体リチウム電池を構成した場合、この電池の充放電を行うと、充放電電流密度が極めて小さい条件の下でのみ、可能となる。この電池を大電流密度で充放電を行えば、負極リチウム表面で局部的な電流集中箇所において、析出したリチウム金属とリチウムイオン伝導性固体電解質との接触により,化学的に形成されていたリチウムイオン伝導性に欠ける層が局部的に破壊され、金属リチウムが漸次樹枝状に析出する。この現象に繰り返しによって、最終的には正負極間の短絡をもたらす。この樹枝状金属の析出は電極界面での電流の不均一作用に基づくもので、この不均一な電流の流れを均一にするにはリチウムイオン伝導性電解質として、優れたものを用いると同時に、さらに、析出したリチウム金属の表面に電流の流れを阻止しうる層を自動的に形成させれば良い。
以上のように、本発明は、硫化物リチウムイオン伝導体を用いた従来の全固体リチウム電池の課題が硫化物リチウムイオン伝導体中の硫黄とリチウム金属との反応によって生成する硫化物層の生成に基づく事を見いだした事に基づき、負極活物質として少なくとも金属リチウムを用いた電池においても、極めて安全に、かつ信頼性高い充放電電流密度の大きな全固体リチウム電池を提供する事を目的としたものである。
【0004】
【課題を解決するための手段】
正極と負極の間に、少なくとも金属リチウムと化学的に反応しイオン伝導性の低い層を形成しうる第1のリチウムイオン伝導性固体電解質層と第1の固体電解質層とは異なる第2の電解質薄膜層を負極側に設置し、全固体リチウム電池を構成する。ここで第1のリチウムイオン伝導性固体電解質層としては硫化物系リチウムイオン伝導体を用い、第2の電解質層には金属リチウム負極との接触によりシリコン、チタン、ゲルマニウムなどの遷移金属を化学的、電気化学的に還元反応を起こさせないようにするため、これら遷移金属を含まないリチウムイオン伝導性固体電解質を用いる必要があり、好ましくは、窒化リチウム、沃化リチウム、臭化リチウム、リチウム塩化チオニル化合物、亜硫酸リチウム化合物などを用いる事が出来る。これらリチウムイオン伝導体のイオン伝導度および分解電圧は一般に低いものが多く、充放電電流密度の大きい電池を構成するには、これらを薄膜状態で用いる。従って、これら第2のリチウムイオン伝導性固体電解質の形成においては、負極活物質となるリチウム金属を窒素ガス、塩素ガス、沃素ガス、臭素ガス、3フッ化燐、亜硫酸ガス等の気体あるいは塩化チオニル溶液などの無水溶液に直接触させ、リチウム表面に薄膜のリチウムイオン伝導性固体電解質層を形成する。
全固体リチウム電池の形成に際しては、まず予め形成した正極に第1のリチウムイオン伝導体層である硫化物系リチウムイオン伝導体層を加圧密着させた後、第2のリチウムイオン伝導性固体電解質薄膜を形成したリチウム負極を圧接し、全固体電池を形成する方法を用いる。
【0005】
【発明の実施の形態】
本発明の1つ実施形態を,コイン型電池を例に図1でもって詳細に説明する。図中1は負極端子で電池蓋を兼ねる、2はリチウム金属からなる負極で、予め電池蓋1に、圧接した後、第2のリチウムイオン伝導性固体電解質層3を形成する。第2のリチウムイオン伝導性固体電解質層の形成は圧接したリチウム金属を窒素ガス、塩素ガス、沃素ガス、臭素ガス、3フッ化燐、亜硫酸ガス等の気体あるいは塩化チオニル溶液などに直接触させ、リチウム表面に薄膜のリチウムイオン伝導性固体電解質層を形成する。この際、予め、金属リチウムシートを上記気体あるいは液体に接触させ、第2のリチウムイオン伝導体層3を形成した後、所望の負極サイズに切断したものを、電池蓋1に圧着して用いても良い。
続いて、正極5をプレス金型を用い作成し、この正極に第1のリチウムイオン伝導性固体電解質層6を圧接形成する。この第1のリチウムイオン伝導性固体電解質層と一体化した正極をポリエチレン製Oリング8を介し、正極端子兼電池容器4内に挿入し、リチウムを圧接した負極蓋1を絶縁性パッキング7を用い、加圧封孔することで、全固体リチウム電池を作成する。
この電池においては、用いる正極としてはコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等の酸化物系活物質や二硫化チタン、二硫化モリブデン等の硫化物系活物質、燐酸鉄系活物質、硫酸鉄系活物質など、殆どの正極活物質が使用可能である。
また、負極活物質として、金属リチウム以外のカーボンを用いる場合は、予めブチルリチウムを用いリチウムをカーボン層内に挿入したものを、窒素ガス、塩素ガス、沃素ガス、臭素ガス、3フッ化燐、亜硫酸ガス等の気体あるいは塩化チオニル溶液などに直接触させ、カーボン表面に存在するリチウム金属に薄膜状のリチウムイオン伝導体層を形成する事で負極として用いる事が出来る。
リチウム金属合金を負極として用いる場合は、合金表面に金属リチウムを設置した後、第2のリチウムイオン伝導体層を設ける。例えば、合金としてリチウム錫合金を用いるには、錫板表面に予め抵抗加熱蒸着装置によりリチウム金属を、その表面に設ける事で可能となる。
この電池で、両極ともリチウム/リチウムを用いた対称セルでは充電時においては正極側のリチウム金属から電子を放出するとともにリチウムイオンが第1、第2ののイオン伝導層を経由し、リチウム負極2界面で電子を受け取り、リチウム金属となって析出する。放電では、反応はこの反応は逆となって進行する。
また、通常の正極活物質としてコバルト酸リチウムを用いた、全固体リチウム電池では充電時においてはコバルト酸リチウムから電子を放出するとともにコバルト酸リチウム結晶内よりリチウムイオンが第1、第2ののイオン伝導層を経由し、リチウム負極2界面で電子を受け取り、リチウム金属となって析出する。放電では、反応はこの反応は逆となって進行する。
一般に、この充放電では、リチウム金属と第1のリチウムイオン伝導性固体電解質層の接触界面において、体積膨張による変化が生じる。そして、単位面積あたりの通電電気量によって、特に、リチウム金属表面に存在するリチウムイオン伝導性固体電解質薄膜層の厚みが不均一であれば、充放電電流の不均一が生じ、イオン伝導体薄膜の厚みの薄いところでは、局部的に電流が集中する。そこでは金属リチウムが集中的に析出して第1のリチウムイオン伝導性固体電解質層が破壊される、そしてその繰り返しによって、金属リチウムが樹枝状に析出し正極に到達し、正負極が短絡する可能性が考えられる。
しかし、本発明の構成では局部的に電流が集中する所で金属リチウムが集中して析出し、第2のリチウムイオン伝導性固体電解質層が破壊されたとしても、析出した金属リチウムは第1のリチウムイオン伝導性固体電解質層である硫化物系リチウムイオン伝導体と接触する。この接触界面では、析出した金属リチウムは第1の硫化物系リチウムイオン伝導体に含まれる硫黄と反応し、イオン伝導性に欠ける硫化リチウムが主体の高抵抗層薄膜が形成される。その結果、その部分では電流の流れが阻害される。このことは、電池の充放電サイクルに伴って、負極と第1の固体電解質が接触する界面では、電流の流れが平均化されるようになり、結果的に、リチウムの析出溶出状態が極めて均一化され、単位面積あたりの通電電気量を大きくしても、充放電サイクル寿命に優れたリチウム電池が可能となるものである。しかも、金属リチウム負極を用いても、電池を安全性に動作可能とさせるものとなる。
ここで、第2のリチウムイオン伝導性固体電解質層の形成方法であるが、予め第2のリチウムイオン伝導性固体電解質を形成しておき、それらの粉体をプレス成型して用いることも可能である。しかし、この場合、金属リチウムと第2のリチウムイオン伝導性固体電解質層との接合の間に空隙が生じると、空隙部分に接触するリチウム表面には、空隙に存在する気体状硫黄によって、硫化リチウムを主体とする層が形成される。これは電池の構成の仕方によっては、内部インピーダンスのばらつきを持った電池ものとなる。又、第2のリチウムイオン伝導性固体電解質層は金属リチウムと硫化物との直接触をさけるためのものであり、金属リチウムとは密接に接合させる事が好ましく、金属リチウム表面に予め、化学的に構成する事が望ましい。
【0006】
【実施例】
(実施例1)
本実施例ではリチウム電極の電気化学的な可逆性を調べるために図1のコイン型電池容器を用い、リチウム/リチウム金属対称セルを構成した。本実施例では、正極負極側共に金属リチウム表面に第2のリチウムイオン伝導性固体電解質層として窒化リチウムを設けたリチウム金属電極を用い、第1のリチウムイオン伝導性固体電解質として64Li2S・35.5SiS2・0.5LiPO4からなる組成の固体電解質(イオン伝導度、1.1×10-3 S/cm2)をその間に介在させ全固体リチウム金属対称セルを構成した。セルの構成は、先ず直径1cmの金型に第1のリチウムイオン伝導性固体電解質を50mg充填した後、4 tonの圧力で加圧し、ディスク状の電解質層を形成し、このリチウムイオン伝導性固体電解質ディスクの両面を第2のリチウムイオン伝導性固体電解質層として窒化リチウムを設けた金属リチウムで加圧接合した。窒化リチウムのリチウム金属表面への設置は、直径1mmφの金属リチウムを乾燥窒素ガス雰囲気中で1時間暴露させる事により形成した。
このセルの内部インピーダンスは65Ωを示した。こうして作成した対称セルで、充放電性能を電位走査速度10mV/Sec.で、定電位分極法で調べた結果を図2-cに示した。
図から、+25mV、―25mVの分極で流れる電流として、約+400μA、約―400μAの電流が観測された。
次に、1.3mA/cm2の電流密度で5時間の間隔で定電流充放電させ、充放電容量を6.5mAh/cm2とした際のサイクル挙動を調べた。その結果、このセルでは700サイクル経過後も何ら、変化が認められなかった。
この実施例1の効果を調べるため、次のような比較実験を行った。
比較実験1
本比較実験では片方の金属リチウムの表面に第2のリチウムイオン伝導性固体電解質として窒化リチウム被膜を形成させたものを用いた以外、実施例1同様にリチウム金属対照セルを構成した。作成したセルの内部インピーダンスは750Ωであった。
このセルの定電位分極試験の結果を図2、bに併示した。図から、+50mV、―50mVの分極で流れる電流として、約+100μA、約―100μAの電流が観測された。
次に、1.3mA/cm2の電流密度で1時間の間隔で定電流充放電させ、充放電容量を6.5mAh/cm2とした際のサイクル挙動を調べた。その結果、このセルでは分極が大きく充放電が困難であった。従って、充放電電流密度を250μA/cm2、26時間の充放電間隔で行ったが、結果は約25サイクルで短絡現象が認められた。比較実験2
本比較実験では両方の金属リチウムの表面とも、第2のリチウムイオン伝導性固体電解質を形成させないで、実施例1同様にリチウム金属対照セルを構成した。作成したセルの内部インピーダンスは1,450Ωであった。
このセルの定電位分極試験の結果を図2、aに併示した。図から、+50mV、―50mVの分極で流れる電流として、約+50μA、約―50μAの電流が観測された。
次に、1.3mA/cm2の電流密度で1時間の間隔で定電流充放電させ、充放電容量を6.5mAh/cm2とした際のサイクル挙動を調べた。このセルでは分極が大きく充放電が困難であった。従って、充放電電流密度を250μA/cm2、26時間の充放電間隔で行ったが、結果は約10サイクルで短絡現象が認められた。
以上、実施例1および比較実験1および比較実験2の結果を考察すると、図2-a、図2−b および図2-cから、即ち、両方のリチウム金属表面に第2のリチウムイオン伝導性固体電解質を設けていないセル、片方の極のみに第2のリチウムイオン伝導性固体電解質である窒化リチウムを金属リチウム表面に設けたもの、および両極共に第2のリチウムイオン伝導性固体電解質である窒化リチウムを金属リチウム表面に設けたものの特性から明らかなように、第2のリチウムイオン伝導性固体電解質を設置していない電極では電流が極めて流れにくく、第2のリチウムイオン伝導性固体電解質を設置することにより、電流が極めてよく流れるようになる事が示されている。この事は、金属リチウム電極は第1のリチウムイオン伝導性固体電解質の接触により、化学的にイオン伝導性の悪い層がその接触界面に形成され、電流の流れを阻害している事が明らかと云える。一方、金属リチウム表面に第1のリチウムイオン伝導性固体電解質とは異なる第2の電解質の1つである窒化リチウムを予め設けた系では、イオン伝導性の悪い層が形成されないため、電流が良く流れると考えられる。この結果、1.3mA/cm2の大きな電流密度で1時間の間隔で定電流充放電させた際のサイクル挙動に於いても、その効果が発揮されたものと考えられる。
以上の現象を、更に実証すべく実施例2から実施例6において第2のリチウムイオン伝導体として、窒化リチウム以外のものを用い、実施例1同様にして対照セルを構成し、その定電流充放電特性を中心に調べた。
実施例2)
本実施例では金属リチウムの表面に第2のリチウムイオン伝導性固体電解質としてリチウム表面を塩化チオニルと化学反応させ、塩化チオニルリチウムと推定される被膜を形成させたものを用いた以外、実施例1同様にリチウム金属対照セルを構成した。塩化チオニルリチウム被膜は室温の基、予め金属リチウムを密封ガラス容器に挿入した中に、塩化チオニルを充填し、30分後に塩化チオニル容器から金属リチウムを取り出し、塩化チオニル溶液を乾燥除去する事で形成した。作成したセルの内部インピーダンスは28Ωであった。この値は金属リチウムのみを用いたセルの内部インピーダンスが1,450Ωに比べ、約 1/50の値で、又、窒化リチウムを第2のリチウムイオン伝導性電解質として形成させた電極の内部インピーダンス65Ωより低い値を示した。
これは第2のリチウムイオン伝導性電解質のイオン伝導度の差によるものと推察される。即ち、通常の窒化リチウムのリチウムイオン伝導度は約10―5S/cm程度と考えられ、これに反し、塩化チオニルリチウムのリチウムイオン伝導度が窒化リチウムのイオン伝導度より優れているためと解釈している。
図2―dに、このセルの定電位分極試験の結果を併示した。図から、+25mV、―25mVの分極で流れる電流として、約+1,000μA、約―1000μAの電流が観測された。内部インピーダンスが実施例1に比べ、に低い値を示したため、充放電サイクル試験としては、6.5mA/cm2の電流密度で1時間の間隔で定電流充放電させ、充放電容量を6.5mAh/cm2とした際のサイクル挙動を調べた。その結果、このセルでは720サイクル経過後も何ら、変化が認められなかった。
実施例3)
本実施例では金属リチウムの表面に第2のリチウムイオン伝導性固体電解質としてフッ化リチウム被膜を形成させたものを用いた以外、実施例1同様にリチウム金属対称セルを構成した。フッ化リチウム被膜は室温の基、モネル管で構成したフッ素炉中に乾燥フッ素ガスを導入し、該容器内に金属リチウムを1時間挿入、フッ素ガスに接触させる事で形成した。作成したセルの内部インピーダンスは350オームであった。
この作成したセルで、250μA/cm2ので26時間の定電流充放電サイクル試験を行った結果は200サイクル経過しても、その挙動には殆ど変化なく、金属リチウムを負極として安定に動作させることが出来た。
(実施例4)
本実施例では金属リチウムの表面に第2のリチウムイオン伝導性固体電解質として沃化リチウム被膜を形成させたものを用いた以外、実施例1同様にリチウム金属対照セルを構成した。沃化リチウム被膜は70℃に加熱した乾燥ガラス容器内に固体沃素を挿入し、該容器内に金属リチウムを3時間挿入、沃素ガスに接触させる事で形成した。作成したセルの内部インピーダンスは110オームで、金属リチウム電極を用いたものに比べ約1/13で、実施例1の窒化リチウム処理セルに比べ2倍の内部インピーダンスを示した。充放電サイクル試験として実施例3と同様に行った。その結果は実施例3と殆ど同じ挙動を示し、金属リチウムを負極として用いても、安定に駆動できる事が分かった。
(実施例5)
本実施例では金属リチウムの表面に第2のリチウムイオン伝導性固体電解質として亜硫酸リチウム被膜を形成させたものを用いた以外、実施例1同様にリチウム金属対照セルを構成した。亜硫酸リチウム被膜は室温の基、ステンレス管で構成した亜硫酸ガス炉中に乾燥亜硫酸ガスを導入し、該容器内に金属リチウムを1時間挿入、亜硫酸ガスに接触させる事で形成した。作成したセルの内部インピーダンスは120オームで、金属リチウム電極を用いたものに比べ約1/12であった。充放電サイクル試験として実施例3と同様に行った。その結果は実施例3と殆ど同じ挙動を示し、金属リチウムを負極として用いても、安定に駆動できる事が分かった。
(実施例6)
本実施例では金属リチウムの表面に第2のリチウムイオン伝導性固体電解質としてリチウムフッ化燐被膜を形成させたものを用いた以外、実施例1同様にリチウム金属対照セルを構成した。リチウムフッ化燐被膜は室温の基、6フッ化燐リチウムを溶解させた無水有機溶媒中に金属リチウムを12時間暴露させ、しかる後、金属リチウムを取り出し、有機溶媒を乾燥除去する事で形成した。作成したセルの内部インピーダンスは320オームで、金属リチウム電極を用いたものに比べ約1/4であった。充放電サイクル試験として実施例3と同様に行った。その結果は実施例3と殆ど同じ挙動を示し、金属リチウムを負極として用いても、安定に駆動できる事が分かった。
以上、実施例1から実施例6の結果から、特に実施例1および実施例2における高電流密度での充放電サイクル試験で、内部短絡などの現象を示さなかったことに関して発明者等は次の様に解釈している。即ち、これら電極界面での電流密度の分布が完全に均一であるとは、本来考え難く、当然そこでは、局部的な電流の集中現象が起こっているはずと考える。当然、電流の集中が起こる部位では、局部的にリチウム金属が強く析出すものと考えられる。リチウム金属が強く析出した部位では第2のリチウムイオン伝導性電解質層が破壊され、そこに露出したリチウム金属は第1の硫化物系リチウムイオン伝導性電解質層との接触により、高抵抗層のリチウムイオン伝導体が形成されるものと考えられる。これら現象が電極表面で繰り返される事により、電流の流れが均一化され、析出するリチウム金属が平滑化されるため、優れた充放電サイクル特性がえられたものと解している。
即ち、リチウム金属を負極として、安定に動作させるには、第2のリチウムイオン伝導層のイオン伝導度が、リチウム金属と第1のリチウムイオン伝導体、即ち硫化物系リチウムイオン伝導体と接触によって形成される被膜に比べ優れたものを用いることで可能となると判断される。
続いて、これら実施例を基に、全固体リチウム二次電池を作成した結果を実施例7以下に示した。
(実施例7)
本実施例では正極活質としてコバルト酸リチウム、負極活物質として金属リチウム表面に窒化リチウムを形成させたものを用い、第1のリチウムイオン伝導性固体電解質として64Li2S・35.5SiS2・0.5LiPO4からなる組成の固体電解質を用い全固体リチウム電池を構成した。正極の作成に際しては、LixCoO2を7w%,第1の電解質を2w%に導電剤としてグラファイトを1w%をボールミールにて充分に混合したものを、60mg秤量し、直径1cmの金型に充填、1.5 ton の圧力で加圧成型し、ディスク状の正極に加工した。続いて、押し金型を抜き、正極に接するように第1のリチウムイオン伝導性固体電解質を50mg充填した後、4 ton圧力で加圧し、正極と第1の電解質を一体化形成した。こうして作成した正極部分を電池容器4内に円筒状のポリエチ製リング8を介し、挿入した。
負極金属リチウムは直径1cmの金属リチウム薄を乾燥窒素ガス中に1時間、接触させ、金属リチウム表面に第2のリチウムイオン伝導性固体電解質層である窒化リチウム層を形成したものを電池蓋1に圧着した。この電池蓋を前記準備した電池用容器に被せ、加圧封孔することで、コイン型電池を作成した。
【0007】
こうして作成した電池の1.3 mA/cm2の電流値で5時間の間隔で充放電させた際の、充放電挙動を図3に示した。この充放電サイクルは500回させても、その挙動に変化は認められなかった。
(比較実験3)
本実験では負極として金属リチウムを、そのまま用いた以外実施例7と同様に電池を構成した。即ち、正極活質としてコバルト酸リチウム、負極活物質として金属リチウムを用い、第1のリチウムイオン伝導性固体電解質として64Li2S・35.5SiS2・0.5LiPO4からなる組成の固体電解質を用い全固体リチウム電池を構成した。正極の作成に際しては、LixCoO2を7w%,第1の電解質を2w%に導電剤としてグラファイトを1w%をボールミールにて充分に混合したものを、60mg秤量し、直径1cmの金型に充填、1.5 ton の圧力で加圧成型し、ディスク状の正極に加工した。続いて、押し金型を抜き、正極に接するように第1のリチウムイオン伝導性固体電解質を60mg充填した後、4 ton 圧力で加圧し、正極と第1の電解質を一体化形成した。こうして作成した正極部分を電池容器4内に円筒状のポリエチリング8を介し、挿入した。
一方、負極としては直径1cmの金属リチウム薄を、そのまま電池蓋1に圧着した。この電池蓋を前記準備した電池用容器に被せ、加圧封孔することで、コイン型電池を作成した。作成した電池の特性を実施例7と同様に実施した結果、1.3 mA/cm2の電流値での充放電は困難であった。しかし、充放電試験条件を1.3 mA/cm2から0.25 mA/cm2の定電流充放電に変え、行った結果、充放電サイクルは約10サイクル程度で、電池が短絡し、作動不可となった。これはリチウム金属表面にイオン伝導性に欠ける硫化リチウムを主体とする層の生成により、局部的に電流が流れ易い所で、金属リチウムの析出が繰り返され、その結果、金属リチウムが負極から樹枝状に正極側に析出し、短絡したものと推察された。
(比較実験4)
本比較実験では,実施例7では第2のリチウムイオン伝導性固体電解質として、窒化リチウム薄層を用いたが、窒化リチウム薄層の代わりに窒化リチウム粉体を用いた以外、実施例7と殆ど、同様にして固体電池を作成した。
即ち、正極活質としてコバルト酸リチウム、負極活物質として金属リチウムを用い、第1のリチウムイオン伝導性固体電解質として64Li2S・35.5SiS2・0.5LiPO4からなる組成の固体電解質を用い全固体リチウム電池を構成した。正極の作成に際しては、LixCoO2を7w%,第1の電解質を2w%に導電剤としてグラファイトを1w%をボールミールにて充分に混合したものを、60mg秤量し、直径1cmの金型に充填、1.5 ton の圧力で加圧成型し、ディスク状の正極に加工した。続いて、押し金型を抜き、正極に接するように第1のリチウムイオン伝導性固体電解質を50mg充填した後、4 ton 圧力で加圧した。続いて、押し金型を抜き、窒化リチウム粉末を30mgを金型内に平らに充填したのち、再び4tonの圧力で加圧し、正極、第1の電解質層、第2の電解質層を一体化形成した。こうして作成した正極部分を電池容器4内に円筒状のポリエチリング8を介し、挿入した。一方、負極としては直径1cmの金属リチウム薄を、そのまま電池蓋1に圧着した。この電池蓋を前記準備した電池用容器に被せ、加圧封孔することで、コイン型電池を実施例7との比較のために作成した。
こうして作成した電池を1.3 mA/cm2の電流値で5時間のサイクルで充放電特性を調べた結果、本電池の充放電サイクルは20サイクル程度で、電池が短絡し、作動不可となった。これはリチウム金属表面に形成された窒化リチウム粉末とリチウム金属表面で、電池の充電により析出した金属リチウムにより、窒化リチウムが粉体であるため、容易にリチウムと剥離し、その空間に存在する硫黄気体により、その部位が高抵抗化し、見かけ上、電流の流れる電極面積が減少した結果、より、局部的に電流が流れ易い所で、金属リチウムの析出が繰り返され、その結果、金属リチウムが負極から樹枝状に正極側に析出し、短絡したものと推察された。
(比較実験5)
本比較実験では,実施例7では第2のリチウムイオン伝導性固体電解質として、窒化リチウム薄層を用いたが、窒化リチウム薄層の代わりに、硫化リチウム、沃化リチウムからなるリチウムイオン伝導性固体電解質粉末を用い、0.24SiS2-0.36Li2S-0.4LiIを合成し(リチウムイオン伝導度;1.6×10-3 S/cm)、用い以外、実施例7と殆ど、同様にして固体電池を作成した。
こうして作成した電池の1.3 mA/cm2の電流値で5時間の間隔で充放電させた際の、充放電挙動を調べた。その結果、充放電サイクルは20サイクル程度で、電池が短絡し、作動不可となった。これは比較実験4と同様に、リチウム金属表面に形成された第2のリチウムイオン伝導体粉末とリチウム金属表面で、電池の充電により析出した金属リチウムにより、第2のリチウムイオン伝導性固体電解質粉末が、容易にリチウムと剥離し、そこに出来た空間に存在する硫黄気体により、その部位が高抵抗化し、見かけ上、電流の流れる電極面積が減少した結果、より、局部的に電流が流れ易い所で、金属リチウムの析出が繰り返され、その結果、金属リチウムが負極から樹枝状に正極側に析出し、短絡したものと推察された。
(実施例8)
本実施例では,実施例7で用いた第2のリチウムイオン伝導性固体電解質として、窒化リチウム薄層に代えて、塩化チオニルリチウム薄層を用いた以外、実施例7と殆ど、同様にして固体電池を作成した。
塩化チオニルリチウム薄層は金属リチウム薄を乾燥塩化チオニル溶液中に室温で1時間、暴露処理を行い、形成した。こうして作成した塩化チオニルリチウム薄膜層を具備した金属リチウム薄を直径1cmのディスク状に切り抜き、それを電池蓋に圧着したものを、正極部材を挿入した電池容器に勘合し、加圧封孔し、固体電池を作成した。こうして作成した電池の1.3 mA/cm2の電流値で5時間の間隔で充放電させた際の、充放電挙動を調べた。 その結果,実施例7と殆ど同様の結果を与えた。
(実施例9)
本実施例では,実施例7で用いた第2のリチウムイオン伝導性固体電解質として、窒化リチウム薄層に代えて、沃化リチウム薄層を用いた以外、実施例1と殆ど、同様にして全固体リチウム電池を作成した。
【0008】
こうして作成した電池の0.25 mA/cm2の電流値で25時間の間隔で充放電させた際の、充放電挙動を調べた。その結果,150サイクル経過した後も、実施例7と殆ど同様の結果を与えた。
(実施例10)
本実施例では,実施例7で用いた第2のリチウムイオン伝導性固体電解質として、窒化リチウム薄層に代えて、亜硫酸リチウム薄層を用いた以外、実施例7と殆ど、同様にして固体電池を作成した。
亜硫酸リチウム薄層は金属リチウム薄を乾燥亜硫酸ガス中に室温で1時間、暴露処理を行い形成した。こうして作成した亜硫酸リチウム薄膜層を具備した金属リチウム薄を直径1cmのディスク状に切り抜き、それを電池蓋に圧着したものを、正極部材を挿入した電池容器に勘合し、加圧封孔し、固体電池を作成した。 こうして作成した電池の0.5mA/cm2の電流値で10時間の間隔で充放電させた際の、充放電挙動を調べた。その結果,110サイクル経過した後も、実施例7と殆ど同様の結果を与えた。
(実施例11)
本実施例では正極活質としてコバルト酸リチウム、負極活物質として窒化リチウムを表面に形成させた金属リチウムを用い、第1のリチウムイオン伝導性固体電解質としてLi3.25Ge0.25P0.75S4からなる結晶質のチオリシコンの固体電解質を用いた以外、実施例7と全く同様に全固体リチウム電池を構成した。即ち、正極の作成に際しては、LixCoO2を7w%,第1の電解質であるチリシコンを2w%、導電剤としてグラファイトを1w%をボールミールにて充分に混合したものを、60mg秤量し、直径1cmの金型に充填、1.5 ton の圧力で加圧成型し、ディスク状の正極に加工した。続いて、押し金型を抜き、正極に接するように第1のリチウムイオン伝導性固体電解質を60mg充填した後、4 ton 圧力で加圧し、正極と第1の電解質を一体化形成した。こうして作成した正極部分を電池容器4内に円筒状のポリエチリング8を介し、挿入した。
一方、負極としては直径1cmの金属リチウム薄を乾燥窒素ガス中に2時間、接触させ、金属リチウム表面に第2のリチウムイオン伝導性固体電解質層である窒化リチウム層を形成したものを電池蓋1に圧着した。この電池蓋を前記準備した電池用容器に被せ、加圧封孔することで、コイン型電池を作成した。
【0009】
こうして作成した電池について、1.3 mA/cm2の電流値で5時間の定電流充放電サイクル試験を行った。その結果,350サイクル経過も、実施例7と殆ど同様の結果を与えた。
以上,本発明の種々の実施例より,負極リチウム金属表面に薄膜状の第2のリチウムイオン伝導体を形成により、充放電サイクルおよび高電流密度での充放電が可能ならしめるに効果がある事を見いだしたものである。当然、負極としてカーボンを用いる場合においても、予めカーボン層内にリチウムをブチルリチウムを用い、挿入しておき、そのカーボンを実施例に示した方法により、その表面に第2のリチウムイオン伝導体を設けることで、充放電性能に優れた全固体リチウム電池を構成する事が可能な事は自明であり、本発明の範疇に含まれることは当然となるものである。また第1のリチウムイオン伝導性固体電解質層として、酸化物系リチウムイオン伝導体に硫化物リチウムイオン伝導体を混合して用いる事も同様であり,本発明は実施例で説明を行ったものに限定されるものではない.
【0010】
【発明の効果】
本発明による全固体リチウム電池は、従来、固体電池では達成出来なかった高充放電電流密度での作動をならしめるものであり、その結果、携帯電子機器用電源あるいは電気自動車用電源として、極めて安全性に富んだ、高信頼性の電源として使用可能ならしめる事から、工業的商品価値の高い電池を提供するものとなる。
【図面の簡単な説明】
【図1】試験用コイン型電池の構成概略図
【図2】リチウム電極の分極特性
【図3】全固体リチウム電池の充放電挙動
【符号の説明】
1.電池蓋(負極端子), 2.リチウム金属(負極),
3.第2リチウムイオン伝導性固体電解質, 4.電池容器(正極端子), 5.正極,6.第1リチウムイオン伝導性固体電解質, 7.ポリエチレン製パッキング, 8.ポリエチレン製Oリング
a, Li/Li対称セル
b,Li3N-Li/Li非対称セル
c,Li3N-Li/Li3N-Li対称セル
d, LixSOCl2-Li/LixSOCl2-Li対称セル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium battery using a lithium ion conductive solid electrolyte.
[0002]
[Prior art]
For secondary batteries used in portable information terminals, there is a strong demand for small and lightweight high energy density batteries that can be used for a long time. In particular, research and development on increasing the energy density of lithium secondary batteries has become active. Yes.
However, most lithium secondary batteries that are currently being developed contain a combustible organic electrolyte, a positive electrode active material that acts as an oxidant, and a negative electrode active material that acts as a reducing agent. Therefore, for example, when the battery is overcharged, metallic lithium is deposited on the negative electrode, and there is a possibility that an unexpected situation such as a short circuit between the positive electrode and the negative electrode may occur. When this happens, the battery generates heat and, in extreme cases, bursts and explodes. From these facts, securing the safety of lithium secondary batteries is becoming an important issue now as the energy density of batteries increases.
As one of the ways to improve the safety of lithium secondary batteries, research on all-solid lithium secondary batteries using non-flammable lithium-ion conductive solid electrolytes instead of flammable organic electrolytes has been conducted. . Various inorganic solid electrolytes have been studied so far, but most of them have an ionic conductivity of 10%. -Five -10 -6 It was S / cm, two to three orders of magnitude lower than the organic electrolyte, and had not been put to practical use. On the other hand, the sulfide-based lithium ion conductive solid electrolyte has an ion conductivity of 10%. -3 S / cm (10 when powdered -Four (S / cm) and the same ionic conductivity as the organic electrolyte. Therefore, the possibility of developing a safe all-solid lithium secondary battery by using this kind of solid electrolyte has been increasing, and its practical application has been desired.
However, such a solid electrolyte having the same ionic conductivity as the organic electrolytic solution and, for example, a positive electrode containing a positive electrode active material such as lithium cobalt oxide, titanium disulfide and the like, and a negative electrode made of carbon or lithium metal or the like Even if a battery is configured to be interposed therebetween, it is difficult to configure a battery having the same operating performance as a lithium battery using a liquid electrolyte.
[0003]
[Problems to be solved by the invention]
As a lithium ion conductive solid electrolyte, for example, in a conventional solid lithium battery in which a lithium sulfide ion conductive solid electrolyte is interposed between a positive electrode and a negative electrode, in charging and discharging the battery, several hundred microamps / cm 2 It works only at low current densities below, and in particular, this phenomenon was even worse below room temperature. In particular, carbon was used as the negative electrode active material, lithium cobalt oxide was used as the positive electrode active material, and Li was used as the sulfide lithium ion conductor. Two S ・ SiS Two ・ LiPO Four In the case where an all-solid lithium battery was constructed using a system solid electrolyte, insertion of lithium into the negative electrode carbon crystal layer hardly occurred in the initial stage of charging, and the charging efficiency was extremely poor. However, the discharge current density is several tens to 100 μA / cm Two When charge / discharge is repeated for about 30 cycles, the charge / discharge efficiency is gradually improved to reach an efficiency close to 100%. The inventor has found that the above phenomenon is caused by the following factors.
That is, Li containing a transition metal such as silicon or germanium as a lithium ion conductive solid electrolyte. Two S ・ SiS Two ・ LiPO Four Glass electrolyte or Li Two S ・ GeS Two ・ P Two S Five When using a crystalline lithium sulphide ion conductor, the transition metals contained in the electrolyte, such as silicon and germanium, are contained electrochemically on the surface of the electron-conductive carbon electrode during charging at a low current density. And reduced the electrochemical reduction and oxidation reaction of lithium ions used for charging and discharging the battery, resulting in poor charging and discharging efficiency. When this reaction is continued, silicon and germanium present in the lithium ion conductive solid electrolyte are reduced on the surface, resulting in dendritic lithium silicon alloy or lithium germanium alloy having electron conductivity. Then, the positive electrode and the negative electrode are short-circuited.
On the other hand, when the battery is charged and discharged at a high current density, lithium ions are electrochemically reduced at sites where current is locally concentrated on the surface of the negative electrode carbon, and lithium metal is deposited. The deposited lithium metal chemically reacts with the sulfur component in the solid electrolyte, where a thin lithium sulfur compound film lacking lithium ion conductivity is chemically formed. As a result, as the charge / discharge cycle is repeated, the carbon surface becomes covered with a film lacking such ion conductivity, and the battery has a good charge / discharge cycle life but cannot be charged / discharged at a high current density. Thus, the ionic conductivity of the lithium ion conductive solid electrolyte used in this type of battery is 10 -3 Despite the excellent S / cm, the charge / discharge current density is reduced by the thin film lacking lithium ion conductivity formed by the chemical reaction between lithium metal deposited on the negative electrode surface and the lithium ion conductive solid electrolyte. The battery had low practicality. In particular, since the ionic conductivity of the coating is low in a temperature range of room temperature or lower, the charge / discharge performance of the battery at room temperature or lower is further deteriorated.
The same applies to the case where metallic lithium is used as the negative electrode. On the surface, a film having poor lithium ion conductivity containing lithium sulfide is automatically formed by contact with a sulfide-based lithium ion conductive solid electrolyte. Is formed. As a result, when an all-solid-state lithium battery using metallic lithium as the negative electrode is configured, charging and discharging of the battery becomes possible only under the condition that the charge / discharge current density is extremely small. If this battery is charged and discharged at a high current density, the lithium ion that has been chemically formed by the contact between the deposited lithium metal and the lithium ion conductive solid electrolyte at the local current concentration point on the negative electrode lithium surface The layer lacking conductivity is locally destroyed, and metallic lithium is gradually deposited in a dendritic manner. Repetition of this phenomenon eventually results in a short circuit between the positive and negative electrodes. The deposition of the dendritic metal is based on the non-uniform action of the current at the electrode interface, and in order to make the non-uniform current flow uniform, an excellent lithium ion conductive electrolyte is used, and A layer capable of blocking the flow of current may be automatically formed on the surface of the deposited lithium metal.
As described above, an object of the present invention is to solve the problem of the conventional all-solid-state lithium battery using the lithium sulfide conductor by forming a sulfide layer generated by the reaction between sulfur and lithium metal in the lithium sulfide conductor. Based on the finding that it is based on, it was intended to provide an all-solid-state lithium battery that is extremely safe and has a high charge / discharge current density with high reliability even in batteries using at least metallic lithium as the negative electrode active material. Things.
[0004]
[Means for Solving the Problems]
A first lithium ion conductive solid electrolyte layer capable of forming a layer having low ion conductivity by chemically reacting with at least metal lithium between the positive electrode and the negative electrode, and a second electrolyte different from the first solid electrolyte layer The thin film layer is provided on the negative electrode side to form an all-solid lithium battery. Here, a sulfide-based lithium ion conductor is used as the first lithium ion conductive solid electrolyte layer, and a transition metal such as silicon, titanium, or germanium is chemically coated on the second electrolyte layer by contact with a metal lithium anode. In order to prevent electrochemical reduction reaction, it is necessary to use a lithium ion conductive solid electrolyte not containing these transition metals, and it is preferable to use lithium nitride, lithium iodide, lithium bromide, lithium thionyl chloride. Compounds, lithium sulfite compounds and the like can be used. Many of these lithium ion conductors generally have low ionic conductivity and decomposition voltage, and are used in a thin film state to constitute a battery having a large charge / discharge current density. Therefore, in the formation of these second lithium ion conductive solid electrolytes, lithium metal as a negative electrode active material is replaced with a gas such as nitrogen gas, chlorine gas, iodine gas, bromine gas, phosphorus trifluoride, sulfurous acid gas or thionyl chloride. It is brought into direct contact with a non-aqueous solution such as a solution to form a thin lithium ion conductive solid electrolyte layer on the lithium surface.
In forming an all-solid lithium battery, first, a sulfide-based lithium ion conductor layer, which is a first lithium ion conductor layer, is brought into pressure contact with a preformed cathode, and then a second lithium ion conductive solid electrolyte is formed. A method is used in which a lithium negative electrode having a thin film formed thereon is pressed into contact to form an all-solid-state battery.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention will be described in detail with reference to FIG. 1 using a coin type battery as an example. In the figure, reference numeral 1 denotes a negative electrode terminal, which also serves as a battery cover, and reference numeral 2 denotes a negative electrode made of lithium metal, which is press-contacted to the battery cover 1 in advance and forms a second lithium ion conductive solid electrolyte layer 3. The second lithium ion conductive solid electrolyte layer is formed by bringing the pressed lithium metal into direct contact with a gas such as nitrogen gas, chlorine gas, iodine gas, bromine gas, phosphorus trifluoride, sulfurous acid gas, or a thionyl chloride solution, A thin lithium ion conductive solid electrolyte layer is formed on the lithium surface. At this time, a lithium metal sheet is brought into contact with the gas or liquid in advance to form the second lithium ion conductor layer 3, and then cut into a desired negative electrode size, which is pressed onto the battery lid 1 and used. Is also good.
Subsequently, the positive electrode 5 is formed using a press die, and the first lithium ion conductive solid electrolyte layer 6 is press-formed on the positive electrode. The positive electrode integrated with the first lithium ion conductive solid electrolyte layer is inserted into the positive electrode terminal / battery container 4 via the polyethylene O-ring 8, and the negative electrode lid 1 press-contacted with lithium is formed using the insulating packing 7. Then, an all-solid lithium battery is produced by pressurizing and sealing.
In this battery, the positive electrode used is an oxide-based active material such as lithium cobalt oxide, lithium nickelate, or lithium manganate; a sulfide-based active material such as titanium disulfide or molybdenum disulfide; an iron phosphate-based active material; Most positive electrode active materials such as iron-based active materials can be used.
When carbon other than lithium metal is used as the negative electrode active material, nitrogen gas, chlorine gas, iodine gas, bromine gas, phosphorus trifluoride, nitrogen gas, chlorine gas, iodine gas, It can be used as a negative electrode by directly contacting a gas such as sulfurous acid gas or a thionyl chloride solution to form a thin film lithium ion conductor layer on lithium metal present on the carbon surface.
When a lithium metal alloy is used as the negative electrode, a second lithium ion conductor layer is provided after metal lithium is placed on the surface of the alloy. For example, a lithium-tin alloy can be used as an alloy by providing lithium metal on the surface of the tin plate in advance by a resistance heating vapor deposition apparatus.
In this battery, in a symmetric cell using lithium / lithium for both electrodes, at the time of charging, electrons are emitted from the lithium metal on the positive electrode side and lithium ions pass through the first and second ion conductive layers, and the lithium negative electrode 2 is charged. Electrons are received at the interface and deposited as lithium metal. In discharge, the reaction proceeds in reverse.
In addition, in an all solid lithium battery using lithium cobaltate as a normal positive electrode active material, at the time of charging, electrons are emitted from lithium cobaltate, and lithium ions are first and second ions from the lithium cobaltate crystal. Electrons are received at the lithium negative electrode 2 interface via the conductive layer, and are deposited as lithium metal. In discharge, the reaction proceeds in reverse.
Generally, in this charge / discharge, a change due to volume expansion occurs at the contact interface between the lithium metal and the first lithium ion conductive solid electrolyte layer. And, depending on the amount of electricity passed per unit area, especially when the thickness of the lithium ion conductive solid electrolyte thin film layer present on the lithium metal surface is uneven, uneven charging / discharging current occurs, and the ion conductor thin film Where the thickness is small, the current is locally concentrated. There, intensive deposition of metallic lithium destroys the first lithium ion conductive solid electrolyte layer, and by repetition, metallic lithium deposits in a dendritic manner, reaches the positive electrode, and the positive and negative electrodes can be short-circuited. Sex is considered.
However, in the configuration of the present invention, even when the metallic lithium is concentrated and deposited at a location where the current is locally concentrated and the second lithium ion conductive solid electrolyte layer is broken, the deposited metallic lithium is the first metallic lithium. It comes into contact with a sulfide-based lithium ion conductor that is a lithium ion conductive solid electrolyte layer. At this contact interface, the deposited metallic lithium reacts with the sulfur contained in the first sulfide-based lithium ion conductor to form a high-resistance layer thin film mainly composed of lithium sulfide lacking in ion conductivity. As a result, the current flow is hindered in that part. This means that the current flow is averaged at the interface where the negative electrode and the first solid electrolyte come into contact with the charge / discharge cycle of the battery, and as a result, the state of precipitation and elution of lithium is extremely uniform. Thus, even if the amount of electricity supplied per unit area is increased, a lithium battery having an excellent charge / discharge cycle life can be obtained. In addition, even if a metal lithium anode is used, the battery can be operated safely.
Here, the method for forming the second lithium ion conductive solid electrolyte layer is as follows. It is also possible to form the second lithium ion conductive solid electrolyte in advance and press-mold those powders before use. is there. However, in this case, when a gap is formed between the joining of the metallic lithium and the second lithium ion conductive solid electrolyte layer, the gaseous sulfur present in the gap causes the lithium sulfide to be formed on the lithium surface in contact with the gap. Is formed. This is a battery having a variation in internal impedance depending on the configuration of the battery. The second lithium ion conductive solid electrolyte layer is for preventing direct contact between the metal lithium and the sulfide, and it is preferable that the second lithium ion conductive solid electrolyte layer is closely bonded to the metal lithium. It is desirable to configure it.
[0006]
【Example】
(Example 1)
In this example, a lithium / lithium metal symmetric cell was constructed using the coin-shaped battery container of FIG. 1 in order to examine the electrochemical reversibility of the lithium electrode. In this embodiment, a lithium metal electrode provided with lithium nitride as a second lithium ion conductive solid electrolyte layer on the surface of metal lithium on both sides of the positive electrode and the negative electrode was used, and 64 Li was used as the first lithium ion conductive solid electrolyte. Two S ・ 35.5SiS Two ・ 0.5LiPO Four Solid electrolyte (ion conductivity, 1.1 × 10 -3 S / cm Two ) Was interposed therebetween to form an all-solid lithium metal symmetric cell. The configuration of the cell is first 1cm in diameter 2 After filling the mold with 50 mg of the first lithium ion conductive solid electrolyte, the mold was pressurized at a pressure of 4 ton to form a disk-shaped electrolyte layer. Pressure bonding was performed with metallic lithium provided with lithium nitride as a lithium ion conductive solid electrolyte layer. The lithium nitride was placed on the lithium metal surface by exposing 1 mm diameter metal lithium in a dry nitrogen gas atmosphere for one hour.
The internal impedance of this cell was 65Ω. The charge / discharge performance of the symmetric cell prepared in this manner was examined at a potential scanning speed of 10 mV / Sec. By the potentiostatic polarization method, and the result is shown in FIG. 2-c.
From the figure, currents of about +400 μA and about −400 μA were observed as currents flowing at polarizations of +25 mV and −25 mV.
Next, 1.3mA / cm Two At a constant current of 5 hours at a constant current density of 6.5 mAh / cm. Two And the cycle behavior was examined. As a result, no change was observed in this cell even after 700 cycles.
In order to examine the effect of the first embodiment, the following comparative experiment was performed.
Comparative experiment 1
In this comparative experiment, a lithium metal control cell was constructed in the same manner as in Example 1 except that a lithium nitride film was formed as a second lithium ion conductive solid electrolyte on the surface of one metallic lithium. The internal impedance of the prepared cell was 750Ω.
The results of the potentiostatic polarization test of this cell are also shown in FIGS. From the figure, currents of about +100 μA and about −100 μA were observed as currents flowing at the polarizations of +50 mV and −50 mV.
Next, 1.3 mA / cm Two Constant current charge and discharge at 1 hour intervals at a current density of 6.5 mAh / cm Two And the cycle behavior was examined. As a result, in this cell, polarization was large and charge / discharge was difficult. Therefore, the charge / discharge current density was set to 250 μA / cm Two , And a charging / discharging interval of 26 hours. As a result, a short circuit phenomenon was observed in about 25 cycles. Comparative experiment 2
In this comparative experiment, a lithium metal control cell was formed in the same manner as in Example 1 without forming the second lithium ion conductive solid electrolyte on the surfaces of both metal lithiums. The internal impedance of the prepared cell was 1,450Ω.
The results of the potentiostatic polarization test of this cell are also shown in FIG. From the figure, currents of about +50 μA and about −50 μA were observed as currents flowing at the polarizations of +50 mV and −50 mV.
Next, 1.3 mA / cm Two Constant current charge and discharge at 1 hour intervals at a current density of 6.5 mAh / cm Two And the cycle behavior was examined. In this cell, polarization was large and charge / discharge was difficult. Therefore, the charge / discharge current density was set to 250 μA / cm Two , And a charging and discharging interval of 26 hours. As a result, a short circuit phenomenon was observed in about 10 cycles.
As described above, considering the results of Example 1, Comparative Experiment 1 and Comparative Experiment 2, FIG. 2-a, FIG. 2-b and FIG. 2-c indicate that the second lithium ion conductivity A cell in which a solid electrolyte is not provided, a cell in which lithium nitride, which is a second lithium ion conductive solid electrolyte, is provided only on one electrode on the surface of lithium metal, and a nitride, in which both electrodes are the second lithium ion conductive solid electrolyte, As is evident from the characteristics of the structure in which lithium is provided on the metal lithium surface, current is extremely unlikely to flow at the electrode where the second lithium ion conductive solid electrolyte is not installed, and the second lithium ion conductive solid electrolyte is installed. This indicates that the current flows extremely well. This clearly indicates that the metal lithium electrode forms a layer having a chemically poor ion conductivity at the contact interface due to the contact of the first lithium ion conductive solid electrolyte, thereby obstructing the flow of current. I can say On the other hand, in a system in which lithium nitride, which is one of the second electrolytes different from the first lithium ion conductive solid electrolyte, is previously provided on the surface of metallic lithium, a layer having poor ionic conductivity is not formed, so that the current is high. It is thought to flow. As a result, 1.3 mA / cm Two It is considered that the effect was exerted also in the cycle behavior when charging and discharging at a constant current at an interval of one hour at a large current density.
In order to further demonstrate the above phenomenon, in Examples 2 to 6, a control cell was constructed in the same manner as in Example 1, except that a lithium ion conductor other than lithium nitride was used as the second lithium ion conductor. The discharge characteristics were mainly investigated.
Example 2)
Example 1 In Example 1, a lithium ion conductive solid electrolyte was used as the second lithium ion conductive solid electrolyte on the surface of metal lithium to form a film presumed to be lithium thionyl chloride by chemically reacting the lithium surface with thionyl chloride. A lithium metal control cell was similarly constructed. Lithium thionyl chloride coating is formed by filling thionyl chloride into a sealed glass container in advance at room temperature, inserting metal lithium into the sealed glass container, removing metal lithium from the thionyl chloride container 30 minutes later, and drying and removing the thionyl chloride solution. did. The internal impedance of the prepared cell was 28Ω. This value is about 1/50 of the internal impedance of the cell using only metallic lithium, which is 1,450Ω, and the internal impedance of the electrode formed with lithium nitride as the second lithium ion conductive electrolyte is 65Ω. It showed a low value.
This is presumed to be due to the difference in ionic conductivity of the second lithium ion conductive electrolyte. That is, the lithium ion conductivity of ordinary lithium nitride is about 10 -5 This is considered to be about S / cm, and on the contrary, it is interpreted that the lithium ion conductivity of lithium thionyl chloride is superior to that of lithium nitride.
FIG. 2D also shows the results of the potentiostatic polarization test of this cell. From the figure, currents of about +1,000 μA and about −1000 μA were observed as currents flowing at polarizations of +25 mV and −25 mV. Since the internal impedance showed a lower value than that of Example 1, the charge / discharge cycle test showed 6.5 mA / cm Two Constant current charge and discharge at 1 hour intervals at a current density of 6.5 mAh / cm Two And the cycle behavior was examined. As a result, no change was observed in this cell even after elapse of 720 cycles.
Example 3)
In this example, a lithium metal symmetric cell was constructed in the same manner as in Example 1, except that a lithium fluoride film was formed as a second lithium ion conductive solid electrolyte on the surface of lithium metal. The lithium fluoride coating was formed by introducing dry fluorine gas into a fluorine furnace constituted by a Monel tube at room temperature, inserting metallic lithium into the container for one hour, and bringing the container into contact with the fluorine gas. The internal impedance of the prepared cell was 350 ohms.
250 μA / cm Two Therefore, the result of the constant current charge / discharge cycle test for 26 hours showed that even after 200 cycles, the behavior was hardly changed, and the metal lithium could be operated stably as the negative electrode.
(Example 4)
In this example, a lithium metal control cell was constructed in the same manner as in Example 1 except that a lithium iodide coating film was formed as a second lithium ion conductive solid electrolyte on the surface of lithium metal. The lithium iodide film was formed by inserting solid iodine into a dry glass container heated to 70 ° C., inserting metal lithium into the container for 3 hours, and bringing the container into contact with iodine gas. The prepared cell had an internal impedance of 110 ohms, about 1/13 that of the cell using the metal lithium electrode, and showed twice the internal impedance of the lithium nitride-treated cell of Example 1. A charge / discharge cycle test was performed in the same manner as in Example 3. The results showed almost the same behavior as in Example 3, and it was found that stable driving was possible even when metallic lithium was used as the negative electrode.
(Example 5)
In this example, a lithium metal control cell was constructed in the same manner as in Example 1, except that a lithium sulfite film was formed as a second lithium ion conductive solid electrolyte on the surface of metallic lithium. The lithium sulfite film was formed by introducing dry sulfur dioxide gas into a sulfur dioxide gas furnace composed of a stainless steel tube at room temperature, inserting metal lithium into the vessel for one hour, and bringing the container into contact with the sulfur dioxide gas. The internal impedance of the prepared cell was 120 ohms, which was about 1/12 of that using a metal lithium electrode. A charge / discharge cycle test was performed in the same manner as in Example 3. The results showed almost the same behavior as in Example 3, and it was found that stable driving was possible even when metallic lithium was used as the negative electrode.
(Example 6)
In this example, a lithium metal control cell was constructed in the same manner as in Example 1 except that a lithium phosphorous fluoride film was formed as a second lithium ion conductive solid electrolyte on the surface of lithium metal. The lithium phosphorous fluoride coating was formed by exposing metallic lithium to an anhydrous organic solvent in which lithium phosphorous hexafluoride was dissolved at room temperature for 12 hours, then taking out the metallic lithium and removing the organic solvent by drying. . The internal impedance of the prepared cell was 320 ohms, which was about 1/4 of that using a lithium metal electrode. A charge / discharge cycle test was performed in the same manner as in Example 3. The results showed almost the same behavior as in Example 3, and it was found that stable driving was possible even when metallic lithium was used as the negative electrode.
As described above, from the results of Examples 1 to 6, the inventors have found that the charge / discharge cycle test at a high current density in Examples 1 and 2 did not show a phenomenon such as an internal short circuit. Is interpreted like this. That is, it is originally difficult to imagine that the distribution of the current density at these electrode interfaces is completely uniform, and it is considered that a local concentration phenomenon of the current should naturally occur there. Naturally, it is considered that lithium metal is strongly deposited locally at a portion where current concentration occurs. The second lithium ion conductive electrolyte layer is destroyed at the site where the lithium metal is strongly deposited, and the lithium metal exposed there is brought into contact with the first sulfide-based lithium ion conductive electrolyte layer to form lithium on the high resistance layer. It is believed that an ionic conductor is formed. It is understood that, by repeating these phenomena on the electrode surface, the current flow is made uniform and the deposited lithium metal is smoothed, so that excellent charge / discharge cycle characteristics are obtained.
That is, in order to operate stably using lithium metal as a negative electrode, the ionic conductivity of the second lithium ion conductive layer is increased by contact between the lithium metal and the first lithium ion conductor, that is, the sulfide-based lithium ion conductor. It is judged that it becomes possible by using a film superior to the film to be formed.
Subsequently, the results of producing all-solid lithium secondary batteries based on these examples are shown in Example 7 and below.
(Example 7)
In this embodiment, lithium cobalt oxide was used as a positive electrode active material, and lithium nitride was formed on the surface of metallic lithium as a negative electrode active material, and 64 Li was used as a first lithium ion conductive solid electrolyte. Two S ・ 35.5SiS Two ・ 0.5LiPO Four An all-solid-state lithium battery was constructed using a solid electrolyte having a composition of When making the positive electrode, LixCoO Two A mixture of 7 w% of the first electrolyte, 2 w% of the first electrolyte, and 1 w% of graphite as a conductive agent, which was sufficiently mixed with a ball meal, was weighed to 60 mg, and the diameter was 1 cm. 2 And molded under pressure at a pressure of 1.5 ton to form a disk-shaped positive electrode. Subsequently, the pressing mold was removed, 50 mg of the first lithium ion conductive solid electrolyte was filled so as to be in contact with the positive electrode, and then pressurized at a pressure of 4 ton to integrally form the positive electrode and the first electrolyte. The positive electrode portion thus prepared was inserted into the battery container 4 via a cylindrical polyethylene ring 8.
The negative electrode metal lithium is 1cm in diameter 2 The thin lithium metal was contacted with dry nitrogen gas for 1 hour, and a lithium nitride layer which was a second lithium ion conductive solid electrolyte layer formed on the surface of the lithium metal was pressed onto the battery lid 1. This battery cover was placed on the prepared battery container and sealed by pressurization to produce a coin-type battery.
[0007]
1.3 mA / cm of the battery thus created Two FIG. 3 shows the charging / discharging behavior when charging / discharging was performed at an interval of 5 hours at the current value shown in FIG. Even if the charge / discharge cycle was performed 500 times, no change was observed in the behavior.
(Comparative experiment 3)
In this experiment, a battery was constructed in the same manner as in Example 7, except that metallic lithium was used as the negative electrode as it was. That is, using lithium cobalt oxide as the positive electrode active material and metallic lithium as the negative electrode active material, 64Li was used as the first lithium ion conductive solid electrolyte. Two S ・ 35.5SiS Two ・ 0.5LiPO Four An all-solid-state lithium battery was constructed using a solid electrolyte having a composition of When making the positive electrode, LixCoO Two A mixture of 7 w% of the first electrolyte, 2 w% of the first electrolyte, and 1 w% of graphite as a conductive agent, which was sufficiently mixed with a ball meal, was weighed to 60 mg, and the diameter was 1 cm. 2 And molded under pressure at a pressure of 1.5 ton to form a disk-shaped positive electrode. Subsequently, the pressing mold was removed, 60 mg of the first lithium ion conductive solid electrolyte was filled so as to be in contact with the positive electrode, and then pressurized at 4 ton pressure to integrally form the positive electrode and the first electrolyte. The positive electrode portion thus prepared was inserted into the battery container 4 via a cylindrical polyethylene ring 8.
On the other hand, as a negative electrode, the diameter is 1 cm. 2 Was pressed to the battery cover 1 as it was. This battery cover was placed on the prepared battery container and sealed by pressurization to produce a coin-type battery. As a result of performing the characteristics of the prepared battery in the same manner as in Example 7, 1.3 mA / cm Two It was difficult to charge and discharge at a current value of. However, the charge / discharge test condition was 1.3 mA / cm Two From 0.25 mA / cm Two As a result, the charging and discharging cycle was about 10 cycles, the battery was short-circuited, and the operation became impossible. This is due to the formation of a layer mainly composed of lithium sulfide lacking ionic conductivity on the surface of lithium metal, where current easily flows locally, where deposition of metal lithium is repeated, and as a result, metal lithium is dendritic from the negative electrode. It was presumed that it precipitated on the positive electrode side and short-circuited.
(Comparative experiment 4)
In this comparative experiment, in Example 7, a lithium nitride thin layer was used as the second lithium ion conductive solid electrolyte. However, almost the same as Example 7 except that lithium nitride powder was used instead of the lithium nitride thin layer. Similarly, a solid battery was prepared.
That is, using lithium cobalt oxide as the positive electrode active material and metallic lithium as the negative electrode active material, 64Li was used as the first lithium ion conductive solid electrolyte. Two S ・ 35.5SiS Two ・ 0.5LiPO Four An all-solid-state lithium battery was constructed using a solid electrolyte having a composition of When making the positive electrode, LixCoO Two A mixture of 7 w% of the first electrolyte, 2 w% of the first electrolyte, and 1 w% of graphite as a conductive agent, which was sufficiently mixed with a ball meal, was weighed to 60 mg, and the diameter was 1 cm. 2 And molded under pressure at a pressure of 1.5 ton to form a disk-shaped positive electrode. Subsequently, the pressing mold was removed, 50 mg of the first lithium ion conductive solid electrolyte was filled so as to be in contact with the positive electrode, and then pressurized at a pressure of 4 ton. Subsequently, the pressing mold was removed, 30 mg of lithium nitride powder was flatly filled in the mold, and then pressurized again at a pressure of 4 tons to integrally form the positive electrode, the first electrolyte layer, and the second electrolyte layer. did. The positive electrode portion thus prepared was inserted into the battery container 4 via a cylindrical polyethylene ring 8. On the other hand, as a negative electrode, a thin metal lithium having a diameter of 1 cm was pressure-bonded to the battery lid 1 as it was. This battery cover was placed over the prepared battery container and sealed by pressurization, thereby preparing a coin-type battery for comparison with Example 7.
1.3 mA / cm Two As a result of examining the charge / discharge characteristics at a current value of 5 hours and a cycle of 5 hours, the charge / discharge cycle of this battery was about 20 cycles, and the battery was short-circuited and became inoperable. This is because the lithium nitride powder formed on the surface of the lithium metal and the lithium metal deposited on the surface of the lithium metal due to the charging of the battery cause the lithium nitride to be a powder. Due to the gas, the part has increased resistance, and apparently the electrode area through which the current has flowed has decreased.As a result, the deposition of metallic lithium has been repeated where the current is more likely to flow locally. From this, it was inferred that they were deposited on the positive electrode side in a dendritic manner and short-circuited.
(Comparative experiment 5)
In this comparative experiment, in Example 7, a lithium nitride thin layer was used as the second lithium ion conductive solid electrolyte, but instead of the lithium nitride thin layer, a lithium ion conductive solid consisting of lithium sulfide and lithium iodide was used. Using an electrolyte powder, 0.24SiS2-0.36Li2S-0.4LiI was synthesized (lithium ion conductivity: 1.6 × 10 −3 S / cm), and a solid battery was prepared in substantially the same manner as in Example 7 except for using the same.
1.3 mA / cm of the battery thus created Two The charging / discharging behavior at the time of charging / discharging at an interval of 5 hours with the current value of was measured. As a result, the charge / discharge cycle was about 20 cycles, the battery was short-circuited, and the operation became impossible. This is because the second lithium ion conductive powder formed on the lithium metal surface and the metal lithium deposited by charging the battery on the lithium metal surface formed the second lithium ion conductive solid electrolyte powder in the same manner as in Comparative Experiment 4. However, it easily exfoliates from lithium, and the sulfur gas present in the space created there increases the resistance of the site, apparently reducing the area of the electrode through which current flows, resulting in more local current flow. At this point, it was presumed that the deposition of metallic lithium was repeated, and as a result, metallic lithium was deposited in a dendritic manner from the negative electrode to the positive electrode side, resulting in a short circuit.
(Example 8)
In this embodiment, the solid state is almost the same as that of Embodiment 7, except that a thin lithium thionyl chloride layer is used instead of the thin lithium nitride layer as the second lithium ion conductive solid electrolyte used in the seventh embodiment. Battery was created.
The lithium thionyl chloride thin layer was formed by subjecting lithium metal thin to exposure treatment in a dry thionyl chloride solution at room temperature for 1 hour. The thus prepared metal lithium thin film having a lithium thionyl chloride thin film layer was cut into a disk shape having a diameter of 1 cm, which was press-fitted to a battery lid, fitted into a battery container in which a positive electrode member was inserted, and pressure-sealed. A solid battery was created. 1.3 mA / cm of the battery thus created Two The charging / discharging behavior at the time of charging / discharging at an interval of 5 hours with the current value of was measured. As a result, almost the same results as in Example 7 were obtained.
(Example 9)
In the present embodiment, the second lithium ion conductive solid electrolyte used in the seventh embodiment is substantially the same as the first embodiment except that a lithium iodide thin layer is used instead of the lithium nitride thin layer. A solid lithium battery was created.
[0008]
0.25 mA / cm of the battery thus created Two The charging / discharging behavior at the time of charging / discharging at a current value of 25 hours was examined. As a result, almost the same results as in Example 7 were obtained even after 150 cycles.
(Example 10)
In the present embodiment, a solid state battery was formed in almost the same manner as in Embodiment 7, except that a lithium sulfite thin layer was used instead of the lithium nitride thin layer as the second lithium ion conductive solid electrolyte used in Embodiment 7. It was created.
The lithium sulfite thin layer was formed by exposing lithium metal thin to dry sulfur dioxide gas at room temperature for 1 hour. The lithium metal thin film provided with the lithium sulfite thin film layer thus formed was cut into a disk shape having a diameter of 1 cm, which was press-fitted to a battery lid, fitted into a battery container in which a positive electrode member was inserted, and pressurized and sealed. Battery was created. 0.5mA / cm of the battery thus created Two The charging / discharging behavior at the time of charging / discharging at an interval of 10 hours at the current value of was measured. As a result, even after the elapse of 110 cycles, almost the same results as in Example 7 were obtained.
(Example 11)
In this embodiment, lithium cobalt oxide is used as the positive electrode active material, metallic lithium having lithium nitride formed on the surface as the negative electrode active material, and Li is used as the first lithium ion conductive solid electrolyte. 3.25 Ge 0.25 P 0.75 S Four An all-solid lithium battery was constructed in exactly the same manner as in Example 7, except that a crystalline thiolysicon solid electrolyte consisting of That is, when producing the positive electrode, LixCoO Two , 7 w% of the first electrolyte, 2 w% of tilicicon, and 1 w% of graphite as a conductive agent, which were sufficiently mixed with a ball meal, weighed 60 mg, and weighed 1 cm in diameter. 2 , And press-molded at a pressure of 1.5 ton to form a disk-shaped positive electrode. Subsequently, the stamping die was removed, 60 mg of the first lithium ion conductive solid electrolyte was filled so as to be in contact with the positive electrode, and then pressurized at a pressure of 4 ton to integrally form the positive electrode and the first electrolyte. The positive electrode portion thus prepared was inserted into the battery container 4 via a cylindrical polyethylene ring 8.
On the other hand, as a negative electrode, the diameter is 1 cm. 2 The lithium metal thin film was contacted with dry nitrogen gas for 2 hours, and a lithium nitride layer which was a second lithium ion conductive solid electrolyte layer formed on the surface of the metal lithium was pressed onto the battery lid 1. This battery cover was put on the prepared battery container and sealed by pressurization, thereby producing a coin-type battery.
[0009]
1.3 mA / cm Two A constant current charge / discharge cycle test for 5 hours was performed at a current value of. As a result, almost the same results as in Example 7 were obtained even after 350 cycles.
As described above, according to the various embodiments of the present invention, the formation of the second lithium ion conductor in the form of a thin film on the surface of the negative electrode lithium metal is effective in enabling charge / discharge cycles and charge / discharge at a high current density. It was found. Of course, when carbon is used as the negative electrode, lithium is inserted in advance in the carbon layer using butyllithium, and the carbon is coated with the second lithium ion conductor on the surface by the method described in the embodiment. Obviously, it is possible to form an all-solid-state lithium battery having excellent charge / discharge performance by providing such a battery, and it is natural that the battery is included in the category of the present invention. In the same manner, it is also possible to use a mixture of an oxide-based lithium ion conductor and a sulfide lithium ion conductor as the first lithium ion-conductive solid electrolyte layer. It is not limited.
[0010]
【The invention's effect】
The all-solid-state lithium battery according to the present invention can operate at a high charging / discharging current density, which cannot be achieved by a conventional solid-state battery. Since the battery can be used as a highly reliable and highly reliable power source, a battery having high industrial commercial value can be provided.
[Brief description of the drawings]
[Figure 1] Schematic diagram of test coin-type battery
FIG. 2 Polarization characteristics of lithium electrode
FIG. 3 Charging / discharging behavior of an all-solid lithium battery
[Explanation of symbols]
1. Battery cover (negative electrode terminal), 2. Lithium metal (negative electrode),
3. Second lithium ion conductive solid electrolyte, 4. Battery container (positive electrode terminal), 5. Positive electrode, 6. First lithium ion conductive solid electrolyte, 7. Polyethylene packing, 8. Polyethylene O-ring
a, Li / Li symmetric cell
b, Li3N-Li / Li asymmetric cell
c, Li3N-Li / Li3N-Li symmetric cell
d, LixSOCl2-Li / LixSOCl2-Li symmetric cell

Claims (4)

正極と負極の間にリチウムイオン伝導性固体電解質を介在させてなる全固体リチウム電池において、リチウムイオン伝導性固体電解質が2種以上のリチウムイオン伝導性固体電解質の層からなり、第1のリチウムイオン伝導性固体電解質の層は金属リチウムと化学的に反応し、第1および第2のリチウムイオン伝導性固体電解質のイオン伝導性に比較し、イオン伝導性の低い層を形成しうるリチウムイオン伝導性固体電解質であり、第2のリチウムイオン伝導性固体電解質層は、第1のリチウムイオン伝導性固体電解質とは化学的に反応しないものであり、該電解質は、予めリチウム金属表面に形成させて負極を用いて構成した全固体リチウム電池。In an all-solid lithium battery having a lithium ion conductive solid electrolyte interposed between a positive electrode and a negative electrode, the lithium ion conductive solid electrolyte comprises two or more lithium ion conductive solid electrolyte layers, The conductive solid electrolyte layer chemically reacts with metallic lithium to form a layer having a low ion conductivity compared to the ion conductivity of the first and second lithium ion conductive solid electrolytes. The second lithium ion conductive solid electrolyte layer is a solid electrolyte and does not chemically react with the first lithium ion conductive solid electrolyte. All-solid-state lithium battery configured using. 請求項1記載の第1のリチウムイオン伝導性固体電解質が硫化物系リチウムイオン伝導性固体電解質であり、該電解質は非晶質系リチウムイオン伝導性固体電解質、結晶性リチウムイオン伝導体、あるいはこれらイオン伝導性固体電解質の混合物である事を特徴とする請求項1記載の全固体リチウム電池The first lithium ion conductive solid electrolyte according to claim 1 is a sulfide-based lithium ion conductive solid electrolyte, and the electrolyte is an amorphous lithium ion conductive solid electrolyte, a crystalline lithium ion conductor, or a lithium ion conductive solid electrolyte. 2. The all-solid lithium battery according to claim 1, wherein the battery is a mixture of an ion-conductive solid electrolyte. 請求項1記載および2記載の金属リチウム表面に設置する第2のリチウムイオン伝導性固体電解質が、リチウムと気体もしくは液体状化学物質との直接触により生成可能なリチウムイオン伝導性固体電解質薄膜である事を特徴とする全固体リチウム固体電池。The second lithium ion conductive solid electrolyte provided on the metal lithium surface according to claim 1 or 2, is a lithium ion conductive solid electrolyte thin film that can be generated by direct contact of lithium with a gaseous or liquid chemical substance. All-solid-state lithium solid-state battery characterized by the following. 請求項1、請求項2および請求項3記載のリチウム表面に設置する第2のリチウムイオン伝導性固体電解質として、窒化リチウム、沃化リチウム、フッ化リチウム、塩化チオニルリチウム、亜硫酸リチウム、リチウムフッ化燐またはこれらリチウム塩から形成される誘導体材料群から選ばれるリチウムイオン伝導体薄膜を用いたことを特徴とする全固体リチウム電池。As the second lithium ion conductive solid electrolyte provided on the lithium surface according to claim 1, claim 2, lithium nitride, lithium iodide, lithium fluoride, lithium thionyl chloride, lithium sulfite, lithium fluoride An all-solid lithium battery using a lithium ion conductor thin film selected from phosphorus or a derivative material group formed from these lithium salts.
JP2002372272A 2002-12-24 2002-12-24 All solid lithium battery Pending JP2004206942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372272A JP2004206942A (en) 2002-12-24 2002-12-24 All solid lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372272A JP2004206942A (en) 2002-12-24 2002-12-24 All solid lithium battery

Publications (1)

Publication Number Publication Date
JP2004206942A true JP2004206942A (en) 2004-07-22

Family

ID=32810923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372272A Pending JP2004206942A (en) 2002-12-24 2002-12-24 All solid lithium battery

Country Status (1)

Country Link
JP (1) JP2004206942A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034709A1 (en) * 2005-09-21 2007-03-29 Sumitomo Electric Industries, Ltd. Thin film lithium battery
JP2009004133A (en) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd Battery, and manufacturing method thereof
JP2009193803A (en) * 2008-02-14 2009-08-27 Toyota Motor Corp All-solid lithium secondary battery
JP2009259503A (en) * 2008-04-15 2009-11-05 Sumitomo Electric Ind Ltd Battery structure and lithium battery using it
WO2010125467A1 (en) 2009-05-01 2010-11-04 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
WO2011010552A1 (en) * 2009-07-22 2011-01-27 住友電気工業株式会社 Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
WO2011043267A1 (en) * 2009-10-05 2011-04-14 住友電気工業株式会社 Non-aqueous electrolyte cell
JP2011134675A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Electrode layer, solid electrolyte layer, and full-solid secondary battery
JP2013062235A (en) * 2011-08-25 2013-04-04 Kyocera Corp Secondary battery and method for manufacturing the same
WO2014010043A1 (en) * 2012-07-11 2014-01-16 トヨタ自動車株式会社 All-solid-state battery, and production method therefor
JP2014504428A (en) * 2010-12-01 2014-02-20 ハイドロ−ケベック Lithium air battery
JP2015032535A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
JP2015056349A (en) * 2013-09-13 2015-03-23 富士通株式会社 Lithium battery
US9166253B2 (en) 2012-12-06 2015-10-20 Samsung Electronics Co., Ltd. Solid-state battery
CN105556719A (en) * 2013-09-27 2016-05-04 于利奇研究中心有限公司 Method for producing electrochemical cells of a solid-state battery
US9413034B2 (en) 2011-07-27 2016-08-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid battery
JP2019057399A (en) * 2017-09-20 2019-04-11 株式会社東芝 Solid electrolyte separator, secondary battery, battery pack, and vehicle
JP2019220487A (en) * 2019-09-25 2019-12-26 古河機械金属株式会社 Solid electrolyte material, lithium ion battery, and method of manufacturing solid electrolyte material
US10522872B2 (en) 2015-10-30 2019-12-31 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
WO2020091448A1 (en) * 2018-10-31 2020-05-07 주식회사 엘지화학 Lithium secondary battery
WO2020230396A1 (en) * 2019-05-15 2020-11-19 パナソニックIpマネジメント株式会社 Battery
US10892459B2 (en) 2016-04-25 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Battery
CN112234185A (en) * 2020-10-28 2021-01-15 珠海冠宇电池股份有限公司 Positive pole piece and application thereof
JPWO2021145312A1 (en) * 2020-01-16 2021-07-22
WO2021153916A1 (en) * 2020-01-31 2021-08-05 Samsung Sdi Co., Ltd. All-solid secondary battery and method of preparing same
WO2022080628A1 (en) * 2020-10-12 2022-04-21 삼성에스디아이주식회사 All-solid-state secondary battery and manufacturing method therefor
KR20230009312A (en) 2021-07-08 2023-01-17 도요타 지도샤(주) All-solid-state battery and manufacturing method for all-solid-state battery
US11978852B2 (en) 2018-10-31 2024-05-07 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11984552B2 (en) 2018-11-16 2024-05-14 Samsung Electronics Co., Ltd. Phase-transition solid electrolyte material and all solid secondary battery including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108666A (en) * 1981-12-21 1983-06-28 Hitachi Maxell Ltd Solid electrolyte battery
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
US5314765A (en) * 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
JPH06338345A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Full solid lithium battery
JPH09505932A (en) * 1993-11-26 1997-06-10 モトローラ・インコーポレイテッド Multilayered electrolyte and electrochemical cell using the same
JPH10302776A (en) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd Totally solid lithium secondary battery
WO2000033409A1 (en) * 1998-12-03 2000-06-08 Sumitomo Electric Industries, Ltd. Lithium storage battery
JP2001351615A (en) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode
WO2004036669A2 (en) * 2002-10-15 2004-04-29 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108666A (en) * 1981-12-21 1983-06-28 Hitachi Maxell Ltd Solid electrolyte battery
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH06338345A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Full solid lithium battery
US5314765A (en) * 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
JPH09505932A (en) * 1993-11-26 1997-06-10 モトローラ・インコーポレイテッド Multilayered electrolyte and electrochemical cell using the same
JPH10302776A (en) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd Totally solid lithium secondary battery
WO2000033409A1 (en) * 1998-12-03 2000-06-08 Sumitomo Electric Industries, Ltd. Lithium storage battery
JP2001351615A (en) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode
WO2004036669A2 (en) * 2002-10-15 2004-04-29 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034709A1 (en) * 2005-09-21 2007-03-29 Sumitomo Electric Industries, Ltd. Thin film lithium battery
US7618744B2 (en) 2005-09-21 2009-11-17 Sumitomo Electric Industries, Ltd. Thin film lithium battery
JP2009004133A (en) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd Battery, and manufacturing method thereof
JP2009193803A (en) * 2008-02-14 2009-08-27 Toyota Motor Corp All-solid lithium secondary battery
JP2009259503A (en) * 2008-04-15 2009-11-05 Sumitomo Electric Ind Ltd Battery structure and lithium battery using it
WO2010125467A1 (en) 2009-05-01 2010-11-04 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
US8968939B2 (en) 2009-05-01 2015-03-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
WO2011010552A1 (en) * 2009-07-22 2011-01-27 住友電気工業株式会社 Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
WO2011043267A1 (en) * 2009-10-05 2011-04-14 住友電気工業株式会社 Non-aqueous electrolyte cell
JP2011134675A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Electrode layer, solid electrolyte layer, and full-solid secondary battery
US11398656B2 (en) 2010-12-01 2022-07-26 Hydro-Quebec Lithium-air battery
JP2014504428A (en) * 2010-12-01 2014-02-20 ハイドロ−ケベック Lithium air battery
US9413034B2 (en) 2011-07-27 2016-08-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid battery
JP2013062235A (en) * 2011-08-25 2013-04-04 Kyocera Corp Secondary battery and method for manufacturing the same
US9843071B2 (en) 2012-07-11 2017-12-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and method for manufacturing the same
WO2014010043A1 (en) * 2012-07-11 2014-01-16 トヨタ自動車株式会社 All-solid-state battery, and production method therefor
JPWO2014010043A1 (en) * 2012-07-11 2016-06-20 トヨタ自動車株式会社 All solid state battery and manufacturing method thereof
US9166253B2 (en) 2012-12-06 2015-10-20 Samsung Electronics Co., Ltd. Solid-state battery
JP2015032535A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
JP2015056349A (en) * 2013-09-13 2015-03-23 富士通株式会社 Lithium battery
CN105556719A (en) * 2013-09-27 2016-05-04 于利奇研究中心有限公司 Method for producing electrochemical cells of a solid-state battery
JP2016532244A (en) * 2013-09-27 2016-10-13 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing electrochemical cell of solid state battery
US10763549B2 (en) 2013-09-27 2020-09-01 Forschungzentrum Juelich Gmbh Method for producing electrochemical cells of a solid-state battery
US10522872B2 (en) 2015-10-30 2019-12-31 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
US10892459B2 (en) 2016-04-25 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2019057399A (en) * 2017-09-20 2019-04-11 株式会社東芝 Solid electrolyte separator, secondary battery, battery pack, and vehicle
WO2020091448A1 (en) * 2018-10-31 2020-05-07 주식회사 엘지화학 Lithium secondary battery
US11978852B2 (en) 2018-10-31 2024-05-07 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11984552B2 (en) 2018-11-16 2024-05-14 Samsung Electronics Co., Ltd. Phase-transition solid electrolyte material and all solid secondary battery including the same
WO2020230396A1 (en) * 2019-05-15 2020-11-19 パナソニックIpマネジメント株式会社 Battery
CN113557621B (en) * 2019-05-15 2024-08-20 松下知识产权经营株式会社 Battery cell
JP7499454B2 (en) 2019-05-15 2024-06-14 パナソニックIpマネジメント株式会社 battery
CN113557621A (en) * 2019-05-15 2021-10-26 松下知识产权经营株式会社 Battery with a battery cell
JP2019220487A (en) * 2019-09-25 2019-12-26 古河機械金属株式会社 Solid electrolyte material, lithium ion battery, and method of manufacturing solid electrolyte material
JPWO2021145312A1 (en) * 2020-01-16 2021-07-22
JP7306493B2 (en) 2020-01-16 2023-07-11 株式会社村田製作所 solid state battery
WO2021145312A1 (en) * 2020-01-16 2021-07-22 株式会社村田製作所 Solid-state battery
US11923502B2 (en) 2020-01-31 2024-03-05 Samsung Sdi Co., Ltd. All-solid secondary battery and method of preparing same
WO2021153916A1 (en) * 2020-01-31 2021-08-05 Samsung Sdi Co., Ltd. All-solid secondary battery and method of preparing same
WO2022080628A1 (en) * 2020-10-12 2022-04-21 삼성에스디아이주식회사 All-solid-state secondary battery and manufacturing method therefor
CN112234185B (en) * 2020-10-28 2022-08-30 珠海冠宇电池股份有限公司 Positive pole piece and application thereof
CN112234185A (en) * 2020-10-28 2021-01-15 珠海冠宇电池股份有限公司 Positive pole piece and application thereof
KR20230009312A (en) 2021-07-08 2023-01-17 도요타 지도샤(주) All-solid-state battery and manufacturing method for all-solid-state battery

Similar Documents

Publication Publication Date Title
JP2004206942A (en) All solid lithium battery
Peled et al. The effect of binders on the performance and degradation of the lithium/sulfur battery assembled in the discharged state
JP5356240B2 (en) Rechargeable electrochemical cell
JP3340515B2 (en) Lithium battery
US20130309580A1 (en) Coated active material, battery, and method for producing coated active material
CN103151554B (en) Lithium-sulfur cell
JP2001052733A (en) Entirely solid lithium secondary battery
Sun et al. Hydrogen bond shielding effect for high‐performance aqueous zinc ion batteries
Kimura et al. Improvement of the cyclability and coulombic efficiency of Li-ion batteries using Li [Ni0. 8Co0. 15Al0. 05] O2 cathode containing an aqueous binder with pressurized CO2 gas treatment
JP2009193803A (en) All-solid lithium secondary battery
JP2016027562A (en) Manufacturing method and manufacturing apparatus of secondary battery
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
JP2017174827A (en) Sodium secondary battery
Tang et al. Advances in Rechargeable Li-S Full Cells
Jung et al. Toward achieving high kinetics in anodeless Li2S battery: Surface modification of Cu current collector
Bhujbal et al. Recent Advances in Prelithiation of Si Anode: Enhanced Strategy for Boosting Practicability of Li-Ion Battery
JPH08203482A (en) Whole solid lithium battery
JP3721734B2 (en) Non-aqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
CN201536138U (en) Lithium-sulfur battery
Mathew et al. Limitations of Polyacrylic Acid Binders When Employed in Thick LNMO Li-ion Battery Electrodes
JP2005026091A (en) Nonaqueous electrolyte battery
Li et al. Three Birds with One Stone: Multifunctional Separators Based on SnSe Nanosheets Enable High‐Performance Li‐, Na‐and K‐Sulfur Batteries
JPH07320720A (en) Electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317