WO2019004699A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2019004699A1
WO2019004699A1 PCT/KR2018/007227 KR2018007227W WO2019004699A1 WO 2019004699 A1 WO2019004699 A1 WO 2019004699A1 KR 2018007227 W KR2018007227 W KR 2018007227W WO 2019004699 A1 WO2019004699 A1 WO 2019004699A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
group
electrolyte
secondary battery
negative electrode
Prior art date
Application number
PCT/KR2018/007227
Other languages
French (fr)
Korean (ko)
Inventor
박은경
장민철
박창훈
김도연
정보라
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180072890A external-priority patent/KR102093972B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/623,500 priority Critical patent/US11431019B2/en
Priority to JP2019571353A priority patent/JP7183198B2/en
Priority to EP18823493.4A priority patent/EP3637526B1/en
Priority to CN201880042247.6A priority patent/CN110785886B/en
Publication of WO2019004699A1 publication Critical patent/WO2019004699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery having an anode-free structure using a gel polymer electrolyte.
  • the lithium metal has a low redox potential (-3.045 V versus the standard hydrogen electrode) and a large weight energy density (3,860 mAhg -1 ), which is expected as a cathode material for high capacity secondary batteries.
  • lithium metal when used as a battery cathode, a battery is manufactured by attaching a lithium foil on a flat current collector. Lithium reacts explosively with water because it is highly reactive as an alkali metal and reacts with oxygen in the atmosphere It is difficult to manufacture and use in a general environment.
  • lithium metal when exposed to the atmosphere, it has an oxide film such as LiOH, Li 2 O, Li 2 CO 3 or the like as a result of oxidation.
  • the oxide film acts as an insulating film to lower the electrical conductivity and hinder the smooth movement of lithium ions, thereby increasing the electrical resistance.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 10-2016-0052323 " Lithium Electrode and Lithium Battery Including It "
  • the present invention provides a lithium secondary battery comprising a cathode, a cathode and a separator interposed therebetween and an electrolyte, wherein the electrolyte is a gel polymer electrolyte and is moved from the cathode by charging,
  • a lithium secondary battery is provided which forms a lithium metal on a current collector.
  • the lithium metal is formed through one charge at a voltage of 4.5 V to 2.5 V.
  • the negative electrode current collector may further include a protective layer on a side contacting the separator.
  • the lithium secondary battery according to the present invention is coated in a state that it is shielded from the atmosphere through the process of forming the lithium metal layer on the anode current collector, the formation of the surface oxide film due to oxygen and moisture in the atmosphere of lithium metal can be suppressed And as a result, the cycle life characteristics are improved.
  • FIG. 1 is a schematic view of a lithium secondary battery manufactured according to a first embodiment of the present invention.
  • Li + lithium ions
  • FIG. 3 is a schematic diagram of a lithium secondary battery manufactured according to a first embodiment of the present invention after initial charging of the lithium secondary battery has been completed.
  • FIG. 4 is a schematic view of a lithium secondary battery manufactured according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the movement of lithium ions (Li + ) during the initial charging of a lithium secondary battery manufactured according to the second embodiment of the present invention.
  • FIG. 6 is a schematic view of a lithium secondary battery manufactured according to a second embodiment of the present invention after initial charging is completed.
  • FIG. 6 is a schematic view of a lithium secondary battery manufactured according to a second embodiment of the present invention after initial charging is completed.
  • FIG. 1 is a cross-sectional view of a lithium secondary battery manufactured according to a first embodiment of the present invention, and includes a cathode including a cathode current collector 11 and a cathode mixture 12; A negative electrode including an anode current collector 21; And a separator 30 and an electrolyte (not shown) interposed therebetween.
  • the negative electrode of the lithium secondary battery is typically formed on the negative electrode collector 21, but in the present invention, the negative electrode collector 21 is used only as an anode-free battery structure,
  • the lithium ion released from the positive electrode mixture 13 forms a lithium metal layer (not shown) as a negative electrode mixture on the negative electrode collector 21, thereby forming a negative electrode having a structure of a known negative electrode collector / negative electrode mixture, Thereby constituting a lithium secondary battery.
  • the negative electrode pre-battery compartment may be a negative electrode-free battery in which no negative electrode is formed on the negative electrode current collector at the time of initial assembly, and a negative electrode may be formed on the negative electrode current collector, It can be a concept that includes all of the cells that are present.
  • the form of the lithium metal formed as the negative electrode mixture on the negative electrode collector may be a form in which the lithium metal is formed as a layer and a structure in which the lithium metal is not formed in the layer A structure in which particles are gathered in the form of particles).
  • FIG. 2 is a schematic diagram showing the movement of lithium ions (Li + ) upon initial charging of a lithium secondary battery manufactured in accordance with the first embodiment of the present invention, and FIG. After the initial charging of the secondary battery is completed.
  • lithium ions are removed from the positive electrode mixture 13 in the positive electrode 10, This passes through the separator 30 and moves toward the cathode current collector 21 and forms a cathode 20 by forming a lithium metal layer 23 purely composed of lithium on the cathode current collector 21.
  • the formation of the lithium metal layer 23 through such filling can reduce the thickness of the thin film layer compared to the negative electrode in which the lithium metal layer 23 is sputtered on the conventional anode current collector 21 or the lithium foil and the cathode current collector 21 are joined together. And it is advantageous that the control of the interface characteristics is very easy. In addition, since the bonding strength of the lithium metal layer 23 stacked on the anode current collector 21 is large and stable, there is no problem of being removed from the cathode current collector 21 due to ionization again through discharge.
  • the lithium metal since the lithium metal is not exposed to the atmosphere during the cell assembly process, the problem of problems such as formation of oxide film on the surface due to high reactivity of lithium itself and deterioration of lifetime of the lithium secondary battery due to the high reactivity It can be blocked at its source.
  • a gel polymer electrolyte is used as an electrolyte in the negative electrode pre-battery structure of the present invention.
  • the most widely used ether-based electrolyte has a lithium metal efficiency of 99% or more and the carbonate-based electrolyte has a lithium metal efficiency of 95% or less, the ether-based electrolyte has a low high-voltage stability and can not be used in a high-voltage anode.
  • the reduction stability is low, which causes a continuous reaction with lithium, resulting in a reduction in battery efficiency and lifetime.
  • the crosslinked gel polymer electrolyte of the present invention can inhibit electrolyte decomposition or the like when it is applied to a high voltage anode by a crosslinked structure, and can control the mechanical strength of the electrolyte relative to the electrolyte to provide a lithium dendrite growth, dead Li) can be suppressed and battery life and cell stability can be improved.
  • the gel polymer electrolyte includes a polymer matrix, a lithium salt, and an organic solvent, and includes a crosslinked or non-crosslinked structure, preferably a crosslinked crosslinked gel polymer electrolyte.
  • the polymer matrix includes a functional group selected from the group consisting of a carboxylic group, an acrylate group and a cyano group in the molecular structure, and preferably, the acrylate functional group .
  • the polymer matrix may be one containing at least one polymerizable or crosslinkable functional group in the molecular structure.
  • the monomers having one functional group are not limited to the types, but methyl methacrylate, ethyl methacrylate, buthyl methacrylate, methyl acrylate, Buthyl acrylate, ethylene glycol methyl ether acrylate, ethylene glycol methyl ether methacrylate, acrylonitrile, vinyl acetate ), Carboxyethyl acrylate, methyl cyanoacrylate, ethyl cyanoacrylate, ethyl cyano ethoxyacrylate, cyano acrylate, and the like.
  • icacid, hydroxyethyl methacrylate, hydroxypropyl acrylate, Sites (hydroxypropyl acrylate), vinyl chloride (vinylchloride) and vinyl fluoride (vinyl fluoride) and the like can be used.
  • Examples of the monomer having two or more functional groups include, but are not limited to, trimethylolpropane ethoxylate triacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, Trimethylolpropane trimethacrylate, ethoxylated bisphenol A dimethacrylate, divinyl benzene, and the like can be used.
  • Examples of the monomer having three or more functional groups include trimethylolpropane-ethocylate triacrylate, acrylic acid, trimethylolpropane-ethocylate triacrylate, and the like.
  • lithium salt examples include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, And the like may be used.
  • the concentration of said dissociable salt relative to the organic solvent may be 0.1 to 5.0 M.
  • the gel polymer electrolyte may have a proper viscosity in the form of a gel, and the dissociable salt may be dissolved in the organic solvent to contribute to effective migration of lithium ions.
  • electrolyte solvent used according to one embodiment of the present invention those commonly used in an electrolyte for a lithium secondary battery may be used without limitation, and for example, ether, ester, amide, linear carbonate, or cyclic carbonate may be used alone Or a mixture of two or more thereof.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates or a mixture thereof can be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, A carbonate, a vinylene carbonate, and a halide thereof, or a mixture of two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC) , Or a mixture of two or more of them may be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • EPC ethyl propyl carbonate
  • propylene carbonate and ethylene carbonate which are cyclic carbonates in the carbonate electrolyte solution, are highly viscous organic solvents having a high dielectric constant and can dissociate the lithium salt in the electrolytic solution well.
  • cyclic carbonates such as ethylmethyl carbonate, diethyl carbonate Or a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate in an appropriate ratio can be used to more advantageously use an electrolytic solution having a high electrical conductivity.
  • esters in the electrolyte solvent examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate,? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone And? -Caprolactone, or a mixture of two or more thereof, but the present invention is not limited thereto.
  • crosslinking conventional crosslinking agents or initiators may be used.
  • Non-limiting examples of initiators include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, t- Organic peroxides such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide and hydrogen peroxide, and hydroperoxides such as hydrogen peroxide Azobis (iso-butyronitrile) and AMVN (2,2'-azobis (2-cyanobutane), 2,2'-azobis '-Azobisdimethyl-Valeronitrile), and the like, but the present invention is not limited thereto.
  • the gel polymer electrolyte according to the present invention comprises preparing a precursor composition by mixing a crosslinkable monomer, a dissociable salt, and an organic solvent; And crosslinking the three or more crosslinkable monomers by applying heat or ultraviolet rays to the precursor composition.
  • a crosslinked polymer matrix having a net structure is formed Of the gel polymer electrolyte.
  • the anode current collector 21 in which the lithium metal layer 23 can be formed by charging is not particularly limited as long as the anode current collector 21 has electrical conductivity without causing chemical change in the lithium secondary battery.
  • Examples of the surface treatment include surface treatment of surfaces of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel with carbon, nickel, titanium or silver, or aluminum-cadmium alloy.
  • the anode current collector 21 may be formed in various shapes such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on its surface.
  • the positive electrode active material used in the present invention is not particularly limited as long as the positive electrode active material is a material capable of intercalating and deintercalating lithium ions, And a lithium transition metal oxide as a positive electrode active material capable of realizing a battery having excellent charge and discharge efficiency.
  • lithium transition metal oxide a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ), which contains two or more transition metals and is substituted with, for example, at least one transition metal;
  • LiCoO 2 lithium cobalt oxide
  • LiNiO 2 lithium nickel oxide
  • a lithium nickel oxide, a spinel-based lithium nickel manganese composite oxide, a spinel-based lithium manganese oxide in which a part of Li is substituted with an alkaline earth metal ion, an olivine-based lithium metal phosphate, and the like is not limited to these.
  • the lithium transition metal oxide is used for the positive electrode material mixture 13 together with a binder and a conductive material as a positive electrode active material.
  • the lithium source for forming the lithium metal layer 23 becomes the lithium transition metal oxide. That is, when the lithium ion in the lithium transition metal oxide is charged in a voltage range within a certain range, the lithium ion is desorbed to form the lithium metal layer 23 on the anode current collector 21.
  • the lithium ion in the lithium transition metal oxide is not easily released or the lithium metal layer 23 can not be formed due to the absence of lithium that can be involved in charging and discharging at the operating voltage level, and only the lithium transition metal oxide
  • the irreversible capacity is largely lowered and the capacity and lifetime characteristics of the lithium secondary battery are deteriorated.
  • the initial charge capacity is 200 mAh / g or more
  • a lithium metal compound which is a highly irreversible substance having an initial irreversible capacity of 30% or more.
  • the term 'high irreversible substance' referred to in the present invention may be used in the same manner as 'high capacity irreversible substance' in other terms.
  • irreversible capacity (first cycle charge capacity - first cycle discharge capacity) of the first cycle of charge and discharge may be large.
  • the irreversible capacity of the generally used cathode active material is about 2 to 10% of the initial charging capacity.
  • the lithium metal compound as the highly irreversible material that is, the initial irreversible capacity is 30% or more, preferably 50% Lithium metal compounds may be used together.
  • the lithium metal compound may have an initial charge capacity of 200 mAh / g or more, preferably 230 mAh / g or more. The use of such a lithium metal compound serves as a lithium source capable of forming the lithium metal layer 23 while raising the irreversible capacity of the lithium transition metal oxide as the cathode active material
  • the lithium metal compound represented by the present invention can be represented by the following chemical formulas (1) to (8).
  • a ⁇ 1 and M 1 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd)
  • M 2 is P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo, and Cd.
  • M < 4 > is at least one element selected from the group consisting of Cu and Ni).
  • 0.5, -0.1? H? 0.5 and M 5 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd to be)
  • M 6 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co.
  • M 7 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co
  • M 8 represents an alkaline earth metal
  • k / (k + m + n) is from 0.10 to 0.40
  • m / (k + m + n) is 0.20 to 0.50
  • n / (k + m + n) is 0.20 to 0.50.
  • the lithium metal compounds represented by Chemical Formulas 1 to 8 differ in irreversible capacity depending on the structure thereof, and they can be used singly or in combination, and serve to increase the irreversible capacity of the cathode active material.
  • the irreversible capacity of the high irreversible substance represented by the general formulas (1) and (3) varies depending on the kind thereof.
  • the irreversible capacity is as shown in Table 1 below.
  • the lithium metal compound represented by the general formula (2) preferably belongs to the space group Immm.
  • the Ni, M composite oxide forms a planar tetrahedral coordination (Ni, M) O4 and the side (Side formed with OO) and forms a primary chain.
  • the lithium metal compound of formula (8) has an alkaline earth metal content of 30 to 45 atomic% and a nitrogen content of 30 to 45 atomic%. When the content of the alkaline earth metal and the content of nitrogen are within the above ranges, the thermal characteristics and lithium ion conduction characteristics of the compound of Formula 1 are excellent.
  • M / (k + m + n) is in the range of 0.30 to 0.45, for example, 0.31 to 0.33, n / (k + m + n) is 0.30 to 0.45, for example, 0.31 to 0.33.
  • a is 0.5 to 1
  • b is 1
  • c is 1 according to an embodiment of the present invention.
  • the cathode active material may be a core-shell structure having a surface coated with a compound of any one of Chemical Formulas 1 to 8 above.
  • the electrode active material When a coating film composed of any one of the above chemical formulas (1) to (8) is formed on the surface of the core active material, the electrode active material exhibits stable characteristics while maintaining low resistance characteristics even in an environment where lithium ions are continuously inserted and desorbed.
  • the thickness of the coating layer is 1 to 100 nm.
  • the ion conductive property of the electrode active material is excellent.
  • the mean particle size of the electrode active material is 1 to 30 ⁇ , and in one embodiment, 8 to 12 ⁇ . When the average particle diameter of the positive electrode active material is in the above range, the capacity characteristics of the battery are excellent.
  • the alkaline earth metal-doped core active material may be, for example, LiCoO 2 doped with magnesium.
  • the content of magnesium is 0.01 to 3 parts by weight based on 100 parts by weight of the core active material.
  • the lithium transition metal oxide is used for the positive electrode material mixture 13 together with a binder and a conductive material as a positive electrode active material.
  • the lithium source for forming the lithium metal layer 23 becomes the lithium transition metal oxide. That is, when the lithium ion in the lithium transition metal oxide is charged in a voltage range within a certain range, the lithium ion is desorbed to form the lithium metal layer 23 on the anode current collector 21.
  • the charging range for forming the lithium metal layer 23 is one charging at 0.01 to 0.2C in the voltage range of 4.5V to 2.5V. If the charging is performed below the above range, the formation of the lithium metal layer 23 becomes difficult. On the other hand, if the charging is carried out above the above range, damage of the cell occurs, It does not.
  • the lithium metal layer 23 thus formed forms a uniform continuous or discontinuous layer on the cathode current collector 21.
  • the anode current collector 21 when the anode current collector 21 is in the form of a foil, it may have a continuous thin film form, and when the anode current collector 21 has a three-dimensional porous structure, the lithium metal layer 23 may be discontinuously formed . That is, the discontinuous layer is distributed discontinuously, and a region where the lithium metal layer 23 exists and a region where the lithium metal layer 23 does not exist exist in a specific region, and a region where the lithium metal layer 23 is not present exists in the region where the lithium compound exists And the region in which the lithium metal layer 23 is present is distributed without continuity, by distributing the region where the lithium metal layer 23 is present, such as an island type.
  • the lithium metal layer 23 formed through such charging and discharging has a thickness of at least 50 nm and less than 100 mu m, preferably 1 mu m to 50 mu m, for the function as a cathode. If the thickness is less than the above range, the charge and discharge efficiency of the battery drastically decreases. On the other hand, when the thickness is in the above range, the life characteristics and the like are stable, but the energy density of the battery is lowered.
  • the lithium metal layer 23 proposed in the present invention can be manufactured as a negative electrode-free battery without lithium metal at the time of assembling the battery, so that compared with the lithium secondary battery assembled using the conventional lithium foil, No or little oxide layer is formed on the lithium metal layer 23 due to the reactivity. Thus, degradation of life of the battery due to the oxidation layer can be prevented.
  • the lithium metal layer 23 is moved by the filling of the highly irreversible material, which can form a more stable lithium metal layer 23 as compared with the case where the lithium metal layer 23 is formed on the anode.
  • a lithium metal is attached on the anode, a chemical reaction between the anode and the lithium metal may occur.
  • the positive electrode mixture 13 contains the above-mentioned positive electrode active material and a lithium metal compound.
  • the positive electrode mixture 13 further includes a conductive material, a binder, and other additives commonly used in lithium secondary batteries .
  • the conductive material is used to further improve the conductivity of the electrode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • a binder may be further included for bonding the positive electrode active material, the lithium metal compound, and the conductive material to the current collector.
  • the binder may include a thermoplastic resin or a thermosetting resin.
  • a thermoplastic resin for example, there may be mentioned polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride- Hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer Ethylene-chlorotrifluoroethylene cop
  • the filler is optionally used as a component for suppressing the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • an olefin polymer such as polyethylene or polypropylene, or a fibrous material such as glass fiber or carbon fiber is used.
  • the positive electrode mixture (13) of the present invention is formed on the positive electrode collector (11).
  • the positive electrode collector generally has a thickness of 3 ⁇ to 500 ⁇ .
  • the cathode current collector 11 is not particularly limited as long as it has high conductivity without causing chemical change in the lithium secondary battery. Examples of the cathode current collector 11 include stainless steel, aluminum, nickel, titanium, sintered carbon, Surface-treated with carbon, nickel, titanium, silver, or the like may be used.
  • the cathode current collector 11 may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on its surface so as to increase the adhesive force with the cathode active material.
  • the method of applying the positive electrode mixture 13 on the current collector may be a method of uniformly dispersing the electrode mixture slurry on the current collector using a doctor blade or the like, a method of die casting, a comma coating method, a screen printing method, and the like.
  • the electrode mixture slurry may be formed on a separate substrate and then bonded to the current collector by a pressing or lamination method, but the present invention is not limited thereto.
  • a protective film 55 may be additionally formed on a surface of the negative electrode in contact with the separator 60. 4, the lithium metal layer 23 passes through the protective film 55 and lithium ions transferred from the positive electrode mixture 43 are discharged onto the negative electrode current collector 51. As a result, .
  • the protective film 55 may be any material capable of smoothly transferring lithium ions, and may be a material used for a lithium ion conductive polymer and / or an inorganic solid electrolyte.
  • the protective film 55 may further include a lithium salt have.
  • the lithium ion conductive polymer there may be mentioned, for example, polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride- (PVDF-HFP), LiPON, Li 3 N, LixLa 1 -x TiO 3 (0 ⁇ x ⁇ 1) and Li 2 S-GeS-Ga 2 S 3 ,
  • PEO polyethylene oxide
  • PAN polyacrylonitrile
  • PMMA polymethylmethacrylate
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-
  • LiPON Li 3 N
  • LixLa 1 -x TiO 3 (0 ⁇ x ⁇ 1
  • Li 2 S-GeS-Ga 2 S 3 Li 2 S-GeS-Ga 2 S 3
  • the present invention is not limited thereto, and any polymer having lithium ion conductivity may be used without limitation
  • the formation of the protective film 55 using the lithium ion conductive polymer is performed by preparing a coating solution in which the lithium ion conductive polymer is dissolved or swollen in a solvent, and then coating the coating solution on the negative electrode current collector 51.
  • the method of application may be selected from known methods in consideration of the characteristics of the material and the like or may be carried out by a new appropriate method.
  • the polymer protective layer composition is dispersed on a current collector and uniformly dispersed using a doctor blade or the like.
  • a method of performing the distribution and dispersion processes in a single process may be used.
  • various coating methods such as dip coating, gravure coating, slit die coating, spin coating, comma coating, bar coating, reverse roll coating reverse roll coating, screen coating, cap coating and the like.
  • the anode current collector 51 is the same as that described above.
  • the drying process may be performed on the protective film 55 formed on the anode current collector 51.
  • the drying process may be a heat treatment at a temperature of 80 to 120 ° C, depending on the type of the solvent used in the lithium ion conductive polymer Or by hot air drying or the like.
  • the solvent to be used is preferably similar to the lithium ion conductive polymer in terms of solubility index, and has a low boiling point. This is because the mixing can be made uniform and then the solvent can be easily removed.
  • a solvent such as N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone (NMP) Cyclohexane, water or a mixture thereof can be used as a solvent.
  • the lithium ion conductive polymer may further include a material used for this purpose in order to further increase the lithium ion conductivity.
  • the inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2, LiI- Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O -Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2, LiI, Li 3 N, Li 5 La 3 Ta 2 O12, Li 7 La 3 Zr 2 O 12,
  • the inorganic solid electrolyte may be mixed with known materials such as a binder and applied in a thick film form through slurry coating. Further, if necessary, the thin film type can be applied through a deposition process such as sputtering.
  • the slurry coating method used may be appropriately selected based on the coating method, the drying method and the content of the solvent mentioned above for the lithium ion conductive polymer.
  • the protective film 55 comprising the above-described lithium ion conductive polymer and / or inorganic solid electrolyte facilitates the formation of the lithium metal layer 23 by increasing the lithium ion transfer rate and at the same time, the lithium metal layer 23 / The effect of suppressing or preventing the generation of lithium dendrite generated when the whole 51 is used as a cathode can be secured at the same time.
  • the thickness of the protective film 55 is required to be limited.
  • the thickness of the protective film 55 may preferably be 10 nm to 50 ⁇ . If the thickness of the protective film 55 is less than the above range, the side reaction and the exothermic reaction between lithium and the electrolyte, which are increased under the conditions of overcharging or high-temperature storage, can not be effectively suppressed and safety can not be improved.
  • the composition of the protective film 55 In the case of the ion conductive polymer, a long time is required for the composition of the protective film 55 to be impregnated or swelled by the electrolytic solution, and the movement of the lithium ion is lowered, thereby deteriorating the overall battery performance.
  • the rechargeable lithium battery of the second embodiment has the same structure as that of the first embodiment except for the protective film 55.
  • the lithium secondary battery includes a cathode 40, a cathode 50, separators 30 and 60 interposed therebetween, and an electrolyte (not shown)
  • the separation membranes 30 and 60 may be omitted.
  • the separators 30 and 60 may be made of a porous substrate.
  • the porous substrate may be any porous substrate commonly used in an electrochemical device.
  • a polyolefin porous film or a nonwoven fabric may be used , And is not particularly limited thereto.
  • the separation membranes 30 and 60 according to the present invention are not particularly limited in their materials and physically separate the positive and negative electrodes and have an electrolyte and an ion permeability and are usually made of a lithium secondary battery as separators 30 and 60
  • Any material may be used without particular limitation, but it is preferably a porous, nonconductive or insulating material, particularly a material having a low resistance against ion movement of the electrolytic solution and an excellent ability to impregnate the electrolytic solution.
  • a polyolefin-based porous membrane or nonwoven fabric may be used, but it is not particularly limited thereto.
  • polyolefin-based porous film examples include polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene and ultra-high molecular weight polyethylene, One can say.
  • polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene and ultra-high molecular weight polyethylene, One can say.
  • the nonwoven fabric may contain, in addition to the polyolefin-based nonwoven fabric, a polyphenylene oxide, a polyimide, a polyamide, a polycarbonate, a polyethyleneterephthalate, a polyethylene naphthalate, Polybutyleneterephthalate, polyphenylenesulfide, polyacetal, polyethersulfone, polyetheretherketone, polyester, and the like may be used alone or in combination of two or more.
  • the nonwoven fabric may be a spunbond or a meltblown fiber composed of long fibers.
  • the nonwoven fabric may be a porous web.
  • the thickness of the separation membrane (30, 60) is not particularly limited, but is preferably in the range of 1 to 100 mu m, more preferably in the range of 5 to 50 mu m. If the thickness of the separation membranes 30 and 60 is less than 1 ⁇ , the mechanical properties can not be maintained. If the separation membranes 30 and 60 are more than 100 ⁇ , the separation membranes 30 and 60 serve as a resistance layer, thereby deteriorating the performance of the battery.
  • the pore size and porosity of the separation membrane (30, 60) are not particularly limited, but the pore size is preferably 0.1 to 50 ⁇ m and the porosity is preferably 10 to 95%. If the pore size of the separator 30 or 60 is less than 0.1 ⁇ m or the porosity is less than 10%, the separator 30 or 60 acts as a resistive layer. If the pore size exceeds 50 ⁇ m or the porosity is 95% The mechanical properties can not be maintained.
  • the electrolyte of the lithium secondary battery is a lithium salt-containing electrolyte, which is a non-aqueous electrolyte consisting of a non-aqueous organic solvent electrolyte and a lithium salt, and may include, but is not limited to, an organic solid electrolyte or an inorganic solid electrolyte.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, -Dimethoxyethane, 1,2-diethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, 4-methyl-
  • the organic solvent may be selected from the group consisting of diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivative, Dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate, ethyl propionat
  • the electrolyte salt contained in the non-aqueous electrolyte is a lithium salt.
  • the lithium salt can be used without limitation as those conventionally used in an electrolyte for a lithium secondary battery.
  • the lithium salt anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 - , (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, ( CF 3 SO 2) 3 C - from the group consisting of -, CF 3
  • organic solvent included in the non-aqueous electrolyte examples include those commonly used in electrolytes for lithium secondary batteries, such as ether, ester, amide, linear carbonate, cyclic carbonate, etc., Can be used. Among them, a carbonate compound which is typically a cyclic carbonate, a linear carbonate, or a mixture thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, Propylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and halides thereof, or a mixture of two or more thereof.
  • halides include, but are not limited to, fluoroethylene carbonate (FEC) and the like.
  • linear carbonate compound examples include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate And mixtures of two or more of them may be used as typical examples, but the present invention is not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates in the carbonate-based organic solvent, are high-viscosity organic solvents having a high dielectric constant and can dissociate the lithium salt in the electrolyte more easily.
  • cyclic carbonates can be used as dimethyl carbonate and diethyl carbonate When a low viscosity, low dielectric constant linear carbonate is mixed in an appropriate ratio, an electrolyte having a higher electric conductivity can be produced.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether or a mixture of two or more thereof may be used , But is not limited thereto.
  • ester in the organic solvent examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate,? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or a mixture of two or more thereof, but the present invention is not limited thereto.
  • the injection of the nonaqueous electrolyte solution can be performed at an appropriate stage of the manufacturing process of the electrochemical device according to the manufacturing process and required properties of the final product. That is, it can be applied before assembling the electrochemical device or in the final stage of assembling the electrochemical device.
  • organic solid electrolyte examples include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
  • a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
  • non-aqueous electrolytes may be used in the form of, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like are added It is possible.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart nonflammability, or a carbon dioxide gas may be further added to improve high-temperature storage characteristics.
  • the shape of the above-described lithium secondary battery is not particularly limited and may be, for example, a jelly-roll type, a stack type, a stack-folding type (including a stack-Z-folding type), or a lamination- Stack-folding type.
  • An electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked is prepared, and then inserted into a battery case. Then, an electrolyte is injected into the upper part of the case and sealed with a cap plate and a gasket to assemble a lithium secondary battery .
  • the lithium secondary battery can be classified into various types of batteries such as a lithium-sulfur battery, a lithium-air battery, a lithium-oxide battery, and a lithium total solid battery depending on the type of the anode material and the separator used.
  • Coin type, pouch type, etc. and can be divided into a bulk type and a thin film type depending on the size.
  • the structure and the manufacturing method of these cells are well known in the art, and detailed description thereof will be omitted.
  • the lithium secondary battery according to the present invention can be used as a power source for a device requiring a high capacity and a high rate characteristic.
  • the device include a power tool which is powered by an electric motor and moves; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (Escooter); An electric golf cart; And a power storage system, but the present invention is not limited thereto.
  • LCO LiCoO 2
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution.
  • the weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2
  • the ratio of PVDF polymer to ETPTA polymer was 2: 8
  • the ratio of benzoyl peroxide was added in an amount of 0.7 wt%.
  • a composition for a gel polymer electrolyte was prepared.
  • a lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (2), and positioning the electrode assembly inside the case.
  • LCO LiCoO 2
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • a non-aqueous electrolyte solution of DMC was dissolved in 100 ml of LiFSI to a concentration of 3 M to prepare an electrolytic solution.
  • the weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2
  • the ratio of PVDF polymer to ETPTA polymer was 2: 8
  • the ratio of benzoyl peroxide was added in an amount of 0.7 wt%.
  • a lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (2), and positioning the electrode assembly inside the case.
  • LFP LiFePO 4
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone, and then LMO (LiMnO 2 ) was added so that the weight ratio of LFP was 30%. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the added LFP was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution.
  • the weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2
  • the ratio of PVDF polymer to ETPTA polymer was 2: 8
  • the ratio of benzoyl peroxide was added in an amount of 0.7 wt%.
  • a composition for a gel polymer electrolyte was prepared.
  • a lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (2), and positioning the electrode assembly inside the case.
  • LCO LiCoO 2
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI, ((CF 3 SO 2 ) 2 NLi) was mixed with 8 g of polyethylene oxide (MV: 4,000,000) in 50 ml of acetonitrile solvent, PEO repeating unit) to prepare a solution for forming a protective film.
  • the solution for forming a protective film was coated on a copper current collector and dried at 80 DEG C for 6 hours to form a protective film (thickness: 10 mu m) on the copper current collector.
  • Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution.
  • the weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2
  • the ratio of PVDF polymer to ETPTA polymer was 2: 8
  • the ratio of benzoyl peroxide was added in an amount of 0.7 wt%.
  • a composition for a gel polymer electrolyte was prepared.
  • a lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (3), and positioning the electrode assembly inside the case.
  • LCO LiCoO 2
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • a coating layer was formed by sputtering for 25 minutes using a Li 3 PO 4 target in a vacuum chamber in an N 2 atmosphere. It was confirmed that the thickness of the surface coating layer was controlled according to the deposition time, and a protective film (thickness: 0.2 ⁇ ) was formed on the copper current collector. The thickness of the coating layer formed on the surface of the coating layer was confirmed using a scanning electron microscope (JSM-7610F, JEOL).
  • Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution.
  • the weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2
  • the ratio of PVDF polymer to ETPTA polymer was 2: 8
  • the ratio of benzoyl peroxide was added in an amount of 0.7 wt%.
  • a composition for a gel polymer electrolyte was prepared.
  • a lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (3), and positioning the electrode assembly inside the case.
  • Comparative Example 1 Lithium secondary battery manufacturing
  • LCO LiCoO 2
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • Lithium foil (20 ⁇ thick) was laminated on the copper collector to prepare a negative electrode.
  • a lithium secondary battery was prepared by preparing an electrode assembly between the positive electrode and the negative electrode prepared in the above (1) through a separator of porous polyethylene, placing the electrode assembly in the case, and injecting electrolyte.
  • the electrolyte was prepared by dissolving 1 M of LiPF 6 in an organic solvent having a volume ratio of EC (ethylene carbonate): EMC (ethylmethyl carbonate) of 3: 7.
  • LFP LiFePO 4
  • Super-P binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methyl-2-pyrrolidone. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the added LFP was 15 g.
  • the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 ⁇ ) and dried at 130 ⁇ for 12 hours to prepare respective positive electrodes.
  • Lithium foil (20 ⁇ thick) was laminated on the copper collector to prepare a negative electrode.
  • a lithium secondary battery was prepared by preparing an electrode assembly between the positive electrode and the negative electrode prepared in the above (1) through a separator of porous polyethylene, placing the electrode assembly in the case, and injecting electrolyte. At this time, the electrolyte was prepared by dissolving 1 M of LiBF 4 in fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the batteries of Examples and Comparative Examples were charged and discharged under the conditions of 0.2C, 4.25V CC / CV (5% current cut at 1C) and discharge 0.5C CC 3V to prepare a lithium secondary battery having a lithium metal layer.
  • the resistance change rate after the initial lithium formation was measured and is shown in Table 2 below.
  • Resistance increase rate (resistance after one month - initial resistance) / initial resistance * 100

Abstract

The present invention relates to a lithium secondary battery, wherein a lithium metal is formed on a negative electrode current collector by charging since the lithium secondary battery is manufactured as a negative electrode-free battery. In the lithium secondary battery, the formation of the lithium metal is performed in a state that is blocked from the air, so that a surface oxide film (native layer), which has been formed on a conventional negative electrode, is not fundamentally generated, and thus the deterioration in battery efficiency and lifespan characteristics can be prevented.

Description

리튬 이차전지Lithium secondary battery
본 출원은 2017년 6월 26일자 한국 특허 출원 제10-2017-0080332호 및 2018년 6월 25일자 한국 특허 출원 제10-2018-0072890호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다. This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0080332, filed on June 26, 2017, and Korean Patent Application No. 10-2018-0072890, filed on June 25, 2018, The disclosure of which is incorporated herein by reference in its entirety.
본 발명은 겔 고분자 전해질을 이용한 음극 프리(Anode free) 구조의 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery having an anode-free structure using a gel polymer electrolyte.
최근 휴대 전화, 무선 가전 기기, 전기 자동차에 이르기까지 전지를 필요로 하는 다양한 기기들이 개발되고 있으며, 이러한 기기들의 개발에 따라 이차 전지에 대한 수요 역시 증가하고 있다. 특히, 전자 제품의 소형화 경향과 더불어 이차 전지도 경량화 및 소형화되고 있는 추세이다.Recently, various devices requiring batteries ranging from cellular phones, wireless home appliances, and electric vehicles have been developed, and the demand for secondary batteries is also increasing with the development of these devices. Particularly, along with the tendency of miniaturization of electronic products, secondary batteries are also becoming lighter and smaller.
이러한 추세에 부합하여 최근 리튬 금속을 활물질로 적용하는 리튬 이차전지가 각광을 받고 있다. 리튬 금속은 산화환원전위가 낮고 (표준수소전극에 대해 -3.045V) 중량 에너지 밀도가 크다는(3,860mAhg-1) 특성을 가지고 있어 고용량 이차전지의 음극 재료로 기대되고 있다.In accordance with this tendency, recently, a lithium secondary battery that uses lithium metal as an active material has been spotlighted. The lithium metal has a low redox potential (-3.045 V versus the standard hydrogen electrode) and a large weight energy density (3,860 mAhg -1 ), which is expected as a cathode material for high capacity secondary batteries.
그러나 리튬 금속을 전지 음극으로 이용하는 경우 일반적으로 평면상의 집전체 상에 리튬 호일을 부착시킴으로써 전지를 제조하는데, 리튬은 알칼리 금속으로서 반응성이 크기 때문에 물과 폭발적으로 반응하고, 대기 중의 산소와도 반응하므로 일반적인 환경에서 제조 및 이용이 어려운 단점이 있다. 특히, 리튬 금속이 대기에 노출될 때 산화의 결과로 LiOH, Li2O, Li2CO3 등의 산화막을 갖는다. 표면 산화막(native layer)이 표면에 존재할 때, 산화막이 절연막으로 작용하여 전기 전도도가 낮아지고, 리튬 이온의 원활한 이동을 저해하여 전기 저항이 증가하는 문제가 발생한다.However, when lithium metal is used as a battery cathode, a battery is manufactured by attaching a lithium foil on a flat current collector. Lithium reacts explosively with water because it is highly reactive as an alkali metal and reacts with oxygen in the atmosphere It is difficult to manufacture and use in a general environment. In particular, when lithium metal is exposed to the atmosphere, it has an oxide film such as LiOH, Li 2 O, Li 2 CO 3 or the like as a result of oxidation. When a native oxide layer is present on the surface, the oxide film acts as an insulating film to lower the electrical conductivity and hinder the smooth movement of lithium ions, thereby increasing the electrical resistance.
이와 같은 이유로, 리튬 음극을 형성하는데 진공 증착 공정을 수행하여 리튬 금속의 반응성으로 인한 표면 산화막 형성 문제점이 일부 개선되었으나, 여전히 전지 조립 과정에서는 대기에 노출되며, 표면 산화막 형성의 원천적인 억제는 불가능한 실정이다. 이에, 리튬 금속을 사용하여 에너지 효율을 높이면서도 리튬의 반응성 문제를 해결할 수 있고 공정을 보다 더 간단하게 할 수 있는 리튬 금속 전극의 개발이 요구된다.For this reason, although the problem of formation of the surface oxide film due to the reactivity of the lithium metal is partially improved by performing the vacuum deposition process for forming the lithium negative electrode, it is still exposed to the atmosphere during the cell assembly process, to be. Therefore, it is required to develop a lithium metal electrode which can solve the reactivity problem of lithium while improving the energy efficiency by using lithium metal and can simplify the process more easily.
[특허문헌][Patent Literature]
(특허문헌 1) 한국공개특허공보 제10-2016-0052323호 "리튬 전극 및 이를 포함하는 리튬 전지"(Patent Document 1) Korean Patent Laid-Open Publication No. 10-2016-0052323 " Lithium Electrode and Lithium Battery Including It "
상기한 문제를 해결하기 위해 본 발명자들은 다각적으로 연구를 수행한 결과, 전지 조립시 리튬 금속의 대기와의 접촉을 원천적으로 차단할 수 있도록 전지 조립 이후 충전에 의해 양극 활물질로부터 이송된 리튬 이온에 의해 음극 집전체 상에 리튬 금속층을 형성할 수 있는 음극 프리(Anode free) 전지 구조를 설계하였으며, 상기 리튬 금속층을 안정적으로 형성할 수 있는 양극 활물질의 조성을 개발하였다.In order to solve the above problems, the inventors of the present invention have conducted various studies, and as a result, it has been found that lithium metal transferred from a cathode active material by charging after assembling a battery, An anode-free battery structure capable of forming a lithium metal layer on a current collector was designed and a composition of a cathode active material capable of stably forming the lithium metal layer was developed.
이에 본 발명의 목적은 리튬 금속의 반응성에 의한 문제와 조립 과정에서 발생하는 문제점을 해결하여 성능 및 수명이 향상된 리튬 이차전지를 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a lithium secondary battery improved in performance and life span by solving the problems caused by the reactivity of lithium metal and the problems occurring during assembly.
상기 목적을 달성하기 위해, 본 발명은 양극, 음극 및 이들 사이에 개재된 분리막 및 전해질을 포함하는 리튬 이차전지에 있어서, 상기 전해질은 겔 고분자 전해질이며, 충전에 의해 상기 양극으로부터 이동되어 음극 내 음극 집전체 상에 리튬 금속을 형성하는, 리튬 이차전지를 제공한다.In order to achieve the above object, the present invention provides a lithium secondary battery comprising a cathode, a cathode and a separator interposed therebetween and an electrolyte, wherein the electrolyte is a gel polymer electrolyte and is moved from the cathode by charging, A lithium secondary battery is provided which forms a lithium metal on a current collector.
이때 상기 리튬 금속은 4.5 V 내지 2.5 V의 전압으로 1 회 충전을 통해 형성된다.At this time, the lithium metal is formed through one charge at a voltage of 4.5 V to 2.5 V.
또한, 상기 음극 집전체는 분리막과 접하는 측면에 보호막을 더욱 구비할 수 있다.The negative electrode current collector may further include a protective layer on a side contacting the separator.
본 발명에 따른 리튬 이차전지는 음극 집전체 상에 리튬 금속층이 형성되는 과정을 통해 대기와 차단된 상태로 코팅되므로, 따라서 리튬 금속의 대기 중 산소 및 수분으로 인한 표면 산화막의 형성을 억제할 수 있으며, 결과적으로 사이클 수명 특성 향상되는 효과가 있다. Since the lithium secondary battery according to the present invention is coated in a state that it is shielded from the atmosphere through the process of forming the lithium metal layer on the anode current collector, the formation of the surface oxide film due to oxygen and moisture in the atmosphere of lithium metal can be suppressed And as a result, the cycle life characteristics are improved.
도 1은 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 모식도이다.1 is a schematic view of a lithium secondary battery manufactured according to a first embodiment of the present invention.
도 2는 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 초기 충전시, 리튬 이온(Li+)의 이동을 나타내는 모식도이다.2 is a schematic diagram showing the movement of lithium ions (Li + ) during the initial charging of a lithium secondary battery manufactured according to the first embodiment of the present invention.
도 3은 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 초기 충전이 완료된 후의 모식도이다.3 is a schematic diagram of a lithium secondary battery manufactured according to a first embodiment of the present invention after initial charging of the lithium secondary battery has been completed.
도 4는 본 발명의 제2 구현예에 따라 제조된 리튬 이차전지의 모식도이다.4 is a schematic view of a lithium secondary battery manufactured according to a second embodiment of the present invention.
도 5는 본 발명의 제2 구현예에 따라 제조된 리튬 이차전지의 초기 충전시, 리튬 이온(Li+)의 이동을 나타내는 모식도이다.5 is a schematic diagram showing the movement of lithium ions (Li + ) during the initial charging of a lithium secondary battery manufactured according to the second embodiment of the present invention.
도 6은 본 발명의 제2 구현예에 따라 제조된 리튬 이차전지의 초기 충전이 완료된 후의 모식도이다.FIG. 6 is a schematic view of a lithium secondary battery manufactured according to a second embodiment of the present invention after initial charging is completed. FIG.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.In the drawings, the same reference numerals are used for similar parts throughout the specification. In addition, the size and relative size of the components shown in the figures are independent of the actual scale and may be reduced or exaggerated for clarity of description.
도 1은 본 발명의 제1구현예에 따라 제조된 리튬 이차전지의 단면도로, 양극 집전체(11) 및 양극 합제(12)를 포함하는 양극; 음극 집전체(21)를 포함하는 음극; 및 이들 사이에 개재되는 분리막(30) 및 전해질(미도시)을 구비한다.1 is a cross-sectional view of a lithium secondary battery manufactured according to a first embodiment of the present invention, and includes a cathode including a cathode current collector 11 and a cathode mixture 12; A negative electrode including an anode current collector 21; And a separator 30 and an electrolyte (not shown) interposed therebetween.
리튬 이차전지의 음극은 음극 집전체(21) 상에 음극이 형성되는 것이 통상적이나, 본 발명에서는 음극 집전체(21)만으로 사용하여 음극 프리(Anode free) 전지 구조로 조립한 후, 충전에 의해 양극 합제(13)로부터 방출되는 리튬 이온이 음극 집전체(21) 상에 음극 합제로서 리튬 금속층(미도시)을 형성함에 따라 공지의 음극 집전체/음극 합체의 구성을 갖는 음극을 형성하여 통상의 리튬 이차전지의 구성을 이룬다. The negative electrode of the lithium secondary battery is typically formed on the negative electrode collector 21, but in the present invention, the negative electrode collector 21 is used only as an anode-free battery structure, The lithium ion released from the positive electrode mixture 13 forms a lithium metal layer (not shown) as a negative electrode mixture on the negative electrode collector 21, thereby forming a negative electrode having a structure of a known negative electrode collector / negative electrode mixture, Thereby constituting a lithium secondary battery.
즉, 본 발명에 있어서 음극 프리 전지 함은, 최초 조립 시에는 음극 집전체 상에 음극이 형성되지 않는 음극 프리인 전지일 수 있고, 사용에 따라서 음극 집전체 상에 음극이 형성되어 음극이 있을 수도 있는 전지를 모두 포함하는 개념일 수 있다.That is, in the present invention, the negative electrode pre-battery compartment may be a negative electrode-free battery in which no negative electrode is formed on the negative electrode current collector at the time of initial assembly, and a negative electrode may be formed on the negative electrode current collector, It can be a concept that includes all of the cells that are present.
또한, 본 발명의 음극에 있어서, 음극 집전체 상에 음극 합제로서 형성되는 리튬 금속의 형태는, 리튬 금속이 층으로 형성된 형태와, 리튬 금속이 층으로 형성된 것이 아닌 구조(예를 들어 리튬 금속이 입자 형태로 뭉쳐진 구조)를 모두 포함한다. In the negative electrode of the present invention, the form of the lithium metal formed as the negative electrode mixture on the negative electrode collector may be a form in which the lithium metal is formed as a layer and a structure in which the lithium metal is not formed in the layer A structure in which particles are gathered in the form of particles).
이하, 본 발명에서는 리튬 금속이 층으로 형성된 리튬금속층(23)의 형태를 기준으로 설명하나, 이러한 설명이 리튬 금속이 층으로 형성된 것이 아닌 구조를 제외하는 것은 아니라는 점은 명확하다.Hereinafter, the present invention will be described on the basis of the form of the lithium metal layer 23 formed of the lithium metal layer, but it is clear that this description does not exclude the structure that is not formed of the lithium metal layer.
도 2는 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 초기 충전시, 리튬 이온(Li+)의 이동을 나타내는 모식도이고, 도 3은 본 발명의 제1 구현예에 따라 제조된 리튬 이차전지의 초기 충전이 완료된 후의 모식도이다.FIG. 2 is a schematic diagram showing the movement of lithium ions (Li + ) upon initial charging of a lithium secondary battery manufactured in accordance with the first embodiment of the present invention, and FIG. After the initial charging of the secondary battery is completed.
도 2와 도 3을 참고하여 설명하면, 음극 프리 전지 구조를 갖는 리튬 이차전지에 일정 수준 이상의 전압을 인가하여 충전을 진행하면, 양극(10) 내 양극 합제(13)로부터 리튬 이온이 탈리되고, 이는 분리막(30)을 통과하여 음극 집전체(21) 측으로 이동하고, 상기 음극 집전체(21) 상에 순수하게 리튬으로만 이루어진 리튬 금속층(23)을 형성하여 음극(20)을 이룬다. 2 and 3, when a voltage higher than a certain level is applied to the lithium secondary battery having the negative electrode pre-battery structure, lithium ions are removed from the positive electrode mixture 13 in the positive electrode 10, This passes through the separator 30 and moves toward the cathode current collector 21 and forms a cathode 20 by forming a lithium metal layer 23 purely composed of lithium on the cathode current collector 21.
이러한 충전을 통한 리튬 금속층(23)의 형성은 종래 음극 집전체(21) 상에 리튬 금속층(23)을 스퍼터링하거나 리튬 호일과 음극 집전체(21)를 합지하는 음극과 비교할 때, 박막의 층을 형성할 수 있으며, 계면 특성의 조절이 매우 용이하다는 이점이 있다. 또한, 음극 집전체(21)에 적층되는 리튬 금속층(23)의 결합 세기가 크고 안정하기 때문에 방전을 통해 다시 이온화 상태로 인해 음극 집전체(21)로부터 제거되는 문제가 발생하지 않는다. The formation of the lithium metal layer 23 through such filling can reduce the thickness of the thin film layer compared to the negative electrode in which the lithium metal layer 23 is sputtered on the conventional anode current collector 21 or the lithium foil and the cathode current collector 21 are joined together. And it is advantageous that the control of the interface characteristics is very easy. In addition, since the bonding strength of the lithium metal layer 23 stacked on the anode current collector 21 is large and stable, there is no problem of being removed from the cathode current collector 21 due to ionization again through discharge.
특히, 음극 프리 전지 구조로 형성하여 전지 조립 과정 중 리튬 금속이 대기 중에 노출이 전혀 발생하지 않아, 종래 리튬 자체의 높은 반응성으로 인한 표면의 산화막 형성 및 이에 따른 리튬 이차전지의 수명 저하와 같은 문제를 원천적으로 차단할 수 있다. Particularly, since the lithium metal is not exposed to the atmosphere during the cell assembly process, the problem of problems such as formation of oxide film on the surface due to high reactivity of lithium itself and deterioration of lifetime of the lithium secondary battery due to the high reactivity It can be blocked at its source.
상기한 효과를 확보하기 위해, 본 발명의 음극 프리 전지 구조에서 전해질로 겔 고분자 전해질을 사용한다. 종래 가장 널리 사용하는 에테르계 전해액의 경우 99% 이상, 카보네이트계 전해액의 경우 95% 이하의 리튬 금속 효율을 가지나, 에테르계 전해액의 경우 고전압 안정성이 낮아 고전압 양극에 사용하지 못하는 단점이 있고 카보네이트계 전해액의 경우 환원안정성이 낮아 리튬과 지속적으로 반응하여 전지 효율과 수명이 낮아지는 단점이 있다. 이에 본 발명의 가교 결합된 겔 고분자 전해질은 가교화 구조에 의해 고전압 양극에 적용 시 전해질의 분해 등이 억제할 수 있고, 전해액 대비 기계적 강도를 조절하여 Li 덴드라이트 성장과 충방전 사이클 시 죽은 리튬(dead Li)의 발생을 억제하여 전지 수명과 전지 안정성을 향상시킬 수 있다. In order to secure the above-mentioned effect, a gel polymer electrolyte is used as an electrolyte in the negative electrode pre-battery structure of the present invention. Although the most widely used ether-based electrolyte has a lithium metal efficiency of 99% or more and the carbonate-based electrolyte has a lithium metal efficiency of 95% or less, the ether-based electrolyte has a low high-voltage stability and can not be used in a high-voltage anode. The reduction stability is low, which causes a continuous reaction with lithium, resulting in a reduction in battery efficiency and lifetime. Accordingly, the crosslinked gel polymer electrolyte of the present invention can inhibit electrolyte decomposition or the like when it is applied to a high voltage anode by a crosslinked structure, and can control the mechanical strength of the electrolyte relative to the electrolyte to provide a lithium dendrite growth, dead Li) can be suppressed and battery life and cell stability can be improved.
겔 고분자 전해질로는 고분자 매트릭스, 리튬염, 및 유기 용매를 포함하며, 가교 또는 비가교 구조를 모두 포함하고, 바람직하기로는 가교화된 가교 겔 고분자 전해질을 사용한다. The gel polymer electrolyte includes a polymer matrix, a lithium salt, and an organic solvent, and includes a crosslinked or non-crosslinked structure, preferably a crosslinked crosslinked gel polymer electrolyte.
상기 고분자 매트릭스는 분자 구조 내 카르복실 관능기(carboxylic group), 아크릴레이트 관능기(acrylate group) 및 시아노 관능기(cyano group)를 포함하는 군 중에 서 선택되는 관능기를 포함하고, 바람직하기로 아크릴레이트 관능기일 수 있다.The polymer matrix includes a functional group selected from the group consisting of a carboxylic group, an acrylate group and a cyano group in the molecular structure, and preferably, the acrylate functional group .
또한, 고분자 매트릭스는 분자 구조 내 중합 또는 가교 가능한 관능기를 1개 이상 포함하는 것이 사용될 수 있다. Further, the polymer matrix may be one containing at least one polymerizable or crosslinkable functional group in the molecular structure.
1개의 관능기를 갖는 모노머로는 그 종류를 한정하는 것은 아니지만, 메틸메타크릴레이트(methyl methacrylate), 에틸메타크릴레이트(ethyl methacrylate), 부틸메타크릴레이트(buthyl methacrylate), 메틸아크릴레이트(methyl acrylate), 부틸아크릴레이트(buthyl acrylate), 에틸렌 글리콜 메틸에테르아크릴레이트(ethylene glycol methyl ether acrylate), 에틸렌 글리콜 메틸에테르메타크릴레이트(ethylene glycol methyl ether methacrylate), 아크릴로니트릴(acrylonitrile), 비닐아세테이트(vinyl acetate), 카르복시에틸 아크릴레이트(carboxyethyl acrylate), 메틸 시아노아크릴레이트(methyl cyanoacrylate), 에틸 시아노아크릴레이트(ethyl cyanoacrylate), 에틸 시아노 에톡시아크릴레이트(ethyl cyano ethoxyacrylate) , 시아노 아크릴산(cyano acryl icacid), 하이드록시에틸 메타크릴레이트(hydroxyethyl metacrylate), 하이드록시프로필 아크릴레이트(hydroxypropyl acrylate),비닐클로라이드(vinylchloride) 및 비닐플로라이드(vinyl fluoride) 등을 사용할 수 있다.The monomers having one functional group are not limited to the types, but methyl methacrylate, ethyl methacrylate, buthyl methacrylate, methyl acrylate, Buthyl acrylate, ethylene glycol methyl ether acrylate, ethylene glycol methyl ether methacrylate, acrylonitrile, vinyl acetate ), Carboxyethyl acrylate, methyl cyanoacrylate, ethyl cyanoacrylate, ethyl cyano ethoxyacrylate, cyano acrylate, and the like. icacid, hydroxyethyl methacrylate, hydroxypropyl acrylate, Sites (hydroxypropyl acrylate), vinyl chloride (vinylchloride) and vinyl fluoride (vinyl fluoride) and the like can be used.
2개 이상의 관능기를 갖는 모노머로는 그 종류를 한정하는 것은 아니지만, 트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate), 폴리에틸렌 글리콜 디메타크릴레이트(polyethylene glycol dimethacrylate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 에톡실레이트 비스페놀 에이 디메타크릴레이트(ethoxylated bis phenol A dimethacrylate), 및 디비닐벤젠(divinyl benzene) 등을 사용할 수 있다.Examples of the monomer having two or more functional groups include, but are not limited to, trimethylolpropane ethoxylate triacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, Trimethylolpropane trimethacrylate, ethoxylated bisphenol A dimethacrylate, divinyl benzene, and the like can be used.
3개 이상의 관능기를 갖는 모노머로는 트리메틸을프로판에록시레이트 트리아크릴레이트(trimethylolpropane-ethocylate triacrylate), 아크릴산(acrylic acid), 트리메틸올프로판에록시레이트 트리아 크릴레이트(trimethylolpropane-ethocylate triacrylate) 등일 수 있다. Examples of the monomer having three or more functional groups include trimethylolpropane-ethocylate triacrylate, acrylic acid, trimethylolpropane-ethocylate triacrylate, and the like.
리튬염으로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬이미드 등이 사용될 수 있다.Examples of the lithium salt include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, And the like may be used.
유기 용매에 대한 상기 해리 가능한 염의 농도는, 0.1 내지 5.0 M일 수 있 다. 이 경우, 상기 겔 고분자 전해질은 겔 형태로서 적절한 점도를 가질 수 있으며, 상기 해리 가능한 염이 상기 유기 용매에 용해되어 리튬 이온의 효과적인 이동에 기여 할 수 있다.The concentration of said dissociable salt relative to the organic solvent may be 0.1 to 5.0 M. [ In this case, the gel polymer electrolyte may have a proper viscosity in the form of a gel, and the dissociable salt may be dissolved in the organic solvent to contribute to effective migration of lithium ions.
또한, 본 발명의 일 실시예에 따라 사용되는 전해액 용매로는 리튬 이차 전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트 또는 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.As the electrolyte solvent used according to one embodiment of the present invention, those commonly used in an electrolyte for a lithium secondary battery may be used without limitation, and for example, ether, ester, amide, linear carbonate, or cyclic carbonate may be used alone Or a mixture of two or more thereof.
그 중에서도 대표적으로 환형 카보네이트, 선형 카보네이트 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다.Among them, carbonate compounds which are typically cyclic carbonates, linear carbonates or a mixture thereof can be included.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다. 또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, A carbonate, a vinylene carbonate, and a halide thereof, or a mixture of two or more thereof. Specific examples of the linear carbonate compound include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC) , Or a mixture of two or more of them may be used. However, the present invention is not limited thereto.
특히, 상기 카보네이트계 전해액 용매 중 환형 카보네이트인 프로필렌 카보네이트 및 에틸렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해액 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 에틸메틸 카보네이트, 디에틸 카보네이트 또는 디메틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 가지는 전해액을 만들 수 있어서 더욱 바람직하게 사용될 수 있다.In particular, propylene carbonate and ethylene carbonate, which are cyclic carbonates in the carbonate electrolyte solution, are highly viscous organic solvents having a high dielectric constant and can dissociate the lithium salt in the electrolytic solution well. Thus, cyclic carbonates such as ethylmethyl carbonate, diethyl carbonate Or a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate in an appropriate ratio can be used to more advantageously use an electrolytic solution having a high electrical conductivity.
또한, 상기 전해액 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, α-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.Examples of the esters in the electrolyte solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate,? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone And? -Caprolactone, or a mixture of two or more thereof, but the present invention is not limited thereto.
가교화를 위해선, 통상의 가교제 또는 개시제가 사용될 수 있다. For crosslinking, conventional crosslinking agents or initiators may be used.
개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), AIBN(2,2'- Azobis(iso-butyronitrile)) 및 AMVN(2,2'-Azobisdimethyl-Valeronitrile) 등의 아조 화합물류 등이 있으나, 이에 한정되지 않는다.Non-limiting examples of initiators include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, t- Organic peroxides such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide and hydrogen peroxide, and hydroperoxides such as hydrogen peroxide Azobis (iso-butyronitrile) and AMVN (2,2'-azobis (2-cyanobutane), 2,2'-azobis '-Azobisdimethyl-Valeronitrile), and the like, but the present invention is not limited thereto.
일례로, 본 발명에 따른 겔 고분자 전해질은 가교 가능한 모노머, 해리 가능한 염, 및 유기 용매를 흔합하여, 전구체 조성물을 제조하는 단계; 및 상기 전구체 조성물에 열 또는 자외선을 가하여, 상기 서로 다른 3종 이상의 가교 가능한 모노머를 가교시키는 단계;를 포함하며, 상기 서로 다른 3종 이상의 가교 가능한 모노머가 가교되면, 그물 구조의 가교 고분자 매트릭스가 형성되는 것인, 겔 고분자 전해질의 제조 방법을 제공한다. 이는, 단순한 열가교 또는 광가교 공정에 의하여, 상기 특성을 지닌 겔 고분자 전해질을 제조하는 방법에 해당된다.For example, the gel polymer electrolyte according to the present invention comprises preparing a precursor composition by mixing a crosslinkable monomer, a dissociable salt, and an organic solvent; And crosslinking the three or more crosslinkable monomers by applying heat or ultraviolet rays to the precursor composition. When the three or more crosslinkable monomers are crosslinked, a crosslinked polymer matrix having a net structure is formed Of the gel polymer electrolyte. This corresponds to a method of producing a gel polymer electrolyte having the above properties by a simple thermal crosslinking or photo crosslinking process.
음극 집전체(21)는 충전에 의해 리튬 금속층(23)이 형성될 수 있는 음극 집전체(21)는 리튬 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않는다. 그 예시로서 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. The anode current collector 21 in which the lithium metal layer 23 can be formed by charging is not particularly limited as long as the anode current collector 21 has electrical conductivity without causing chemical change in the lithium secondary battery. Examples of the surface treatment include surface treatment of surfaces of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel with carbon, nickel, titanium or silver, or aluminum-cadmium alloy.
또한, 상기 음극 집전체(21)는 양극 집전체(11)와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.Like the cathode current collector 11, the anode current collector 21 may be formed in various shapes such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on its surface.
한편, 양극 합제(13)는 전지 종류에 따라 다양한 양극 활물질을 사용할 수 있으며, 본 발명에서 사용되는 양극 활물질은 양극 활물질은 리튬 이온을 흡장, 방출할 수 있는 물질이면 특별히 제한되지 않으나, 현재 수명 특성 및 충방전 효율이 우수한 전지를 구현할 수 있는 양극 활물질로 리튬 전이금속 산화물이 대표적으로 사용되고 있다.The positive electrode active material used in the present invention is not particularly limited as long as the positive electrode active material is a material capable of intercalating and deintercalating lithium ions, And a lithium transition metal oxide as a positive electrode active material capable of realizing a battery having excellent charge and discharge efficiency.
리튬 전이금속 산화물로서, 2 이상의 전이금속을 포함하고, 예를 들어, 하나 이상의 전이금속으로 치환된 리튬 코발트산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 하나 이상의 전이금속으로 치환된 리튬 망간 산화물, 리튬 니켈계 산화물, 스피넬계 리튬 니켈 망간 복합 산화물, 화학식의 Li 일부가 알칼리 토금속 이온으로 치환된 스피넬계 리튬 망간 산화물, 올리빈계 리튬 금속 포스페이트 등을 포함할 수 있으나, 이들만으로 한정되는 것은 아니다.As the lithium transition metal oxide, a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ), which contains two or more transition metals and is substituted with, for example, at least one transition metal; A lithium nickel oxide, a spinel-based lithium nickel manganese composite oxide, a spinel-based lithium manganese oxide in which a part of Li is substituted with an alkaline earth metal ion, an olivine-based lithium metal phosphate, and the like But is not limited to these.
리튬 함유 전이금속 산화물을 사용하는 것이 바람직하며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li2NiO2, Li (NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - YCoYO2, LiCo1 - YMnYO2, LiNi1 - YMnYO2 (여기에서, 0=Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 -zCozO4(여기에서, 0<Z<2), LixMyMn2 - yO4 - zAz (여기에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2, M= Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi 중 하나 이상, A는 -1 또는 -2가의 하나 이상의 음이온), Li1 + aNibM’1-bO2-cA’c (0≤a≤0.1, 0≤b≤0.8, 0≤c<0.2이고, M’은 Mn, Co, Mg, Al 등 6배위의 안정한 원소로 이루어진 군에서 선택되는 1종 이상이고 A’는 -1 또는 -2가의 하나 이상의 음이온이다.), LiCoPO4, 및 LiFePO4 로 이루어진 군으로부터 1종 이상 선택되는 것을 사용할 수 있으며, 바람직하게 LiCoO2를 사용한다. 또한, 이러한 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등을 사용할 수 있다. Lithium-containing preferred to use a transition metal oxide and, for example, LiCoO 2, LiNiO 2, LiMnO 2 , LiMn 2 O 4, Li 2 NiO 2, Li (Ni a Co b Mn c) O 2 (0 <a < 1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1 - Y Co Y O 2, LiCo 1 - Y MnYO 2, LiNi 1 - Y MnYO 2 ( here, 0 2, 0 <c <2, a + b + c = 2), LiMn 2 - z Ni z O 4, LiMn 2 - z Co z O 4 (where 0 <Z <2), Li x M y Mn 2 - y O 4 - z A z where 0.9≤x≤1.2, 0 <y < 0.2, M = Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi, 1 or one or more monovalent anions -2), Li 1 + a NibM ' 1-b O 2-c a' c (0≤a≤0.1, 0≤b≤0.8, 0≤c <0.2 and, M 'is Mn , Co, Mg, and Al, and A 'is at least one anion selected from the group consisting of stable elements of 6 coordination such as Al, and Co is at least one of -1 or -2.), LiCoPO 4 , and LiFePO 4 Use more than one choice And LiCoO 2 is preferably used. In addition to these oxides, sulfide, selenide, and halide may be used.
상기한 리튬 전이금속 산화물은 양극 활물질로서 바인더 및 도전재 등과 함께 양극 합제(13)에 사용한다. 본 발명의 음극 프리 전지 구조에서 리튬 금속층(23)을 형성하기 위한 리튬 소스(source)는 상기 리튬 전이금속 산화물이 된다. 즉, 리튬 전이금속 산화물 내 리튬 이온은 특정 범위의 전압 범위에서 충전을 수행할 경우 리튬 이온이 탈리되어 음극 집전체(21) 상에 리튬 금속층(23)을 형성한다.The lithium transition metal oxide is used for the positive electrode material mixture 13 together with a binder and a conductive material as a positive electrode active material. In the negative electrode pre-battery structure of the present invention, the lithium source for forming the lithium metal layer 23 becomes the lithium transition metal oxide. That is, when the lithium ion in the lithium transition metal oxide is charged in a voltage range within a certain range, the lithium ion is desorbed to form the lithium metal layer 23 on the anode current collector 21.
그러나 실제로 리튬 전이금속 산화물에서의 리튬 이온은 자체적으로 탈리가 쉽게 발생하지 않거나 상기 작동 전압 수준에서는 충방전 외에 관련할 수 있는 리튬이 없어 리튬 금속층(23)의 형성이 매우 어렵고, 리튬 전이금속 산화물만을 사용할 경우 비가역 용량이 크게 저하되어, 리튬 이차전지의 용량 및 수명 특성이 저하되는 문제를 야기한다.However, in practice, the lithium ion in the lithium transition metal oxide is not easily released or the lithium metal layer 23 can not be formed due to the absence of lithium that can be involved in charging and discharging at the operating voltage level, and only the lithium transition metal oxide The irreversible capacity is largely lowered and the capacity and lifetime characteristics of the lithium secondary battery are deteriorated.
이에 본 발명에서는 리튬 전이금속 산화물에 리튬 소스를 제공할 수 있는 첨가제로서, 4.5V ~ 2.5V의 전압 범위에서 0.01 내지 0.2C로 1회의 충전을 수행할 경우 초기 충전 용량이 200 mAh/g 이상이거나, 또는 초기 비가역이 30% 이상을 갖는 고비가역 물질인 리튬 금속 화합물을 함께 사용한다.In the present invention, as an additive capable of providing a lithium source to a lithium-transition metal oxide, if the charge is performed once at 0.01 to 0.2 C in a voltage range of 4.5 V to 2.5 V, the initial charge capacity is 200 mAh / g or more , Or a lithium metal compound, which is a highly irreversible substance having an initial irreversible capacity of 30% or more.
본 발명에서 언급하는 '고비가역 물질'은 다른 용어로 '대용량 비가역 물질'과 동일하게 사용될 수 있으며, 이는 충방전 첫사이클의 비가역 용량 비, 즉 "(첫 사이클 충전용량 - 첫 사이클 방전용량) / 첫 사이클 충전용량"이 큰 물질을 의미한다. 즉, 고비가역 물질은 충방전 첫사이클 시 리튬 이온을 비가역적으로 과량 제공해 줄 수 있다. 예컨대, 리튬 이온을 흡장 및 방출할 수 있는 리튬 전이 금속 화합물 중 충방전 첫사이클의 비가역 용량(첫 사이클 충전용량 - 첫 사이클 방전용량)이 큰 양극물질일 수 있다.The term 'high irreversible substance' referred to in the present invention may be used in the same manner as 'high capacity irreversible substance' in other terms. This means that the irreversible capacity ratio of the first cycle of charge / discharge, that is, The first cycle charge capacity " That is, a high irreversible material can irreversibly overpower lithium ions during the first cycle of charge and discharge. For example, among the lithium transition metal compounds capable of intercalating and deintercalating lithium ions, irreversible capacity (first cycle charge capacity - first cycle discharge capacity) of the first cycle of charge and discharge may be large.
일반적으로 사용되고 있는 양극 활물질의 비가역 용량은 초기 충전 용량 대비 2 내지 10% 가량이나, 본 발명에서는 고비가역 물질인 리튬 금속 화합물, 즉 초기 비가역이 초기 충전 용량의 30% 이상, 바람직하게는 50% 이상인 리튬 금속 화합물을 함께 사용할 수 있다. 또한, 상기 리튬 금속 화합물로 초기 충전 용량이 200 mAh/g 이상, 바람직하게는 230 mAh/g 이상인 것을 사용할 수 있다. 이러한 리튬 금속 화합물의 사용으로 인해 양극 활물질인 리튬 전이금속 산화물의 비가역 용량을 높이면서 리튬 금속층(23)을 형성할 수 있는 리튬 소스로서의 역할을 한다The irreversible capacity of the generally used cathode active material is about 2 to 10% of the initial charging capacity. In the present invention, the lithium metal compound as the highly irreversible material, that is, the initial irreversible capacity is 30% or more, preferably 50% Lithium metal compounds may be used together. The lithium metal compound may have an initial charge capacity of 200 mAh / g or more, preferably 230 mAh / g or more. The use of such a lithium metal compound serves as a lithium source capable of forming the lithium metal layer 23 while raising the irreversible capacity of the lithium transition metal oxide as the cathode active material
본 발명에서 제시하는 리튬 금속 화합물은 하기 화학식 1 내지 화학식 8로 표시되는 화합물이 가능하다. The lithium metal compound represented by the present invention can be represented by the following chemical formulas (1) to (8).
[화학식 1][Chemical Formula 1]
Li2Ni1-aM1 aO2 Li 2 Ni 1-a M 1 a O 2
(상기 식에서, a는 0≤a<1이고, M1은 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(Wherein a is 0? A <1 and M 1 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd)
[화학식 2](2)
Li2+bNi1-cM2 cO2+d Li 2 + b Ni 1-c M 2 c O 2 + d
(상기 식에서, -0.5≤b<0.5, 0≤c≤1, 0≤d<0.3, M2는 P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(Wherein, -0.5≤b <0.5, 0≤c≤1, 0≤d <0.3, M 2 is P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo, and Cd.
[화학식 3](3)
LiM3 eMn1 - eO2(x는 0≤e<0.5이고, M3는 Cr, Al, Ni, Mn 및 Co로 이루어진 군에서 선택된 1종 이상의 원소이다.), LiM 3 e Mn 1 - e O 2 (x is 0? E <0.5 and M 3 is at least one element selected from the group consisting of Cr, Al, Ni, Mn and Co)
[화학식 4][Chemical Formula 4]
Li2M4O2 Li 2 M 4 O 2
(상기 식에서, M4는 Cu, Ni로 이루어진 군에서 선택된 1종 이상의 원소이다.)(Wherein M &lt; 4 &gt; is at least one element selected from the group consisting of Cu and Ni).
[화학식 5][Chemical Formula 5]
Li3+fNb1-gM5 gS4-h Li 3 + f Nb 1-g M 5 g S 4-h
(상기 식에서, -0.1≤f≤1, 0≤g≤0.5, -0.1≤h≤0.5이고, M5는 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다)0.5, -0.1? H? 0.5 and M 5 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd to be)
[화학식 6][Chemical Formula 6]
LiM6 iMn1-iO2 LiM 6 i Mn 1-i O 2
(상기 식에서, i는 0.05≤x<0.5이고, M6는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(Wherein i is 0.05? X <0.5 and M 6 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co.)
[화학식 7](7)
LiM7 2jMn2-2jO4 LiM 7 2j Mn 2-2j O 4
(상기 식에서, j는 0.05≤x<0.5이고, M7은 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(Where j is 0.05? X <0.5 and M 7 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co)
[화학식 8] [Chemical Formula 8]
Lik-M8 m-Nn Li k -M 8 m -N n
(상기 식에서, M8은 알칼리토류 금속을 나타내고, k/(k+m+n)은 0.10 내지 0.40이고, m/(k+m+n)은 0.20 내지 0.50이고, n/(k+m+n)은 0.20 내지 0.50이다.)(Wherein, M 8 represents an alkaline earth metal, k / (k + m + n) is from 0.10 to 0.40, and, m / (k + m + n) is 0.20 to 0.50, n / (k + m + n) is 0.20 to 0.50.
상기한 화학식 1 내지 화학식 8의 리튬 금속 화합물은 그 구조에 따라 비가역 용량에 차이가 있으며, 이들은 단독 또는 혼합하여 사용할 수 있으며, 양극 활물질의 비가역 용량을 높이는 역할을 한다.The lithium metal compounds represented by Chemical Formulas 1 to 8 differ in irreversible capacity depending on the structure thereof, and they can be used singly or in combination, and serve to increase the irreversible capacity of the cathode active material.
일례로, 화학식 1 및 3으로 표시되는 고비가역 물질은 그 종류에 따라 비가역 용량이 다르며, 일례로 하기 표 1에 나타낸 바와 같은 수치를 갖는다.For example, the irreversible capacity of the high irreversible substance represented by the general formulas (1) and (3) varies depending on the kind thereof. For example, the irreversible capacity is as shown in Table 1 below.
초기 충전 용량(mAh/g)Initial charge capacity (mAh / g) 초기 방전 용량(mAh/g)Initial discharge capacity (mAh / g) 초기 쿨룽 효율Early Coulomb efficiency 초기 비가역 용량 비Initial irreversible capacity ratio
[화학식 1] Li2NiO2 Li 2 NiO 2 370370 110110 29.7%29.7% 70.3%70.3%
[화학식 3] LiMnO2 [Chemical Formula 3] LiMnO 2 230230 100100 43.5%43.5% 56.5%56.5%
[화학식 3] LiCrxMn1-xO2 ???????? LiCr x Mn 1-x O 2 ????? 230230 8080 34.8%34.8% 65.2%65.2%
또한, 화학식 2의 리튬 금속 화합물은 공간군 Immm에 속하는 것이 바람직하고, 그 중 Ni, M 복합 산화물(composite oxide)이 평면사배위(Ni, M)O4를 형성하며 평면사배위 구조가 마주 대하는 변(O-O으로 형성된 변)을 공유하며 1차 쇄를 형성하고 있는 것이 더욱 바람직하다. 상기 화학식 2의 화합물의 결정 격자 상수는 a = 3.7±0.5 Å, b = 2.8±0.5 Å, c = 9.2±0.5 Å, α= 90°, β= 90°, γ= 90°인 것이 바람직하다.The lithium metal compound represented by the general formula (2) preferably belongs to the space group Immm. Of these, the Ni, M composite oxide forms a planar tetrahedral coordination (Ni, M) O4 and the side (Side formed with OO) and forms a primary chain. The crystal lattice constants of the compound of Formula 2 are preferably a = 3.7 ± 0.5 Å, b = 2.8 ± 0.5 Å, c = 9.2 ± 0.5 Å, α = 90 °, β = 90 ° and γ = 90 °.
또한, 화학식 8의 리튬 금속 화합물은 알칼리토류 금속의 함량이 30 내지 45 원자%이고, 질소의 함량은 30 내지 45 원자%이다. 이때 상기 알칼리토류 금속의 함량 및 질소의 함량이 상기 범위일 때, 상기 화학식 1의 화합물의 열적 특성 및 리튬 이온 전도 특성이 우수하다. 그리고, 상기 화학식 8에서 k/(k+m+n)은 0.15 내지 0.35, 예를 들어 0.2 내지 0.33이고, m/(k+m+n)은 0.30 내지 0.45, 예를 들어 0.31 내지 0.33이고, n/(k+m+n)은 0.30 내지 0.45, 예를 들어 0.31 내지 0.33이다.The lithium metal compound of formula (8) has an alkaline earth metal content of 30 to 45 atomic% and a nitrogen content of 30 to 45 atomic%. When the content of the alkaline earth metal and the content of nitrogen are within the above ranges, the thermal characteristics and lithium ion conduction characteristics of the compound of Formula 1 are excellent. M / (k + m + n) is in the range of 0.30 to 0.45, for example, 0.31 to 0.33, n / (k + m + n) is 0.30 to 0.45, for example, 0.31 to 0.33.
상기 화학식 1의 전극 활물질은 일구현예에 따르면 a는 0.5 내지 1, b는 1, c는 1이다.According to an embodiment of the present invention, a is 0.5 to 1, b is 1, and c is 1 according to an embodiment of the present invention.
상기 양극 활물질은 표면이 상기 화학식 1내지 화학식 8 중 어느 하나의 화합물로 코팅된 코어-쉘 구조일 수 있다.The cathode active material may be a core-shell structure having a surface coated with a compound of any one of Chemical Formulas 1 to 8 above.
코아 활물질 표면에 상기 화학식 1내지 화학식 8 중 어느 하나의 화합물로 된 코팅막을 형성하면, 전극 활물질은 리튬 이온이 지속적으로 삽입, 탈착되는 환경에서도 낮은 저항 특성을 유지하면서 안정적인 특성을 나타낸다.When a coating film composed of any one of the above chemical formulas (1) to (8) is formed on the surface of the core active material, the electrode active material exhibits stable characteristics while maintaining low resistance characteristics even in an environment where lithium ions are continuously inserted and desorbed.
본 발명의 일구현예에 따른 전극 활물질에서 코팅막의 두께는 1 내지 100nm이다. 상기 코팅막의 두께가 상기 범위일 때 전극 활물질의 이온 전도 특성이 우수하다.In the electrode active material according to an embodiment of the present invention, the thickness of the coating layer is 1 to 100 nm. When the thickness of the coating film is in the above range, the ion conductive property of the electrode active material is excellent.
상기 전극 활물질의 평균 입경은 1 내지 30㎛, 일구현예에 따르면, 8 내지 12㎛이다. 양극 활물질의 평균 입경이 상기 범위일 때, 전지의 용량 특성이 우수하다.The mean particle size of the electrode active material is 1 to 30 탆, and in one embodiment, 8 to 12 탆. When the average particle diameter of the positive electrode active material is in the above range, the capacity characteristics of the battery are excellent.
상기 알칼리토류 금속이 도핑된 코어 활물질은 예를 들어 마그네슘이 도핑된 LiCoO2를 들 수 있다. 상기 마그네슘의 함량은 코어 활물질 100 중량부를 기준으로 하여 0.01 내지 3 중량부이다.The alkaline earth metal-doped core active material may be, for example, LiCoO 2 doped with magnesium. The content of magnesium is 0.01 to 3 parts by weight based on 100 parts by weight of the core active material.
상기한 리튬 전이금속 산화물은 양극 활물질로서 바인더 및 도전재 등과 함께 양극 합제(13)에 사용한다. 본 발명의 음극 프리 전지 구조에서 리튬 금속층(23)을 형성하기 위한 리튬 소스(source)는 상기 리튬 전이금속 산화물이 된다. 즉, 리튬 전이금속 산화물 내 리튬 이온은 특정 범위의 전압 범위에서 충전을 수행할 경우 리튬 이온이 탈리되어 음극 집전체(21) 상에 리튬 금속층(23)을 형성한다.The lithium transition metal oxide is used for the positive electrode material mixture 13 together with a binder and a conductive material as a positive electrode active material. In the negative electrode pre-battery structure of the present invention, the lithium source for forming the lithium metal layer 23 becomes the lithium transition metal oxide. That is, when the lithium ion in the lithium transition metal oxide is charged in a voltage range within a certain range, the lithium ion is desorbed to form the lithium metal layer 23 on the anode current collector 21.
본 발명에서 리튬 금속층(23)을 형성하기 위한 충전 범위는 4.5V ~ 2.5V의 전압 범위에서 0.01 내지 0.2C로 1회의 충전을 수행 한다. 만약, 충전을 상기 범위 이하에서 수행할 경우 리튬 금속층(23)의 형성이 어렵게 되며, 이와 반대로 상기 범위를 초과할 경우 전지(cell)의 손상(damage)이 일어나 과방전이 일어난 후에 충방전이 제대로 진행되지 않는다.In the present invention, the charging range for forming the lithium metal layer 23 is one charging at 0.01 to 0.2C in the voltage range of 4.5V to 2.5V. If the charging is performed below the above range, the formation of the lithium metal layer 23 becomes difficult. On the other hand, if the charging is carried out above the above range, damage of the cell occurs, It does not.
상기 형성된 리튬 금속층(23)은 음극 집전체(21) 상에 균일한 연속 또는 불연속적인 층을 형성한다. 일례로, 음극 집전체(21)가 호일 형태인 경우 연속적인 박막 형태를 가질 수 있으며, 음극 집전체(21)가 3차원 다공성 구조를 가질 경우 리튬 금속층(23)은 불연속적으로 형성될 수 있다. 즉, 불연속적인 층은 불연속적으로 분포하는 형태로, 특정 영역 내에 리튬 금속층(23)이 존재하는 영역과 존재하지 않는 영역이 존재하되, 리튬 금속층(23)이 존재하지 않는 영역이 리튬 화합물이 존재하는 영역을 아일랜드형(island type)과 같이 고립, 단절 또는 분리하도록 분포함으로써, 리튬 금속층(23)이 존재하는 영역이 연속성 없이 분포하는 것을 의미한다. The lithium metal layer 23 thus formed forms a uniform continuous or discontinuous layer on the cathode current collector 21. For example, when the anode current collector 21 is in the form of a foil, it may have a continuous thin film form, and when the anode current collector 21 has a three-dimensional porous structure, the lithium metal layer 23 may be discontinuously formed . That is, the discontinuous layer is distributed discontinuously, and a region where the lithium metal layer 23 exists and a region where the lithium metal layer 23 does not exist exist in a specific region, and a region where the lithium metal layer 23 is not present exists in the region where the lithium compound exists And the region in which the lithium metal layer 23 is present is distributed without continuity, by distributing the region where the lithium metal layer 23 is present, such as an island type.
이러한 충방전을 통해 형성된 리튬 금속층(23)은 음극으로서의 기능을 위해 최소 50 nm 이상, 100 ㎛ 이하, 바람직하기로 1 ㎛ 내지 50 ㎛의 두께를 갖는다. 만약 그 두께가 상기 범위 미만이면 전지 충방전 효율이 급격히 감소하며, 이와 반대로 상기 범위를 초과할 경우 수명 특성 등은 안정하나, 전지의 에너지밀도가 낮아지는 문제가 있다.The lithium metal layer 23 formed through such charging and discharging has a thickness of at least 50 nm and less than 100 mu m, preferably 1 mu m to 50 mu m, for the function as a cathode. If the thickness is less than the above range, the charge and discharge efficiency of the battery drastically decreases. On the other hand, when the thickness is in the above range, the life characteristics and the like are stable, but the energy density of the battery is lowered.
특히, 본 발명에서 제시하는 리튬 금속층(23)은 전지 조립시에는 리튬 금속이 없는 음극 프리 전지로 제조함으로써, 종래 리튬 호일을 사용하여 조립된 리튬 이차전지와 비교하여 조립 과정에서 발생하는 리튬의 높은 반응성으로 인해 리튬 금속층(23) 상에 산화층이 전혀 또는 거의 형성되지 않는다. 이로 인해 상기 산화층에 의한 전지의 수명 퇴화 현상을 방지할 수 있다. Particularly, the lithium metal layer 23 proposed in the present invention can be manufactured as a negative electrode-free battery without lithium metal at the time of assembling the battery, so that compared with the lithium secondary battery assembled using the conventional lithium foil, No or little oxide layer is formed on the lithium metal layer 23 due to the reactivity. Thus, degradation of life of the battery due to the oxidation layer can be prevented.
또한, 리튬 금속층(23)은 고비가역 물질의 충전에 의해 이동하고, 이는 양극 상에 리튬 금속층(23)을 형성하는 것과 비교하여 보다 안정적인 리튬 금속층(23)을 형성할 수 있다. 양극 상에 리튬 금속을 부착할 경우, 양극과 리튬 금속의 화학 반응이 일어날 수 있다.In addition, the lithium metal layer 23 is moved by the filling of the highly irreversible material, which can form a more stable lithium metal layer 23 as compared with the case where the lithium metal layer 23 is formed on the anode. When a lithium metal is attached on the anode, a chemical reaction between the anode and the lithium metal may occur.
상기한 양극 활물질과 리튬 금속 화합물을 포함하여 양극 합제(13)를 구성하며, 이때 상기 양극 합제(13)는 추가로 리튬 이차전지에서 통상적으로 사용하는 도전재, 바인더, 및 기타 첨가제를 더욱 포함할 수 있다.The positive electrode mixture 13 contains the above-mentioned positive electrode active material and a lithium metal compound. The positive electrode mixture 13 further includes a conductive material, a binder, and other additives commonly used in lithium secondary batteries .
도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 써멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The conductive material is used to further improve the conductivity of the electrode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
상기 양극 활물질, 리튬 금속 화합물 및 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있다. 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비닐리덴-펜타플루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합제 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.A binder may be further included for bonding the positive electrode active material, the lithium metal compound, and the conductive material to the current collector. The binder may include a thermoplastic resin or a thermosetting resin. For example, there may be mentioned polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride- Hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer Ethylene-chlorotrifluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymers, ethylene -Acrylic acid copolymer, and the like can be used alone or in combination, but they are not limited thereto And can be used as a binder in the art.
기타 첨가제의 예로 충진제가 있다. 상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니다. 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체나 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.Examples of other additives include fillers. The filler is optionally used as a component for suppressing the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. For example, an olefin polymer such as polyethylene or polypropylene, or a fibrous material such as glass fiber or carbon fiber is used.
본 발명의 양극 합제(13)는 양극 집전체(11) 상에 형성된다.The positive electrode mixture (13) of the present invention is formed on the positive electrode collector (11).
양극 집전제는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체(11)는 리튬 이차전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 그 예시로서 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체(11)는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등의 다양한 형태로 사용될 수 있다.The positive electrode collector generally has a thickness of 3 탆 to 500 탆. The cathode current collector 11 is not particularly limited as long as it has high conductivity without causing chemical change in the lithium secondary battery. Examples of the cathode current collector 11 include stainless steel, aluminum, nickel, titanium, sintered carbon, Surface-treated with carbon, nickel, titanium, silver, or the like may be used. The cathode current collector 11 may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on its surface so as to increase the adhesive force with the cathode active material.
양극 합제(13)를 집전체 상에 도포하는 방법은, 전극 합제 슬러리를 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시키는 방법, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법 등을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱 또는 라미네이션 방법에 의해 전극 합제 슬러리를 집전체와 접합시킬 수도 있으나, 이에 제한되는 것은 아니다.The method of applying the positive electrode mixture 13 on the current collector may be a method of uniformly dispersing the electrode mixture slurry on the current collector using a doctor blade or the like, a method of die casting, a comma coating method, a screen printing method, and the like. Alternatively, the electrode mixture slurry may be formed on a separate substrate and then bonded to the current collector by a pressing or lamination method, but the present invention is not limited thereto.
한편, 본 발명의 제2구현예에 따른 리튬 이차전지는 음극 중 분리막(60)과 접하는 면에 보호막(55)이 추가로 형성될 수 있다. 구체적으로, 보호막(55)을 형성할 경우 리튬 금속층(23)은 도 4에 나타낸 바와 같이, 양극 합제(43)로부터 이송된 리튬 이온이 보호막(55)을 통과하여 음극 집전체(51) 상에 형성한다.Meanwhile, in the lithium secondary battery according to the second embodiment of the present invention, a protective film 55 may be additionally formed on a surface of the negative electrode in contact with the separator 60. 4, the lithium metal layer 23 passes through the protective film 55 and lithium ions transferred from the positive electrode mixture 43 are discharged onto the negative electrode current collector 51. As a result, .
이에 보호막(55)은 리튬 이온의 전달이 원활히 이뤄질 수 있는 것이면 어느 것이든 가능하고, 리튬 이온 전도성 고분자 및/또는 무기 고체 전해질에 사용하는 재질이 사용될 수 있으며, 필요한 경우 리튬염을 더욱 포함할 수 있다. The protective film 55 may be any material capable of smoothly transferring lithium ions, and may be a material used for a lithium ion conductive polymer and / or an inorganic solid electrolyte. The protective film 55 may further include a lithium salt have.
리튬 이온 전도성 고분자로서, 예컨대 폴리에틸렌옥사이드(PEO), 폴리아크릴로니트릴(PAN), 폴리메틸메타크릴레이트(PMMA), 폴리비닐리덴 풀루오라이드(PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-HFP), LiPON, Li3N, LixLa1 -xTiO3(0 < x < 1) 및 Li2S-GeS-Ga2S3로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 이루어질 수 있으나, 이에 한정되는 것은 아니고, 리튬 이온 전도성을 지닌 고분자라면 제한되지 않고 사용이 가능하다.As the lithium ion conductive polymer, there may be mentioned, for example, polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride- (PVDF-HFP), LiPON, Li 3 N, LixLa 1 -x TiO 3 (0 <x <1) and Li 2 S-GeS-Ga 2 S 3 , However, the present invention is not limited thereto, and any polymer having lithium ion conductivity may be used without limitation.
리튬 이온 전도성 고분자를 이용한 보호막(55)의 형성은 상기 리튬 이온 전도성 고분자를 용매에 용해 또는 팽윤시킨 코팅액을 제조한 다음 음극 집전체(51) 상에 도포한다. The formation of the protective film 55 using the lithium ion conductive polymer is performed by preparing a coating solution in which the lithium ion conductive polymer is dissolved or swollen in a solvent, and then coating the coating solution on the negative electrode current collector 51.
도포하는 방법으로는 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 상기 고분자 보호층 조성물을 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시키는 것이 바람직하다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 딥 코팅(dip coating), 그라비어 코팅(gravure coating), 슬릿 다이 코팅(slit die coating), 스핀 코팅(spin coating), 콤마 코팅(comma coating), 바 코팅(bar coating), 리버스 롤 코팅(reverse roll coating), 스크린 코팅(screen coating), 캡 코팅(cap coating) 방법 등을 수행하여 제조할 수 있다. 이때 상기 음극 집전체(51)는 앞서 설명한 바와 동일하다.The method of application may be selected from known methods in consideration of the characteristics of the material and the like or may be carried out by a new appropriate method. For example, it is preferable that the polymer protective layer composition is dispersed on a current collector and uniformly dispersed using a doctor blade or the like. In some cases, a method of performing the distribution and dispersion processes in a single process may be used. In addition, various coating methods such as dip coating, gravure coating, slit die coating, spin coating, comma coating, bar coating, reverse roll coating reverse roll coating, screen coating, cap coating and the like. At this time, the anode current collector 51 is the same as that described above.
이후 음극 집전체(51) 위에 형성된 보호막(55)에 대해 건조 공정이 실시될 수 있으며, 이때 건조 공정은 상기 리튬 이온 전도성 고분자에서 사용된 용매의 종류에 따라 80 내지 120℃의 온도에서의 가열처리 또는 열풍 건조 등의 방법에 의해 실시될 수 있다.The drying process may be performed on the protective film 55 formed on the anode current collector 51. In this case, the drying process may be a heat treatment at a temperature of 80 to 120 ° C, depending on the type of the solvent used in the lithium ion conductive polymer Or by hot air drying or the like.
이때 적용되는 용매는 리튬 이온 전도성 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 혼합이 균일하게 이루어질 수 있으며, 이후 용매를 용이하게 제거할 수 있기 때문이다. 구체적으로, N,N'-디메틸아세트아미드(N,N-dimethylacetamide: DMAc), 디메틸설폭사이드(dimethyl sulfoxide: DMSO), N,N-디메틸포름아미드(N,N-dimethylformamide: DMF), 아세톤(acetone), 테트라하이드로퓨란(tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름아미드(dimethylformamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 시클로헥산(cyclohexane), 물 또는 이들의 혼합물을 용매로 사용할 수 있다.In this case, the solvent to be used is preferably similar to the lithium ion conductive polymer in terms of solubility index, and has a low boiling point. This is because the mixing can be made uniform and then the solvent can be easily removed. Specifically, a solvent such as N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone (NMP) Cyclohexane, water or a mixture thereof can be used as a solvent.
상기 리튬 이온 전도성 고분자를 사용할 경우 리튬 이온 전도도를 더욱 높이기 위해, 이러한 목적으로 사용되는 물질을 더욱 포함할 수 있다.When the lithium ion conductive polymer is used, the lithium ion conductive polymer may further include a material used for this purpose in order to further increase the lithium ion conductivity.
일례로, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬이미드 등의 리튬염을 더욱 포함할 수 있다.For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC ( CF 3 SO 2) 3, (CF 3 SO 2) 2 NLi, (FSO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl lithium borate, lithium imide And the like.
무기 고체 전해질은 세라믹 계열의 재료로, 결정성 또는 비결정성 재질이 사용될 수 있으며, Thio-LISICON(Li3 . 25Ge0 .25P0. 75S4), Li2S-SiS2, LiI-Li2S-SiS2, LiI-Li2S-P2S5, LiI-Li2S-P2O5, LiI-Li3PO4-P2S5, Li2S-P2S5, Li3PS4, Li7P3S11, Li2O-B2O3, Li2O-B2O3-P2O5, Li2O-V2O5-SiO2, Li2O-B2O3, Li3PO4, Li2O-Li2WO4-B2O3, LiPON, LiBON, Li2O-SiO2, LiI, Li3N, Li5La3Ta2O12, Li7La3Zr2O12, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw (w는 w<1), Li3 . 6Si0 .6P0. 4O4 등의 무기 고체 전해질이 가능하다. 이때 무기 고체 전해질의 사용시 필요한 경우 리튬염을 더욱 포함할 수 있다.The inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2, LiI- Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O -Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2, LiI, Li 3 N, Li 5 La 3 Ta 2 O12, Li 7 La 3 Zr 2 O 12, Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) Nw (w is w <1), Li 3 . An inorganic solid electrolyte such as 6 Si 0 .6 P 0 .4 O 4 is possible. When the inorganic solid electrolyte is used, it may further include a lithium salt.
상기 무기 고체 전해질은 바인더 등의 공지의 물질들과 혼합하여 슬러리 코팅을 통해 후막 형태로 적용할 수 있다. 또한, 필요한 경우, 스퍼터링 등의 증착 공정을 통해 박막 형태의 적용이 가능하다. 상기 사용하는 슬러리 코팅 방식은 상기 리튬 이온 전도성 고분자에서 언급한 바의 코팅 방법, 건조 방법 및 용매의 내용에 의거하여 적절히 선택할 수 있다.The inorganic solid electrolyte may be mixed with known materials such as a binder and applied in a thick film form through slurry coating. Further, if necessary, the thin film type can be applied through a deposition process such as sputtering. The slurry coating method used may be appropriately selected based on the coating method, the drying method and the content of the solvent mentioned above for the lithium ion conductive polymer.
전술한 바의 리튬 이온 전도성 고분자 및/또는 무기 고체 전해질을 포함하는 보호막(55)은 리튬 이온 전달 속도를 높여 리튬 금속층(23)의 형성을 용이하게 하는 것과 동시에, 리튬 금속층(23)/음극 집전체(51)를 음극으로 사용할 경우 발생하는 리튬 덴드라이트의 생성을 억제 또는 방지하는 효과를 동시에 확보할 수 있다. The protective film 55 comprising the above-described lithium ion conductive polymer and / or inorganic solid electrolyte facilitates the formation of the lithium metal layer 23 by increasing the lithium ion transfer rate and at the same time, the lithium metal layer 23 / The effect of suppressing or preventing the generation of lithium dendrite generated when the whole 51 is used as a cathode can be secured at the same time.
상기 효과를 확보하기 위해, 보호막(55)의 두께 한정이 필요하다. In order to secure the above effect, the thickness of the protective film 55 is required to be limited.
보호막(55)의 두께가 낮을수록 전지의 출력특성에 유리하나, 일정 두께 이상으로 형성되어야만 이후 음극 집전체(51) 상에 형성되는 리튬과 전해질과의 부반응을 억제할 수 있고, 나아가 덴드라이트 성장을 효과적으로 차단할 수 있다. 본 발명에서는, 상기 보호막(55)의 두께는 바람직하게 10nm 내지 50 ㎛일 수 있다. 보호막(55)의 두께가 상기 범위 미만이면 과충전 또는 고온 저장 등의 조건에서 증가되는 리튬과 전해질 간의 부반응 및 발열반응을 효과적으로 억제하지 못하여 안전성 향상을 이룰 수 없고, 또 상기 범위를 초과할 경우, 리튬 이온 전도성 고분자의 경우 보호막(55)의 조성이 전해액에 의해 함침 또는 팽윤되는데 장시간이 요구되고, 리튬 이온의 이동이 저하되어 전체적인 전지 성능 저하의 우려가 있다. The lower the thickness of the protective film 55 is, the more favorable the output characteristics of the battery, but the side reaction between the lithium formed on the anode current collector 51 and the electrolyte can be suppressed, Can be effectively blocked. In the present invention, the thickness of the protective film 55 may preferably be 10 nm to 50 탆. If the thickness of the protective film 55 is less than the above range, the side reaction and the exothermic reaction between lithium and the electrolyte, which are increased under the conditions of overcharging or high-temperature storage, can not be effectively suppressed and safety can not be improved. In the case of the ion conductive polymer, a long time is required for the composition of the protective film 55 to be impregnated or swelled by the electrolytic solution, and the movement of the lithium ion is lowered, thereby deteriorating the overall battery performance.
상기 제2 구현예의 리튬 이차전지는 보호막(55)을 제외한 나머지 구성에 대해서는, 제1 구현예에서 언급한 내용을 따른다.The rechargeable lithium battery of the second embodiment has the same structure as that of the first embodiment except for the protective film 55.
한편, 도 3 및 도 6의 구조에서 보여주는 바와 같이, 리튬 이차 전지는 양극(40), 음극(50) 및 이들 사이에 개재된 분리막(30, 60) 및 전해질(미도시)을 포함하고, 전지의 종류에 따라 상기 분리막(30, 60)은 제외될 수 있다. 3 and 6, the lithium secondary battery includes a cathode 40, a cathode 50, separators 30 and 60 interposed therebetween, and an electrolyte (not shown) The separation membranes 30 and 60 may be omitted.
이때 분리막(30, 60)은 다공성 기재로 이루어질 수 있는데, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.At this time, the separators 30 and 60 may be made of a porous substrate. The porous substrate may be any porous substrate commonly used in an electrochemical device. For example, a polyolefin porous film or a nonwoven fabric may be used , And is not particularly limited thereto.
본 발명에 따른 분리막(30, 60)은 특별히 그 재질을 한정하지 않으며, 양극과 음극을 물리적으로 분리하고, 전해질 및 이온 투과능을 갖는 것으로서, 통상적으로 리튬 이차전지에서 분리막(30, 60)으로 사용되는 것이라면 특별한 제한 없이 사용 가능하나, 다공성이고 비전도성 또는 절연성인 물질로서, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 예컨대 폴리올레핀계 다공성막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.The separation membranes 30 and 60 according to the present invention are not particularly limited in their materials and physically separate the positive and negative electrodes and have an electrolyte and an ion permeability and are usually made of a lithium secondary battery as separators 30 and 60 Any material may be used without particular limitation, but it is preferably a porous, nonconductive or insulating material, particularly a material having a low resistance against ion movement of the electrolytic solution and an excellent ability to impregnate the electrolytic solution. For example, a polyolefin-based porous membrane or nonwoven fabric may be used, but it is not particularly limited thereto.
상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막을 들 수 있다.Examples of the polyolefin-based porous film include polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene and ultra-high molecular weight polyethylene, One can say.
상기 부직포는 전술한 폴리올레핀계 부직포 외에 예컨대, 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리에틸렌나프탈레이트(polyethylenenaphthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리아세탈(polyacetal), 폴리에테르설폰(polyethersulfone), 폴리에테르에테르케톤(polyetheretherketone), 폴리에스테르(polyester) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포가 가능하며, 이러한 부직포는 다공성 웹(web)을 형성하는 섬유 형태로서, 장섬유로 구성된 스폰본드(spunbond) 또는 멜트블로운(meltblown) 형태를 포함한다.The nonwoven fabric may contain, in addition to the polyolefin-based nonwoven fabric, a polyphenylene oxide, a polyimide, a polyamide, a polycarbonate, a polyethyleneterephthalate, a polyethylene naphthalate, Polybutyleneterephthalate, polyphenylenesulfide, polyacetal, polyethersulfone, polyetheretherketone, polyester, and the like may be used alone or in combination of two or more. The nonwoven fabric may be a spunbond or a meltblown fiber composed of long fibers. The nonwoven fabric may be a porous web.
상기 분리막(30, 60)의 두께는 특별히 제한되지는 않으나, 1 내지 100 ㎛ 범위가 바람직하며, 더욱 바람직하게는 5 내지 50 ㎛ 범위이다. 상기 분리막(30, 60)의 두께가 1 ㎛ 미만인 경우에는 기계적 물성을 유지할 수 없으며, 100 ㎛를 초과하는 경우에는 상기 분리막(30, 60)이 저항층으로 작용하게 되어 전지의 성능이 저하된다.The thickness of the separation membrane (30, 60) is not particularly limited, but is preferably in the range of 1 to 100 mu m, more preferably in the range of 5 to 50 mu m. If the thickness of the separation membranes 30 and 60 is less than 1 탆, the mechanical properties can not be maintained. If the separation membranes 30 and 60 are more than 100 탆, the separation membranes 30 and 60 serve as a resistance layer, thereby deteriorating the performance of the battery.
상기 분리막(30, 60)의 기공 크기 및 기공도는 특별히 제한되지는 않으나, 기공 크기는 0.1 내지 50 ㎛이고, 기공도는 10 내지 95%인 것이 바람직하다. 상기 분리막(30, 60)의 기공 크기가 0.1 ㎛ 미만이거나 기공도가 10% 미만이면 분리막(30, 60)이 저항층으로 작용하게 되며, 기공 크기가 50 ㎛를 초과하거나 기공도가 95%를 초과하는 경우에는 기계적 물성을 유지할 수 없다.The pore size and porosity of the separation membrane (30, 60) are not particularly limited, but the pore size is preferably 0.1 to 50 μm and the porosity is preferably 10 to 95%. If the pore size of the separator 30 or 60 is less than 0.1 μm or the porosity is less than 10%, the separator 30 or 60 acts as a resistive layer. If the pore size exceeds 50 μm or the porosity is 95% The mechanical properties can not be maintained.
상기 리튬 이차 전지의 전해질은 리튬염 함유 전해액으로 비수계 유기용매 전해액과 리튬염으로 이루어진 비수계 전해질이며, 이외에 유기 고체 전해질 또는 무기 고체 전해질 등이 포함될 수 있지만 이들만으로 한정되는 것은 아니다.The electrolyte of the lithium secondary battery is a lithium salt-containing electrolyte, which is a non-aqueous electrolyte consisting of a non-aqueous organic solvent electrolyte and a lithium salt, and may include, but is not limited to, an organic solid electrolyte or an inorganic solid electrolyte.
비수계 유기용매는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아마이드, 디메틸포름아마이드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, -Dimethoxyethane, 1,2-diethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, 4-methyl- The organic solvent may be selected from the group consisting of diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivative, Dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate, ethyl propionate and the like can be used.
상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4-, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상을 포함할 수 있다.The electrolyte salt contained in the non-aqueous electrolyte is a lithium salt. The lithium salt can be used without limitation as those conventionally used in an electrolyte for a lithium secondary battery. For example is the above lithium salt anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 - , (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, ( CF 3 SO 2) 3 C - from the group consisting of -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - , and (CF 3 CF 2 SO 2) 2 N Any one selected, or two or more of them.
상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해질에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다.Examples of the organic solvent included in the non-aqueous electrolyte include those commonly used in electrolytes for lithium secondary batteries, such as ether, ester, amide, linear carbonate, cyclic carbonate, etc., Can be used. Among them, a carbonate compound which is typically a cyclic carbonate, a linear carbonate, or a mixture thereof may be included.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, Propylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and halides thereof, or a mixture of two or more thereof. Examples of such halides include, but are not limited to, fluoroethylene carbonate (FEC) and the like.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the linear carbonate compound include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate And mixtures of two or more of them may be used as typical examples, but the present invention is not limited thereto.
특히, 상기 카보네이트계 유기 용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates in the carbonate-based organic solvent, are high-viscosity organic solvents having a high dielectric constant and can dissociate the lithium salt in the electrolyte more easily. In addition, such cyclic carbonates can be used as dimethyl carbonate and diethyl carbonate When a low viscosity, low dielectric constant linear carbonate is mixed in an appropriate ratio, an electrolyte having a higher electric conductivity can be produced.
또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.As the ether in the organic solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether or a mixture of two or more thereof may be used , But is not limited thereto.
그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오 네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, α-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.Examples of the ester in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate,? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or a mixture of two or more thereof, but the present invention is not limited thereto.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.The injection of the nonaqueous electrolyte solution can be performed at an appropriate stage of the manufacturing process of the electrochemical device according to the manufacturing process and required properties of the final product. That is, it can be applied before assembling the electrochemical device or in the final stage of assembling the electrochemical device.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다.  경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.For the purpose of improving charge / discharge characteristics, flame retardancy, etc., non-aqueous electrolytes may be used in the form of, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like are added It is possible. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart nonflammability, or a carbon dioxide gas may be further added to improve high-temperature storage characteristics.
전술한 바의 리튬 이차 전지의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.The shape of the above-described lithium secondary battery is not particularly limited and may be, for example, a jelly-roll type, a stack type, a stack-folding type (including a stack-Z-folding type), or a lamination- Stack-folding type.
이러한 상기 양극, 분리막, 및 음극이 순차적으로 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬 이차 전지를 제조한다.An electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked is prepared, and then inserted into a battery case. Then, an electrolyte is injected into the upper part of the case and sealed with a cap plate and a gasket to assemble a lithium secondary battery .
이때 리튬 이차 전지는 사용하는 양극 재질 및 분리막의 종류에 따라 리튬-황 전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.The lithium secondary battery can be classified into various types of batteries such as a lithium-sulfur battery, a lithium-air battery, a lithium-oxide battery, and a lithium total solid battery depending on the type of the anode material and the separator used. Coin type, pouch type, etc., and can be divided into a bulk type and a thin film type depending on the size. The structure and the manufacturing method of these cells are well known in the art, and detailed description thereof will be omitted.
본 발명에 따른 리튬 이차 전지는 고용량 및 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있다. 상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차 (Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기 자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.The lithium secondary battery according to the present invention can be used as a power source for a device requiring a high capacity and a high rate characteristic. Specific examples of the device include a power tool which is powered by an electric motor and moves; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (Escooter); An electric golf cart; And a power storage system, but the present invention is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.
[실시예][Example]
실시예Example 1: 음극  1: cathode 프리free 전지 제조 Battery Manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LCO(LiCoO2): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 여기에 LMO(LiMnO2)을 LCO 대비 30%의 중량비가 되도록 첨가하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LCO의 중량은 15g 이었다.LCO (LiCoO 2 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) Was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다. Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) 겔 고분자 전해질의 제조 (2) Preparation of gel polymer electrolyte
Dimethoxyethane 비수 전해액 용매 100ml 에 LiFSI를 4M 농도가 되도록 용해하여 전해액을 준비하였다. 전해액 중량 대비 PVDF와 ETPTA 고분자를 합한 고분자의 중량 비는 3:2의 비율로, PVDF 고분자와 ETPTA 고분자의 비는 2:8의 중량비로 첨가하였고 상기 전해질용 조성물의 총 중량 대비 중합 개시제로서 benzoyl peroxide를 0.7 중량%를 첨가하였다. 이로써 겔 고분자 전해질용 조성물을 제조하였다. Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution. The weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2, the ratio of PVDF polymer to ETPTA polymer was 2: 8, and the ratio of benzoyl peroxide Was added in an amount of 0.7 wt%. Thus, a composition for a gel polymer electrolyte was prepared.
이어 65℃에서 겔화하여 겔 고분자 전해질을 제조하였다. And then gelled at 65 ° C to prepare a gel polymer electrolyte.
(3) 음극 (3) cathode 프리free 전지 제조 Battery Manufacturing
상기 (1)에서 제조된 양극과 음극 집전체 사이에 분리막 및 (2)의 겔 고분자 전해질을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (2), and positioning the electrode assembly inside the case.
실시예Example 2: 음극  2: cathode 프리free 전지 제조  Battery Manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LCO(LiCoO2): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 여기에 LMO(LiMnO2)을 LCO 대비 30%의 중량비가 되도록 첨가하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LCO의 중량은 15g 이었다.LCO (LiCoO 2 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) Was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다. Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) (2) 가교화된Crosslinked 겔 고분자 전해질의 제조 Preparation of Gel Polymer Electrolyte
DMC 비수 전해액 용매 100ml 에 LiFSI를 3M 농도가 되도록 용해하여 전해액을 준비하였다. 전해액 중량 대비 PVDF와 ETPTA 고분자를 합한 고분자의 중량 비는 3:2의 비율로, PVDF 고분자와 ETPTA 고분자의 비는 2:8의 중량비로 첨가하였고 상기 전해질용 조성물의 총 중량 대비 중합 개시제로서 benzoyl peroxide를 0.7 중량%를 첨가하였다. 이로써 겔 고분자 전해질용 조성물을 제조하였다. A non-aqueous electrolyte solution of DMC was dissolved in 100 ml of LiFSI to a concentration of 3 M to prepare an electrolytic solution. The weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2, the ratio of PVDF polymer to ETPTA polymer was 2: 8, and the ratio of benzoyl peroxide Was added in an amount of 0.7 wt%. Thus, a composition for a gel polymer electrolyte was prepared.
이어 80℃에서 겔화하여 겔 고분자 전해질을 제조하였다.And then gelled at 80 ° C to prepare a gel polymer electrolyte.
(3) 음극 (3) cathode 프리free 전지 제조 Battery Manufacturing
상기 (1)에서 제조된 양극과 음극 집전체 사이에 분리막 및 (2)의 겔 고분자 전해질을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (2), and positioning the electrode assembly inside the case.
실시예Example 3: 음극  3: cathode 프리free 전지 제조 Battery Manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LFP(LiFePO4): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 여기에 LMO(LiMnO2)을 LFP 대비 30%의 중량비가 되도록 첨가하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LFP의 중량은 15g 이었다.LFP (LiFePO 4 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone, and then LMO (LiMnO 2 ) Was added so that the weight ratio of LFP was 30%. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the added LFP was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다. Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) 겔 고분자 전해질의 제조(2) Preparation of gel polymer electrolyte
Dimethoxyethane 비수 전해액 용매 100ml 에 LiFSI를 4M 농도가 되도록 용해하여 전해액을 준비하였다. 전해액 중량 대비 PVDF와 ETPTA 고분자를 합한 고분자의 중량 비는 3:2의 비율로, PVDF 고분자와 ETPTA 고분자의 비는 2:8의 중량비로 첨가하였고 상기 전해질용 조성물의 총 중량 대비 중합 개시제로서 benzoyl peroxide를 0.7 중량%를 첨가하였다. 이로써 겔 고분자 전해질용 조성물을 제조하였다. Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution. The weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2, the ratio of PVDF polymer to ETPTA polymer was 2: 8, and the ratio of benzoyl peroxide Was added in an amount of 0.7 wt%. Thus, a composition for a gel polymer electrolyte was prepared.
이어 65℃에서 겔화하여 겔 고분자 전해질을 제조하였다. And then gelled at 65 ° C to prepare a gel polymer electrolyte.
(3) 음극 (3) cathode 프리free 전지 제조 Battery Manufacturing
상기 (1)에서 제조된 양극과 음극 집전체 사이에 분리막 및 (2)의 겔 고분자 전해질을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (2), and positioning the electrode assembly inside the case.
실시예Example 4:  4: PEOPEO 보호막 구비 음극  Cathode with protective film 프리free 전지 제조 Battery Manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LCO(LiCoO2): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 여기에 LMO(LiMnO2)을 LCO 대비 30%의 중량비가 되도록 첨가하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LCO의 중량은 15g 이었다.LCO (LiCoO 2 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) Was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다. Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) 보호막이 형성된 음극 (2) Cathode with protective film 집전체Whole house 제조 Produce
아세토니트릴 용매 50ml 에 폴리에틸렌옥사이드(MV: 4,000,000) 8g 과 리튬 비스(트리 플루오로메탄술포닐)이미드 (LiTFSI, ((CF3SO2)2NLi)를 EO:Li=9:1 (EO : PEO의 반복단위)이 되도록 혼합하여 보호막 형성용 용액을 제조하였다.Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI, ((CF 3 SO 2 ) 2 NLi) was mixed with 8 g of polyethylene oxide (MV: 4,000,000) in 50 ml of acetonitrile solvent, PEO repeating unit) to prepare a solution for forming a protective film.
상기 보호막 형성용 용액을 구리 집전체 상에 코팅한 후 80℃에서 6시간 동안 건조하여 구리 집전체 상에 보호막(두께: 10㎛)을 형성하였다. The solution for forming a protective film was coated on a copper current collector and dried at 80 DEG C for 6 hours to form a protective film (thickness: 10 mu m) on the copper current collector.
(3) 겔 고분자 전해질의 제조(3) Preparation of gel polymer electrolyte
Dimethoxyethane 비수 전해액 용매 100ml 에 LiFSI를 4M 농도가 되도록 용해하여 전해액을 준비하였다. 전해액 중량 대비 PVDF와 ETPTA 고분자를 합한 고분자의 중량 비는 3:2의 비율로, PVDF 고분자와 ETPTA 고분자의 비는 2:8의 중량비로 첨가하였고 상기 전해질용 조성물의 총 중량 대비 중합 개시제로서 benzoyl peroxide를 0.7 중량%를 첨가하였다. 이로써 겔 고분자 전해질용 조성물을 제조하였다. Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution. The weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2, the ratio of PVDF polymer to ETPTA polymer was 2: 8, and the ratio of benzoyl peroxide Was added in an amount of 0.7 wt%. Thus, a composition for a gel polymer electrolyte was prepared.
이어 65℃에서 겔화하여 겔 고분자 전해질을 제조하였다. And then gelled at 65 ° C to prepare a gel polymer electrolyte.
(4) 음극 (4) cathode 프리free 전지 제조 Battery Manufacturing
상기 (1)에서 제조된 양극과 음극 집전체 사이에 분리막 및 (3)의 겔 고분자 전해질을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (3), and positioning the electrode assembly inside the case.
실시예Example 5:  5: LiPONLiPON 보호막 구비 음극  Cathode with protective film 프리free 전지 제조 Battery Manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LCO(LiCoO2): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 여기에 LMO(LiMnO2)을 LCO 대비 30%의 중량비가 되도록 첨가하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LCO의 중량은 15g 이었다.LCO (LiCoO 2 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) Was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다. Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) (2) LiPONLiPON 보호막이 형성된 음극  Cathode having a protective film 집전체Whole house 제조 Produce
LiPON 보호막의 경우, N2 분위기의 진공 챔버에서 Li3PO4 타겟을 사용하여 25분 동안 스파터링하여 코팅층을 형성하였다. 증착 시간에 따라 표면 코팅층의 두께가 조절됨을 확인하였으며, 구리 집전체 상에 보호막(두께: 0.2㎛)을 형성하였다. 상기 코팅층은 표면에 형성된 코팅층의 두께는 주사전자현미경 (JSM-7610F, JEOL)을 이용하여 확인하였다.For the LiPON protective layer, a coating layer was formed by sputtering for 25 minutes using a Li 3 PO 4 target in a vacuum chamber in an N 2 atmosphere. It was confirmed that the thickness of the surface coating layer was controlled according to the deposition time, and a protective film (thickness: 0.2 탆) was formed on the copper current collector. The thickness of the coating layer formed on the surface of the coating layer was confirmed using a scanning electron microscope (JSM-7610F, JEOL).
(3) 겔 고분자 전해질의 제조(3) Preparation of gel polymer electrolyte
Dimethoxyethane 비수 전해액 용매 100ml 에 LiFSI를 4M 농도가 되도록 용해하여 전해액을 준비하였다. 전해액 중량 대비 PVDF와 ETPTA 고분자를 합한 고분자의 중량 비는 3:2의 비율로, PVDF 고분자와 ETPTA 고분자의 비는 2:8의 중량비로 첨가하였고 상기 전해질용 조성물의 총 중량 대비 중합 개시제로서 benzoyl peroxide를 0.7 중량%를 첨가하였다. 이로써 겔 고분자 전해질용 조성물을 제조하였다. Dimethoxyethane LiFSI was dissolved in 100 ml of a non-aqueous electrolyte solvent so as to have a concentration of 4 M to prepare an electrolytic solution. The weight ratio of PVDF to ETPTA polymer to electrolyte weight ratio was 3: 2, the ratio of PVDF polymer to ETPTA polymer was 2: 8, and the ratio of benzoyl peroxide Was added in an amount of 0.7 wt%. Thus, a composition for a gel polymer electrolyte was prepared.
이어 65℃에서 겔화하여 겔 고분자 전해질을 제조하였다. And then gelled at 65 ° C to prepare a gel polymer electrolyte.
(4) 리튬 이차전지 제조(4) Production of lithium secondary battery
상기 (1)에서 제조된 양극과 음극 집전체 사이에 분리막 및 (3)의 겔 고분자 전해질을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured by preparing an electrode assembly between the positive electrode and the negative electrode collector prepared in the above (1) through a separator and a gel polymer electrolyte of (3), and positioning the electrode assembly inside the case.
비교예Comparative Example 1: 리튬 이차 전지 제조 1: Lithium secondary battery manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LCO(LiCoO2): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합한 후 여기에 LMO(LiMnO2)을 LCO 대비 30%의 중량비가 되도록 첨가하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LCO의 중량은 15g 이었다.LCO (LiCoO 2 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methylpyrrolidone and then LMO (LiMnO 2 ) Was added so as to have a weight ratio of 30% to LCO. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the LCO added at this time was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다.Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) 음극의 제조(2) Manufacture of cathodes
구리 집전체 상에 리튬 호일(20㎛ 두께)을 합지하여 음극을 제조하였다.Lithium foil (20 탆 thick) was laminated on the copper collector to prepare a negative electrode.
(3) 리튬 이차전지 제조(3) Production of lithium secondary battery
상기 (1)에서 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 전해질을 주입하여 리튬 이차전지를 제조하였다. 이때 전해질은 EC(ethylene carbonate):EMC (ethylmethyl carbonate)가 3 : 7의 부피비로 이루어진 유기 용매에 1M의 LiPF6를 용해시켜 제조한 것을 사용하였다.A lithium secondary battery was prepared by preparing an electrode assembly between the positive electrode and the negative electrode prepared in the above (1) through a separator of porous polyethylene, placing the electrode assembly in the case, and injecting electrolyte. The electrolyte was prepared by dissolving 1 M of LiPF 6 in an organic solvent having a volume ratio of EC (ethylene carbonate): EMC (ethylmethyl carbonate) of 3: 7.
비교예Comparative Example 2: 음극  2: cathode 프리free 전지 제조 Battery Manufacturing
(1) 양극의 제조(1) Preparation of positive electrode
N-메틸피롤리돈 (N-Methyl-2-pyrrolidone) 30 ml에 LFP(LiFePO4): 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 혼합하였다. 이어 각각을 페이스트 페이스 믹서로 30분간 혼합하여 슬러리 조성물을 제조하였다. 이 때 첨가된 LFP의 중량은 15g 이었다.LFP (LiFePO 4 ): Super-P: binder (PVdF) was mixed at a weight ratio of 95: 2.5: 2.5 to 30 ml of N-methyl-2-pyrrolidone. Then, each was mixed with a paste face mixer for 30 minutes to prepare a slurry composition. The weight of the added LFP was 15 g.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 두께 20 ㎛) 상에 코팅하고 130℃에서 12시간 동안 건조하여 각각의 양극을 제조하였다. Then, the slurry composition prepared above was coated on a current collector (Al Foil, thickness 20 탆) and dried at 130 캜 for 12 hours to prepare respective positive electrodes.
(2) 음극의 제조(2) Manufacture of cathodes
구리 집전체 상에 리튬 호일(20㎛ 두께)을 합지하여 음극을 제조하였다.Lithium foil (20 탆 thick) was laminated on the copper collector to prepare a negative electrode.
(3) 리튬 이차전지 제조(3) Production of lithium secondary battery
상기 (1)에서 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 전해질을 주입하여 리튬 이차전지를 제조하였다. 이때 전해질은 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)에 1M의 LiBF4를 용해시켜 제조한 것을 사용하였다.A lithium secondary battery was prepared by preparing an electrode assembly between the positive electrode and the negative electrode prepared in the above (1) through a separator of porous polyethylene, placing the electrode assembly in the case, and injecting electrolyte. At this time, the electrolyte was prepared by dissolving 1 M of LiBF 4 in fluoroethylene carbonate (FEC).
실험예Experimental Example 1: 리튬 이차전지 특성 분석  1: Characterization of lithium secondary battery
상기 실시예 및 비교예의 전지를 0.2C, 4.25V의 CC/CV(5% current cut at 1C), 방전 0.5C CC 3V의 조건으로 충방전을 수행하여 리튬 금속층이 형성된 리튬 이차전지를 제작하였다. 이어, 초기 리튬 형성 후의 저항 변화율을 측정하여 하기 표 2에 나타내었다.The batteries of Examples and Comparative Examples were charged and discharged under the conditions of 0.2C, 4.25V CC / CV (5% current cut at 1C) and discharge 0.5C CC 3V to prepare a lithium secondary battery having a lithium metal layer. The resistance change rate after the initial lithium formation was measured and is shown in Table 2 below.
저항 측정은 하기 조건에서 측정하였다.Resistance measurement was performed under the following conditions.
장비: BIOLOGICS (potentiostat)Equipment: BIOLOGICS (potentiostat)
전압: 10mV AC Voltage: 10mV AC
주파수: 1MHz~10mHz Frequency: 1MHz to 10mHz
초기 저항: 셀 제조 후 1일 후 1사이클 충방전 후 10Hz 주파수 저항 측정Initial resistance: Measurement of frequency resistance at 10 Hz after 1 cycle after 1 cycle after cell preparation
1달 후 저항: 셀 제조 후 31일 후 10Hz 주파수 저항 측정After 1 month Resistance: 10Hz frequency resistance measurement after 31 days after cell manufacturing
저항 증가율: (1달 후 저항 - 초기 저항)/초기저항 *100Resistance increase rate: (resistance after one month - initial resistance) / initial resistance * 100
1Cyc. 형성 Li의 양 (mAh/cm2)1Cyc. The amount of forming Li (mAh / cm2) 초기 저항 대비 1달 후 저항 증가율Resistance increase rate after one month compared to initial resistance
실시예 1Example 1 1.631.63 23%23%
실시예 2Example 2 1.641.64 52%52%
실시예 3Example 3 1.641.64 21%21%
실시예 4Example 4 1.621.62 38%38%
실시예 5Example 5 1.591.59 8%8%
비교예 1Comparative Example 1 1.631.63 114%114%
비교예 2Comparative Example 2 1.631.63 75%75%
상기 표 2의 결과와 같이, 비교예 1 내지 2와 같이, 전해질의 환원전위가 불안정한 경우 aging 진행에 따라서, Li과의 계면에서 전해질 환원으로 저항이 증가하게 되는 것을 알 수 있었으며, 본 발명의 실시예 1 내지 5의 경우, 전해액을 겔화 하여 이와 같은 반응성을 억제하는 것을 알 수 있었다. As shown in Table 2, when the reduction potential of the electrolyte was unstable, it was found that the resistance was reduced due to electrolyte reduction at the interface with Li as the aging progressed, as in Comparative Examples 1 and 2, In Examples 1 to 5, it was found that the reactivity was suppressed by gelation of the electrolytic solution.
[부호의 설명][Description of Symbols]
10, 40: 양극10, 40: anode
11, 41: 양극 집전체11, 41: anode current collector
13, 43: 양극 합제13, 43: anode mixture
20, 50: 음극20, 50: cathode
21, 51: 음극 집전체21, 51: cathode collector
23, 53: 음극 합제23, 53: cathode mixture
30, 60: 분리막30, 60: membrane
55: 보호막55: Shield

Claims (15)

  1. 양극, 음극, 이들 사이에 개재된 분리막 및 전해질을 포함하는 리튬 이차전지에 있어서, 1. A lithium secondary battery comprising a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte,
    상기 전해질은 겔 고분자 전해질이며, Wherein the electrolyte is a gel polymer electrolyte,
    충전에 의해 상기 양극으로부터 이동되어 음극 내 음극 집전체 상에 리튬 금속을 형성하는, 리튬 이차전지.And is moved from the positive electrode by charging to form a lithium metal on the negative electrode current collector in the negative electrode.
  2. 제1항에 있어서, The method according to claim 1,
    상기 리튬 금속은 4.5V ~ 2.5V 의 전압 범위에서 1회의 충전을 통해 형성되는, 리튬 이차전지.Wherein the lithium metal is formed through one charge in a voltage range of 4.5V to 2.5V.
  3. 제1항에 있어서, The method according to claim 1,
    상기 겔 고분자 전해질은 가교 또는 비가교 구조를 갖는, 리튬 이차전지.Wherein the gel polymer electrolyte has a crosslinked or non-crosslinked structure.
  4. 제1항에 있어서, The method according to claim 1,
    상기 겔 고분자 전해질은 고분자 매트릭스, 리튬염, 및 유기 용매를 포함하는, 리튬 이차전지.Wherein the gel polymer electrolyte comprises a polymer matrix, a lithium salt, and an organic solvent.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 고분자 매트릭스는 분자 구조 내 카르복실 관능기(carboxylic group), 아크릴레이트 관능기(acrylate group) 및 시아노 관능기(cyano group)를 포함하는 군 중에 서 선택되는 적어도 두 가지 이상의 관능기를 갖는 모노머가 중합된 것인, 리튬 이차전지.The polymer matrix is obtained by polymerizing a monomer having at least two functional groups selected from the group consisting of a carboxylic group, an acrylate group and a cyano group in a molecular structure In lithium secondary battery.
  6. 제4항에 있어서, 5. The method of claim 4,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬이미드인, 리튬 이차전지.The lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, Mid-in, lithium secondary battery.
  7. 제1항에 있어서, The method according to claim 1,
    상기 음극은 분리막과 접하는 면에 보호막이 추가로 형성된, 리튬 이차전지.Wherein the negative electrode further comprises a protective film on a surface in contact with the separator.
  8. 제1항에 있어서, The method according to claim 1,
    상기 양극은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - YCoYO2, LiCo1 - YMnYO2, LiNi1 - YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 -zCozO4(여기에서, 0<Z<2), LixMyMn2 - yO4 - zAz (여기에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2, M= Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi 중 하나 이상, A는 -1 또는 -2가의 하나 이상의 음이온), Li1 + aNibM'1 -bO2-cA'c (0≤a≤0.1, 0≤b≤0.8, 0≤c<0.2이고, M'은 Mn, Co, Mg, Al 등 6배위의 안정한 원소로 이루어진 군에서 선택되는 1종 이상이고 A'는 -1 또는 -2가의 하나 이상의 음이온이다.), LiCoPO4, 및 LiFePO4 로 이루어진 군으로부터 1종 이상의 idd극 활물질을 포함하는, 리튬 이차전지.The positive electrode may be formed of LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c < + c = 1), LiNi 1 - Y Co Y O 2, LiCo 1 - Y MnYO 2, LiNi 1 - Y MnYO 2 ( here, 0≤Y <1), Li ( Ni a Co b Mn c) O4 ( 0 <a <2, 0 < b <2, 0 <c <2, a + b + c = 2), LiMn 2 - z Ni z O4, LiMn 2 -z Co z O 4 ( where, 0 <z <2), Li x M y Mn 2 - y O 4 - z A z ( here, 0.9≤x≤1.2, 0 <y <2 , 0≤z <0.2, M = Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and at least one, a is a valence of -1 or -2 at least one anion of Bi), Li 1 + a NibM and '1 -b O 2-c a ' c (0≤a≤0.1, 0≤b≤0.8, 0≤c <0.2, M ' is a stable element in the 6 coordination such as Mn, Co, Mg, Al , And A 'is at least one anion selected from the group consisting of -O-, -O-, -SO 2 - , and -SO 2 -, A' is at least one anion of -1 or -2), LiCoPO 4 , and LiFePO 4 .
  9. 제1항에 있어서, The method according to claim 1,
    상기 양극은 하기 화학식 1 내지 8 중 어느 하나로 표시되는 리튬 금속 화합물을 포함하는, 리튬 이차전지:Wherein the positive electrode comprises a lithium metal compound represented by any one of the following Chemical Formulas 1 to 8:
    [화학식 1][Chemical Formula 1]
    Li2Ni1 - aM1 aO2 Li 2 Ni 1 - a M 1 a O 2
    (상기 식에서, a는 0≤a<1이고, M1은 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(Wherein a is 0? A <1 and M 1 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd)
    [화학식 2](2)
    Li2 + bNi1 - cM2 cO2 +d Li 2 + b Ni 1 - c M 2 c O 2 + d
    (상기 식에서, -0.5≤b≤0.5, 0≤c≤1, 0≤d<0.3, M2는 P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다.)(Wherein, -0.5≤b≤0.5, 0≤c≤1, 0≤d <0.3 , M 2 is P, B, C, Al, Sc, Sr, Ti, V, Zr, Mn, Fe, Co, Cu, Zn, Cr, Mg, Nb, Mo, and Cd.
    [화학식 3](3)
    LiM3 eMn1 - eO2(x는 0≤e<0.5이고, M3는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군에서 선택된 1종 이상의 원소이다.), LiM 3 e Mn 1 - e O 2 (x is 0? E <0.5 and M 3 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co)
    [화학식 4][Chemical Formula 4]
    Li2M4O2 Li 2 M 4 O 2
    (상기 식에서, M4는 Cu, Ni로 이루어진 군에서 선택된 1종 이상의 원소이다.)(Wherein M &lt; 4 &gt; is at least one element selected from the group consisting of Cu and Ni).
    [화학식 5][Chemical Formula 5]
    Li3 + fNb1 - gM5 gS4 -h Li 3 + f Nb 1 - g M 5 g S 4 -h
    (상기 식에서, -0.1≤f≤1, 0≤g≤0.5, -0.1≤h≤0.5이고, M5는 Mn, Fe, Co, Cu, Zn, Mg 및 Cd로 이루어진 군에서 선택된 1종 이상의 원소이다)0.5, -0.1? H? 0.5 and M 5 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd to be)
    [화학식 6][Chemical Formula 6]
    LiM6 iMn1 - iO2 LiM 6 i Mn 1 - i O 2
    (상기 식에서, i는 0.05≤x<0.5이고, M6는 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(Wherein i is 0.05? X <0.5 and M 6 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co.)
    [화학식 7](7)
    LiM7 2jMn2 - 2jO4 LiM 7 2j Mn 2 - 2j O 4
    (상기 식에서, j는 0.05≤x<0.5이고, M7은 Cr, Al, Ni, Mn, 및 Co로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)(Where j is 0.05? X <0.5 and M 7 is at least one element selected from the group consisting of Cr, Al, Ni, Mn, and Co)
    [화학식 8][Chemical Formula 8]
    Lik-M8 m-Nn Li k -M 8 m -N n
    (상기 식에서, M8은 알칼리토류 금속을 나타내고, k/(k+m+n)은 0.10 내지 0.40이고, m/(k+m+n)은 0.20 내지 0.50이고, n/(k+m+n)은 0.20 내지 0.50이다.)(Wherein, M 8 represents an alkaline earth metal, k / (k + m + n) is from 0.10 to 0.40, and, m / (k + m + n) is 0.20 to 0.50, n / (k + m + n) is 0.20 to 0.50.
  10. 제1항에 있어서, The method according to claim 1,
    상기 리튬 금속은 50 nm 내지 100 ㎛의 두께를 갖는 금속층인, 리튬 이차전지.Wherein the lithium metal is a metal layer having a thickness of 50 nm to 100 占 퐉.
  11. 제1항에 있어서, The method according to claim 1,
    상기 보호막은 리튬 이온 전도성 고분자 및 무기 고체 전해질 중 어느 하나 이상을 포함하는, 리튬 이차전지.Wherein the protective film comprises at least one of a lithium ion conductive polymer and an inorganic solid electrolyte.
  12. 제11항에 있어서, 12. The method of claim 11,
    상기 리튬 이온 전도성 고분자는 폴리에틸렌옥사이드(PEO), 폴리아크릴로니트릴(PAN), 폴리메틸메타크릴레이트(PMMA), 폴리비닐리덴 풀루오라이드(PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-HFP), LiPON, Li3N, LixLa1 -xTiO3(0 < x < 1) 및 Li2S-GeS-Ga2S3로 이루어진 군으로부터 선택된 1종 이상인, 리튬 이차전지.The lithium ion conductive polymer may be at least one selected from the group consisting of polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoro Wherein the lithium secondary battery is at least one selected from the group consisting of propylene (PVDF-HFP), LiPON, Li 3 N, LixLa 1 -x TiO 3 (0 <x <1) and Li 2 S-GeS-Ga 2 S 3 .
  13. 제11항에 있어서, 12. The method of claim 11,
    상기 무기 고체 전해질은 Thio-LISICON(Li3 . 25Ge0 .25P0. 75S4), Li2S-SiS2, LiI-Li2S-SiS2, LiI-Li2S-P2S5, LiI-Li2S-P2O5, LiI-Li3PO4-P2S5, Li2S-P2S5, Li3PS4, Li7P3S11, Li2O-B2O3, Li2O-B2O3-P2O5, Li2O-V2O5-SiO2, Li2O-B2O3, Li3PO4, Li2O-Li2WO4-B2O3, LiPON, LiBON, Li2O-SiO2, LiI, Li3N, Li5La3Ta2O12, Li7La3Zr2O12, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw (w는 w<1), 및 Li3 . 6Si0 .6P0. 4O4로 이루어진 군에서 선택된 1종 이상인, 리튬 이차전지.The inorganic solid electrolyte Thio-LISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 SP 2 S 5, Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O-Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2, LiI, Li 3 N, Li 5 La 3 Ta 2 O12, Li 7 La 3 Zr 2 O 12, Li 6 BaLa 2 Ta 2 O 12, Li 3 PO (4-3 / 2w) Nw ( w is w <1), and Li 3. 6 Si 0 .6 P 0 .4 O 4 .
  14. 제11항에 있어서, 12. The method of claim 11,
    상기 보호막은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 및 리튬이미드로 이루어진 군에서 선택된 1종 이상의 리튬염을 더 포함하는, 리튬 이차전지. The protective film is LiCl, LiBr, LiI, LiClO 4 , LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, &Lt; / RTI &gt; further comprising at least one lithium salt selected from the group consisting of lithium salts.
  15. 제11항에 있어서, 12. The method of claim 11,
    상기 보호막은 두께가 10 nm 내지 1 ㎛인, 리튬 이차전지.Wherein the protective film has a thickness of 10 nm to 1 占 퐉.
PCT/KR2018/007227 2017-06-26 2018-06-26 Lithium secondary battery WO2019004699A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/623,500 US11431019B2 (en) 2017-06-26 2018-06-26 Lithium secondary battery
JP2019571353A JP7183198B2 (en) 2017-06-26 2018-06-26 lithium secondary battery
EP18823493.4A EP3637526B1 (en) 2017-06-26 2018-06-26 Lithium secondary battery
CN201880042247.6A CN110785886B (en) 2017-06-26 2018-06-26 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170080332 2017-06-26
KR10-2017-0080332 2017-06-26
KR10-2018-0072890 2018-06-25
KR1020180072890A KR102093972B1 (en) 2017-06-26 2018-06-25 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2019004699A1 true WO2019004699A1 (en) 2019-01-03

Family

ID=64742016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007227 WO2019004699A1 (en) 2017-06-26 2018-06-26 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2019004699A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635107A (en) * 2019-10-24 2019-12-31 邦泰宏图(深圳)科技有限责任公司 Bipolar solid-state lithium ion battery without base material and manufacturing method thereof
WO2021021772A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Anode-free solid state battery having a pseudo-solid lithium gel layer
WO2021021600A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Interfacial bonding layer for an anode-free solid-state-battery
US20210305619A1 (en) * 2020-03-26 2021-09-30 Sumitomo Osaka Cement Co., Ltd. Lithium ion polymer battery and method of producing the same
US11271253B2 (en) 2019-07-29 2022-03-08 TeraWatt Technology Inc. Cylindrical anode-free solid state battery having a pseudo-solid lithium gel layer
CN115411360A (en) * 2021-05-26 2022-11-29 张家港市国泰华荣化工新材料有限公司 Non-negative electrode lithium metal battery electrolyte and non-negative electrode lithium metal battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307129A (en) * 1998-04-22 1999-11-05 Fujitsu Ltd Manufacture of lithium secondary battery and manufacture of winding body for lithium secondary battery and manufacture of positive electrode body for lithium secondary battery
JP2002237293A (en) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
KR20150014337A (en) * 2013-07-29 2015-02-06 한국산업은행 Mercury removing device and mercury removing method
KR20160052323A (en) 2014-10-29 2016-05-12 주식회사 엘지화학 Lithium electrode and lithium battery compring the same
JP2016091984A (en) * 2014-11-04 2016-05-23 株式会社パワージャパンプリュス Power storage element
KR101648465B1 (en) * 2015-02-17 2016-08-16 주식회사 제낙스 Gel polymer electrolyte, method for manufacturing the same, and electrochemical device including the same
KR20170080332A (en) 2015-12-31 2017-07-10 엘지디스플레이 주식회사 Stereoscopic mirror display device and stereoscopic mirror display system including the same
KR20180072890A (en) 2016-12-21 2018-07-02 (주)성일이노텍 Open type shoe sterilizer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307129A (en) * 1998-04-22 1999-11-05 Fujitsu Ltd Manufacture of lithium secondary battery and manufacture of winding body for lithium secondary battery and manufacture of positive electrode body for lithium secondary battery
JP2002237293A (en) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
KR20150014337A (en) * 2013-07-29 2015-02-06 한국산업은행 Mercury removing device and mercury removing method
KR20160052323A (en) 2014-10-29 2016-05-12 주식회사 엘지화학 Lithium electrode and lithium battery compring the same
JP2016091984A (en) * 2014-11-04 2016-05-23 株式会社パワージャパンプリュス Power storage element
KR101648465B1 (en) * 2015-02-17 2016-08-16 주식회사 제낙스 Gel polymer electrolyte, method for manufacturing the same, and electrochemical device including the same
KR20170080332A (en) 2015-12-31 2017-07-10 엘지디스플레이 주식회사 Stereoscopic mirror display device and stereoscopic mirror display system including the same
KR20180072890A (en) 2016-12-21 2018-07-02 (주)성일이노텍 Open type shoe sterilizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637526A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021021772A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Anode-free solid state battery having a pseudo-solid lithium gel layer
WO2021021600A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Interfacial bonding layer for an anode-free solid-state-battery
US11271253B2 (en) 2019-07-29 2022-03-08 TeraWatt Technology Inc. Cylindrical anode-free solid state battery having a pseudo-solid lithium gel layer
CN114207904A (en) * 2019-07-29 2022-03-18 太瓦技术公司 Anode-less solid-state battery with quasi-solid-state lithium gel layer
CN110635107A (en) * 2019-10-24 2019-12-31 邦泰宏图(深圳)科技有限责任公司 Bipolar solid-state lithium ion battery without base material and manufacturing method thereof
US20210305619A1 (en) * 2020-03-26 2021-09-30 Sumitomo Osaka Cement Co., Ltd. Lithium ion polymer battery and method of producing the same
CN115411360A (en) * 2021-05-26 2022-11-29 张家港市国泰华荣化工新材料有限公司 Non-negative electrode lithium metal battery electrolyte and non-negative electrode lithium metal battery
CN115411360B (en) * 2021-05-26 2024-01-30 张家港市国泰华荣化工新材料有限公司 Electrolyte of non-negative lithium metal battery and non-negative lithium metal battery

Similar Documents

Publication Publication Date Title
WO2019004699A1 (en) Lithium secondary battery
WO2019045399A2 (en) Lithium secondary battery
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2018236168A1 (en) Lithium secondary battery
WO2020091453A1 (en) Lithium secondary battery
WO2020067779A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2020149678A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2021033987A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2018093152A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020162659A1 (en) Organic electrolyte, and secondary battery comprising same
WO2021060811A1 (en) Method for manufacturing secondary battery
WO2020222469A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2020149677A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2019107838A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023063648A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2019151724A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2022211320A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte comprising same for lithium secondary battery, and lithium secondary battery
WO2021241976A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2020091448A1 (en) Lithium secondary battery
WO2020096411A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battering including same
WO2021194220A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823493

Country of ref document: EP

Effective date: 20200110