JP2016091984A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2016091984A
JP2016091984A JP2014237100A JP2014237100A JP2016091984A JP 2016091984 A JP2016091984 A JP 2016091984A JP 2014237100 A JP2014237100 A JP 2014237100A JP 2014237100 A JP2014237100 A JP 2014237100A JP 2016091984 A JP2016091984 A JP 2016091984A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
storage element
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014237100A
Other languages
Japanese (ja)
Inventor
要 武谷
Kaname Takeya
要 武谷
昌弘 外園
Masahiro Hokazono
昌弘 外園
城戸 政美
Masami Kido
政美 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Japan Plus Co Ltd
Original Assignee
Power Japan Plus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Japan Plus Co Ltd filed Critical Power Japan Plus Co Ltd
Priority to JP2014237100A priority Critical patent/JP2016091984A/en
Publication of JP2016091984A publication Critical patent/JP2016091984A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a power storage element which uses metallic lithium for an anode active material is not put into practical use at present since the problem that dendrite is gradually grown by repeating charge/discharge, breaks through a separator and short-circuits positive and negative electrodes cannot be solved.SOLUTION: In the power storage element of the present invention, the negative electrode does not practically contain metallic lithium during complete discharge or metallic lithium is deposited from an electrolyte and forms the negative electrode. Therefore, even if dendrite is generated during charge, dendrite disappears during complete discharge. Namely, when charge/discharge is repeated, growth of dendrite can be suppressed.SELECTED DRAWING: Figure 1

Description

本発明は蓄電素子に関し、特に、充放電の繰り返しによるリチウムのデンドライト成長を抑制可能な蓄電素子に関する。  The present invention relates to a power storage device, and more particularly to a power storage device capable of suppressing lithium dendrite growth due to repeated charge and discharge.

現在、携帯電話やパソコンなどの電子機器、あるいは電動車両等に使用する蓄電素子として、リチウムイオンを吸蔵および放出可能なリチウム金属化合物を正極活物質に、炭素材料を負極活物質にし、さらに非水電解液を備えたリチウムイオン二次電池(たとえば特許文献1)の開発と実用化(すなわち商品としての普及)が進んでいる。  Currently, as power storage devices used in electronic devices such as mobile phones and personal computers, or electric vehicles, lithium metal compounds capable of occluding and releasing lithium ions are used as positive electrode active materials, carbon materials are used as negative electrode active materials, and non-aqueous Development and practical application (that is, widespread use as a product) of lithium ion secondary batteries (for example, Patent Document 1) including an electrolytic solution are progressing.

また、リチウムイオン二次電池と同等のエネルギー密度を有し、さらに高速充放電が可能な蓄電素子として、正極活物質および負極活物質の両方に炭素材料を用いた蓄電素子の開発が行われている(たとえば非特許文献1、特許文献2)。  In addition, as a storage element having an energy density equivalent to that of a lithium ion secondary battery and capable of high-speed charge / discharge, a storage element using a carbon material for both the positive electrode active material and the negative electrode active material has been developed. (For example, Non-Patent Document 1 and Patent Document 2).

しかし現在のところ、これらの蓄電素子は、金属リチウム本来の特徴である高エネルギー密度を達成できていない。  However, at present, these power storage elements have not achieved high energy density, which is a characteristic characteristic of metallic lithium.

すなわち、リチウムは最も卑で(電極電位が低い)、最もモル質量の小さい金属であり、これを用いた電池には高いエネルギー密度が期待できるため、古くから多くの研究がおこなわれてきた。  In other words, lithium is the least basic (low electrode potential) and has the smallest molar mass, and a battery using this metal can be expected to have a high energy density. Therefore, many studies have been conducted for a long time.

その結果、負極活物質に金属リチウムを用いるリチウム電池(金属リチウム一次電池)は実用化されたが、金属リチウムを用いた蓄電素子(たとえば特許文献3、特許文献4)は現在に至るも実用化されていない。
As a result, lithium batteries (metallic lithium primary batteries) using metallic lithium as the negative electrode active material have been put into practical use, but storage elements using metallic lithium (for example, Patent Document 3 and Patent Document 4) have been put into practical use to date. It has not been.

特許番号第2668678号Patent No. 2668678 特開2005−259378号公報JP 2005-259378 A 特開昭61−10882号公報Japanese Patent Laid-Open No. 61-10882 特開昭63−58763号公報JP 63-58763 A

日新電機技報Vol.57,No.2(2012.11)P28〜31Nissin Electric Technical Report Vol. 57, no. 2 (2012.11.1) P28-31

負極活物質に金属リチウムを用いる蓄電素子が実用化されていない原因として、金属リチウムが充放電の繰り返しによって樹枝状に成長し(これをデンドライトという)、セパレータを突き破って正負極間を短絡させるという問題を解決できないことが挙げられる。  As a cause of the fact that a storage element using metallic lithium as a negative electrode active material has not been put into practical use, metallic lithium grows in a dendritic shape due to repeated charge and discharge (this is called dendrite) and breaks the separator to short-circuit between the positive and negative electrodes. The problem cannot be solved.

よって本発明は、充放電の繰り返しにおけるデンドライトの成長という従来の問題を解決可能な蓄電素子を提供することを目的とする。  Therefore, an object of the present invention is to provide a power storage element that can solve the conventional problem of dendrite growth in repeated charge and discharge.

上述した課題を解決するために、本発明の第1は、正極活物質を有した正極と、負極集電体を有した負極と、正極と負極に挟持されたセパレータと、リチウムを含有する電解質を備え、負極は完全放電時において負極活物質を実質的に有さない蓄電素子である。  In order to solve the above-described problems, a first aspect of the present invention is a positive electrode having a positive electrode active material, a negative electrode having a negative electrode current collector, a separator sandwiched between the positive electrode and the negative electrode, and an electrolyte containing lithium. The negative electrode is a power storage element that substantially does not have a negative electrode active material during complete discharge.

また、本発明の第2は、正極活物質を有した正極と、負極集電体と、正極と負極集電体に挟持されたセパレータと、リチウムを含有する電解質を備え、正極と負極集電体間に印加された電圧により負極集電体上に負極活物質である金属リチウムが電解質から析出して負極を構成している蓄電素子である。  According to a second aspect of the present invention, a positive electrode having a positive electrode active material, a negative electrode current collector, a separator sandwiched between the positive electrode and the negative electrode current collector, and an electrolyte containing lithium are provided. This is an electric storage element in which metallic lithium, which is a negative electrode active material, is deposited on the negative electrode current collector from the electrolyte by a voltage applied between the bodies to constitute the negative electrode.

ここで、負極活物質を「実質的に」有さないとしたのは、本発明の蓄電素子において、後述するリザーブ型の電池構成を採った際には、完全放電時であっても正極活物質内にアニオンが残留することがあり、この場合には残留したアニオンと電荷的に等しい量のリチウムイオンが負極集電体上に残留するので、負極が負極集電体上に「完全に」負極活物質を有さない状況とはならないからである。  Here, the negative electrode active material is “substantially” not included in the electricity storage device of the present invention when the reserve battery configuration described later is adopted, even when the positive electrode is active. In some cases, anions may remain in the material, and in this case, an amount of lithium ions that are equal in charge to the remaining anions remains on the negative electrode current collector, so that the negative electrode is “completely” on the negative electrode current collector. It is because it does not become the situation which does not have a negative electrode active material.

よって、負極活物質を「実質的に」有さないとしたのであり、この状態は、完全放電後の蓄電素子を分解し、負極集電体上に金属状態のリチウムが目視できないことで確認できる。  Therefore, it is assumed that the negative electrode active material is not “substantially”, and this state can be confirmed by disassembling the storage element after complete discharge and invisible lithium in the metal state on the negative electrode current collector. .

本発明の蓄電素子は、完全放電時において負極が負極活物質である金属リチウムを実質的に有さない状態となる。  In the electricity storage device of the present invention, the negative electrode is substantially free of metallic lithium, which is a negative electrode active material, at the time of complete discharge.

よって、仮に充電時にデンドライトが生成した場合でも完全放電時には消失する。すなわち充放電を繰り返した際において、デンドライトの成長を抑制できるという効果を奏する。  Therefore, even if dendrite is generated during charging, it disappears during complete discharge. That is, there is an effect that dendrite growth can be suppressed when charging and discharging are repeated.

実施例1における本発明の蓄電素子の断面概略図Schematic cross-sectional view of the electricity storage device of the present invention in Example 1 実施例1における本発明の蓄電素子の充放電曲線(容量−電圧曲線)Charge / discharge curve (capacitance-voltage curve) of the electricity storage device of the present invention in Example 1 実施例2における本発明の蓄電素子の充放電曲線(容量−電圧曲線)Charge / discharge curve (capacitance-voltage curve) of the electricity storage device of the present invention in Example 2 比較例における蓄電素子の充放電曲線(容量−電圧曲線)Charging / discharging curve (capacitance-voltage curve) of the storage element in the comparative example

特許文献1などに記載のリチウムイオン二次電池は、充電時にはリチウムイオンが正極から負極へ、放電時には負極から正極へ移動する。よって、非水電解液中のイオン濃度は変化しない。  In the lithium ion secondary battery described in Patent Document 1 or the like, lithium ions move from the positive electrode to the negative electrode during charging, and from the negative electrode to the positive electrode during discharging. Therefore, the ion concentration in the non-aqueous electrolyte does not change.

このような蓄電素子をロッキングチェア型と呼ぶ(他にシーソー型やシャトルコック型という表現もあるが、本明細書においてはロッキングチェア型で統一する)。  Such a power storage element is called a rocking chair type (although there are expressions such as a seesaw type and a shuttlecock type, they are unified as a rocking chair type in this specification).

これに対し、非特許文献1や特許文献2などに記載の蓄電素子は、充電時には非水電解液中から正極にPF 等のアニオンが挿入され、かつ非水電解液中から負極にリチウムイオンが挿入される。In contrast, the electric storage device according to Non-Patent Document 1 and Patent Document 2, PF 6 from the non-aqueous electrolyte solution during charging in the positive electrode - lithium anions or the like is inserted, and a nonaqueous electrolytic solution on the negative electrode Ions are inserted.

また、放電時には正極からPF 等のアニオン、負極からリチウムイオンが非水電解液へ脱離する(下記反応式1、2参照、左辺から右辺が充電反応、右辺から左辺が放電反応)。Further, at the time of discharging, anions such as PF 6- and the like from the negative electrode and lithium ions from the negative electrode are desorbed to the non-aqueous electrolyte (see the following reaction formulas 1 and 2, charging reaction from the left side to the right side and discharging reaction from the right side to the left side).

反応式1Reaction formula 1

正極:PF +nC = Cn(PF)+ e Positive electrode: PF 6 + nC = Cn (PF 6 ) + e

反応式2Reaction formula 2

負極:Li +nC +e = LiCnNegative electrode: Li + + nC + e = LiCn

このように非水電解液中のイオン濃度変化がある蓄電素子をリザーブ型と呼ぶ。  A power storage element having such a change in ion concentration in the non-aqueous electrolyte is called a reserve type.

本発明の蓄電素子は、負極以外の選択により、ロッキングチェア型とリザーブ型、いずれの構成も採りうる。  The power storage device of the present invention can adopt either a rocking chair type or a reserve type depending on selection other than the negative electrode.

本発明の蓄電素子がロッキングチェア型である場合には、負極以外は従来のリチウムイオン二次電池に用いられる部材を好ましく用いることができ、リザーブ型である場合には、負極以外は従来の(正極活物質および負極活物質両方に炭素材料を用いた)蓄電素子に用いられる部材を好ましく用いることができる。  When the electricity storage device of the present invention is a rocking chair type, members other than the negative electrode can be preferably used for members of conventional lithium ion secondary batteries. The member used for the electrical storage element (a carbon material is used for both the positive electrode active material and the negative electrode active material) can be preferably used.

以下、本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described.

<語句の説明>
まず、本発明の蓄電素子における「負極」の定義を行う。ただし、この定義は本発明を説明するための便宜上のものであり、電気化学的に正確とは限らない。
<Explanation of words>
First, the “negative electrode” in the electricity storage device of the present invention is defined. However, this definition is for convenience to explain the present invention, and is not necessarily electrochemically accurate.

1・電池は、放電時において電子が流入する側の正極と、電子が流出する側の負極を有する。1. The battery has a positive electrode through which electrons flow during discharge and a negative electrode through which electrons flow out.

2・リチウムイオン二次電池等の蓄電素子は、正極に放電時に電子を受け入れる(たとえばリチウムイオンが挿入される、あるいはアニオンが脱離する反応場となる)正極活物質を有し、負極に放電時に電子を放出する(たとえばリチウムイオンが脱離、あるいは金属リチウムが溶解する反応場となる)負極活物質を有する。2. A power storage element such as a lithium ion secondary battery has a positive electrode active material that accepts electrons at the time of discharge at the positive electrode (for example, a reaction field where lithium ions are inserted or anions are released), and discharge at the negative electrode Occasionally, it has a negative electrode active material that emits electrons (for example, a reaction field where lithium ions are desorbed or metallic lithium dissolves).

3・これら活物質(正極活物質と負極活物質)には、単独では電気伝導性が低いものや、物理的強度が不足している物質が用いられる場合が多いので、活物質の形状維持、電子の移動や電池の取り扱いなどを良好にするために、正極、負極はそれぞれ金属からなる正極集電体、負極集電体を有する。3. These active materials (positive electrode active material and negative electrode active material) are often used alone because of their low electrical conductivity or materials with insufficient physical strength. In order to improve the movement of electrons and the handling of batteries, the positive electrode and the negative electrode have a positive electrode current collector and a negative electrode current collector made of metal, respectively.

4・すなわち、本発明の蓄電素子における負極は少なくとも負極集電体と、負極活物質としての金属リチウムによって構成される。4. That is, the negative electrode in the electricity storage device of the present invention is composed of at least a negative electrode current collector and metallic lithium as a negative electrode active material.

5・ここで、本発明の蓄電素子が完全放電した状態を考える。この場合、負極集電体上の金属リチウムは実質的に溶解してしまい、負極集電体が単独で存在すると見なすことも可能な状態となる。5. Here, a state where the electricity storage device of the present invention is completely discharged is considered. In this case, the metal lithium on the negative electrode current collector is substantially dissolved, and the negative electrode current collector can be considered to exist alone.

6・しかしながら、この状態の負極集電体は、新たな充電により金属リチウムが析出、形成されることで負極として機能することが充分に期待できるので、本発明においては、この完全放電時の(単独で存在すると見なすことも可能な)負極集電体まで、まとめて負極と称する。6. However, since the negative electrode current collector in this state can sufficiently be expected to function as a negative electrode due to deposition and formation of metallic lithium by new charging, in the present invention, ( The negative electrode current collector (which can be regarded as existing alone) is collectively referred to as a negative electrode.

<本発明の蓄電素子の構成>
(1)負極集電体
本発明の蓄電素子における負極集電体の材質としては、銅、ニッケル、ステンレス、チタン等の金属が使用され、これらを箔状、メッシュ状等に加工して使用する。
<Configuration of power storage element of the present invention>
(1) Negative electrode current collector As the material of the negative electrode current collector in the electricity storage device of the present invention, metals such as copper, nickel, stainless steel, titanium, etc. are used, and these are processed into a foil shape, a mesh shape, or the like. .

(2)負極活物質
本発明の蓄電素子における負極活物質は、完全放電時に実質的に溶解してしまう量で上記負極集電体上に形成された金属リチウムである。具体的な一例としては、正極と負極集電体間に印加された電圧により負極集電体上に析出した(電解質由来の)金属リチウムである。
(2) Negative electrode active material The negative electrode active material in the electricity storage device of the present invention is metallic lithium formed on the negative electrode current collector in an amount that substantially dissolves during complete discharge. A specific example is metallic lithium (derived from an electrolyte) deposited on the negative electrode current collector by a voltage applied between the positive electrode and the negative electrode current collector.

(3)負極
通常、上記(1)の負極集電体と、上記(2)の負極活物質を有してなるが、上述の通り、本発明においては完全放電時の(単独で存在すると見なすことも可能な)負極集電体まで、まとめて負極と称する。
(3) Negative electrode Usually, the negative electrode current collector of the above (1) and the negative electrode active material of the above (2) are included. The negative electrode current collector is also collectively referred to as the negative electrode.

(4)正極集電体
本発明の蓄電素子における正極集電体の材質としては、アルミニウム、ニッケル、ステンレス、チタン等の金属が使用され、これらを箔状、メッシュ状等に加工して使用する。
(4) Positive electrode current collector As the material of the positive electrode current collector in the electricity storage device of the present invention, metals such as aluminum, nickel, stainless steel, and titanium are used, which are processed into a foil shape, a mesh shape, or the like. .

(5)正極活物質
本発明の蓄電素子における正極活物質は、リチウムイオンを挿入および脱離可能な炭素材料(この場合はロッキングチェア型の蓄電素子となる)、あるいはアニオンを挿入および脱離可能な炭素材料(この場合はリザーブ型の蓄電素子となる)である。
(5) Positive electrode active material The positive electrode active material in the electricity storage device of the present invention is a carbon material capable of inserting and removing lithium ions (in this case, a rocking chair type electricity storage device), or an anion can be inserted and removed. Carbon material (in this case, it becomes a reserve-type energy storage device).

リチウムイオンを挿入および脱離可能な炭素材料としては、グラファイト化率の高い炭素繊維、流動気相成長による炭素繊維(たとえば特許文献3、特許文献4)などを挙げることができる。  Examples of the carbon material capable of inserting and removing lithium ions include carbon fibers having a high graphitization rate, carbon fibers formed by fluidized vapor phase growth (for example, Patent Document 3 and Patent Document 4), and the like.

アニオンを挿入および脱離可能な炭素材料としては、コークス、人造黒鉛、天然黒鉛など、種々の黒鉛材料(たとえば特許文献2)を挙げることができる。  Examples of the carbon material capable of inserting and removing anions include various graphite materials (for example, Patent Document 2) such as coke, artificial graphite, and natural graphite.

(6)正極
上記(4)の正極集電体と、上記(5)の正極活物質を有してなるが、一般的には正極集電体の表面の一部に、正極活物質を含む正極活物質層が形成されてなる。
(6) Positive Electrode The positive electrode current collector of (4) above and the positive electrode active material of (5) above are generally included, but the positive electrode active material is generally included in part of the surface of the positive electrode current collector. A positive electrode active material layer is formed.

(7)正極活物質層
正極活物質層の形成方法について以下に述べる。
(7) Positive electrode active material layer A method for forming the positive electrode active material layer is described below.

正極活物質に、必要に応じて正極活物質の電気伝導性を補うための導電材や、粉末同士の結合性を上げるため、および/または正極集電体への接着性を上げるためのバインダ、および溶媒等を加えてスラリー状(正極スラリー)とする。  A conductive material for supplementing the positive electrode active material with the positive electrode active material as necessary, a binder for increasing the bondability between powders, and / or for increasing the adhesion to the positive electrode current collector, Then, a solvent or the like is added to form a slurry (positive electrode slurry).

導電材としては、グラファイト、アセチレンブラックのような炭素質材料が挙げられる。  Examples of the conductive material include carbonaceous materials such as graphite and acetylene black.

バインダとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、あるいはカルボキシメチルセルロース、メチルセルロース等のセルロース化合物や、ポリビニルアルコールなどが挙げられる。  Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, cellulose compounds such as carboxymethyl cellulose and methyl cellulose, and polyvinyl alcohol.

溶媒は水系でも有機系でも良い。水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としては、N−メチルピロリドン、N,N−ジメチルホルムアミド、トルエン等が挙げられる。  The solvent may be aqueous or organic. Examples of the aqueous solvent include water and alcohol, and examples of the organic solvent include N-methylpyrrolidone, N, N-dimethylformamide, and toluene.

正極集電体に、正極スラリーをドクターブレード法、ロールコート法、バーコート法またはスリットコート法等によって塗布し、溶媒を乾燥して正極活物質層とする。さらにロールプレスや平板プレスなどにより正極活物質層の厚さを調整してもよい。  A positive electrode slurry is applied to the positive electrode current collector by a doctor blade method, a roll coating method, a bar coating method, a slit coating method, or the like, and the solvent is dried to form a positive electrode active material layer. Further, the thickness of the positive electrode active material layer may be adjusted by a roll press or a flat plate press.

(8)セパレータ
本発明の蓄電素子においては、通常、正極と負極の短絡を防止するために、正極と負極間にセパレータが挟持される。
(8) Separator In the electricity storage device of the present invention, a separator is usually sandwiched between the positive electrode and the negative electrode in order to prevent a short circuit between the positive electrode and the negative electrode.

セパレータはイオンの移動を可能とし、電子伝導を阻害する材質および/または形状であればいかなるものであってもよいが、使用する電解質が非水溶媒とリチウム塩を含有した非水電解液である場合には、非水電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ガラス繊維やセルロース、あるいはポリエチレン等のポリオレフィンを原料とする多孔性シートまたは不織布等が好ましく用いられる。  The separator may be of any material and / or shape that allows ion movement and hinders electron conduction, but the electrolyte used is a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt. In this case, it is preferable to select from materials that are stable with respect to the non-aqueous electrolyte and have excellent liquid retention properties, such as porous sheets or nonwoven fabrics made of polyolefin such as glass fiber, cellulose, or polyethylene. Preferably used.

(9)電解質
本発明の蓄電素子における電解質はリチウムを含み、もっとも一般的には非水溶媒とリチウム塩を含有した非水電解液である。
(9) Electrolyte The electrolyte in the electricity storage device of the present invention contains lithium, and is most commonly a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt.

非水溶媒としては、カーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができ、特に、エチレンカーボネートとジメチルカーボネートを容量比1:1〜1:10で混合した混合溶媒が好ましく用いられる。また、これらに高分子等を添加することによりゲル状としてもよい。  Nonaqueous solvents include carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters, amides, phosphate ester compounds, etc. In particular, a mixed solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1 to 1:10 is preferably used. Moreover, it is good also as a gel form by adding a polymer etc. to these.

リチウム塩としてはLiClO、LiPF、LiBF、LiB(C)、LiCl、LiBr、CHSOLiなどを用いることができる。As the lithium salt, LiClO 4 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ), LiCl, LiBr, CH 3 SO 3 Li, or the like can be used.

さらに、本発明の蓄電素子がロッキングチェア型である場合には、電解質としてリチウムイオンを選択的に通す固体電解質を用いてもよい。  Furthermore, when the electricity storage device of the present invention is a rocking chair type, a solid electrolyte that selectively allows lithium ions to pass through may be used as the electrolyte.

固体電解質としては、たとえば基材であるポリエチレンオキシドに、カルボン酸基、リン酸基、又はスルフォン酸基などを添加した固体電解質膜や、LaLiTiO、LiTiAl(PO)等の酸化物固体電解質、LiS−P等の硫化物固体電解質を挙げることができる。Examples of the solid electrolyte include a solid electrolyte membrane obtained by adding a carboxylic acid group, a phosphoric acid group, or a sulfonic acid group to polyethylene oxide as a base material, an oxide solid electrolyte such as LaLiTiO and LiTiAl (PO 4 ), Li A sulfide solid electrolyte such as 2 S—P 2 S 5 can be mentioned.

なお、電解質として固体電解質を用いた場合には、これをセパレータとして使用することができる。すなわち、電解質とセパレータを同一部材で兼用することができる。  In addition, when a solid electrolyte is used as the electrolyte, this can be used as a separator. That is, the electrolyte and the separator can be shared by the same member.

(10)外装部材
本発明の蓄電素子において、正極、負極、セパレータおよび電解質を収納する外装部材は、従来のリチウムイオン二次電池同様の素材、形状のものが使用可能である。
(10) Exterior Member In the electricity storage device of the present invention, the exterior member that houses the positive electrode, the negative electrode, the separator, and the electrolyte can be of the same material and shape as a conventional lithium ion secondary battery.

すなわち、表面にNiメッキを施した鉄や、ステンレス板などの金属板を円筒形、角筒形、コイン形等に加工した金属缶が好ましく用いられる。  That is, a metal can obtained by processing a metal plate such as an iron plated with Ni or a stainless steel plate into a cylindrical shape, a rectangular tube shape, a coin shape or the like is preferably used.

あるいはアルミニウム、ステンレス等の金属箔と、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等のプラスチックフィルムを積層したラミネートフィルムを用い、この一部を貼り合わせて袋状にしたものも好ましく用いられる。  Alternatively, a laminate film obtained by laminating a metal foil such as aluminum or stainless steel and a plastic film such as polyethylene, polypropylene, or polyethylene terephthalate, and a part of which is laminated to form a bag is also preferably used.

<本発明の蓄電素子に対する充電方法>
上述のように、本発明の蓄電素子においては、仮に充電時に負極集電体上にデンドライトが生成した場合でも完全放電時には消失する。
<Charging method for the electricity storage device of the present invention>
As described above, in the electricity storage device of the present invention, even if dendrite is generated on the negative electrode current collector during charging, it disappears during complete discharge.

よって、本発明の蓄電素子に対し、充電時に一旦完全放電する工程(デンドライト消失工程)を加えることにより、デンドライトの成長抑制をさらに確実にできる。  Therefore, the dendrite growth can be further reliably suppressed by adding a process (dendrite disappearance process) that completely discharges the electric storage element of the present invention once during charging.

ただし、充電の度に完全放電する必要は必ずしもなく、所定回数の充放電が行われた時点で、デンドライト消失工程を有する充電を行ってもよい。  However, it is not always necessary to completely discharge each time the battery is charged, and charging having a dendrite disappearance process may be performed when a predetermined number of times of charging and discharging are performed.

なお、本発明の充電工程におけるデンドライト消失工程は完全放電(電圧0までの放電)なので、ニッケルカドミウム電池、ニッケル水素電池などのいわゆるメモリー効果を有した蓄電素子の充電を行う際のリフレッシュ放電(放電終止電圧までの放電)とは異なっている。  In addition, since the dendrite disappearance process in the charging process of the present invention is complete discharge (discharge to a voltage of 0), refresh discharge (discharge) is performed when charging a storage element having a so-called memory effect such as a nickel cadmium battery or a nickel hydrogen battery. Discharge up to the end voltage).

以下、本発明の実施例を図面を用いて説明する。  Embodiments of the present invention will be described below with reference to the drawings.

本実施例における蓄電素子はいずれもリザーブ型であるが、正極活物質の変更などによりロッキングチェア型とすることも可能である。  Each of the power storage elements in this example is a reserve type, but may be a rocking chair type by changing the positive electrode active material.

<テストセルの作製>
本発明を確認するために、図1に示すテストセルを作製した。作製工程を以下に示す。
<Production of test cell>
In order to confirm the present invention, a test cell shown in FIG. 1 was produced. The manufacturing process is shown below.

(1)負極集電体の作製
厚さ15μmの銅箔(市販品)を直径16mmに打ち抜き、負極集電体1とした。
(1) Production of Negative Electrode Current Collector A 15 μm thick copper foil (commercially available product) was punched into a diameter of 16 mm to obtain a negative electrode current collector 1.

(2)正極の作製
正極活物質である炭素粉末(TIMCAL社製KS−6)と、導電剤(アセチレンブラック:AB)とバインダ(カルボキシメチルセルロースの2重量%水溶液:CMC)を、重量比でKS−6:AB:CMC=90:7:3で混合し、水で混錬して正極スラリーを作製した。
(2) Production of positive electrode Carbon powder (KS-6 manufactured by TIMCAL) as a positive electrode active material, conductive agent (acetylene black: AB) and binder (2% by weight aqueous solution of carboxymethyl cellulose: CMC) are mixed in a weight ratio of KS. -6: AB: CMC = 90: 7: 3 was mixed and kneaded with water to prepare a positive electrode slurry.

この正極スラリーを正極集電体2である、厚さ20μmのアルミニウム箔(市販品)に100μm厚で塗布、140℃で乾燥した。  This positive electrode slurry was applied to a positive electrode current collector 2 of 20 μm thick aluminum foil (commercially available product) at a thickness of 100 μm and dried at 140 ° C.

次にローラープレスにて50μm厚になるまで圧縮して正極活物質層3とし、さらにアルミニウム箔と共に直径14mmの円形に打ち抜き、正極4とした。  Next, it was compressed to a thickness of 50 μm with a roller press to form a positive electrode active material layer 3, and further punched into a circle with a diameter of 14 mm together with an aluminum foil to form a positive electrode 4.

(3)セパレータの作製
厚さ25μmのポリオレフィン系多孔質フィルム5(旭化成イーマテリアルズ製ND525)を、2枚の直径21mm、厚さ0.2mmのガラス繊維濾紙6の間に挟持し、セパレータ7とした。
(3) Production of Separator A polyolefin-based porous film 5 (ND525 manufactured by Asahi Kasei E-Materials) having a thickness of 25 μm is sandwiched between two glass fiber filter papers 6 having a diameter of 21 mm and a thickness of 0.2 mm. It was.

(4)セルの組み立て
ステンレス製ケース8内に負極集電体1、セパレータ7、正極4を順次配置した後、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の、体積比でEC:DMC=1:2混合溶媒によるLiPFの1M溶液(非水電解液)を注入した。
(4) Cell assembly After the negative electrode current collector 1, the separator 7, and the positive electrode 4 are sequentially disposed in a stainless steel case 8, EC: DMC = 1 by volume ratio of ethylene carbonate (EC) and dimethyl carbonate (DMC). : 2M LiPF 6 1M solution (non-aqueous electrolyte) in a mixed solvent was injected.

さらにポリプロピレン製ガスケット9を介してステンレス製の封口板10を固定してテストセル100(テストセルA)を完成した。言うまでもないが、上記構造のテストセルにおいては、ケース8と封口板10の両方が外装部材11を構成している。  Further, a stainless sealing plate 10 was fixed through a polypropylene gasket 9 to complete a test cell 100 (test cell A). Needless to say, in the test cell having the above-described structure, both the case 8 and the sealing plate 10 constitute the exterior member 11.

<充放電容量の測定>
上記のように作製したテストセルについて初期充放電容量を測定した。
<Measurement of charge / discharge capacity>
The initial charge / discharge capacity of the test cell produced as described above was measured.

具体的には、25℃において充電終止電圧を5.2Vとし、電流密度0.04mA/cmにて定電流充電を行った。Specifically, the charge end voltage was set to 5.2 V at 25 ° C., and constant current charging was performed at a current density of 0.04 mA / cm 2 .

次に、放電終止電圧を3.0Vとして、電流密度0.04mA/cmにて定電流放電を行った際の正極活物質単位質量あたりの初期充電容量(mAh/g)および初期放電容量(mAh/g)を測定した。得られた充放電曲線(容量−電圧曲線)を図2に示す。Next, the initial charge capacity (mAh / g) and the initial discharge capacity (mAh / g) per unit mass of the positive electrode active material when performing a constant current discharge at a current density of 0.04 mA / cm 2 at a discharge end voltage of 3.0 V. mAh / g) was measured. The obtained charging / discharging curve (capacity-voltage curve) is shown in FIG.

作製段階において負極活物質である金属リチウムを使用しないテストセルであっても、蓄電素子として機能していることが分かる。  It can be seen that even a test cell that does not use metallic lithium, which is a negative electrode active material, in the manufacturing stage functions as a power storage element.

なお、本実施例1で作製したテストセルAは、25℃において完全放電させた後に分解し、負極集電体1上に金属リチウムの析出が無いことを目視確認できる。  In addition, the test cell A produced in the present Example 1 decomposes | disassembles after fully discharging at 25 degreeC, and it can confirm visually that there is no precipitation of metallic lithium on the negative electrode collector 1. FIG.

負極集電体である銅箔を省き、それ以外は実施例1に準じたテストセル(テストセルB)を作製し、図3に示す充放電曲線を得た。  A test foil (test cell B) according to Example 1 was prepared except for the copper foil as the negative electrode current collector, and the charge / discharge curve shown in FIG. 3 was obtained.

本実施例で作製したテストセルBにおいては、ステンレス製のケース8が負極集電体として機能しており、さらに印加された電圧により、非水電解液との接触領域に金属リチウムが析出することで、負極としても機能していると考えられる。  In the test cell B produced in this example, the stainless steel case 8 functions as a negative electrode current collector, and metal lithium is deposited in the contact area with the nonaqueous electrolyte by the applied voltage. Therefore, it is considered that it also functions as a negative electrode.

なお、本実施例2で作製したテストセルBは、25℃において完全放電させた後に分解し、ケース内部に金属リチウムの析出が無いことを目視確認できる。  In addition, the test cell B produced in this Example 2 decomposed | disassembled after fully discharging at 25 degreeC, and it can confirm visually that there is no precipitation of metallic lithium inside a case.

また、本実施例1および2で作製したテストセルは、上述のようにリザーブ型の蓄電素子であり、かつ負極集電体に析出する金属リチウムが電解質のみに由来し、蓄電素子内部に電解質以外のリチウム源を有していない。  Further, the test cells produced in Examples 1 and 2 are reserve-type electricity storage elements as described above, and the metal lithium deposited on the negative electrode current collector is derived only from the electrolyte, and other than the electrolyte inside the electricity storage element. Does not have a lithium source.

このような素子構成においては、蓄電素子の充放電状態がどのようなレベルにあっても、常に電解質内部のリチウムイオンとアニオンの電気的整合が取れていると考えられ、好ましい素子構成であると言える。  In such an element configuration, it is considered that the lithium ion and anion inside the electrolyte are always electrically matched regardless of the level of charge / discharge state of the electricity storage element. I can say that.

さらに、本実施例1および2におけるテストセルの製造方法においては、完成した蓄電素子内部での充電工程により金属リチウムが電解質から析出して負極を構成している。  Furthermore, in the test cell manufacturing method in Examples 1 and 2, metallic lithium is deposited from the electrolyte by the charging process inside the completed power storage element to constitute the negative electrode.

このような製造方法においては、析出した金属リチウムが電解質(本実施例1および2では非水電解液)から1度も露出することがない。よって製造工程における金属リチウムの表面の劣化を抑制できると考えられ、好ましい製造方法であると言える。  In such a manufacturing method, the deposited metallic lithium is never exposed from the electrolyte (in the first and second embodiments, the nonaqueous electrolytic solution). Therefore, it can be said that the deterioration of the surface of metallic lithium in the production process can be suppressed, and it can be said that this is a preferred production method.

比較例Comparative example

実施例1の負極集電体に代えて市販の金属リチウム薄膜付き銅箔を使用し、それ以外は実施例1に準じたテストセル(テストセルC)を作製し、図4に示す充放電曲線を得た。  A commercially available copper foil with a lithium metal thin film was used in place of the negative electrode current collector of Example 1, and a test cell (test cell C) according to Example 1 was prepared otherwise. The charge / discharge curve shown in FIG. Got.

本比較例で作製したテストセルCは、完全放電させた後においても金属リチウムが銅箔上に目視確認できる。  In the test cell C produced in this comparative example, metallic lithium can be visually confirmed on the copper foil even after complete discharge.

以上のように、本発明はデンドライトの成長を抑制できる蓄電素子として産業上の利用可能性を有し、金属リチウムを負極活物質とした蓄電素子において、サイクル寿命の向上も期待できる。  As described above, the present invention has industrial applicability as a power storage element that can suppress dendrite growth, and an improvement in cycle life can be expected in a power storage element using metallic lithium as a negative electrode active material.

1:負極集電体
2:正極集電体
3:正極活物質層
4:正極
5:多孔質フィルム
6:ガラス繊維濾紙
7:セパレータ
8:ケース
9:ガスケット
10:封口板
11:外装
100:テストセル
1: Negative electrode current collector 2: Positive electrode current collector 3: Positive electrode active material layer 4: Positive electrode 5: Porous film 6: Glass fiber filter paper 7: Separator 8: Case 9: Gasket 10: Sealing plate 11: Exterior 100: Test cell

Claims (9)

正極活物質を有した正極と、
負極集電体を有した負極と、
該正極と該負極に挟持されたセパレータと、
リチウムを含有する電解質を備え、
該負極は完全放電時において負極活物質を実質的に有さないことを特徴とする蓄電素子。
A positive electrode having a positive electrode active material;
A negative electrode having a negative electrode current collector;
A separator sandwiched between the positive electrode and the negative electrode;
An electrolyte containing lithium,
The power storage element, wherein the negative electrode has substantially no negative electrode active material during complete discharge.
正極活物質を有した正極と、
負極集電体と、
該正極と該負極集電体に挟持されたセパレータと、
リチウムを含有する電解質を備え、
該正極と該負極集電体間に印加された電圧により該負極集電体上に負極活物質である金属リチウムが該電解質から析出して負極を構成していることを特徴とする蓄電素子。
A positive electrode having a positive electrode active material;
A negative electrode current collector;
A separator sandwiched between the positive electrode and the negative electrode current collector;
An electrolyte containing lithium,
A power storage element, wherein a metal applied as a negative electrode active material is deposited on the negative electrode current collector from the electrolyte by a voltage applied between the positive electrode and the negative electrode current collector to form a negative electrode.
該正極活物質がリチウムイオンを挿入および脱離可能な炭素材料である請求項1または請求項2に記載の蓄電素子。  The electric storage element according to claim 1 or 2, wherein the positive electrode active material is a carbon material capable of inserting and removing lithium ions. 該正極活物質がアニオンを挿入および脱離可能な炭素材料である請求項1または請求項2に記載の蓄電素子。  The power storage element according to claim 1 or 2, wherein the positive electrode active material is a carbon material capable of inserting and removing anions. 該正極が正極集電体をさらに備えた請求項1から請求項4のいずれかに記載の蓄電素子。  The electric storage element according to any one of claims 1 to 4, wherein the positive electrode further includes a positive electrode current collector. 該正極、該負極、該セパレータおよび該電解質を収納可能な外装部材をさらに備えた請求項1から請求項5のいずれかに記載の蓄電素子。  The electrical storage element according to any one of claims 1 to 5, further comprising an exterior member capable of accommodating the positive electrode, the negative electrode, the separator, and the electrolyte. 該外装部材の少なくとも一部が該負極集電体を兼ねている請求項6記載の蓄電素子。  The power storage element according to claim 6, wherein at least a part of the exterior member also serves as the negative electrode current collector. 正極活物質を有した正極と、
負極集電体と、
セパレータと、
非水溶媒とリチウム塩を含有した非水電解液と、
外装部材を
準備する準備工程と、
該セパレータを該正極と該負極集電体に挟持して、該非水電解液と共に外装部材に収納する収納工程と、
該正極と該負極集電体間に電圧を印加して、該負極集電体上に該電解質から金属リチウムを析出して負極を形成する初期充電工程と、
を有することを特徴とする蓄電素子の製造方法。
A positive electrode having a positive electrode active material;
A negative electrode current collector;
A separator;
A non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt;
A preparation step of preparing an exterior member;
A storage step of sandwiching the separator between the positive electrode and the negative electrode current collector and storing the separator together with the non-aqueous electrolyte;
An initial charging step of applying a voltage between the positive electrode and the negative electrode current collector to deposit lithium metal from the electrolyte on the negative electrode current collector to form a negative electrode;
A method for manufacturing a power storage element, comprising:
請求項1から請求項7のいずれかに記載の蓄電素子を充電する際に、該蓄電素子を完全放電するデンドライト消失工程を含むことを特徴とする蓄電素子の充電方法。  A method for charging a storage element, comprising a step of eliminating a dendrite that completely discharges the storage element when charging the storage element according to any one of claims 1 to 7.
JP2014237100A 2014-11-04 2014-11-04 Power storage element Pending JP2016091984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237100A JP2016091984A (en) 2014-11-04 2014-11-04 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237100A JP2016091984A (en) 2014-11-04 2014-11-04 Power storage element

Publications (1)

Publication Number Publication Date
JP2016091984A true JP2016091984A (en) 2016-05-23

Family

ID=56019814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237100A Pending JP2016091984A (en) 2014-11-04 2014-11-04 Power storage element

Country Status (1)

Country Link
JP (1) JP2016091984A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216113A (en) * 2016-05-31 2017-12-07 株式会社三五 Negative electrode for secondary battery
WO2018179782A1 (en) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2019004699A1 (en) * 2017-06-26 2019-01-03 주식회사 엘지화학 Lithium secondary battery
WO2019045399A3 (en) * 2017-08-28 2019-05-02 주식회사 엘지화학 Lithium secondary battery
US20210273268A1 (en) * 2018-07-13 2021-09-02 Nanyang Technological University Electrochemically active interlayers for rechargeable batteries
WO2022137346A1 (en) * 2020-12-22 2022-06-30 TeraWatt Technology株式会社 Battery system, charging device, and charging method
WO2022144947A1 (en) * 2020-12-28 2022-07-07 TeraWatt Technology株式会社 Lithium secondary battery
US11431019B2 (en) 2017-06-26 2022-08-30 Lg Energy Solution, Ltd. Lithium secondary battery
US11784315B2 (en) 2017-08-28 2023-10-10 Lg Energy Solution, Ltd. Lithium secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614164A (en) * 1984-06-18 1986-01-10 Morinobu Endo Lithium cell
JPH0652891A (en) * 1992-07-29 1994-02-25 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH09259929A (en) * 1996-03-21 1997-10-03 Japan Storage Battery Co Ltd Lithium secondary cell
JP2005019086A (en) * 2003-06-24 2005-01-20 Toshiba Electronic Engineering Corp Nonaqueous electrolyte secondary battery
JP2005259378A (en) * 2004-03-09 2005-09-22 Tatsuki Ishihara Carbon material for positive electrode activator of nonaqueous electrolytic solution secondary battery, positive electrode of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2011159596A (en) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd Secondary battery and method of manufacturing the same
JP2013093241A (en) * 2011-10-26 2013-05-16 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery
JP2014072145A (en) * 2012-10-01 2014-04-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614164A (en) * 1984-06-18 1986-01-10 Morinobu Endo Lithium cell
JPH0652891A (en) * 1992-07-29 1994-02-25 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH09259929A (en) * 1996-03-21 1997-10-03 Japan Storage Battery Co Ltd Lithium secondary cell
JP2005019086A (en) * 2003-06-24 2005-01-20 Toshiba Electronic Engineering Corp Nonaqueous electrolyte secondary battery
JP2005259378A (en) * 2004-03-09 2005-09-22 Tatsuki Ishihara Carbon material for positive electrode activator of nonaqueous electrolytic solution secondary battery, positive electrode of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2011159596A (en) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd Secondary battery and method of manufacturing the same
JP2013093241A (en) * 2011-10-26 2013-05-16 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery
JP2014072145A (en) * 2012-10-01 2014-04-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216113A (en) * 2016-05-31 2017-12-07 株式会社三五 Negative electrode for secondary battery
WO2018179782A1 (en) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2019004699A1 (en) * 2017-06-26 2019-01-03 주식회사 엘지화학 Lithium secondary battery
US11431019B2 (en) 2017-06-26 2022-08-30 Lg Energy Solution, Ltd. Lithium secondary battery
WO2019045399A3 (en) * 2017-08-28 2019-05-02 주식회사 엘지화학 Lithium secondary battery
US11784315B2 (en) 2017-08-28 2023-10-10 Lg Energy Solution, Ltd. Lithium secondary battery
US20210273268A1 (en) * 2018-07-13 2021-09-02 Nanyang Technological University Electrochemically active interlayers for rechargeable batteries
WO2022137346A1 (en) * 2020-12-22 2022-06-30 TeraWatt Technology株式会社 Battery system, charging device, and charging method
EP4270716A4 (en) * 2020-12-22 2024-03-13 Terawatt Tech K K Battery system, charging device, and charging method
WO2022144947A1 (en) * 2020-12-28 2022-07-07 TeraWatt Technology株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
US10629958B2 (en) Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
US10658706B2 (en) Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
JP2016091984A (en) Power storage element
US9705130B2 (en) Antimony-based anode on aluminum current collector
KR101516500B1 (en) Electrochemical device
JP2021510904A (en) Rechargeable metal halide battery
JP2013077424A (en) Lithium ion secondary battery
JP2019046589A (en) Aqueous electrolyte solution and aqueous lithium ion secondary battery
WO2019230322A1 (en) Negative electrode for lithium ion secondary battery
JP2011216480A (en) Nonaqueous electrolyte and lithium ion secondary battery
KR20110019101A (en) Lithium powder and silicon oxide double layer anode, method of manufacturing the anode and lithium secondary battery using the anode
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6573150B2 (en) Electricity storage element
CN108539254B (en) Lithium ion secondary battery and method for manufacturing same
JP2013186972A (en) Nonaqueous electrolyte secondary battery
JP2017147194A (en) Nonaqueous electrolyte secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016189239A (en) Lithium ion secondary battery
JP6832607B2 (en) Power storage device and its charging method and manufacturing method
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP6100473B2 (en) Electrochemical devices
JP2017182973A (en) Nonaqueous electrolyte for secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JP2019029088A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2019220985A1 (en) Lithium ion secondary battery electrode

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190513