WO2020091448A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2020091448A1
WO2020091448A1 PCT/KR2019/014570 KR2019014570W WO2020091448A1 WO 2020091448 A1 WO2020091448 A1 WO 2020091448A1 KR 2019014570 W KR2019014570 W KR 2019014570W WO 2020091448 A1 WO2020091448 A1 WO 2020091448A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte layer
electrolyte
lithium
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2019/014570
Other languages
French (fr)
Korean (ko)
Inventor
박은경
장민철
윤석일
손병국
박창훈
김도연
정보라
함예린
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/040,500 priority Critical patent/US20210028484A1/en
Priority to EP19879111.3A priority patent/EP3754760A4/en
Priority to CN201980018114.XA priority patent/CN111837257B/en
Priority claimed from KR1020190137128A external-priority patent/KR102328260B1/en
Publication of WO2020091448A1 publication Critical patent/WO2020091448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery of a negative electrode free (negative electrode free) structure comprising an electrolyte having a differential ion conductivity.
  • Lithium metal has a low redox potential (-3.045V for a standard hydrogen electrode) and a high weight energy density (3,860mAhg -1 ), and is expected to be a negative electrode material for a high-capacity secondary battery.
  • lithium metal when lithium metal is used as a negative electrode of a battery, a battery is generally prepared by attaching lithium foil on a planar current collector.
  • Lithium is an alkali metal, and since it is highly reactive, it reacts explosively with water and reacts with oxygen in the atmosphere. Therefore, it is difficult to manufacture and use in a general environment.
  • lithium metal when lithium metal is exposed to the atmosphere, it has an oxide film such as LiOH, Li 2 O, Li 2 CO 3 as a result of oxidation. When a native oxide layer is present on the surface, the oxide film acts as an insulating film to lower electrical conductivity and inhibit smooth movement of lithium ions, thereby increasing electrical resistance.
  • the present inventors conducted various studies, and as a result, lithium ions transferred from the positive electrode active material by charging after battery assembly so as to fundamentally block the contact of the lithium metal with the atmosphere when assembling the battery are negative electrode collectors.
  • a negative electrode free battery structure capable of forming a lithium metal layer on the whole was designed, and a composition of a positive electrode active material capable of stably forming the lithium metal layer was developed.
  • a lithium secondary battery has been developed that can suppress the growth of dendrites due to the difference in ion conductivity.
  • an object of the present invention is to provide a lithium secondary battery with improved performance and lifespan by solving problems caused by reactivity of lithium metal and problems occurring during assembly.
  • the present invention in a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
  • the electrolyte includes a first electrolyte layer facing the negative electrode, a second electrolyte layer positioned on the first electrolyte layer and facing the positive electrode,
  • the first electrolyte layer has a higher ionic conductivity than the second electrolyte layer
  • a lithium secondary battery in which lithium ions are moved from the positive electrode by charging to form lithium metal on the negative electrode current collector in the negative electrode.
  • the lithium secondary battery according to the present invention is coated in a state of being blocked from the atmosphere through the process of forming a lithium metal layer on the negative electrode current collector, so it is possible to suppress the formation of a surface oxide film due to oxygen and moisture in the atmosphere of the lithium metal, , As a result, the cycle life characteristics are improved.
  • FIG. 1 is a schematic view of a lithium secondary battery manufactured according to the present invention.
  • FIG. 2 is a schematic view after the initial charging of the lithium secondary battery manufactured according to the present invention is completed.
  • FIG. 3 schematically shows the structure and mechanism of a conventional lithium secondary battery.
  • Figure 4 schematically shows the structure and mechanism of the lithium secondary battery of the present invention.
  • a layer When a layer is referred to herein as being "on" another layer or substrate, it may be formed directly on another layer or substrate, or a third layer may be interposed between them.
  • directional expressions such as upper, upper (second), and upper surfaces may be understood as meanings of lower, lower (second), and lower surfaces according to the standard. That is, the expression of the spatial direction should be understood as a relative direction and should not be construed as limiting the absolute direction.
  • the present invention in a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
  • the electrolyte includes a first electrolyte layer facing the negative electrode, a second electrolyte layer positioned on the first electrolyte layer and facing the positive electrode,
  • the first electrolyte layer has a higher ionic conductivity than the second electrolyte layer
  • It relates to a lithium secondary battery in which lithium ions move from the positive electrode by charging to form lithium metal on the negative electrode current collector in the negative electrode.
  • FIG. 1 is a cross-sectional view of a lithium secondary battery manufactured according to a first embodiment of the present invention, a positive electrode including a positive electrode current collector 11 and a positive electrode mixture 13; Cathode current collector 21; A first electrolyte layer 31 facing the cathode; And a second electrolyte layer 33 positioned on the first electrolyte layer and facing the anode.
  • the negative electrode of the lithium secondary battery is usually formed on the negative electrode current collector 21, but in the present invention, only the negative electrode current collector 21, the first electrolyte layer 31 and the second electrolyte layer 33 are used. After assembling into a negative electrode free battery structure, lithium ions released from the positive electrode mixture 13 by charging are used as a negative electrode mixture between the negative electrode current collector 21 and the first electrolyte layer 31. (Not shown) to form a negative electrode having a configuration of a known negative electrode current collector / cathode mixture to form a conventional lithium secondary battery.
  • a lithium metal layer may be formed inside the first electrolyte layer 31 formed on the negative electrode current collector 21.
  • the lithium secondary battery may be a negative electrode-free battery in which a negative electrode is not formed on the negative electrode current collector during initial assembly, or a negative electrode may be formed on the negative electrode current collector depending on use. It may be a concept including all batteries.
  • the form of lithium metal formed as a negative electrode mixture on the negative electrode current collector is a form in which lithium metal is formed in a layer, and a porous structure in which lithium metal is not formed in a layer (for example, lithium metal It includes all of the structures aggregated in the form of particles).
  • the present invention will be described based on the shape of the lithium metal layer 23 in which the lithium metal is formed as a layer, but it is clear that this description does not exclude a structure in which the lithium metal is not formed as a layer.
  • FIG. 2 is a schematic diagram after initial charging of a lithium secondary battery manufactured according to the first embodiment of the present invention is completed.
  • lithium ions are released from the positive electrode mixture 13 in the positive electrode 10, which is second. It passes through the electrolyte layer 33 and the first electrolyte layer 31 and moves toward the negative electrode current collector 21, and forms a lithium metal layer 23 made of purely lithium on the negative electrode current collector 21 to form a negative electrode. (20).
  • Formation of the lithium metal layer 23 through such charging may be performed by adjusting the interfacial characteristics as compared to the negative electrode sputtering the lithium metal layer 23 on the conventional negative electrode current collector 21 or laminating the lithium foil and the negative electrode current collector 21. It has the advantage of being very easy.
  • the lithium metal is formed in a negative electrode free battery structure and there is no exposure to lithium metal in the air during the battery assembly process, problems such as the formation of an oxide film on the surface due to the high reactivity of the lithium itself and the decrease in the life of the lithium secondary battery accordingly. It can be blocked at the source.
  • the negative electrode current collector 21 constituting the negative electrode is generally made to a thickness of 3 to 50 ⁇ m.
  • the negative electrode current collector 21 in which the lithium metal layer 23 can be formed by charging is not particularly limited as long as it has conductivity without causing a chemical change in the lithium secondary battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector 21 may be used in various forms, such as a film, sheet, foil, net, porous body, foam, non-woven fabric, etc. with fine irregularities formed on the surface.
  • the electrolyte of the lithium secondary battery according to the present invention includes a first electrolyte layer and a second electrolyte layer, the first electrolyte layer faces the negative electrode, and a second electrolyte layer is located on the first electrolyte layer, 2 The electrolyte layer faces the anode.
  • the first electrolyte layer has a higher ionic conductivity than the second electrolyte layer.
  • the ion conductivity of the first electrolyte layer is 10 -5 to 10 -2 S / cm, and the ion conductivity of the second electrolyte layer may be 10 -6 to 10 -3 S / cm. .
  • the difference in ionic conductivity between the first electrolyte layer and the second electrolyte layer may be 2 to 10 4 times, and more preferably 10 to 100 times.
  • the first electrolyte layer of the present invention has a lower strength than the second electrolyte layer.
  • the strength of the first electrolyte layer may be 10 5 Pa or less, and the strength of the second electrolyte layer may exceed 10 5 Pa.
  • the strength of the first electrolyte layer may be 10 to 10 4 Pa, and the strength of the second electrolyte layer may be 10 6 to 10 10 Pa.
  • the present inventors have made great efforts to solve the above problems, and when the first electrolyte layer has a higher ionic conductivity than the second electrolyte layer, even if a defect occurs in the first electrolyte layer, lithium ions are not concentrated in the defect site. Without (FIG. 3), lithium is plated through the first electrolyte layer around the defect generating unit having higher ion conductivity (FIG. 4), thereby discovering that rapid growth of lithium dendrites can be prevented, thereby completing the present invention. Did.
  • the electrolyte of the lithium secondary battery of the present invention is characterized in that the ion conductivity of the first electrolyte layer (or protective layer) facing the negative electrode is higher than that of the second electrolyte layer.
  • the protective layer is capable of moving lithium ions and must satisfy a condition in which current does not flow, so it can be understood as an electrolyte layer. Therefore, in the present invention, the first electrolyte layer is also defined as having a function of a protective layer.
  • At least one of the first electrolyte layer and the second electrolyte layer is characterized by being a semi-solid electrolyte or a solid electrolyte. This is because, in the case of all liquids, it is difficult to obtain the desired effect in the present invention by mixing the first electrolyte layer and the second electrolyte layer.
  • the first electrolyte layer may have a thickness of 0.1 to 20 ⁇ m, preferably 0.1 to 10 ⁇ m. If the thickness is less than 0.1 ⁇ m, it may be difficult to perform a function as a protective layer, and when the thickness exceeds 20 ⁇ m, the interface resistance may be increased to cause deterioration of battery characteristics.
  • the second electrolyte layer may have a thickness of 0.1 to 50 ⁇ m, preferably 0.1 to 30 ⁇ m. If the thickness is less than 0.1 ⁇ m, it may be difficult to function as an electrolyte, and when the thickness is greater than 50 ⁇ m, the interface resistance may be increased, resulting in deterioration of battery characteristics.
  • the electrolyte may further include one or more electrolyte layers formed on the second electrolyte layer.
  • the ionic conductivity of the one or more electrolyte layers may be higher than that of the first electrolyte layer. Rather, when the ion conductivity is higher, the driving performance of the battery may be further improved. This is because the object of the present invention can be achieved from the ionic conductivity relationship between the first electrolyte layer and the second electrolyte layer.
  • the electrolyte layer facing the anode may have a feature that has higher ionic conductivity than the second electrolyte layer.
  • the electrolyte layer facing the anode may have an ionic conductivity of 10 -5 to 10 -2 S / cm, and 10 -4 to 10 It is more preferable that it is -2 S / cm.
  • At least one electrolyte layer formed on the second electrolyte layer is composed of one electrolyte layer, and the electrolyte layer may be in a form facing an anode.
  • the electrolyte of the present invention may be in a state in which a separator is interposed between the electrolytes.
  • the separator may be interposed in a form impregnated with electrolyte.
  • the separator may be formed on the second electrolyte layer. However, it is not limited to this form.
  • the first electrolyte layer when considering the function as a protective layer, may be preferably formed of a semi-solid electrolyte or a solid electrolyte.
  • a semi-solid electrolyte and the solid electrolyte if the ionic conductivity conditions defined above are satisfied, those known in the art may be used without limitation.
  • the second electrolyte layer may be formed of a liquid electrolyte, a semi-solid electrolyte or a solid electrolyte.
  • a liquid electrolyte, a semi-solid electrolyte, and the solid electrolyte satisfy the ionic conductivity condition defined above, an electrolyte known in the art may be used without limitation.
  • liquid electrolyte, semi-solid electrolyte, and solid electrolyte may be, for example, in the following form, but are not limited thereto.
  • the non-aqueous electrolyte containing a lithium salt is composed of a lithium salt and an electrolyte, and a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte may be used as the electrolyte.
  • the lithium salt of the present invention is a material that is soluble in a non-aqueous organic solvent, such as LiNO 3 , LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiClO 4 , LiAlCl 4 , Li (Ph) 4 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SFO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , lithium chloroborane, lower aliphatic lithium carboxylate, lithium 4-phenyl borate, lithium imide, and combinations thereof One or more from the group consisting of.
  • a non-aqueous organic solvent such as Li
  • the concentration of the lithium salt is 0.2 to 3 M, depending on several factors, such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the conditions for charging and discharging the cell, the working temperature and other factors known in the lithium battery field. Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. When used below 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration of electrolyte performance, and when used above 3 M, the viscosity of the electrolyte may increase and mobility of lithium ions (Li + ) may decrease.
  • the non-aqueous organic solvent must dissolve a lithium salt well, and such non-aqueous organic solvents include, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate.
  • organic solid electrolyte examples include, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, and ionic dissociation groups. Including polymers and the like can be used.
  • the inorganic solid electrolyte for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO Li-nitrides, halides, sulfates, etc., such as 4 -LiI-LiOH, Li 3 PO4-Li 2 S-SiS 2 can be used.
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc.
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, or carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-ethylene) carbonate), PRS (Propene sultone), FPC (Fluoro-propylene carbonate), and the like.
  • the positive electrode mixture 13 may use various positive electrode active materials depending on the type of battery, and the positive electrode active material used in the present invention is not particularly limited as long as it is a material capable of absorbing and releasing lithium ions. Lithium transition metal oxide is typically used as a positive electrode active material capable of realizing a battery having excellent discharge efficiency.
  • lithium transition metal oxide a layered compound such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) containing two or more transition metals and substituted with one or more transition metals; Lithium manganese oxide substituted with one or more transition metals; Lithium nickel-based oxide; Spinel lithium nickel manganese composite oxide; Spinel-based lithium manganese oxide in which a part of Li in the formula is substituted with alkaline earth metal ions; And olivine-based lithium metal phosphate; And the like, but is not limited to these.
  • lithium cobalt oxide LiCoO 2
  • lithium nickel oxide LiNiO 2
  • Lithium manganese oxide substituted with one or more transition metals Lithium nickel-based oxide
  • Spinel lithium nickel manganese composite oxide Spinel-based lithium manganese oxide in which a part of Li in the formula is substituted with alkaline earth metal ions; And olivine-based lithium metal phosphate; And the like, but
  • the above-described lithium transition metal oxide is used as a positive electrode active material 13 together with a binder and a conductive material as a positive electrode active material.
  • the lithium source for forming the lithium metal layer 23 in the negative electrode free battery structure of the present invention becomes the lithium transition metal oxide. That is, when the lithium ions in the lithium transition metal oxide are charged in a specific range of voltage, lithium ions are desorbed to form the lithium metal layer 23 on the negative electrode current collector 21.
  • lithium ions in the lithium transition metal oxide do not easily generate desorption on their own, or there is no lithium that can be related to charge and discharge at the operating voltage level, so that the formation of the lithium metal layer 23 is very difficult, and the lithium transition metal oxide When only the bay is used, the irreversible capacity is greatly reduced, causing a problem that the capacity and life characteristics of the lithium secondary battery are lowered.
  • the initial charge capacity is 200 mAh / g or more when one charge is performed at 0.01 to 0.2C in a voltage range of 4.5V to 2.5V
  • a lithium metal compound which is a high irreversible material having an initial irreversible of 30% or more is used together.
  • the term 'high irreversible material' referred to in the present invention may be used in the same way as 'large capacity irreversible material' in other terms, which is the irreversible capacity ratio of the first cycle of charge / discharge, that is, "(first cycle charge capacity-first cycle discharge capacity).
  • First cycle charge capacity "means a large material. That is, the highly irreversible material may irreversibly provide excessive lithium ions during the first cycle of charging and discharging.
  • the lithium transition metal compound capable of occluding and releasing lithium ions may be a positive electrode material having a large irreversible capacity (first cycle charge capacity-first cycle discharge capacity) of the first cycle of charge and discharge.
  • the irreversible capacity of the positive electrode active material used is about 2 to 10% of the initial charge capacity, but in the present invention, the lithium metal compound which is a high irreversible material, that is, the initial irreversible capacity is 30% or more of the initial charge capacity, preferably 50% or more.
  • Lithium metal compounds can be used together.
  • an initial charge capacity of 200 mAh / g or more, preferably 230 mAh / g or more, may be used. Due to the use of such a lithium metal compound, it acts as a lithium source capable of forming the lithium metal layer 23 while increasing the irreversible capacity of the lithium transition metal oxide as a positive electrode active material.
  • the lithium metal compound presented in the present invention may be a compound represented by the following Chemical Formulas 1 to 8.
  • a is 0 ⁇ a ⁇ 1
  • M 1 is one or more elements selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg, and Cd.
  • M 2 is P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, It is one or more elements selected from the group consisting of Cu, Zn, Cr, Mg, Nb, Mo and Cd.
  • M 3 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.
  • M 4 is one or more elements selected from the group consisting of Cu and Ni.
  • M 5 is one or more elements selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd to be)
  • i 0.05 ⁇ i ⁇ 0.5
  • M 6 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.
  • j is 0.05 ⁇ j ⁇ 0.5
  • M 7 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.
  • M 8 represents an alkaline earth metal, k / (k + m + n) is 0.10 to 0.40, m / (k + m + n) is 0.20 to 0.50, and n / (k + m + n) is 0.20 to 0.50.
  • the lithium metal compounds of Chemical Formulas 1 to 8 have different irreversible capacity depending on their structure, and they can be used alone or in combination, and serve to increase the irreversible capacity of the positive electrode active material.
  • the highly irreversible materials represented by Chemical Formulas 1 and 3 have different irreversible capacities according to their types, and have numerical values as shown in Table 1 below as an example.
  • the lithium metal compound of Formula 2 belongs to the space group Immm, of which Ni, M composite oxide forms a planar coordination (Ni, M) O 4 , and the planar coordination structure faces each other. It is more preferable to share the opposite side (a side formed of OO) and form a primary chain.
  • the lithium metal compound of the formula (8) has an alkaline earth metal content of 30 to 45 atomic%, and a nitrogen content of 30 to 45 atomic%. At this time, when the content of the alkaline earth metal and the content of nitrogen are within the above range, the thermal properties and lithium ion conduction properties of the compound of Formula 8 are excellent.
  • k / (k + m + n) is 0.15 to 0.35, for example 0.2 to 0.33
  • m / (k + m + n) is 0.30 to 0.45, for example 0.31 to 0.33
  • n / (k + m + n) is 0.30 to 0.45, for example 0.31 to 0.33.
  • the electrode active material of the above formula is 0.5 to 1, b is 1, and c is 1.
  • the positive electrode active material may have a core-shell structure having a surface coated with a compound of any one of Formulas 1 to 8.
  • the electrode active material When a coating film of any one of the above Chemical Formulas 1 to 8 is formed on the surface of the core active material, the electrode active material exhibits stable characteristics while maintaining low resistance characteristics even in an environment in which lithium ions are continuously inserted and desorpted.
  • the thickness of the coating film is 1 to 100 nm.
  • the ion-conducting properties of the electrode active material are excellent.
  • the electrode active material has an average particle diameter of 1 to 30 ⁇ m, and according to one embodiment, 8 to 12 ⁇ m. When the average particle diameter of the positive electrode active material is within the above range, the capacity characteristics of the battery are excellent.
  • the core active material doped with the alkaline earth metal may be, for example, LiCoO 2 doped with magnesium.
  • the magnesium content is 0.01 to 3 parts by weight based on 100 parts by weight of the core active material.
  • the above-described lithium transition metal oxide is used as a positive electrode active material 13 together with a binder and a conductive material as a positive electrode active material.
  • the lithium source for forming the lithium metal layer 23 in the negative electrode free battery structure of the present invention becomes the lithium transition metal oxide. That is, when the lithium ions in the lithium transition metal oxide are charged in a specific range of voltage, lithium ions are desorbed to form the lithium metal layer 23 on the negative electrode current collector 21.
  • the charging range for forming the lithium metal layer 23 is performed once at a voltage range of 4.5V to 2.5V at 0.01 to 0.2C. If the charging is performed below the above range, it is difficult to form the lithium metal layer 23. On the contrary, when the above-mentioned range is exceeded, charge and discharge are properly performed after over-discharge occurs due to damage of the cell. It does not proceed.
  • the formed lithium metal layer 23 forms a uniform continuous or discontinuous layer on the negative electrode current collector 21.
  • the negative electrode current collector 21 may have a continuous thin film shape, and when the negative electrode current collector 21 has a three-dimensional porous structure, the lithium metal layer 23 may be discontinuously formed.
  • the discontinuous layer is in a form of discontinuously distributed, and a region in which the lithium metal layer 23 exists and a region in which a lithium metal layer 23 is present exists in a specific region, but a lithium compound exists in a region where the lithium metal layer 23 does not exist.
  • distributing the region to be isolated, disconnected or separated like an island type it means that the region where the lithium metal layer 23 is present is distributed without continuity.
  • the lithium metal layer 23 formed through such charging and discharging has a thickness of at least 50 nm, 100 ⁇ m or less, and preferably 1 ⁇ m to 50 ⁇ m for functioning as a negative electrode. If the thickness is less than the above range, the efficiency of charging and discharging the battery rapidly decreases. On the contrary, if the thickness exceeds the above range, life characteristics and the like are stable, but the energy density of the battery is lowered.
  • the lithium metal layer 23 presented in the present invention is manufactured by using a negative electrode-free battery without lithium metal when assembling the battery, so that the lithium generated in the assembly process is high compared to a lithium secondary battery assembled using a conventional lithium foil. Due to the reactivity, no or little oxide layer is formed on the lithium metal layer 23. Due to this, it is possible to prevent the degradation of the life of the battery due to the oxide layer.
  • the lithium metal layer 23 is moved by charging of a high irreversible material, which can form a more stable lithium metal layer 23 compared to forming the lithium metal layer 23 on the positive electrode.
  • a chemical reaction between the positive electrode and lithium metal may occur.
  • the positive electrode mixture 13 comprises the positive electrode active material and the lithium metal compound, wherein the positive electrode mixture 13 may further include a conductive material, a binder, and other additives commonly used in lithium secondary batteries. have.
  • the conductive material is used to further improve the conductivity of the electrode active material.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Polyphenylene derivatives and the like can be used.
  • a binder may be further included to bond the positive electrode active material, the lithium metal compound, and the conductive material to the current collector.
  • the binder may include a thermoplastic resin or a thermosetting resin.
  • a thermoplastic resin for example, polyethylene, polypropylene, polytetrafluoro ethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoro alkylvinyl ether copolymer, vinylidene fluoride- Hexa fluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoro Roethylene copolymer, ethylene-chlorotrifluoroethylene copoly
  • the filler is selectively used as a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • olefinic polymers such as polyethylene and polypropylene, or fibrous materials such as glass fibers and carbon fibers are used.
  • the positive electrode mixture 13 of the present invention is formed on the positive electrode current collector 11.
  • the positive electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • the positive electrode current collector 11 is not particularly limited as long as it has high conductivity without causing a chemical change in the lithium secondary battery, and examples thereof include stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surfaces treated with carbon, nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector 11 may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven fabric, etc. with fine irregularities formed on the surface to increase the adhesion with the positive electrode active material.
  • the method of applying the positive electrode mixture 13 on the current collector is a method in which the electrode mixture slurry is distributed over the current collector and then uniformly dispersed using a doctor blade, etc., die casting, comma coating and methods such as (comma coating) and screen printing.
  • the electrode mixture slurry may be bonded to the current collector by pressing or lamination, but is not limited thereto.
  • the separator used in the lithium secondary battery of the present invention separates or insulates the positive electrode and the negative electrode from each other and enables transport of lithium ions between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material.
  • the separator is an insulator having high ion permeability and mechanical strength, and may be an independent member such as a thin film or a film, or a coating layer added to the anode and / or the cathode.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m, and the thickness is generally 5 to 300 ⁇ m, and as the separator, a glass electrolyte, a polymer electrolyte, or a ceramic electrolyte may be used.
  • a glass electrolyte such as chemically and hydrophobic polypropylene, sheets or non-woven fabrics made of glass fiber or polyethylene, or the like are used.
  • Typical examples currently on the market include the Celgard series (Celgard R 2400, 2300 Hoechest Celanese Corp.), polypropylene separator (manufactured by Ube Industries Ltd. or Pall RAI), and polyethylene series (Tonen or Entek).
  • the solid electrolyte separator may contain less than about 20% by weight of a non-aqueous organic solvent, and in this case, may further include an appropriate gel-forming compound to reduce the fluidity of the organic solvent.
  • gel-forming compounds include polyethylene oxide, polyvinylidene fluoride, and polyacrylonitrile.
  • the production of a lithium secondary battery having the above-described configuration is not particularly limited in the present invention, and can be manufactured through a known method.
  • the electrolyte of the present invention is disposed between the positive electrode and the negative electrode, and then compression molded to assemble the cell.
  • the assembled cell is sealed by heat compression after being installed in the exterior material.
  • a laminate pack such as aluminum or stainless steel, a cylindrical or square metal container may be suitably used.
  • a mixture of LCO (LiCoO 2 ) and L 2 N (Li 2 NiO 2 ) in a weight ratio of 9: 1 to N-methylpyrrolidone (N-Methyl-2-pyrrolidone) was used as a positive electrode active material, and the positive electrode active material :
  • a conductive material (super-P): binder (PVdF) was mixed in a weight ratio of 95: 2.5: 2.5 and then mixed with a paste face mixer for 30 minutes to prepare a slurry composition.
  • the slurry composition prepared above was coated on a current collector (Al Foil, 20 ⁇ m thick) and dried at 130 ° C. for 12 hours to prepare a positive electrode having a loading of 3 mAh / cm 2 .
  • LiFSI 2.8M was mixed with dimethyl carbonate (DMC) to prepare a first electrolyte, which was injected into a copper current collector, that is, a cathode, and used as a first electrolyte layer.
  • DMC dimethyl carbonate
  • a second electrolyte was prepared by mixing in a weight ratio of 5:40:40, which was impregnated into a 48.8% separator with porosity to form a second electrolyte layer, and was interposed between the first electrolyte layer and the third electrolyte layer. .
  • EC ethylene carbonate
  • DEC diethylene carbonate
  • DMC dimethyl carbonate
  • a third electrolyte was prepared by dissolving VC (Vinylene Carbonate), and the third electrolyte layer was formed by injecting it to the positive electrode.
  • the anode prepared above was placed on the third electrolyte layer to prepare the anode-free lithium secondary battery of Example 1.
  • a cathode-free lithium secondary battery of Example 2 was manufactured in the same manner as in Example 1, except that L 2 N (Li 2 NiO 2 ) was not used as the positive electrode active material.
  • a mixture of LCO (LiCoO 2 ) and L 2 N (Li 2 NiO 2 ) in a weight ratio of 9: 1 to N-methylpyrrolidone (N-Methyl-2-pyrrolidone) was used as a positive electrode active material, and the positive electrode active material :
  • a conductive material (super-P): binder (PVdF) was mixed in a weight ratio of 95: 2.5: 2.5 and then mixed with a paste face mixer for 30 minutes to prepare a slurry composition.
  • the slurry composition prepared above was coated on a current collector (Al Foil, 20 ⁇ m thick) and dried at 130 ° C. for 12 hours to prepare a positive electrode.
  • the anode prepared above was placed on a separator to prepare a negative electrode-free lithium secondary battery of Comparative Example 1.
  • Example 1 and Comparative Example 1 The ionic conductivity of Example 1 and Comparative Example 1 was measured.
  • the ion conductivity of the first electrolyte layer and the third electrolyte layer of Example 1 was measured using a METTLER TOLEDO conductivity meter, and the ion conductivity of the second electrolyte layer was measured using a SUS / SUS cell.
  • the ion conductivity of the electrolyte layer of Comparative Example 1 was measured using a METTLER TOLEDO conductivity meter.
  • Example 1 Comparative Example 1 First electrolyte layer 10X10 -3 S / cm 8X10 -3 S / cm Second electrolyte layer 2X10 -4 S / cm 3rd electrolyte layer 8X10 -3 S / cm
  • Example 1 The negative electrode-free lithium secondary battery prepared in Example 1, Example 2 and Comparative Example 1 was charged once with CC / CV (5% current cut at 1C) of 0.1C and 4.25V to provide a lithium secondary battery having a lithium metal layer formed thereon. It was prepared.
  • the lithium secondary battery is charged and discharged under the conditions of discharge 3mAh / cm 2 based on 0.2C / 0.5C to measure the number of cycles in which the capacity retention rate is 50% or more compared to the initial discharge capacity of the lithium secondary battery in which the lithium metal layer 23 is formed.
  • the results are shown in Table 3 below.
  • Example 1 using the high-reversible material L 2 N did not short, and the number of cycles having a capacity retention ratio of 50% or more compared to the initial discharge capacity was measured to be the highest with 17 cycles.
  • Example 2 did not use the highly irreversible material, L 2 N, so the number of cycles was lower than that of Example 1.
  • Comparative Example 1 only one electrolyte layer was included, and short-circuit occurred in 2 cycles, making it impossible to measure capacity retention, and showed very unstable charge / discharge characteristics.

Abstract

The present invention relates to a lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the electrolyte comprises a first electrolyte layer facing the negative electrode and a second electrolyte layer located on the first electrolyte layer and facing the positive electrode, and the ion conductivity of the first electrolyte layer is higher than that of the second electrolyte layer, and lithium ions move from the positive electrode by charging to form lithium metal on a negative electrode current collector in the negative electrode.

Description

리튬 이차전지Lithium secondary battery
본 출원은 2018년 10월 31일자 한국 특허출원 제10-2018-0131581호 및 2019년 10월 31일자 한국 특허출원 제10-2019-0137128호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0131581 on October 31, 2018 and Korean Patent Application No. 10-2019-0137128 on October 31, 2019. All content disclosed in the literature is included as part of this specification.
본 발명은 차등적 이온 전도도를 갖는 전해질을 포함하는 음극 프리(negative electrode free) 구조의 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery of a negative electrode free (negative electrode free) structure comprising an electrolyte having a differential ion conductivity.
최근 휴대 전화, 무선 가전 기기, 전기 자동차에 이르기까지 전지를 필요로 하는 다양한 기기들이 개발되고 있으며, 이러한 기기들의 개발에 따라 이차 전지에 대한 수요 역시 증가하고 있다. 특히, 전자 제품의 소형화 경향과 더불어 이차 전지도 경량화 및 소형화되고 있는 추세이다.Recently, various devices that require batteries, such as mobile phones, wireless home appliances, and electric vehicles, have been developed, and according to the development of these devices, demand for secondary batteries is also increasing. In particular, in addition to the trend of miniaturization of electronic products, secondary batteries are also becoming lighter and smaller.
이러한 추세에 부합하여 최근 리튬 금속을 활물질로 적용하는 리튬 이차전지가 각광을 받고 있다. 리튬 금속은 산화환원전위가 낮고 (표준수소전극에 대해 -3.045V) 중량 에너지 밀도가 크다는(3,860mAhg-1) 특성을 가지고 있어 고용량 이차전지의 음극 재료로 기대되고 있다.In line with this trend, lithium secondary batteries using lithium metal as an active material have recently been spotlighted. Lithium metal has a low redox potential (-3.045V for a standard hydrogen electrode) and a high weight energy density (3,860mAhg -1 ), and is expected to be a negative electrode material for a high-capacity secondary battery.
그러나 리튬 금속을 전지의 음극으로 이용하는 경우 일반적으로 평면상의 집전체 상에 리튬 호일을 부착시킴으로써 전지를 제조하는데, 리튬은 알칼리 금속으로서 반응성이 크기 때문에 물과 폭발적으로 반응하고, 대기 중의 산소와도 반응하므로 일반적인 환경에서 제조 및 이용이 어려운 단점이 있다. 특히, 리튬 금속이 대기에 노출될 때 산화의 결과로 LiOH, Li2O, Li2CO3 등의 산화막을 갖는다. 표면 산화막(native layer)이 표면에 존재할 때, 산화막이 절연막으로 작용하여 전기 전도도가 낮아지고, 리튬 이온의 원활한 이동을 저해하여 전기 저항이 증가하는 문제가 발생한다.However, when lithium metal is used as a negative electrode of a battery, a battery is generally prepared by attaching lithium foil on a planar current collector. Lithium is an alkali metal, and since it is highly reactive, it reacts explosively with water and reacts with oxygen in the atmosphere. Therefore, it is difficult to manufacture and use in a general environment. In particular, when lithium metal is exposed to the atmosphere, it has an oxide film such as LiOH, Li 2 O, Li 2 CO 3 as a result of oxidation. When a native oxide layer is present on the surface, the oxide film acts as an insulating film to lower electrical conductivity and inhibit smooth movement of lithium ions, thereby increasing electrical resistance.
이와 같은 이유로, 리튬 음극을 형성하는데 진공 증착 공정을 수행하여 리튬 금속의 반응성으로 인한 표면 산화막 형성 문제점이 일부 개선되었으나, 여전히 전지 조립 과정에서는 대기에 노출되며, 표면 산화막 형성의 원천적인 억제는 불가능한 실정이다. 이에, 리튬 금속을 사용하여 에너지 효율을 높이면서도 리튬의 반응성 문제를 해결할 수 있고 공정을 보다 더 간단하게 할 수 있는 리튬 금속 전극의 개발이 요구된다.For this reason, the problem of forming a surface oxide film due to the reactivity of lithium metal has been partially improved by performing a vacuum deposition process to form a lithium anode, but it is still exposed to the atmosphere during the battery assembly process, and it is impossible to fundamentally suppress the formation of a surface oxide film. to be. Accordingly, there is a need to develop a lithium metal electrode that can solve the reactivity problem of lithium and further simplify the process while increasing energy efficiency using lithium metal.
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
한국공개특허공보 제10-2016-0052323호 "리튬 전극 및 이를 포함하는 리튬 전지"Korean Patent Publication No. 10-2016-0052323 "Lithium electrode and lithium battery comprising the same"
상기한 문제를 해결하기 위해 본 발명자들은 다각적으로 연구를 수행한 결과, 전지 조립시 리튬 금속의 대기와의 접촉을 원천적으로 차단할 수 있도록 전지 조립 이후 충전에 의해 양극 활물질로부터 이송된 리튬 이온이 음극 집전체 상에 리튬 금속층을 형성할 수 있는 음극 프리(negative electrode free) 전지 구조를 설계하였으며, 상기 리튬 금속층을 안정적으로 형성할 수 있는 양극 활물질의 조성을 개발하였다. 또한, 서로 다른 이온 전도도를 갖는 2개 이상의 전해질층을 포함함으로써, 이온 전도도 차이에 의해 덴드라이트의 성장을 억제시킬 수 있는 리튬 이차전지를 개발하였다.In order to solve the above-mentioned problems, the present inventors conducted various studies, and as a result, lithium ions transferred from the positive electrode active material by charging after battery assembly so as to fundamentally block the contact of the lithium metal with the atmosphere when assembling the battery are negative electrode collectors. A negative electrode free battery structure capable of forming a lithium metal layer on the whole was designed, and a composition of a positive electrode active material capable of stably forming the lithium metal layer was developed. In addition, by including two or more electrolyte layers having different ion conductivity, a lithium secondary battery has been developed that can suppress the growth of dendrites due to the difference in ion conductivity.
이에 본 발명의 목적은 리튬 금속의 반응성에 의한 문제와 조립 과정에서 발생하는 문제점을 해결하여 성능 및 수명이 향상된 리튬 이차전지를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a lithium secondary battery with improved performance and lifespan by solving problems caused by reactivity of lithium metal and problems occurring during assembly.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 양극, 음극 및 전해질을 포함하는 리튬 이차전지에 있어서,The present invention in a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
상기 전해질은 음극과 대면하는 제1 전해질층, 상기 제1 전해질층 상에 위치되며 양극과 대면하는 제2 전해질층을 포함하며,The electrolyte includes a first electrolyte layer facing the negative electrode, a second electrolyte layer positioned on the first electrolyte layer and facing the positive electrode,
상기 제1 전해질층은 제2 전해질층 보다 높은 이온 전도도를 가지며,The first electrolyte layer has a higher ionic conductivity than the second electrolyte layer,
충전에 의해 상기 양극으로부터 리튬 이온이 이동되어 음극 내 음극 집전체 상에 리튬 금속을 형성하는 리튬 이차전지를 제공한다.A lithium secondary battery is provided in which lithium ions are moved from the positive electrode by charging to form lithium metal on the negative electrode current collector in the negative electrode.
본 발명에 따른 리튬 이차전지는 음극 집전체 상에 리튬 금속층이 형성되는 과정을 통해 대기와 차단된 상태로 코팅되므로, 따라서 리튬 금속의 대기 중 산소 및 수분으로 인한 표면 산화막의 형성을 억제할 수 있으며, 결과적으로 사이클 수명 특성이 향상되는 효과가 있다.The lithium secondary battery according to the present invention is coated in a state of being blocked from the atmosphere through the process of forming a lithium metal layer on the negative electrode current collector, so it is possible to suppress the formation of a surface oxide film due to oxygen and moisture in the atmosphere of the lithium metal, , As a result, the cycle life characteristics are improved.
또한, 서로 다른 이온 전도도를 갖는 2개 이상의 전해질층을 포함함으로써, 이온 전도도 차이에 의해 덴드라이트의 성장을 현저하게 억제시키는 효과가 있다.In addition, by including two or more electrolyte layers having different ion conductivity, there is an effect of significantly suppressing the growth of dendrites due to the difference in ion conductivity.
도 1은 본 발명에 따라 제조된 리튬 이차전지의 모식도이다.1 is a schematic view of a lithium secondary battery manufactured according to the present invention.
도 2는 본 발명에 따라 제조된 리튬 이차전지의 초기 충전이 완료된 후의 모식도이다.2 is a schematic view after the initial charging of the lithium secondary battery manufactured according to the present invention is completed.
도 3은 종래의 리튬 이차전지의 구조 및 메커니즘을 모식적으로 도시한 것이다.3 schematically shows the structure and mechanism of a conventional lithium secondary battery.
도 4는 본 발명의 리튬 이차전지의 구조 및 메커니즘을 모식적으로 도시한 것이다.Figure 4 schematically shows the structure and mechanism of the lithium secondary battery of the present invention.
이하, 본 발명을 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.In the drawings, parts unrelated to the description are omitted in order to clearly describe the present invention, and similar reference numerals are used for similar parts throughout the specification. In addition, the sizes and relative sizes of components indicated in the drawings are independent of actual scale, and may be reduced or exaggerated for clarity of explanation.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.
본 명세서에서 층이 다른 층 또는 기판 "상"에 있다고 언급되는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있거나, 그들 사이에 제3의 층이 개재될 수도 있다. 또한, 본 명세서에서 위쪽, 상(부), 상면 등의 방향적인 표현은 그 기준에 따라 아래쪽, 하(부), 하면 등의 의미로 이해될 수 있다. 즉, 공간적인 방향의 표현은 상대적인 방향으로 이해되어야 하며 절대적인 방향을 의미하는 것으로 한정 해석되어서는 안 된다.When a layer is referred to herein as being "on" another layer or substrate, it may be formed directly on another layer or substrate, or a third layer may be interposed between them. In addition, in the present specification, directional expressions such as upper, upper (second), and upper surfaces may be understood as meanings of lower, lower (second), and lower surfaces according to the standard. That is, the expression of the spatial direction should be understood as a relative direction and should not be construed as limiting the absolute direction.
또한, "포함하다", "함유하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 구성요소 또는 이들을 조합한 것의 존재 또는 부가 가능성을 배제하지 않는 것으로 이해되어야 한다.In addition, the terms "include", "include" or "have" are intended to indicate the presence of features, numbers, components or combinations thereof described in the specification, one or more other features or numbers, It should be understood that it does not exclude the possibility of the presence or addition of components or combinations thereof.
도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장 또는 생략된 것일 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.In the drawings, the thickness of the layers and regions may be exaggerated or omitted for clarity. Throughout the specification, the same reference numbers indicate the same components.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, when it is determined that detailed descriptions of related well-known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
본 발명은 양극, 음극 및 전해질을 포함하는 리튬 이차전지에 있어서,The present invention in a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
상기 전해질은 음극과 대면하는 제1 전해질층, 상기 제1 전해질층 상에 위치되며 양극과 대면하는 제2 전해질층을 포함하며,The electrolyte includes a first electrolyte layer facing the negative electrode, a second electrolyte layer positioned on the first electrolyte layer and facing the positive electrode,
상기 제1 전해질층은 제2 전해질층 보다 높은 이온 전도도를 가지며,The first electrolyte layer has a higher ionic conductivity than the second electrolyte layer,
충전에 의해 상기 양극으로부터 리튬 이온이 이동되어 음극 내 음극 집전체 상에 리튬 금속을 형성하는 리튬 이차전지에 관한 것이다.It relates to a lithium secondary battery in which lithium ions move from the positive electrode by charging to form lithium metal on the negative electrode current collector in the negative electrode.
도 1은 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 단면도로, 양극 집전체(11) 및 양극 합제(13)를 포함하는 양극; 음극 집전체(21); 음극과 대면하는 제1 전해질층(31); 및 제1 전해질층 상에 위치되며 양극과 대면하는 제2 전해질층(33)을 구비한다.1 is a cross-sectional view of a lithium secondary battery manufactured according to a first embodiment of the present invention, a positive electrode including a positive electrode current collector 11 and a positive electrode mixture 13; Cathode current collector 21; A first electrolyte layer 31 facing the cathode; And a second electrolyte layer 33 positioned on the first electrolyte layer and facing the anode.
리튬 이차전지의 음극은 음극 집전체(21) 상에 음극이 형성되는 것이 통상적이나, 본 발명에서는 음극 집전체(21), 제1 전해질층(31) 및 제2 전해질층(33)만을 사용하여 음극 프리(negative electrode free) 전지 구조로 조립한 후, 충전에 의해 양극 합제(13)로부터 방출되는 리튬 이온이 음극 집전체(21) 및 제1 전해질층(31) 사이에 음극 합제로서 리튬 금속층(미도시)을 형성함에 따라 공지의 음극 집전체/음극 합제의 구성을 갖는 음극을 형성하여 통상의 리튬 이차전지의 구성을 이룬다.The negative electrode of the lithium secondary battery is usually formed on the negative electrode current collector 21, but in the present invention, only the negative electrode current collector 21, the first electrolyte layer 31 and the second electrolyte layer 33 are used. After assembling into a negative electrode free battery structure, lithium ions released from the positive electrode mixture 13 by charging are used as a negative electrode mixture between the negative electrode current collector 21 and the first electrolyte layer 31. (Not shown) to form a negative electrode having a configuration of a known negative electrode current collector / cathode mixture to form a conventional lithium secondary battery.
보다 자세하게는 음극 집전체(21) 상에 형성된 제1 전해질층(31) 내부에 리튬 금속층이 형성된 것일 수 있다.More specifically, a lithium metal layer may be formed inside the first electrolyte layer 31 formed on the negative electrode current collector 21.
즉, 본 발명에 있어서 리튬 이차전지는, 최초 조립 시에는 음극 집전체 상에 음극이 형성되지 않는 음극 프리인 전지일 수 있고, 사용에 따라서 음극 집전체 상에 음극이 형성되어 음극이 있을 수도 있는 전지를 모두 포함하는 개념일 수 있다.That is, in the present invention, the lithium secondary battery may be a negative electrode-free battery in which a negative electrode is not formed on the negative electrode current collector during initial assembly, or a negative electrode may be formed on the negative electrode current collector depending on use. It may be a concept including all batteries.
또한, 본 발명의 음극에 있어서, 음극 집전체 상에 음극 합제로서 형성되는 리튬 금속의 형태는, 리튬 금속이 층으로 형성된 형태와, 리튬 금속이 층으로 형성된 것이 아닌 다공성 구조(예를 들어 리튬 금속이 입자 형태로 뭉쳐진 구조)를 모두 포함한다.In addition, in the negative electrode of the present invention, the form of lithium metal formed as a negative electrode mixture on the negative electrode current collector is a form in which lithium metal is formed in a layer, and a porous structure in which lithium metal is not formed in a layer (for example, lithium metal It includes all of the structures aggregated in the form of particles).
이하, 본 발명에서는 리튬 금속이 층으로 형성된 리튬 금속층(23)의 형태를 기준으로 설명하나, 이러한 설명이 리튬 금속이 층으로 형성된 것이 아닌 구조를 제외하는 것이 아니라는 것은 명확하다.Hereinafter, the present invention will be described based on the shape of the lithium metal layer 23 in which the lithium metal is formed as a layer, but it is clear that this description does not exclude a structure in which the lithium metal is not formed as a layer.
도 2는 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 초기 충전이 완료된 후의 모식도이다.2 is a schematic diagram after initial charging of a lithium secondary battery manufactured according to the first embodiment of the present invention is completed.
도 2를 참고하여 설명하면, 음극 프리 전지 구조를 갖는 리튬 이차전지에 일정 수준 이상의 전압을 인가하여 충전을 진행하면, 양극(10) 내 양극 합제(13)로부터 리튬 이온이 탈리되고, 이는 제2 전해질층(33) 및 제1 전해질층(31)을 통과하여 음극 집전체(21) 측으로 이동하고, 상기 음극 집전체(21) 상에 순수하게 리튬으로만 이루어진 리튬 금속층(23)을 형성하여 음극(20)을 이룬다.Referring to FIG. 2, when charging is performed by applying a voltage above a certain level to a lithium secondary battery having a negative electrode free battery structure, lithium ions are released from the positive electrode mixture 13 in the positive electrode 10, which is second. It passes through the electrolyte layer 33 and the first electrolyte layer 31 and moves toward the negative electrode current collector 21, and forms a lithium metal layer 23 made of purely lithium on the negative electrode current collector 21 to form a negative electrode. (20).
이러한 충전을 통한 리튬 금속층(23)의 형성은 종래 음극 집전체(21) 상에 리튬 금속층(23)을 스퍼터링하거나 리튬 호일과 음극 집전체(21)를 합지하는 음극과 비교할 때 계면 특성의 조절이 매우 용이하다는 이점이 있다. Formation of the lithium metal layer 23 through such charging may be performed by adjusting the interfacial characteristics as compared to the negative electrode sputtering the lithium metal layer 23 on the conventional negative electrode current collector 21 or laminating the lithium foil and the negative electrode current collector 21. It has the advantage of being very easy.
특히, 음극 프리 전지 구조로 형성하여 전지 조립 과정 중 리튬 금속이 대기 중에 노출이 전혀 발생하지 않아, 종래 리튬 자체의 높은 반응성으로 인한 표면의 산화막 형성 및 이에 따른 리튬 이차전지의 수명 저하와 같은 문제를 원천적으로 차단할 수 있다.Particularly, since the lithium metal is formed in a negative electrode free battery structure and there is no exposure to lithium metal in the air during the battery assembly process, problems such as the formation of an oxide film on the surface due to the high reactivity of the lithium itself and the decrease in the life of the lithium secondary battery accordingly. It can be blocked at the source.
본 발명의 음극 프리 전지 구조에서 음극을 구성하는 음극 집전체(21)는 일반적으로 3 내지 50μm의 두께로 만들어진다.In the negative electrode structure of the present invention, the negative electrode current collector 21 constituting the negative electrode is generally made to a thickness of 3 to 50 μm.
충전에 의해 리튬 금속층(23)이 형성될 수 있는 음극 집전체(21)는 리튬 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않는다. 그 예시로서 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The negative electrode current collector 21 in which the lithium metal layer 23 can be formed by charging is not particularly limited as long as it has conductivity without causing a chemical change in the lithium secondary battery. As an example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used.
이때, 상기 음극 집전체(21)는 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등의 다양한 형태로 사용될 수 있다.At this time, the negative electrode current collector 21 may be used in various forms, such as a film, sheet, foil, net, porous body, foam, non-woven fabric, etc. with fine irregularities formed on the surface.
본 발명에 따른 리튬 이차전지의 전해질은 제1 전해질층 및 제2 전해질층을 포함하며, 제1 전해질층은 음극과 대면하며, 상기 제1 전해질층 상에 제2 전해질층이 위치되며, 상기 제2 전해질층은 양극과 대면하고 있다.The electrolyte of the lithium secondary battery according to the present invention includes a first electrolyte layer and a second electrolyte layer, the first electrolyte layer faces the negative electrode, and a second electrolyte layer is located on the first electrolyte layer, 2 The electrolyte layer faces the anode.
또한, 상기 제1 전해질층은 제2 전해질층 보다 높은 이온 전도도를 갖는다.In addition, the first electrolyte layer has a higher ionic conductivity than the second electrolyte layer.
본 발명의 전해질에 있어서, 상기 제1 전해질층의 이온 전도도는 10-5 내지 10-2 S/cm이고, 상기 제2 전해질층의 이온 전도도는 10-6 내지 10-3 S/cm 일 수 있다.In the electrolyte of the present invention, the ion conductivity of the first electrolyte layer is 10 -5 to 10 -2 S / cm, and the ion conductivity of the second electrolyte layer may be 10 -6 to 10 -3 S / cm. .
또한, 상기 제1 전해질층과 제2 전해질층의 이온 전도도 차이는 2 내지 104 배일 수 있으며, 더욱 바람직하게는 10 내지 100배일 수 있다.In addition, the difference in ionic conductivity between the first electrolyte layer and the second electrolyte layer may be 2 to 10 4 times, and more preferably 10 to 100 times.
상기 이온 전도도 차이가 상술한 범위의 하한 값보다 낮으면 리튬 덴드라이트 성장 억제효과가 미미해지며, 상한 값을 초과하는 경우에는 전지의 구동 효율이 저하되어 바람직하지 않다.When the difference in the ionic conductivity is lower than the lower limit value of the above-described range, the lithium dendrite growth suppression effect becomes insignificant.
또한, 본 발명의 상기 제1 전해질층은 제2 전해질층 보다 낮은 강도를 갖는다. 상기 제1 전해질층의 강도는 105 Pa 이하일 수 있고, 제2 전해질층의 강도는 105 Pa를 초과할 수 있다. 바람직하게는 제1 전해질층의 강도는 10 내지 104Pa 일 수 있고, 제2 전해질층의 강도는 106 내지 1010Pa 일 수 있다.In addition, the first electrolyte layer of the present invention has a lower strength than the second electrolyte layer. The strength of the first electrolyte layer may be 10 5 Pa or less, and the strength of the second electrolyte layer may exceed 10 5 Pa. Preferably, the strength of the first electrolyte layer may be 10 to 10 4 Pa, and the strength of the second electrolyte layer may be 10 6 to 10 10 Pa.
일반적으로 리튬 금속 또는 리튬 금속을 포함하는 소재를 리튬 이차전지용 음극으로 이용하는 리튬 이차전지의 경우, 첫째, 리튬의 덴드라이트 성장, 리튬의 전해액과의 반응성, 기타 부반응으로 인해 퇴화가 빠르게 진행된다. 둘째, 상기 문제를 해결하기 위하여 음극 표면에 보호층을 형성하여 보호층에 결함이 발생하는 경우, 결함 발생부에서 리튬 덴드라이트 성장이 가속화되면서 전지의 단락이 발생하게 된다.In general, in the case of a lithium secondary battery that uses a lithium metal or a material containing lithium metal as a negative electrode for a lithium secondary battery, first, degeneration proceeds rapidly due to the growth of dendrites of lithium, reactivity with lithium electrolyte, and other side reactions. Second, in order to solve the above problem, when a defect is generated in the protective layer by forming a protective layer on the surface of the negative electrode, a short circuit of the battery occurs as lithium dendrite growth is accelerated in the defect generating unit.
본 발명자들은 상기와 같은 문제를 해결하기 위하여 예의 노력한 바, 제1 전해질층이 제2 전해질층 보다 높은 이온 전도도를 갖는 경우, 제1 전해질층에 결함이 발생되더라도 리튬 이온이 상기 결함 부위로 집중되지 않고(도 3), 이온 전도도가 더 높은 결함 발생부 주변의 제1 전해질층을 통하여 리튬이 플레이팅되므로(도 4), 리튬 덴드라이트의 급격한 성장을 방지할 수 있음을 발견하여 본 발명을 완성하였다.The present inventors have made great efforts to solve the above problems, and when the first electrolyte layer has a higher ionic conductivity than the second electrolyte layer, even if a defect occurs in the first electrolyte layer, lithium ions are not concentrated in the defect site. Without (FIG. 3), lithium is plated through the first electrolyte layer around the defect generating unit having higher ion conductivity (FIG. 4), thereby discovering that rapid growth of lithium dendrites can be prevented, thereby completing the present invention. Did.
그러므로, 본 발명의 리튬 이차전지의 전해질은 음극과 대면하는 제1 전해질층(또는 보호층)의 이온 전도도가 제2 전해질층 보다 높은 것을 특징으로 한다.Therefore, the electrolyte of the lithium secondary battery of the present invention is characterized in that the ion conductivity of the first electrolyte layer (or protective layer) facing the negative electrode is higher than that of the second electrolyte layer.
상기 보호층은 리튬 이온의 이동이 가능하며, 전류는 흐르지 않는 조건을 만족시켜야 하므로, 전해질층으로 이해될 수 있다. 따라서 본 발명에서 상기 제1 전해질층은 보호층의 기능도 함께 갖는 것으로 정의한다.The protective layer is capable of moving lithium ions and must satisfy a condition in which current does not flow, so it can be understood as an electrolyte layer. Therefore, in the present invention, the first electrolyte layer is also defined as having a function of a protective layer.
본 발명의 전해질에 있어서, 상기 제1 전해질층과 제2 전해질층 중의 하나 이상은 반고체 전해질 또는 고체 전해질인 특징을 갖는다. 왜냐하면, 모두 액상인 경우는 제1 전해질층 및 제2 전해질층이 혼합되어 본 발명에서 목적하는 효과를 얻기가 어렵기 때문이다.In the electrolyte of the present invention, at least one of the first electrolyte layer and the second electrolyte layer is characterized by being a semi-solid electrolyte or a solid electrolyte. This is because, in the case of all liquids, it is difficult to obtain the desired effect in the present invention by mixing the first electrolyte layer and the second electrolyte layer.
본 발명의 전해질에 있어서, 상기 제1 전해질층은 두께가 0.1 내지 20μm, 바람직하게는 0.1 내지 10μm일 수 있다. 두께가 상기 0.1μm 미만이면 보호층으로서의 기능을 수행하기 어려울 수 있고, 두께가 상기 20μm를 초과하면 계면 저항이 높아져 전지 특성의 저하를 일으킬 수 있다.In the electrolyte of the present invention, the first electrolyte layer may have a thickness of 0.1 to 20 μm, preferably 0.1 to 10 μm. If the thickness is less than 0.1 μm, it may be difficult to perform a function as a protective layer, and when the thickness exceeds 20 μm, the interface resistance may be increased to cause deterioration of battery characteristics.
또한, 상기 제2 전해질층은 두께가 0.1 내지 50μm, 바람직하게는 0.1 내지 30μm일 수 있다. 두께가 0.1μm 미만이면 전해질로서의 기능을 수행하기 어려울 수 있고, 두께가 50μm 초과하면 계면 저항이 높아져 전지 특성의 저하를 일으킬 수 있다. In addition, the second electrolyte layer may have a thickness of 0.1 to 50 μm, preferably 0.1 to 30 μm. If the thickness is less than 0.1 μm, it may be difficult to function as an electrolyte, and when the thickness is greater than 50 μm, the interface resistance may be increased, resulting in deterioration of battery characteristics.
본 발명의 전해질에 있어서, 상기 전해질은 상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층을 더 포함할 수 있다. 이 경우, 상기 하나 이상의 전해질층의 이온 전도도는 상기 제1 전해질층보다 높아도 상관이 없으며, 오히려 이온 전도도가 더 높을 경우 전지의 구동성능이 더욱 향상될 수 있다. 왜냐하면, 본 발명의 목적은 제1 전해질층 및 제2 전해질층의 이온 전도도 관계로부터 달성될 수 있기 때문이다.In the electrolyte of the present invention, the electrolyte may further include one or more electrolyte layers formed on the second electrolyte layer. In this case, the ionic conductivity of the one or more electrolyte layers may be higher than that of the first electrolyte layer. Rather, when the ion conductivity is higher, the driving performance of the battery may be further improved. This is because the object of the present invention can be achieved from the ionic conductivity relationship between the first electrolyte layer and the second electrolyte layer.
본 발명의 전해질에 있어서, 상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층 중 양극과 대면하는 전해질층은 제2 전해질층 보다 이온 전도도가 높은 특징을 가질 수 있다.In the electrolyte of the present invention, among the one or more electrolyte layers formed on the second electrolyte layer, the electrolyte layer facing the anode may have a feature that has higher ionic conductivity than the second electrolyte layer.
상기와 같이 양극과 대면하는 전해질층의 이온 전도도가 높을 경우 양극에서 삽입 및 탈리 되는 Li 이온의 전도가 빠르기 때문에 충·방전시 저항이 작아져 전지의 율속 특성이 향상되는 등 전지의 구동성능이 더욱 향상될 수 있어서 바람직하다.When the ionic conductivity of the electrolyte layer facing the positive electrode is high as described above, since the conduction of Li ions inserted and desorbed from the positive electrode is fast, the resistance during charging and discharging becomes small, so that the rate performance characteristics of the battery are improved and the driving performance of the battery is further improved. It is desirable because it can be improved.
본 발명의 전해질에 있어서, 상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층 중 양극과 대면하는 전해질층은 이온 전도도는 10-5 내지 10-2 S/cm일 수 있으며, 10-4 내지 10-2 S/cm인 것이 더욱 바람직하다.In the electrolyte of the present invention, among the one or more electrolyte layers formed on the second electrolyte layer, the electrolyte layer facing the anode may have an ionic conductivity of 10 -5 to 10 -2 S / cm, and 10 -4 to 10 It is more preferable that it is -2 S / cm.
본 발명의 일 실시형태에서, 상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층은 하나의 전해질층으로 구성되며, 이 전해질 층은 양극과 대면되는 형태일 수 있다.In one embodiment of the present invention, at least one electrolyte layer formed on the second electrolyte layer is composed of one electrolyte layer, and the electrolyte layer may be in a form facing an anode.
본 발명의 전해질은 전해질 사이에 분리막이 개재된 상태일 수 있다. 또한, 이 경우 상기 분리막은 전해질로 함침된 형태로 개재될 수 있다. The electrolyte of the present invention may be in a state in which a separator is interposed between the electrolytes. In addition, in this case, the separator may be interposed in a form impregnated with electrolyte.
본 발명의 일 실시형태에서, 상기 분리막은 제2 전해질층 상에 형성될 수 있다. 그러나, 이러한 형태로 한정되는 것은 아니다.In one embodiment of the present invention, the separator may be formed on the second electrolyte layer. However, it is not limited to this form.
본 발명의 전해질에 있어서, 상기 제1 전해질층은 보호층으로서의 기능을 고려할 때, 반고체 전해질 또는 고체 전해질로 형성되는 것이 바람직할 수 있다. 상기 반고체 전해질 및 고체 전해질로는 상기에서 한정된 이온 전도도 조건을 충족시키는 경우, 이 분야에 공지된 것이 제한없이 사용될 수 있다. In the electrolyte of the present invention, when considering the function as a protective layer, the first electrolyte layer may be preferably formed of a semi-solid electrolyte or a solid electrolyte. As the semi-solid electrolyte and the solid electrolyte, if the ionic conductivity conditions defined above are satisfied, those known in the art may be used without limitation.
본 발명의 전해질에 있어서, 상기 제2 전해질층은 액상 전해질, 반고체 전해질 또는 고체 전해질로 형성될 수 있다. 상기 액상 전해질, 반고체 전해질 및 고체 전해질은 상기에서 한정된 이온 전도도 조건을 충족시키는 경우, 이 분야에 공지된 전해질이 제한없이 사용될 수 있다.In the electrolyte of the present invention, the second electrolyte layer may be formed of a liquid electrolyte, a semi-solid electrolyte or a solid electrolyte. When the liquid electrolyte, the semi-solid electrolyte, and the solid electrolyte satisfy the ionic conductivity condition defined above, an electrolyte known in the art may be used without limitation.
상기 액상 전해질, 반고체 전해질 및 고체 전해질은 예를 들어, 다음과 같은 형태일 수 있으나, 이에 한정되는 것은 아니다.The liquid electrolyte, semi-solid electrolyte, and solid electrolyte may be, for example, in the following form, but are not limited thereto.
리튬염을 함유하는 비수계 전해질은 리튬염과 전해액으로 구성되어 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용될 수 있다.The non-aqueous electrolyte containing a lithium salt is composed of a lithium salt and an electrolyte, and a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte may be used as the electrolyte.
본 발명의 리튬염은 비수계 유기용매에 용해되기 좋은 물질로서, 예컨대, LiNO3, LiSCN, LiCl, LiBr, LiI, LiPF6, LiBF4, LiSbF6, LiAsF6, LiB10Cl10, LiCH3SO3, LiCF3SO3, LiCF3CO2, LiClO4, LiAlCl4, Li(Ph)4, LiC(CF3SO2)3, LiN(FSO2)2, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SFO2)2, LiN(CF3CF2SO2)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군으로부터 하나 이상이 포함될 수 있다.The lithium salt of the present invention is a material that is soluble in a non-aqueous organic solvent, such as LiNO 3 , LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiClO 4 , LiAlCl 4 , Li (Ph) 4 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SFO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , lithium chloroborane, lower aliphatic lithium carboxylate, lithium 4-phenyl borate, lithium imide, and combinations thereof One or more from the group consisting of.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 ~ 3 M, 구체적으로 0.6 ~ 2 M, 더욱 구체적으로 0.7 ~ 1.7 M일 수 있다. 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 3 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.The concentration of the lithium salt is 0.2 to 3 M, depending on several factors, such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the conditions for charging and discharging the cell, the working temperature and other factors known in the lithium battery field. Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. When used below 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration of electrolyte performance, and when used above 3 M, the viscosity of the electrolyte may increase and mobility of lithium ions (Li + ) may decrease.
상기 비수계 유기용매는 리튬염을 잘 용해시켜야 하며, 이러한 비수계 유기용매로는, 예컨대, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매를 들 수 있으며, 상기 유기 용매는 하나 또는 둘 이상의 유기 용매들의 혼합물일 수 있다.The non-aqueous organic solvent must dissolve a lithium salt well, and such non-aqueous organic solvents include, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate. , Ethylmethyl carbonate, gamma-butyrolactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3- Dioxolane, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane , Dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, aprotic organic solvents such as methyl pyropionate and ethyl propionate Hear The organic solvent may be one or a mixture of two or more organic solvents.
유기 고체 전해질로는, 예컨대, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, and ionic dissociation groups. Including polymers and the like can be used.
무기 고체 전해질로는, 예컨대, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다. As the inorganic solid electrolyte, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO Li-nitrides, halides, sulfates, etc., such as 4 -LiI-LiOH, Li 3 PO4-Li 2 S-SiS 2 can be used.
본 발명의 전해질에는 충·방전 특성, 난연성 등의 개선을 목적으로, 예컨대, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.In the electrolyte of the present invention, for the purpose of improving charge / discharge characteristics, flame retardance, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. may be added. . In some cases, in order to impart non-flammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, or carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-ethylene) carbonate), PRS (Propene sultone), FPC (Fluoro-propylene carbonate), and the like.
한편, 양극 합제(13)는 전지 종류에 따라 다양한 양극 활물질을 사용할 수 있으며, 본 발명에서 사용되는 양극 활물질은 리튬 이온을 흡장, 방출할 수 있는 물질이라면 특별히 제한되지 않으나, 현재 수명 특성 및 충·방전 효율이 우수한 전지를 구현할 수 있는 양극 활물질로 리튬 전이금속 산화물이 대표적으로 사용되고 있다.Meanwhile, the positive electrode mixture 13 may use various positive electrode active materials depending on the type of battery, and the positive electrode active material used in the present invention is not particularly limited as long as it is a material capable of absorbing and releasing lithium ions. Lithium transition metal oxide is typically used as a positive electrode active material capable of realizing a battery having excellent discharge efficiency.
리튬 전이금속 산화물로서, 2 이상의 전이금속을 포함하고, 예를 들어, 하나 이상의 전이금속으로 치환된 리튬 코발트산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 하나 이상의 전이금속으로 치환된 리튬 망간 산화물; 리튬 니켈계 산화물; 스피넬계 리튬 니켈 망간 복합 산화물; 화학식의 Li 일부가 알칼리 토금속 이온으로 치환된 스피넬계 리튬 망간 산화물; 및 올리빈계 리튬 금속 포스페이트; 등을 포함할 수 있으나, 이들만으로 한정되는 것은 아니다.As a lithium transition metal oxide, a layered compound such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) containing two or more transition metals and substituted with one or more transition metals; Lithium manganese oxide substituted with one or more transition metals; Lithium nickel-based oxide; Spinel lithium nickel manganese composite oxide; Spinel-based lithium manganese oxide in which a part of Li in the formula is substituted with alkaline earth metal ions; And olivine-based lithium metal phosphate; And the like, but is not limited to these.
바람직하게는 리튬 전이금속 산화물을 사용하며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li2NiO2, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LixMyMn2-yO4-zAz(여기에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2, M= Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi 중 하나 이상, A는 -1 또는 -2가의 하나 이상의 음이온), Li1+aNibM’1-bO2-cA’c (여기에서, 0≤a≤0.1, 0≤b≤0.8, 0≤c<0.2이고, M’은 Mn, Co, Mg, Al 등 6배위의 안정한 원소로 이루어진 군에서 선택되는 1종 이상이고 A’는 -1 또는 -2가의 하나 이상의 음이온이다.), LiCoPO4 및 LiFePO4 로 이루어진 군으로부터 1종 이상 선택되는 것을 사용할 수 있으며, 가장 바람직하게 LiCoO2를 사용한다. 또한, 이러한 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등을 사용할 수 있다.Preferably, a lithium transition metal oxide is used, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li 2 NiO 2 , Li (Ni a Co b Mn c ) O 2 (0 <a <1 , 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (here In, 0≤Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2 -z Ni z O 4 , LiMn 2-z Co z O 4 (here, 0 <Z <2), Li x M y Mn 2-y O 4-z A z (here, 0.9≤x≤1.2, 0 <y <2, 0≤z <0.2, M = Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, At least one of Ti and Bi, A is -1 or -divalent one or more anions), Li 1 + a Ni b M ' 1-b O 2-c A' c (here, 0≤a≤0.1, 0≤ b≤0.8, 0≤c <0.2, M 'is one or more selected from the group consisting of 6-coordinate stable elements such as Mn, Co, Mg, and Al, and A' is one or more anions of -1 or -2 .), LiCoPO 4 and LiFePO 4 is selected from the group consisting of one or more selected LiCoO 2 is most preferably used. In addition, sulfide, selenide and halide may be used in addition to the oxide.
상기한 리튬 전이금속 산화물은 양극 활물질로서 바인더 및 도전재 등과 함께 양극 합제(13)에 사용한다. 본 발명의 음극 프리 전지 구조에서 리튬 금속층(23)을 형성하기 위한 리튬 소스(source)는 상기 리튬 전이금속 산화물이 된다. 즉, 리튬 전이금속 산화물 내 리튬 이온은 특정 범위의 전압 범위에서 충전을 수행할 경우 리튬 이온이 탈리되어 음극 집전체(21) 상에 리튬 금속층(23)을 형성한다.The above-described lithium transition metal oxide is used as a positive electrode active material 13 together with a binder and a conductive material as a positive electrode active material. The lithium source for forming the lithium metal layer 23 in the negative electrode free battery structure of the present invention becomes the lithium transition metal oxide. That is, when the lithium ions in the lithium transition metal oxide are charged in a specific range of voltage, lithium ions are desorbed to form the lithium metal layer 23 on the negative electrode current collector 21.
그러나 실제로 리튬 전이금속 산화물에서의 리튬 이온은 자체적으로 탈리가 쉽게 발생하지 않거나 상기 작동 전압 수준에서는 충·방전 외에 관련할 수 있는 리튬이 없어 리튬 금속층(23)의 형성이 매우 어렵고, 리튬 전이금속 산화물만을 사용할 경우 비가역 용량이 크게 저하되어, 리튬 이차전지의 용량 및 수명 특성이 저하되는 문제를 야기한다.In practice, however, lithium ions in the lithium transition metal oxide do not easily generate desorption on their own, or there is no lithium that can be related to charge and discharge at the operating voltage level, so that the formation of the lithium metal layer 23 is very difficult, and the lithium transition metal oxide When only the bay is used, the irreversible capacity is greatly reduced, causing a problem that the capacity and life characteristics of the lithium secondary battery are lowered.
이에 본 발명에서는 리튬 전이금속 산화물에 리튬 소스를 제공할 수 있는 첨가제로서, 4.5V 내지 2.5V의 전압 범위에서 0.01 내지 0.2C로 1회의 충전을 수행할 경우 초기 충전 용량이 200 mAh/g 이상이거나, 또는 초기 비가역이 30% 이상을 갖는 고비가역 물질인 리튬 금속 화합물을 함께 사용한다.Accordingly, in the present invention, as an additive capable of providing a lithium source to a lithium transition metal oxide, the initial charge capacity is 200 mAh / g or more when one charge is performed at 0.01 to 0.2C in a voltage range of 4.5V to 2.5V Alternatively, a lithium metal compound which is a high irreversible material having an initial irreversible of 30% or more is used together.
본 발명에서 언급하는 '고비가역 물질'은 다른 용어로 '대용량 비가역 물질'과 동일하게 사용될 수 있으며, 이는 충·방전 첫 사이클의 비가역 용량 비, 즉 "(첫 사이클 충전용량 - 첫 사이클 방전용량) / 첫 사이클 충전용량"이 큰 물질을 의미한다. 즉, 고비가역 물질은 충·방전 첫 사이클 시 리튬 이온을 비가역적으로 과량 제공해 줄 수 있다. 예컨대, 리튬 이온을 흡장 및 방출할 수 있는 리튬 전이 금속 화합물 중 충·방전 첫 사이클의 비가역 용량(첫 사이클 충전용량 - 첫 사이클 방전용량)이 큰 양극물질일 수 있다.The term 'high irreversible material' referred to in the present invention may be used in the same way as 'large capacity irreversible material' in other terms, which is the irreversible capacity ratio of the first cycle of charge / discharge, that is, "(first cycle charge capacity-first cycle discharge capacity). / First cycle charge capacity "means a large material. That is, the highly irreversible material may irreversibly provide excessive lithium ions during the first cycle of charging and discharging. For example, the lithium transition metal compound capable of occluding and releasing lithium ions may be a positive electrode material having a large irreversible capacity (first cycle charge capacity-first cycle discharge capacity) of the first cycle of charge and discharge.
일반적으로 사용되고 있는 양극 활물질의 비가역 용량은 초기 충전 용량 대비 2 내지 10% 가량이나, 본 발명에서는 고비가역 물질인 리튬 금속 화합물, 즉 초기 비가역이 초기 충전 용량의 30% 이상, 바람직하게는 50% 이상인 리튬 금속 화합물을 함께 사용할 수 있다. 또한, 상기 리튬 금속 화합물로 초기 충전 용량이 200mAh/g 이상, 바람직하게는 230 mAh/g 이상인 것을 사용할 수 있다. 이러한 리튬 금속 화합물의 사용으로 인해 양극 활물질인 리튬 전이금속 산화물의 비가역 용량을 높이면서 리튬 금속층(23)을 형성할 수 있는 리튬 소스로서의 역할을 한다.Generally, the irreversible capacity of the positive electrode active material used is about 2 to 10% of the initial charge capacity, but in the present invention, the lithium metal compound which is a high irreversible material, that is, the initial irreversible capacity is 30% or more of the initial charge capacity, preferably 50% or more. Lithium metal compounds can be used together. In addition, as the lithium metal compound, an initial charge capacity of 200 mAh / g or more, preferably 230 mAh / g or more, may be used. Due to the use of such a lithium metal compound, it acts as a lithium source capable of forming the lithium metal layer 23 while increasing the irreversible capacity of the lithium transition metal oxide as a positive electrode active material.
본 발명에서 제시하는 리튬 금속 화합물은 하기 화학식 1 내지 화학식 8로 표시되는 화합물이 가능하다.The lithium metal compound presented in the present invention may be a compound represented by the following Chemical Formulas 1 to 8.
[화학식 1][Formula 1]
Li2Ni1-aM1 aO2 Li 2 Ni 1-a M 1 a O 2
(상기 식에서, a는 0≤a<1이고, M1은 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(In the above formula, a is 0≤a <1, and M 1 is one or more elements selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg, and Cd.)
[화학식 2][Formula 2]
Li2+bNi1-cM2 cO2+d Li 2 + b Ni 1-c M 2 c O 2 + d
(상기 식에서, -0.5≤b≤0.5, 0≤c≤1, 0≤d<0.3, M2는 P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(In the above formula, -0.5≤b≤0.5, 0≤c≤1, 0≤d <0.3, M 2 is P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, It is one or more elements selected from the group consisting of Cu, Zn, Cr, Mg, Nb, Mo and Cd.)
[화학식 3][Formula 3]
LiM3 eMn1-eO2 LiM 3 e Mn 1-e O 2
(상기 식에서, 0≤e<0.5이고, M3는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군에서 선택된 1종 이상의 원소이다.),(In the above formula, 0≤e <0.5, M 3 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.),
[화학식 4][Formula 4]
Li2M4O2 Li 2 M 4 O 2
(상기 식에서, M4는 Cu, Ni로 이루어진 군에서 선택된 1종 이상의 원소이다.)(In the above formula, M 4 is one or more elements selected from the group consisting of Cu and Ni.)
[화학식 5][Formula 5]
Li3+fNb1-gM5 gS4-h Li 3 + f Nb 1-g M 5 g S 4-h
(상기 식에서, -0.1≤f≤1, 0≤g≤0.5, -0.1≤h≤0.5이고, M5는 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다)(In the above formula, -0.1≤f≤1, 0≤g≤0.5, -0.1≤h≤0.5, M 5 is one or more elements selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd to be)
[화학식 6][Formula 6]
LiM6 iMn1-iO2 LiM 6 i Mn 1-i O 2
(상기 식에서, i는 0.05≤i<0.5이고, M6는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(In the above formula, i is 0.05≤i <0.5, and M 6 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.)
[화학식 7][Formula 7]
LiM7 2jMn2-2jO4 LiM 7 2j Mn 2-2j O 4
(상기 식에서, j는 0.05≤j<0.5이고, M7은 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(In the above formula, j is 0.05≤j <0.5, and M 7 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.)
[화학식 8][Formula 8]
Lik-M8 m-Nn Li k -M 8 m -N n
(상기 식에서, M8은 알칼리토류 금속을 나타내고, k/(k+m+n)은 0.10 내지 0.40이고, m/(k+m+n)은 0.20 내지 0.50이고, n/(k+m+n)은 0.20 내지 0.50이다.)(In the above formula, M 8 represents an alkaline earth metal, k / (k + m + n) is 0.10 to 0.40, m / (k + m + n) is 0.20 to 0.50, and n / (k + m + n) is 0.20 to 0.50.)
상기한 화학식 1 내지 화학식 8의 리튬 금속 화합물은 그 구조에 따라 비가역 용량에 차이가 있으며, 이들은 단독 또는 혼합하여 사용할 수 있으며, 양극 활물질의 비가역 용량을 높이는 역할을 한다.The lithium metal compounds of Chemical Formulas 1 to 8 have different irreversible capacity depending on their structure, and they can be used alone or in combination, and serve to increase the irreversible capacity of the positive electrode active material.
일례로, 화학식 1 및 화학식 3으로 표시되는 고비가역 물질은 그 종류에 따라 비가역 용량이 다르며, 일례로 하기 표 1에 나타낸 바와 같은 수치를 갖는다.As an example, the highly irreversible materials represented by Chemical Formulas 1 and 3 have different irreversible capacities according to their types, and have numerical values as shown in Table 1 below as an example.
초기 충전 용량(mAh/g)Initial charging capacity (mAh / g) 초기 방전 용량(mAh/g)Initial discharge capacity (mAh / g) 초기 쿨롱 효율Initial Coulomb Efficiency 초기 비가역 용량 비Initial irreversible capacity ratio
[화학식 1] Li2NiO2 [Formula 1] Li 2 NiO 2 370370 110110 29.7%29.7% 70.3%70.3%
[화학식 3] LiMnO2 [Formula 3] LiMnO 2 230230 100100 43.5%43.5% 56.5%56.5%
[화학식 3] LiCreMn1-eO2 [Chemical Formula 3] LiCr e Mn 1-e O 2 230230 8080 34.8%34.8% 65.2%65.2%
또한, 화학식 2의 리튬 금속 화합물은 공간군 Immm에 속하는 것이 바람직하고, 그 중 Ni, M 복합 산화물(composite oxide)이 평면사배위(Ni, M)O4를 형성하며, 평면사배위 구조가 마주 대하는 변(O-O으로 형성된 변)을 공유하며 1차 쇄를 형성하고 있는 것이 더욱 바람직하다. 상기 화학식 2의 화합물의 결정 격자 상수는 a = 3.7±0.5 Å, b = 2.8±0.5 Å, c = 9.2±0.5 Å, α= 90°, β= 90°, γ= 90°인 것이 바람직하다.In addition, it is preferable that the lithium metal compound of Formula 2 belongs to the space group Immm, of which Ni, M composite oxide forms a planar coordination (Ni, M) O 4 , and the planar coordination structure faces each other. It is more preferable to share the opposite side (a side formed of OO) and form a primary chain. The crystal lattice constant of the compound of Formula 2 is preferably a = 3.7 ± 0.5 ±, b = 2.8 ± 0.5 Å, c = 9.2 ± 0.5 Å, α = 90 °, β = 90 °, γ = 90 °.
또한, 화학식 8의 리튬 금속 화합물은 알칼리토류 금속의 함량이 30 내지 45 원자%이고, 질소의 함량은 30 내지 45 원자%이다. 이때 상기 알칼리토류 금속의 함량 및 질소의 함량이 상기 범위일 때, 상기 화학식 8의 화합물의 열적 특성 및 리튬 이온 전도 특성이 우수하다. 그리고, 상기 화학식 8에서 k/(k+m+n)은 0.15 내지 0.35, 예를 들어 0.2 내지 0.33이고, m/(k+m+n)은 0.30 내지 0.45, 예를 들어 0.31 내지 0.33이고, n/(k+m+n)은 0.30 내지 0.45, 예를 들어 0.31 내지 0.33이다.In addition, the lithium metal compound of the formula (8) has an alkaline earth metal content of 30 to 45 atomic%, and a nitrogen content of 30 to 45 atomic%. At this time, when the content of the alkaline earth metal and the content of nitrogen are within the above range, the thermal properties and lithium ion conduction properties of the compound of Formula 8 are excellent. And, in the formula (8), k / (k + m + n) is 0.15 to 0.35, for example 0.2 to 0.33, m / (k + m + n) is 0.30 to 0.45, for example 0.31 to 0.33, n / (k + m + n) is 0.30 to 0.45, for example 0.31 to 0.33.
상기 화학식의 전극 활물질은 일구현예에 따르면 a는 0.5 내지 1, b는 1, c는 1이다.According to one embodiment, the electrode active material of the above formula is 0.5 to 1, b is 1, and c is 1.
상기 양극 활물질은 표면이 상기 화학식 1 내지 화학식 8 중 어느 하나의 화합물로 코팅된 코어-쉘 구조일 수 있다.The positive electrode active material may have a core-shell structure having a surface coated with a compound of any one of Formulas 1 to 8.
코어 활물질 표면에 상기 화학식 1 내지 화학식 8 중 어느 하나의 화합물로된 코팅막을 형성하면, 전극 활물질은 리튬 이온이 지속적으로 삽입, 탈착되는 환경에서도 낮은 저항 특성을 유지하면서 안정적인 특성을 나타낸다.When a coating film of any one of the above Chemical Formulas 1 to 8 is formed on the surface of the core active material, the electrode active material exhibits stable characteristics while maintaining low resistance characteristics even in an environment in which lithium ions are continuously inserted and desorpted.
본 발명의 구현예에 따른 전극 활물질에서 코팅막의 두께는 1 내지 100nm이다. 상기 코팅막의 두께가 상기 범위일 때 전극 활물질의 이온 전도 특성이 우수하다.In the electrode active material according to the embodiment of the present invention, the thickness of the coating film is 1 to 100 nm. When the thickness of the coating film is within the above range, the ion-conducting properties of the electrode active material are excellent.
상기 전극 활물질의 평균 입경은 1 내지 30μm, 일구현예에 따르면, 8 내지 12μm이다. 양극 활물질의 평균 입경이 상기 범위일 때, 전지의 용량 특성이 우수하다.The electrode active material has an average particle diameter of 1 to 30 μm, and according to one embodiment, 8 to 12 μm. When the average particle diameter of the positive electrode active material is within the above range, the capacity characteristics of the battery are excellent.
상기 알칼리토류 금속이 도핑된 코어 활물질은 예를 들어 마그네슘이 도핑된 LiCoO2를 들 수 있다. 상기 마그네슘의 함량은 코어 활물질 100 중량부를 기준으로 하여 0.01 내지 3 중량부이다.The core active material doped with the alkaline earth metal may be, for example, LiCoO 2 doped with magnesium. The magnesium content is 0.01 to 3 parts by weight based on 100 parts by weight of the core active material.
상기한 리튬 전이금속 산화물은 양극 활물질로서 바인더 및 도전재 등과 함께 양극 합제(13)에 사용한다. 본 발명의 음극 프리 전지 구조에서 리튬 금속층(23)을 형성하기 위한 리튬 소스(source)는 상기 리튬 전이금속 산화물이 된다. 즉, 리튬 전이금속 산화물 내 리튬 이온은 특정 범위의 전압 범위에서 충전을 수행할 경우 리튬 이온이 탈리되어 음극 집전체(21) 상에 리튬 금속층(23)을 형성한다.The above-described lithium transition metal oxide is used as a positive electrode active material 13 together with a binder and a conductive material as a positive electrode active material. The lithium source for forming the lithium metal layer 23 in the negative electrode free battery structure of the present invention becomes the lithium transition metal oxide. That is, when the lithium ions in the lithium transition metal oxide are charged in a specific range of voltage, lithium ions are desorbed to form the lithium metal layer 23 on the negative electrode current collector 21.
본 발명에서 리튬 금속층(23)을 형성하기 위한 충전 범위는 4.5V 내지 2.5V의 전압 범위에서 0.01 내지 0.2C로 1회의 충전을 수행 한다. 만약, 충전을 상기 범위 이하에서 수행할 경우 리튬 금속층(23)의 형성이 어렵게 되며, 이와 반대로 상기 범위를 초과할 경우 전지(cell)의 손상(damage)이 일어나 과방전이 일어난 후에 충·방전이 제대로 진행되지 않는다.In the present invention, the charging range for forming the lithium metal layer 23 is performed once at a voltage range of 4.5V to 2.5V at 0.01 to 0.2C. If the charging is performed below the above range, it is difficult to form the lithium metal layer 23. On the contrary, when the above-mentioned range is exceeded, charge and discharge are properly performed after over-discharge occurs due to damage of the cell. It does not proceed.
상기 형성된 리튬 금속층(23)은 음극 집전체(21) 상에 균일한 연속 또는 불연속적인 층을 형성한다. 일례로, 음극 집전체(21)가 호일 형태인 경우 연속적인 박막 형태를 가질 수 있으며, 음극 집전체(21)가 3차원 다공성 구조를 가질 경우 리튬 금속층(23)은 불연속적으로 형성될 수 있다. 즉, 불연속적인 층은 불연속적으로 분포하는 형태로, 특정 영역 내에 리튬 금속층(23)이 존재하는 영역과 존재하지 않는 영역이 존재하되, 리튬 금속층(23)이 존재하지 않는 영역이 리튬 화합물이 존재하는 영역을 아일랜드형(island type)과 같이 고립, 단절 또는 분리하도록 분포함으로써, 리튬 금속층(23)이 존재하는 영역이 연속성 없이 분포하는 것을 의미한다.The formed lithium metal layer 23 forms a uniform continuous or discontinuous layer on the negative electrode current collector 21. For example, when the negative electrode current collector 21 has a foil shape, it may have a continuous thin film shape, and when the negative electrode current collector 21 has a three-dimensional porous structure, the lithium metal layer 23 may be discontinuously formed. . That is, the discontinuous layer is in a form of discontinuously distributed, and a region in which the lithium metal layer 23 exists and a region in which a lithium metal layer 23 is present exists in a specific region, but a lithium compound exists in a region where the lithium metal layer 23 does not exist. By distributing the region to be isolated, disconnected or separated like an island type, it means that the region where the lithium metal layer 23 is present is distributed without continuity.
이러한 충·방전을 통해 형성된 리튬 금속층(23)은 음극으로서의 기능을 위해 최소 50 nm 이상, 100 μm 이하, 바람직하기로 1 μm 내지 50 μm의 두께를 갖는다. 만약 그 두께가 상기 범위 미만이면 전지 충방전 효율이 급격히 감소하며, 이와 반대로 상기 범위를 초과할 경우 수명 특성 등은 안정하나, 전지의 에너지밀도가 낮아지는 문제가 있다.The lithium metal layer 23 formed through such charging and discharging has a thickness of at least 50 nm, 100 μm or less, and preferably 1 μm to 50 μm for functioning as a negative electrode. If the thickness is less than the above range, the efficiency of charging and discharging the battery rapidly decreases. On the contrary, if the thickness exceeds the above range, life characteristics and the like are stable, but the energy density of the battery is lowered.
특히, 본 발명에서 제시하는 리튬 금속층(23)은 전지 조립시에는 리튬 금속이 없는 음극 프리 전지로 제조함으로써, 종래 리튬 호일을 사용하여 조립된 리튬 이차전지와 비교하여 조립 과정에서 발생하는 리튬의 높은 반응성으로 인해 리튬 금속층(23) 상에 산화층이 전혀 또는 거의 형성되지 않는다. 이로 인해 상기 산화층에 의한 전지의 수명 퇴화 현상을 방지할 수 있다.In particular, the lithium metal layer 23 presented in the present invention is manufactured by using a negative electrode-free battery without lithium metal when assembling the battery, so that the lithium generated in the assembly process is high compared to a lithium secondary battery assembled using a conventional lithium foil. Due to the reactivity, no or little oxide layer is formed on the lithium metal layer 23. Due to this, it is possible to prevent the degradation of the life of the battery due to the oxide layer.
또한, 리튬 금속층(23)은 고비가역 물질의 충전에 의해 이동하고, 이는 양극상에 리튬 금속층(23)을 형성하는 것과 비교하여 보다 안정적인 리튬 금속층(23)을 형성할 수 있다. 양극 상에 리튬 금속을 부착할 경우, 양극과 리튬 금속의 화학 반응이 일어날 수 있다.In addition, the lithium metal layer 23 is moved by charging of a high irreversible material, which can form a more stable lithium metal layer 23 compared to forming the lithium metal layer 23 on the positive electrode. When lithium metal is attached on the positive electrode, a chemical reaction between the positive electrode and lithium metal may occur.
상기한 양극 활물질과 리튬 금속 화합물을 포함하여 양극 합제(13)를 구성하며, 이때 상기 양극 합제(13)는 추가로 리튬 이차전지에서 통상적으로 사용하는 도전재, 바인더 및 기타 첨가제를 더욱 포함할 수 있다.The positive electrode mixture 13 comprises the positive electrode active material and the lithium metal compound, wherein the positive electrode mixture 13 may further include a conductive material, a binder, and other additives commonly used in lithium secondary batteries. have.
도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 써멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The conductive material is used to further improve the conductivity of the electrode active material. The conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery. For example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
상기 양극 활물질, 리튬 금속 화합물 및 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있다. 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비닐리덴-펜타플루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합제 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.A binder may be further included to bond the positive electrode active material, the lithium metal compound, and the conductive material to the current collector. The binder may include a thermoplastic resin or a thermosetting resin. For example, polyethylene, polypropylene, polytetrafluoro ethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoro alkylvinyl ether copolymer, vinylidene fluoride- Hexa fluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoro Roethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra fluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoro ethylene copolymer, ethylene -Acrylic acid copolymers and the like can be used alone or in combination, but not necessarily limited to these It is not possible as long as it can be used as a binder in the art.
기타 첨가제의 예로 충진제가 있다. 상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니다. 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체나 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.Examples of other additives are fillers. The filler is selectively used as a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. For example, olefinic polymers such as polyethylene and polypropylene, or fibrous materials such as glass fibers and carbon fibers are used.
본 발명의 양극 합제(13)는 양극 집전체(11) 상에 형성된다.The positive electrode mixture 13 of the present invention is formed on the positive electrode current collector 11.
양극 집전체는 일반적으로 3 μm 내지 500 μm의 두께로 만든다. 이러한 양극 집전체(11)는 리튬 이차전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 그 예시로서 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체(11)는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등의 다양한 형태로 사용될 수 있다.The positive electrode current collector is generally made to a thickness of 3 μm to 500 μm. The positive electrode current collector 11 is not particularly limited as long as it has high conductivity without causing a chemical change in the lithium secondary battery, and examples thereof include stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surfaces treated with carbon, nickel, titanium, silver, or the like may be used. At this time, the positive electrode current collector 11 may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven fabric, etc. with fine irregularities formed on the surface to increase the adhesion with the positive electrode active material.
양극 합제(13)를 집전체 상에 도포하는 방법은, 전극 합제 슬러리를 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시키는 방법, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법 등을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱 또는 라미네이션 방법에 의해 전극 합제 슬러리를 집전체와 접합시킬 수도 있으나, 이에 제한되는 것은 아니다.The method of applying the positive electrode mixture 13 on the current collector is a method in which the electrode mixture slurry is distributed over the current collector and then uniformly dispersed using a doctor blade, etc., die casting, comma coating and methods such as (comma coating) and screen printing. In addition, after molding on a separate substrate, the electrode mixture slurry may be bonded to the current collector by pressing or lamination, but is not limited thereto.
본 발명의 리튬 이차전지에서 사용되는 분리막은 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온의 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 이러한 분리막은 높은 이온 투과도 및 기계적 강도를 가지는 절연체로서 얇은 박막 또는 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다. 또한 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막의 역할을 겸할 수도 있다.The separator used in the lithium secondary battery of the present invention separates or insulates the positive electrode and the negative electrode from each other and enables transport of lithium ions between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material. The separator is an insulator having high ion permeability and mechanical strength, and may be an independent member such as a thin film or a film, or a coating layer added to the anode and / or the cathode. In addition, when a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
상기 분리막의 기공 직경은 일반적으로 0.01 ~ 10 μm이고, 두께는 일반적으로 5 ~ 300 μm이 바람직하며, 이러한 분리막으로는, 유리 전해질(Glass electrolyte), 고분자 전해질 또는 세라믹 전해질 등이 사용될 수 있다. 예컨대 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머, 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포, 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300 Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.The pore diameter of the separator is generally 0.01 to 10 μm, and the thickness is generally 5 to 300 μm, and as the separator, a glass electrolyte, a polymer electrolyte, or a ceramic electrolyte may be used. For example, olefin-based polymers such as chemically and hydrophobic polypropylene, sheets or non-woven fabrics made of glass fiber or polyethylene, or the like are used. Typical examples currently on the market include the Celgard series (Celgard R 2400, 2300 Hoechest Celanese Corp.), polypropylene separator (manufactured by Ube Industries Ltd. or Pall RAI), and polyethylene series (Tonen or Entek).
고체 상태의 전해질 분리막은 약 20 중량% 미만의 비수성 유기 용매를 포함할 수도 있으며, 이 경우에는 유기 용매의 유동성을 줄이기 위하여 적절한 겔 형성 화합물(Gelling agent)을 더 포함할 수도 있다. 이러한 겔 형성 화합물의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루라이드, 폴리아크릴로니트릴 등을 들 수 있다.The solid electrolyte separator may contain less than about 20% by weight of a non-aqueous organic solvent, and in this case, may further include an appropriate gel-forming compound to reduce the fluidity of the organic solvent. Representative examples of such gel-forming compounds include polyethylene oxide, polyvinylidene fluoride, and polyacrylonitrile.
상술한 바와 같은 구성을 갖는 리튬 이차전지의 제조는 본 발명에서 특별히 한정하지 않으며, 공지의 방법을 통해 제조가 가능하다.The production of a lithium secondary battery having the above-described configuration is not particularly limited in the present invention, and can be manufactured through a known method.
일례로, 전고체 전지 형태인 경우, 양극 및 음극 사이에 본 발명의 전해질을 배치시킨 후 이를 압축 성형하여 셀을 조립한다. In one example, in the case of an all-solid-state battery, the electrolyte of the present invention is disposed between the positive electrode and the negative electrode, and then compression molded to assemble the cell.
상기 조립된 셀은 외장재 내에 설치한 후 가열 압축 등에 의해 봉지한다. 외장재로는 알루미늄, 스테인레스 등의 라미네이트 팩, 원통형이나 각형의 금속제 용기가 적합하게 사용될 수 있다.The assembled cell is sealed by heat compression after being installed in the exterior material. As the exterior material, a laminate pack such as aluminum or stainless steel, a cylindrical or square metal container may be suitably used.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, a preferred embodiment is provided to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it is apparent to those skilled in the art that various changes and modifications are possible within the scope and technical scope of the present invention. It is no wonder that such variations and modifications fall within the scope of the appended claims.
<음극 프리 리튬 이차전지의 제조><Production of cathode-free lithium secondary battery>
실시예 1.Example 1.
N-메틸피롤리돈(N-Methyl-2-pyrrolidone)에 LCO(LiCoO2) 및 L2N(Li2NiO2)을 9:1의 중량비로 혼합한 것을 양극 활물질로 사용하였고, 상기 양극 활물질:도전재(수퍼-P):바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다.A mixture of LCO (LiCoO 2 ) and L 2 N (Li 2 NiO 2 ) in a weight ratio of 9: 1 to N-methylpyrrolidone (N-Methyl-2-pyrrolidone) was used as a positive electrode active material, and the positive electrode active material : A conductive material (super-P): binder (PVdF) was mixed in a weight ratio of 95: 2.5: 2.5 and then mixed with a paste face mixer for 30 minutes to prepare a slurry composition.
상기에서 제조한 슬러리 조성물을 집전체(Al Foil, 두께 20μm) 상에 코팅하고 130℃에서 12시간 동안 건조하여 로딩량이 3mAh/cm2인 양극을 제조하였다.The slurry composition prepared above was coated on a current collector (Al Foil, 20 μm thick) and dried at 130 ° C. for 12 hours to prepare a positive electrode having a loading of 3 mAh / cm 2 .
디메틸 카보네이트(dimethyl carbonate, DMC)에 LiFSI 2.8M을 혼합하여 제1 전해질을 제조하였으며, 이를 구리 집전체, 즉 음극 쪽으로 주액하여 제1 전해질층으로 사용하였다.LiFSI 2.8M was mixed with dimethyl carbonate (DMC) to prepare a first electrolyte, which was injected into a copper current collector, that is, a cathode, and used as a first electrolyte layer.
폴리(에틸렌글리콜)메틸에테르 아크릴레이트(Poly(ethylene glycol) methyl ether acrylate, PEGMEA), 폴리(에틸렌글리콜)디아크릴레이트(Poly(ethylene glycol) diacrylate, PEGDA), SN(Succinonitrile) 및 LiTFSI를 15:5:40:40의 중량비로 혼합하여 제2 전해질을 제조하였으며, 이를 기공도(porosity) 48.8% 분리막에 함침하여 제2 전해질층을 형성하였고, 제1 전해질층 및 제3 전해질층 사이에 개재하였다.Poly (ethylene glycol) methyl ether acrylate (PEGMEA), poly (ethylene glycol) diacrylate (PEGDA), SN (Succinonitrile) and LiTFSI 15: A second electrolyte was prepared by mixing in a weight ratio of 5:40:40, which was impregnated into a 48.8% separator with porosity to form a second electrolyte layer, and was interposed between the first electrolyte layer and the third electrolyte layer. .
에틸렌 카보네이트(ethylene carbonate, EC), 디에틸렌 카보네이트(diethyl carbonate, DEC) 및 디메틸 카보네이트(dimethyl carbonate, DMC)를 1:2:1의 부피비로 혼합한 혼합 용매에 1M의 LiPF6와 2 중량%의 VC(Vinylene Carbonate)를 용해시켜 제3 전해질을 제조하였으며, 이를 양극 쪽에 주액하여 제3 전해질층을 형성하였다.1M LiPF 6 and 2% by weight of 1M LiPF 6 in a mixed solvent of ethylene carbonate (EC), diethylene carbonate (DEC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2: 1 A third electrolyte was prepared by dissolving VC (Vinylene Carbonate), and the third electrolyte layer was formed by injecting it to the positive electrode.
상기에서 제조한 양극을 제3 전해질층 상에 위치시켜 실시예 1의 음극 프리 리튬 이차전지를 제조하였다.The anode prepared above was placed on the third electrolyte layer to prepare the anode-free lithium secondary battery of Example 1.
실시예 2.Example 2.
양극 활물질로 L2N(Li2NiO2)을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 실시예 2의 음극 프리 리튬 이차전지를 제조하였다.A cathode-free lithium secondary battery of Example 2 was manufactured in the same manner as in Example 1, except that L 2 N (Li 2 NiO 2 ) was not used as the positive electrode active material.
비교예 1.Comparative Example 1.
N-메틸피롤리돈(N-Methyl-2-pyrrolidone) 에 LCO(LiCoO2) 및 L2N(Li2NiO2)을 9:1의 중량비로 혼합한 것을 양극활물질로 사용하였고, 상기 양극활물질:도전재(수퍼-P):바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다.A mixture of LCO (LiCoO 2 ) and L 2 N (Li 2 NiO 2 ) in a weight ratio of 9: 1 to N-methylpyrrolidone (N-Methyl-2-pyrrolidone) was used as a positive electrode active material, and the positive electrode active material : A conductive material (super-P): binder (PVdF) was mixed in a weight ratio of 95: 2.5: 2.5 and then mixed with a paste face mixer for 30 minutes to prepare a slurry composition.
상기에서 제조한 슬러리 조성물을 집전체(Al Foil, 두께 20μm) 상에 코팅하고 130℃에서 12시간 동안 건조하여 양극을 제조하였다.The slurry composition prepared above was coated on a current collector (Al Foil, 20 μm thick) and dried at 130 ° C. for 12 hours to prepare a positive electrode.
에틸렌 카보네이트(ethylene carbonate, EC)), 디에틸렌 카보네이트(diethyl carbonate, DEC) 및 디메틸 카보네이트(dimethyl carbonate, DMC)를 1:2:1의 부피비로 혼합한 혼합 용매에 1M의 LiPF6와 2 중량%의 VC(Vinylene Carbonate)를 용해시켜 전해질을 제조하였으며, 기공도(porosity) 48.8% 분리막에 주액하여 양극과 음극 사이 개재하였다.1M LiPF 6 and 2% by weight in a mixed solvent of ethylene carbonate (EC)), diethylene carbonate (DEC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2: 1 The electrolyte was prepared by dissolving VC (Vinylene Carbonate), and interposed between the positive electrode and the negative electrode by pouring into a 48.8% separator of porosity.
상기에서 제조한 양극을 분리막 상에 위치시켜 비교예 1의 음극 프리 리튬 이차전지를 제조하였다.The anode prepared above was placed on a separator to prepare a negative electrode-free lithium secondary battery of Comparative Example 1.
실험예 1. 전해질층의 이온 전도도 측정Experimental Example 1. Measurement of ionic conductivity of the electrolyte layer
상기 실시예 1 및 비교예 1의 이온 전도도를 측정하였다. 실시예 1의 제1 전해질층 및 제3 전해질층의 이온 전도도는 메틀러 토레도 전도도 미터를 이용하여 측정하였으며, 제2 전해질층의 이온 전도도는 SUS/SUS 셀을 이용하여 측정하였다. 또한, 비교예 1의 전해질층의 이온 전도도는 메틀러 토레도 전도도 미터를 이용하여 측정하였다.The ionic conductivity of Example 1 and Comparative Example 1 was measured. The ion conductivity of the first electrolyte layer and the third electrolyte layer of Example 1 was measured using a METTLER TOLEDO conductivity meter, and the ion conductivity of the second electrolyte layer was measured using a SUS / SUS cell. In addition, the ion conductivity of the electrolyte layer of Comparative Example 1 was measured using a METTLER TOLEDO conductivity meter.
결과를 하기 표 2에 나타내었다.The results are shown in Table 2 below.
실시예 1Example 1 비교예 1Comparative Example 1
제1 전해질층First electrolyte layer 10X10-3 S/cm10X10 -3 S / cm 8X10-3 S/cm8X10 -3 S / cm
제2 전해질층Second electrolyte layer 2X10-4 S/cm2X10 -4 S / cm
제3 전해질층3rd electrolyte layer 8X10-3 S/cm8X10 -3 S / cm
실험예 2. 리튬 이차전지의 특성 분석Experimental Example 2. Characteristic analysis of lithium secondary battery
실시예 1, 실시예 2 및 비교예 1에서 제조한 음극 프리 리튬 이차전지를 0.1C, 4.25V의 CC/CV(5% current cut at 1C)로 1회 충전하여 리튬 금속층이 형성된 리튬 이차전지를 제조하였다.The negative electrode-free lithium secondary battery prepared in Example 1, Example 2 and Comparative Example 1 was charged once with CC / CV (5% current cut at 1C) of 0.1C and 4.25V to provide a lithium secondary battery having a lithium metal layer formed thereon. It was prepared.
상기 리튬 이차전지를 방전 3mAh/cm2 기준 0.2C/0.5C의 조건으로 충·방전을 수행하여 리튬 금속층(23)이 형성된 리튬 이차전지의 초기 방전 용량 대비 용량 유지율이 50% 이상인 사이클 수를 측정하였으며, 결과를 하기 표 3에 나타내었다.The lithium secondary battery is charged and discharged under the conditions of discharge 3mAh / cm 2 based on 0.2C / 0.5C to measure the number of cycles in which the capacity retention rate is 50% or more compared to the initial discharge capacity of the lithium secondary battery in which the lithium metal layer 23 is formed. The results are shown in Table 3 below.
L2N 사용 유무L 2 N use 쇼트(short) 발생시점When a short occurs 초기 방전 용량 대비 용량 유지율이 50% 이상인 사이클 수The number of cycles in which the capacity retention rate is 50% or more compared to the initial discharge capacity
실시예 1Example 1 OO -- 1717
실시예 2Example 2 XX -- 1010
비교예 1Comparative Example 1 OO 2 사이클2 cycles 쇼트 발생 중지Stop short circuit
상기 표 3의 결과에서, 고비가역 물질인 L2N을 사용한 실시예 1은 쇼트가 발생하지 않으며, 초기 방전 용량 대비 용량 유지율이 50% 이상인 사이클 수가 17 사이클로 가장 높게 측정되었다. 실시예 2는 고비가역 물질인 L2N을 사용하지 않아 실시예 1 보다 사이클 수가 낮게 측정되었다. 반면, 비교예 1은 하나의 전해질층만을 포함한 것으로, 2 사이클에서 쇼트가 발생하여 용량 유지율의 측정이 불가하였으며, 매우 불안정한 충·방전 특성을 보였다.In the results of Table 3, Example 1 using the high-reversible material L 2 N did not short, and the number of cycles having a capacity retention ratio of 50% or more compared to the initial discharge capacity was measured to be the highest with 17 cycles. Example 2 did not use the highly irreversible material, L 2 N, so the number of cycles was lower than that of Example 1. On the other hand, in Comparative Example 1, only one electrolyte layer was included, and short-circuit occurred in 2 cycles, making it impossible to measure capacity retention, and showed very unstable charge / discharge characteristics.
[부호의 설명][Description of codes]
11: 양극 집전체11: anode current collector
13: 양극 합제13: anode mixture
20: 음극20: cathode
21: 음극 집전체21: cathode current collector
23: 리튬 금속층23: lithium metal layer
31: 제1 전해질층31: first electrolyte layer
33: 제2 전해질층33: second electrolyte layer

Claims (14)

  1. 양극, 음극 및 전해질을 포함하는 리튬 이차전지에 있어서,In the lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
    상기 전해질은 음극과 대면하는 제1 전해질층, 상기 제1 전해질층 상에 위치되며 양극과 대면하는 제2 전해질층을 포함하며,The electrolyte includes a first electrolyte layer facing the negative electrode, a second electrolyte layer positioned on the first electrolyte layer and facing the positive electrode,
    상기 제1 전해질층은 제2 전해질층 보다 높은 이온 전도도를 가지며,The first electrolyte layer has a higher ionic conductivity than the second electrolyte layer,
    충전에 의해 상기 양극으로부터 리튬 이온이 이동되어 음극 내 음극 집전체 상에 리튬 금속을 형성하는 리튬 이차전지.A lithium secondary battery in which lithium ions are moved from the positive electrode by charging to form lithium metal on the negative electrode current collector in the negative electrode.
  2. 제1항에 있어서, According to claim 1,
    상기 제1 전해질층의 이온 전도도는 10-5 내지 10-2S/cm이고, The ion conductivity of the first electrolyte layer is 10 -5 to 10 -2 S / cm,
    상기 제2 전해질층의 이온 전도도는 10-6 내지 10-3S/cm인 것을 특징으로 하는 리튬 이차전지.Lithium secondary battery, characterized in that the ion conductivity of the second electrolyte layer is 10 -6 to 10 -3 S / cm.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 전해질층과 제2 전해질층의 이온 전도도 차이가 2 내지 104 배인 것을 특징으로 하는 리튬 이차전지.Lithium secondary battery, characterized in that the difference in ionic conductivity between the first electrolyte layer and the second electrolyte layer is 2 to 10 4 times.
  4. 제1항에 있어서, According to claim 1,
    상기 제1 전해질층과 제2 전해질층 중의 하나 이상은 반고체 전해질 또는 고체 전해질인 것을 특징으로 하는 리튬 이차전지.At least one of the first electrolyte layer and the second electrolyte layer is a lithium secondary battery, characterized in that a semi-solid electrolyte or a solid electrolyte.
  5. 제1항에 있어서,According to claim 1,
    상기 제1 전해질층은 두께가 0.1 내지 20μm이며, 제2 전해질층은 두께가 0.1 내지 50μm인 것을 특징으로 하는 리튬 이차전지.The first electrolyte layer has a thickness of 0.1 to 20μm, the second electrolyte layer is a lithium secondary battery, characterized in that the thickness is 0.1 to 50μm.
  6. 제1항에 있어서,According to claim 1,
    상기 전해질은 상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층을 더 포함하는 것을 특징으로 하는 리튬 이차전지.The electrolyte is a lithium secondary battery, characterized in that it further comprises at least one electrolyte layer formed on the second electrolyte layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층 중 양극과 대면하는 전해질층은 제2 전해질층 보다 이온 전도도가 높은 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery characterized in that the electrolyte layer facing the positive electrode of the one or more electrolyte layers formed on the second electrolyte layer has a higher ionic conductivity than the second electrolyte layer.
  8. 제7항에 있어서,The method of claim 7,
    상기 제2 전해질층 상에 형성되는 하나 이상의 전해질층은 하나의 전해질층으로 구성되는 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery, characterized in that at least one electrolyte layer formed on the second electrolyte layer is composed of one electrolyte layer.
  9. 제7항에 있어서,The method of claim 7,
    상기 제2 전해질층 상에 형성되는 하나 이상의 전해질 층 중 양극과 대면하는 전해질층은 이온 전도도가 10-5 내지 10-2S/cm인 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery, characterized in that the electrolyte layer facing the positive electrode among the one or more electrolyte layers formed on the second electrolyte layer has an ionic conductivity of 10 -5 to 10 -2 S / cm.
  10. 제1항에 있어서,According to claim 1,
    상기 전해질은 전해질 사이에 분리막이 개재된 상태인 것을 특징으로 하는 리튬 이차전지.The electrolyte is a lithium secondary battery, characterized in that a separator is interposed between the electrolyte.
  11. 제10항에 있어서,The method of claim 10,
    상기 분리막은 전해질로 함침된 형태로 개재되는 것을 특징으로 하는 리튬 이차전지.The separator is a lithium secondary battery, characterized in that interposed in a form impregnated with electrolyte.
  12. 제1항에 있어서, 상기 리튬 금속은 4.5 내지 2.5V의 전압 범위에서 1회의 충전을 통해 형성되는 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the lithium metal is formed through one charge in a voltage range of 4.5 to 2.5V.
  13. 제1항에 있어서, According to claim 1,
    상기 양극은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LixMyMn2-yO4-zAz (여기에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2, M= Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi 중 하나 이상, A는 -1 또는 -2가의 하나 이상의 음이온), Li1+aNibM'1-bO2-cA'c(여기에서, 0≤a≤0.1, 0≤b≤0.8, 0≤c<0.2이고, M'은 Mn, Co, Mg, Al 등 6배위의 안정한 원소로 이루어진 군에서 선택되는 1종 이상이고 A'는 -1 또는 -2가의 하나 이상의 음이온이다.), LiCoPO4 및 LiFePO4로 이루어진 군으로부터 선택되는 1종 이상의 양극 활물질을 포함하는 것을 특징으로 하는 리튬 이차전지.The positive electrode is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0≤Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , LiMn 2-z Co z O 4 ( Here, 0 <Z <2), Li x M y Mn 2-y O 4-z A z (where 0.9≤x≤1.2, 0 <y <2, 0≤z <0.2, M = Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi, one or more, A is -1 or -2 Ideal anion), Li 1 + a Ni b M ' 1-b O 2-c A' c (where 0≤a≤0.1, 0≤b≤0.8, 0≤c <0.2, M 'is Mn, 1 or more selected from the group consisting of stable elements of 6 coordination such as Co, Mg, and Al, and A 'is -1 or -2 or more anions.), 1 selected from the group consisting of LiCoPO 4 and LiFePO 4 A lithium secondary battery comprising the above positive electrode active material.
  14. 제1항에 있어서, According to claim 1,
    상기 양극은 하기 화학식 1 내지 8 중 어느 하나로 표시되는 리튬 금속 화합물을 포함하는 것을 특징으로 하는 리튬 이차전지:The positive electrode is a lithium secondary battery characterized in that it comprises a lithium metal compound represented by any one of the following formulas 1 to 8:
    [화학식 1][Formula 1]
    Li2Ni1-aM1 aO2 Li 2 Ni 1-a M 1 a O 2
    (상기 식에서, a는 0≤a<1이고, M1은 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(In the above formula, a is 0≤a <1, and M 1 is one or more elements selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg, and Cd.)
    [화학식 2][Formula 2]
    Li2+bNi1-cM2 cO2+d Li 2 + b Ni 1-c M 2 c O 2 + d
    (상기 식에서, -0.5≤b≤0.5, 0≤c≤1, 0≤d<0.3, M2는 P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(In the above formula, -0.5≤b≤0.5, 0≤c≤1, 0≤d <0.3, M 2 is P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, It is one or more elements selected from the group consisting of Cu, Zn, Cr, Mg, Nb, Mo and Cd.)
    [화학식 3][Formula 3]
    LiM3 eMn1-eO2 LiM 3 e Mn 1-e O 2
    (상기 식에서, 0≤e<0.5이고, M3는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군에서 선택된 1종 이상의 원소이다.),(In the above formula, 0≤e <0.5, M 3 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.),
    [화학식 4][Formula 4]
    Li2M4O2 Li 2 M 4 O 2
    (상기 식에서, M4는 Cu, Ni로 이루어진 군에서 선택된 1종 이상의 원소이다.)(In the above formula, M 4 is one or more elements selected from the group consisting of Cu and Ni.)
    [화학식 5][Formula 5]
    Li3+fNb1-gM5 gS4-h Li 3 + f Nb 1-g M 5 g S 4-h
    (상기 식에서, -0.1≤f≤1, 0≤g≤0.5, -0.1≤h≤0.5이고, M5는 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다)(In the above formula, -0.1≤f≤1, 0≤g≤0.5, -0.1≤h≤0.5, M 5 is one or more elements selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd to be)
    [화학식 6][Formula 6]
    LiM6 iMn1-iO2 LiM 6 i Mn 1-i O 2
    (상기 식에서, i는 0.05≤i<0.5이고, M6는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(In the above formula, i is 0.05≤i <0.5, and M 6 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.)
    [화학식 7][Formula 7]
    LiM7 2jMn2-2jO4 LiM 7 2j Mn 2-2j O 4
    (상기 식에서, j는 0.05≤j<0.5이고, M7은 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(In the above formula, j is 0.05≤j <0.5, and M 7 is one or more elements selected from the group consisting of Cr, Al, Ni, Mn, and Co.)
    [화학식 8][Formula 8]
    Lik-M8 m-Nn Li k -M 8 m -N n
    (상기 식에서, M8은 알칼리토류 금속을 나타내고, k/(k+m+n)은 0.10 내지 0.40이고, m/(k+m+n)은 0.20 내지 0.50이고, n/(k+m+n)은 0.20 내지 0.50이다.)(In the above formula, M 8 represents an alkaline earth metal, k / (k + m + n) is 0.10 to 0.40, m / (k + m + n) is 0.20 to 0.50, and n / (k + m + n) is 0.20 to 0.50.)
PCT/KR2019/014570 2018-10-31 2019-10-31 Lithium secondary battery WO2020091448A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/040,500 US20210028484A1 (en) 2018-10-31 2019-10-31 Lithium secondary battery
EP19879111.3A EP3754760A4 (en) 2018-10-31 2019-10-31 Lithium secondary battery
CN201980018114.XA CN111837257B (en) 2018-10-31 2019-10-31 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0131581 2018-10-31
KR20180131581 2018-10-31
KR10-2019-0137128 2019-10-31
KR1020190137128A KR102328260B1 (en) 2018-10-31 2019-10-31 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2020091448A1 true WO2020091448A1 (en) 2020-05-07

Family

ID=70462318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014570 WO2020091448A1 (en) 2018-10-31 2019-10-31 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2020091448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133111A (en) * 2022-08-31 2022-09-30 清陶(昆山)能源发展股份有限公司 Composite electrolyte, preparation method thereof and lithium ion battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206942A (en) * 2002-12-24 2004-07-22 Ion Engineering Research Institute Corp All solid lithium battery
JP2014026806A (en) * 2012-07-26 2014-02-06 Kojima Press Industry Co Ltd Lithium ion secondary battery and manufacturing method and manufacturing apparatus therefor
JP2016035867A (en) * 2014-08-04 2016-03-17 トヨタ自動車株式会社 Lithium solid type secondary battery and method for manufacturing the same
KR20160052323A (en) 2014-10-29 2016-05-12 주식회사 엘지화학 Lithium electrode and lithium battery compring the same
KR20170024862A (en) * 2015-08-26 2017-03-08 주식회사 엘지화학 Organic-inorganic composite solid battery
KR20180007798A (en) * 2016-07-14 2018-01-24 주식회사 엘지화학 Lithium secondary battery comprising cathode with Li metal, manufacturing method thereof
KR20180010423A (en) * 2016-07-21 2018-01-31 주식회사 엘지화학 Lithium Secondary Battery containing Cathod Active Material Synthesizing Lithium Cobalt Oxide, Manufacturing Method Thereof
KR20180131581A (en) 2016-03-31 2018-12-10 세키스이 메디칼 가부시키가이샤 Gene mutation detection method
KR20190137128A (en) 2017-04-05 2019-12-10 닛산 가가쿠 가부시키가이샤 Charge transport varnish

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206942A (en) * 2002-12-24 2004-07-22 Ion Engineering Research Institute Corp All solid lithium battery
JP2014026806A (en) * 2012-07-26 2014-02-06 Kojima Press Industry Co Ltd Lithium ion secondary battery and manufacturing method and manufacturing apparatus therefor
JP2016035867A (en) * 2014-08-04 2016-03-17 トヨタ自動車株式会社 Lithium solid type secondary battery and method for manufacturing the same
KR20160052323A (en) 2014-10-29 2016-05-12 주식회사 엘지화학 Lithium electrode and lithium battery compring the same
KR20170024862A (en) * 2015-08-26 2017-03-08 주식회사 엘지화학 Organic-inorganic composite solid battery
KR20180131581A (en) 2016-03-31 2018-12-10 세키스이 메디칼 가부시키가이샤 Gene mutation detection method
KR20180007798A (en) * 2016-07-14 2018-01-24 주식회사 엘지화학 Lithium secondary battery comprising cathode with Li metal, manufacturing method thereof
KR20180010423A (en) * 2016-07-21 2018-01-31 주식회사 엘지화학 Lithium Secondary Battery containing Cathod Active Material Synthesizing Lithium Cobalt Oxide, Manufacturing Method Thereof
KR20190137128A (en) 2017-04-05 2019-12-10 닛산 가가쿠 가부시키가이샤 Charge transport varnish

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133111A (en) * 2022-08-31 2022-09-30 清陶(昆山)能源发展股份有限公司 Composite electrolyte, preparation method thereof and lithium ion battery
CN115133111B (en) * 2022-08-31 2022-12-16 清陶(昆山)能源发展股份有限公司 Composite electrolyte, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
WO2020145639A1 (en) Positive electrode active material, method for manufacturing positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2020091453A1 (en) Lithium secondary battery
WO2018143733A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage properties
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2019045399A2 (en) Lithium secondary battery
WO2018236168A1 (en) Lithium secondary battery
WO2019004699A1 (en) Lithium secondary battery
WO2022182019A1 (en) Sacrificial anode material having reduced gas generation, and preparation method therefor
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2020091428A1 (en) Lithium secondary battery
WO2020263023A1 (en) Electrode for lithium secondary battery having specific composition conditions and lithium secondary battery comprising same
WO2020149677A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2017074116A1 (en) Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
WO2019245284A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery
WO2020091448A1 (en) Lithium secondary battery
WO2019107838A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019093864A2 (en) Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery
WO2019151724A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2023063648A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022255665A1 (en) Master batch comprising positive electrode active material and irreversible additive, and positive electrode slurry, for lithium secondary battery, containing same
WO2021045542A1 (en) Electrode pre-lithiation method and device
WO2020180125A1 (en) Lithium secondary battery
WO2020091515A1 (en) Lithium secondary battery
WO2020213962A1 (en) Non-aqueous electrolytic solution additive for lithium secondary battery, and non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery, comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019879111

Country of ref document: EP

Effective date: 20200918

NENP Non-entry into the national phase

Ref country code: DE