JP2019029088A - Electrolyte for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Electrolyte for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2019029088A
JP2019029088A JP2017144346A JP2017144346A JP2019029088A JP 2019029088 A JP2019029088 A JP 2019029088A JP 2017144346 A JP2017144346 A JP 2017144346A JP 2017144346 A JP2017144346 A JP 2017144346A JP 2019029088 A JP2019029088 A JP 2019029088A
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
secondary battery
electrolyte
propylene carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017144346A
Other languages
Japanese (ja)
Inventor
智信 石田
Tomonobu Ishida
智信 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2017144346A priority Critical patent/JP2019029088A/en
Publication of JP2019029088A publication Critical patent/JP2019029088A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide an electrolyte for lithium ion secondary batteries excellent in charge/discharge characteristics, in which propylene carbonate is used, the propylene carbonate being high in flash point and high in safety and also low in melting point, so that it is excellent as a lithium ion secondary battery even under a low temperature environment.SOLUTION: An electrolyte (D) for lithium ion secondary batteries contains a nonaqueous solvent (A) containing propylene carbonate (a), a cyclic ketone compound (B) represented by the following general formula (1), and an electrolyte (C), the content of (a) being 25-100 wt.% based on the weight of (A).SELECTED DRAWING: None

Description

本発明は充放電特性に優れたリチウムイオン二次電池用電解液、およびこれを用いたリチウムイオン二次電池に関する。詳しくは、環状ケトン化合物を含有する上記のリチウムイオン二次電池用電解液に関する。   The present invention relates to an electrolyte for a lithium ion secondary battery excellent in charge / discharge characteristics, and a lithium ion secondary battery using the same. In detail, it is related with said electrolyte solution for lithium ion secondary batteries containing a cyclic ketone compound.

従来からリチウムイオン二次電池用電解液にはジエチルカーボネートやエチルメチルカーボネートやジメチルカーボネートが一般的に用いられてきたが、これらは引火点が低く短絡等の異常時に発火に至る危険性が高い。
そこで、高引火点かつ低融点のプロピレンカーボネートを用いることでリチウムイオン二次電池の安全性を向上させる技術が提案されている。
しかしながら、プロピレンカーボネートを含有する電解液を用いて繰り返し充放電を行うと、負極の黒鉛表面においてプロピレンカーボネートの分解副反応が起こり、そのため充放電特性を劣化させることが問題となることが知られている。
そこで、電解液に添加剤を含有させることで充放電特性の劣化を抑制することが提案されている(例えば、特許文献1、2)が、その効果は十分でない。
Conventionally, diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate have been generally used as electrolytes for lithium ion secondary batteries, but these have a low flash point and a high risk of ignition in the event of an abnormality such as a short circuit.
Therefore, a technique for improving the safety of a lithium ion secondary battery by using propylene carbonate having a high flash point and a low melting point has been proposed.
However, it is known that repeated charge and discharge using an electrolytic solution containing propylene carbonate causes a side reaction of decomposition of propylene carbonate on the graphite surface of the negative electrode, which deteriorates the charge and discharge characteristics. Yes.
Therefore, it has been proposed to suppress deterioration of charge / discharge characteristics by adding an additive to the electrolytic solution (for example, Patent Documents 1 and 2), but the effect is not sufficient.

特開2000−058122号公報JP 2000-058122 A 特開2001−126761号公報JP 2001-126761 A

本発明は、高引火点で安全性が高くかつ低融点のため低温環境下でもリチウムイオン二次電池として優れるプロピレンカーボネートを用い、さらに充放電特性に優れたリチウムイオン二次電池用電解液を提供することを目的とする。   The present invention provides an electrolyte for a lithium ion secondary battery that uses propylene carbonate, which is excellent as a lithium ion secondary battery even in a low temperature environment because of its high flash point, high safety, and low melting point, and further excellent charge / discharge characteristics. The purpose is to do.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、プロピレンカーボネート(a)を含有する非水溶媒(A)と、下記一般式(1)で表される環状ケトン化合物(B)と、電解質(C)とを含有し、(A)の重量に基づいて(a)の含有量が25〜100重量%であるリチウムイオン二次電池用電解液(D);並びにこのリチウムイオン二次電池用電解液(D)と正極と負極からなるリチウムイオン二次電池である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, this invention contains the nonaqueous solvent (A) containing propylene carbonate (a), the cyclic ketone compound (B) represented by the following general formula (1), and the electrolyte (C), Electrolyte for lithium ion secondary battery (D) having a content of (a) of 25 to 100% by weight based on the weight of A); and electrolyte for lithium ion secondary battery (D), positive electrode and negative electrode A lithium ion secondary battery comprising:

Figure 2019029088
Figure 2019029088

[RとRはそれぞれ独立に水素原子、炭素数1〜4のアルキル基またはフェニル基である。] [R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group. ]

本発明のリチウムイオン二次電池用電解液は、電池を繰り返し充放電した際の充放電特性の劣化を抑制することができるという効果を奏する。   The electrolyte solution for a lithium ion secondary battery of the present invention has an effect of being able to suppress deterioration of charge / discharge characteristics when the battery is repeatedly charged and discharged.

本発明のリチウムイオン二次電池用電解液は、プロピレンカーボネート(a)を含有する非水溶媒(A)と、下記一般式(1)で表される環状ケトン化合物(B)と、電解質(C)とを含有する。そして、(A)の重量に基づいて(a)の含有量が25〜100重量%であることを特徴とする。 The electrolyte solution for a lithium ion secondary battery of the present invention includes a nonaqueous solvent (A) containing propylene carbonate (a), a cyclic ketone compound (B) represented by the following general formula (1), and an electrolyte (C ) And. And based on the weight of (A), content of (a) is 25 to 100 weight%, It is characterized by the above-mentioned.

Figure 2019029088
Figure 2019029088

[RとRはそれぞれ独立に水素原子、炭素数1〜4のアルキル基またはフェニル基である。] [R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group. ]

黒鉛はリチウムイオン二次電池に一般的に用いられる負極活物質であるが、電解液にプロピレンカーボネートが含まれていると負極表面でプロピレンカーボネートの分解反応が起こりやすく、電池の充放電特性を劣化させてしまう。
本発明のリチウムイオン二次電池用電解液に必須成分として含まれる環状ケトン化合物(B)は、負極活表面におけるプロピレンカーボネートの分解反応を抑制する作用を有しているため、非水溶媒としてプロピレンカーボネートを必須成分として含有する電解液でも充放電特性を劣化することなく使用できるようになる。
Graphite is a negative electrode active material commonly used in lithium ion secondary batteries. However, if propylene carbonate is contained in the electrolyte, the decomposition reaction of propylene carbonate tends to occur on the negative electrode surface, which deteriorates the charge / discharge characteristics of the battery. I will let you.
Since the cyclic ketone compound (B) contained as an essential component in the electrolyte solution for a lithium ion secondary battery of the present invention has an action of suppressing the decomposition reaction of propylene carbonate on the negative electrode active surface, propylene is used as a nonaqueous solvent. Even an electrolytic solution containing carbonate as an essential component can be used without deteriorating charge / discharge characteristics.

本発明の環状ケトン化合物(B)を表す一般式(1)において、RとRはそれぞれ独立に水素原子、炭素数1〜4のアルキル基またはフェニル基である。
炭素数1〜4のアルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、t−ブチル基等があげられる。
In the general formula (1) representing the cyclic ketone compound (B) of the present invention, R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, t-butyl group and the like. .

上記RおよびRとしては、立体障害の観点から、水素原子、メチル基、エチル基、n−プロピル基が好ましく、共に水素原子が特に好ましい。 From the viewpoint of steric hindrance, R 1 and R 2 are preferably a hydrogen atom, a methyl group, an ethyl group, and an n-propyl group, and both are particularly preferably a hydrogen atom.

ケトン化合物(B)の含有量としては、(A)〜(C)の合計重量に基づいて(B)の含有量は充放電特性の観点から、0.5〜10重量%が好ましく、1〜5重量%がさらに好ましい。
The content of the ketone compound (B) is preferably 0.5 to 10% by weight based on the total weight of (A) to (C), from the viewpoint of charge / discharge characteristics. 5% by weight is more preferred.

本発明の非水溶媒(A)としては、プロピレンカーボネートを必須成分として含有し、必要に応じてその他のリチウムイオン二次電池用電解液に使われる非水溶媒を、(A)の重量に基づいて75重量%以下で併用してもよい。
併用される非水溶媒としては、エチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、γ−ブチロラクトン、アセトニトリル等が挙げられる。
上記(A)としては、電気化学的安定性の観点から、プロピレンカーボネート単独、及び、プロピレンカーボネートと、エチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等との併用が好ましい。
As the non-aqueous solvent (A) of the present invention, propylene carbonate is contained as an essential component, and other non-aqueous solvents used in the electrolyte for lithium ion secondary batteries as required are based on the weight of (A). Up to 75% by weight.
Examples of the non-aqueous solvent used in combination include ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, γ-butyrolactone, and acetonitrile.
From the viewpoint of electrochemical stability, the above (A) is preferably propylene carbonate alone or a combination of propylene carbonate and ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate or the like.

本発明の電解質(C)としては、ヘキサフルオロリン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(オキサレート)ボレート(LiBOB)、トリフルオロメタンスルホン酸リチウム等が挙げられ、充放電特性の観点から、LiPF、LiBF、LiFSI、LiTFSI等が好ましい。 Examples of the electrolyte (C) of the present invention include lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium bis (fluorosulfonyl) imide (LiFSI), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). , Lithium bis (oxalate) borate (LiBOB), lithium trifluoromethanesulfonate, and the like. From the viewpoint of charge / discharge characteristics, LiPF 6 , LiBF 4 , LiFSI, LiTFSI, and the like are preferable.

本発明のリチウムイオン二次電池は、上述のリチウムイオン二次電池用電解液(D)と正極と負極とセパレーターおよび外装体である電池缶またはアルミラミネートフィルムからなる。   The lithium ion secondary battery of the present invention comprises the above-described electrolyte (D) for a lithium ion secondary battery, a positive electrode, a negative electrode, a separator, and a battery can or an aluminum laminate film as an outer package.

本発明のリチウムイオン二次電池中の正極は、集電体と正極活物質と導電助剤とバインダーからなる。
集電体としては、金属リチウム基準で2.5V〜5.0V範囲で電気化学的に安定な金属箔であれば特に限定されるものではなく、アルミニウムやニッケルが挙げられ、好ましくは一般的に用いられるアルミニウム箔挙げられる。
The positive electrode in the lithium ion secondary battery of the present invention comprises a current collector, a positive electrode active material, a conductive aid, and a binder.
The current collector is not particularly limited as long as it is a metal foil that is electrochemically stable in the range of 2.5 V to 5.0 V on the basis of metallic lithium, and examples thereof include aluminum and nickel. The aluminum foil used is mentioned.

正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1−xCo、LiMn1−yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiMn1/3Ni1/3Co1/3)等]等}及びリチウム含有遷移金属リン酸塩(LiFePO、LiCoPO、LiMnPO及びLiNiPO等)等が挙げられ、これらの正極活物質は1種を単独で用いても、2種以上を併用してもよい。これらの内、蓄電容量の観点から好ましいのは、LiCoO、LiNi1/3Co1/3Al1/3である。 As the positive electrode active material, a composite oxide of lithium and a transition metal (a composite oxide having one kind of transition metal (such as LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2, and LiMn 2 O 4 ), a transition metal element is used. Two kinds of complex oxides (for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and a composite oxide having three or more metal elements [for example, LiM a M ′ b M ″ c O 2 (M, M ′, and M ″ are different transition metal elements, respectively) And satisfies a + b + c = 1, such as LiMn 1/3 Ni 1/3 Co 1/3 O 2 ) etc.] and lithium-containing transition metal phosphate (LiFePO 4 , LiCoPO 4 4, LiMnPO 4, and LiNiPO 4, etc.) and the like, be used These positive electrode active material alone, or in combination of two or more. Among these, LiCoO 2 and LiNi 1/3 Co 1/3 Al 1/3 O 2 are preferable from the viewpoint of storage capacity.

導電助剤としては、導電性を有する粉末材料又は繊維状材料を用いることができ、好ましいものとしては、カーボンブラック類(カーボンブラック、アセチレンブラック、ケチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック等)、金属粉末(アルミニウム粉及びニッケル粉等)及び導電性金属酸化物(酸化亜鉛及び酸化チタン等)等が挙げられる。導電助剤は、1種を単独で使用しても、2種以上を併用してもよい。   As the conductive assistant, conductive powder material or fibrous material can be used, and preferable ones are carbon blacks (carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and Thermal black), metal powder (aluminum powder, nickel powder, etc.) and conductive metal oxide (zinc oxide, titanium oxide, etc.). A conductive support agent may be used individually by 1 type, or may use 2 or more types together.

バインダーとしては、リチウムイオン二次電池の電極を形成するために用いられる公知の結着剤を用いることができ、好ましいものとしては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレンブタジエンゴム、ポリエチレン及びポリプロピレン等が挙げられる。バインダーは、1種を単独で使用しても、2種以上を併用してもよい。   As the binder, a known binder used for forming an electrode of a lithium ion secondary battery can be used, and preferable ones include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene. Styrene butadiene rubber, polyethylene, polypropylene and the like. A binder may be used individually by 1 type, or may use 2 or more types together.

本発明のリチウムイオン二次電池中の負極は、集電体と負極活物質と導電助剤とバインダーからなる。
集電体としては、金属リチウム基準で0V〜2.0Vの範囲で電気化学的に安定な金属箔であれば特に限定されるものではなく、一般的に用いられる銅箔が好ましい。
The negative electrode in the lithium ion secondary battery of the present invention comprises a current collector, a negative electrode active material, a conductive additive, and a binder.
The current collector is not particularly limited as long as it is a metal foil that is electrochemically stable in the range of 0 V to 2.0 V on the basis of metallic lithium, and generally used copper foil is preferable.

負極活物質としては、高分子化合物焼成体(フェノール樹脂及びフラン樹脂等を焼成し炭素化したもの)、コークス類(ピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(ポリアセチレン及びポリピロール等)、天然黒鉛、人造黒鉛、スズ、シリコン及び金属合金(リチウム−アルミニウム合金、リチウム−アルミニウム−マンガン合金、リチウム−スズ合金及びリチウム−シリコン合金等)等が挙げられ、これらの負極活物質は1種を単独で用いても、2種以上を併用してもよい。 Examples of the negative electrode active material include a polymer compound fired body (phenol resin and furan resin fired and carbonized), coke (pitch coke, needle coke, petroleum coke, etc.), carbon fiber, conductive polymer (polyacetylene). And natural graphite, artificial graphite, tin, silicon and metal alloys (lithium-aluminum alloy, lithium-aluminum-manganese alloy, lithium-tin alloy, lithium-silicon alloy, etc.) and the like. A substance may be used individually by 1 type, or may use 2 or more types together.

負極には導電助剤を必ずしも用いなくてもよいが、用いるならば導電助剤としては、導電性を有する粉末材料又は繊維状材料を用いることができ、好ましいものとしては、カーボンブラック類(カーボンブラック、アセチレンブラック、ケチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック等)、金属粉末(アルミニウム粉及びニッケル粉等)及び導電性金属酸化物(酸化亜鉛及び酸化チタン等)等が挙げられる。導電助剤は、1種を単独で使用しても、2種以上を併用してもよい。
バインダーとしては、リチウムイオン二次電池の電極を形成するために用いられる公知の結着剤を用いることができ、好ましいものとしては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレンブタジエンゴム、ポリエチレン及びポリプロピレン等が挙げられる。バインダーは、1種を単独で使用しても、2種以上を併用してもよい。
It is not always necessary to use a conductive additive for the negative electrode. However, if it is used, a conductive powder material or fibrous material can be used as the conductive additive, and carbon blacks (carbon Black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc.), metal powder (aluminum powder, nickel powder, etc.) and conductive metal oxide (zinc oxide, titanium oxide, etc.) It is done. A conductive support agent may be used individually by 1 type, or may use 2 or more types together.
As the binder, a known binder used for forming an electrode of a lithium ion secondary battery can be used, and preferable ones include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene. Styrene butadiene rubber, polyethylene, polypropylene and the like. A binder may be used individually by 1 type, or may use 2 or more types together.

本発明のリチウムイオン二次電池中のセパレーターとしては、ポリエチレン製フィルムの微多孔膜、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維及びガラス繊維等からなる不織布並びにこれらの表面にシリカ、アルミナ及びチタニア等のセラミック微粒子を付着させたものが挙げられる。 The separator in the lithium ion secondary battery of the present invention includes a microporous film made of polyethylene film, a microporous film made of polypropylene film, a multilayer film of porous polyethylene film and polypropylene, polyester fiber, aramid fiber and glass fiber And non-woven fabrics composed of these materials, and those having ceramic fine particles such as silica, alumina and titania attached to their surfaces.

本発明のリチウムイオン二次電池における電池缶としては、ステンレススチール、鉄、アルミニウム及びニッケルメッキスチール等の金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。また電池缶は、用途に応じて円筒型、コイン型、角型又はその他任意の形状にすることができる。アルミラミネートフィルムとしては、リチウムイオン二次電池用のものであれば特に限定されないが、昭和電工等から入手可能であり熱融着可能なリチウムイオン二次電池用アルミラミネートフィルムを用いることができる。 As the battery can in the lithium ion secondary battery of the present invention, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application. Although it will not specifically limit if it is a thing for lithium ion secondary batteries as an aluminum laminate film, The aluminum laminate film for lithium ion secondary batteries which can be obtained from Showa Denko etc. and can be heat-sealed can be used.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。   Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.

実施例1
温度計、加熱冷却装置、滴下装置、撹拌機を備えた反応容器に、プロピレンカーボネート(キシダ化学製)100部、下記一般式(2)で表される環状ケトン化合物(B−1)(3−メチレン−2−ノルボルナノン、東京化成工業製)2部、LiPF(キシダ化学製)13部を加え、25℃に保ちながら3時間撹拌して本発明のリチウムイオン二次電池用電解液(D−1)115部を得た。外観で不溶物が無いことを確認した。
Example 1
In a reaction vessel equipped with a thermometer, a heating / cooling device, a dropping device, and a stirrer, 100 parts of propylene carbonate (manufactured by Kishida Chemical), cyclic ketone compound (B-1) represented by the following general formula (2) (3- 2 parts of methylene-2-norbornanone (manufactured by Tokyo Chemical Industry Co., Ltd.) and 13 parts of LiPF 6 (manufactured by Kishida Chemical) were added and stirred for 3 hours while maintaining the temperature at 25 ° C. 1) 115 parts were obtained. It was confirmed that there was no insoluble matter in appearance.

Figure 2019029088
Figure 2019029088

実施例2〜5および比較例1〜5
表1に記載の非水溶媒(A)、化合物、電解質(C)の部数で配合して撹拌し、実施例2〜5および比較例1〜5の電解液を得た。
比較例3の電解液の外観はエチレンカーボネートがプロピレンカーボネートに溶解せず、固体となったが、それ以外の電解液はすべて電解質の塩が完全に溶解して均一な液体であることを確認した。
Examples 2-5 and Comparative Examples 1-5
The nonaqueous solvent (A), compound, and electrolyte (C) listed in Table 1 were blended in the number of parts and stirred to obtain electrolytic solutions of Examples 2 to 5 and Comparative Examples 1 to 5.
The external appearance of the electrolyte solution of Comparative Example 3 was solid without dissolving ethylene carbonate in propylene carbonate, but all other electrolyte solutions were confirmed to be completely liquid with the electrolyte salt completely dissolved. .

Figure 2019029088
Figure 2019029088

なお、表1で用いた非水溶媒(A)、化合物、電解質(C)は以下の通りである。
(a):プロピレンカーボネート[比誘電率64.4、キシダ化学製]
(A’−1):ジエチルカーボネート[比誘電率2.8、キシダ化学製]
(A’−2):エチルメチルカーボネート[比誘電率2.9、キシダ化学製]
(A’−3):ジメチルカーボネート[比誘電率2.8、キシダ化学製]
(A’−4):エチレンカーボネート[比誘電率95.3、キシダ化学製]
(B−1):上記の化学式(2)の環状ケトン化合物[3−メチレン−2−ノルボルナノン、東京化成工業製]
(B’−1):下記の化学式(3)の環状ケトン化合物[東京化成工業製]
(B’−2):下記の化学式(4)のカーボネート化合物
(B’−3):下記の化学式(5)のカーボネート化合物[東京化成工業製]
In addition, the nonaqueous solvent (A), compound, and electrolyte (C) used in Table 1 are as follows.
(A): Propylene carbonate [relative dielectric constant 64.4, manufactured by Kishida Chemical]
(A′-1): Diethyl carbonate [relative permittivity 2.8, manufactured by Kishida Chemical]
(A'-2): Ethyl methyl carbonate [relative permittivity 2.9, manufactured by Kishida Chemical]
(A'-3): Dimethyl carbonate [relative dielectric constant 2.8, manufactured by Kishida Chemical]
(A′-4): Ethylene carbonate [relative permittivity 95.3, manufactured by Kishida Chemical]
(B-1): Cyclic ketone compound of the above chemical formula (2) [3-methylene-2-norbornanone, manufactured by Tokyo Chemical Industry]
(B′-1): Cyclic ketone compound of the following chemical formula (3) [manufactured by Tokyo Chemical Industry]
(B′-2): carbonate compound of the following chemical formula (4) (B′-3): carbonate compound of the following chemical formula (5) [manufactured by Tokyo Chemical Industry]

Figure 2019029088
Figure 2019029088

(C−1):LiPF[ヘキサフルオロリン酸リチウム、キシダ化学製]
(C−2):LiFSI[リチウムビス(フルオロスルホニル)イミド、日本触媒製]
(C−3):LiTFSI[リチウムビス(トリフルオロメタンスルホニル)イミド、キシダ化学製]
(C−4):LiBF[ホウフッ化リチウム、キシダ化学製]
(C-1): LiPF 6 [lithium hexafluorophosphate, manufactured by Kishida Chemical]
(C-2): LiFSI [Lithium bis (fluorosulfonyl) imide, manufactured by Nippon Shokubai]
(C-3): LiTFSI [Lithium bis (trifluoromethanesulfonyl) imide, manufactured by Kishida Chemical]
(C-4): LiBF 4 [lithium borofluoride, manufactured by Kishida Chemical]

<負極の作製>
リチウムイオン二次電池用電解液の評価用電池の負極は、球状黒鉛の負極シート(宝泉製、HS−LIB−N−Gr−001)を直径16mmの円盤状に打ち抜いて負極用の電極とした。
<Production of negative electrode>
The negative electrode of the battery for evaluation of the electrolyte for the lithium ion secondary battery was obtained by punching a negative electrode sheet of spherical graphite (manufactured by Hosen, HS-LIB-N-Gr-001) into a disk shape having a diameter of 16 mm and an electrode for the negative electrode. did.

<正極の作製>
リチウムイオン二次電池用電解液の評価用電池の正極は、コバルト酸リチウムの正極シート(宝泉製、HS−LIB−P−Co−001)を直径15mmの円盤状に打ち抜いて正極用の電極とした。
<Preparation of positive electrode>
The positive electrode of the battery for evaluation of the electrolyte for a lithium ion secondary battery is a positive electrode made by punching a lithium cobaltate positive electrode sheet (made by Hosen, HS-LIB-P-Co-001) into a disk shape having a diameter of 15 mm. It was.

<評価用リチウムイオン二次電池の作製>
2032型コインセル内の両端に、円盤状に打ち抜いた負極と正極をそれぞれの塗布面が対向するように配置して、電極の間に直径17mmに打ち抜いたセパレーター(旭化成製、セルガード2500(ポリプロピレン製))を1枚挿入し、リチウムイオン二次電池用電解液評価用セルを作製した。
このセルに上記 実施例1〜5と比較例1〜5の電解液を注液後、電解液評価用電池を作製した。
<Production of evaluation lithium-ion secondary battery>
Separators (made by Asahi Kasei, Cellguard 2500 (made of polypropylene)), with a negative electrode and a positive electrode punched in a disc shape placed at both ends in a 2032 type coin cell so that the coated surfaces face each other, and punched to a diameter of 17 mm between the electrodes ) Was inserted to prepare a cell for evaluating an electrolyte for a lithium ion secondary battery.
After injecting the electrolytic solutions of Examples 1 to 5 and Comparative Examples 1 to 5 into this cell, a battery for electrolytic solution evaluation was produced.

電解液評価用電池を用いて、初回放電容量と100サイクル後放電容量維持率の性能評価を行った。
なお比較例3の電解液(D’−3)は外観で不溶物が存在することを確認したため、電池評価は行わなかった。
<初回放電容量の測定>
電池を25℃に保ち、充放電測定装置(東陽テクニカ製、バッテリーアナライザー1470型)を用いて、0.1Cの電流で4.2Vまで充電し、10分間の休止後、0.1Cの電流で2.5Vまで放電した。この時の放電容量を初回放電容量とし、表1に記載した。
この値が大きいほど、初期の電池容量が大きく、この測定条件では6mAh以上が好ましい。
Using the electrolyte evaluation battery, the performance of the initial discharge capacity and the discharge capacity retention rate after 100 cycles was evaluated.
In addition, since it was confirmed that the electrolyte solution (D′-3) of Comparative Example 3 was insoluble in appearance, the battery evaluation was not performed.
<Measurement of initial discharge capacity>
Keep the battery at 25 ° C., charge / discharge measuring device (Battery Analyzer Model 1470, manufactured by Toyo Technica Co., Ltd.) with a current of 0.1 C to 4.2 V, and after 10 minutes of rest, with a current of 0.1 C The battery was discharged to 2.5V. The discharge capacity at this time was defined as the initial discharge capacity and is shown in Table 1.
The larger this value, the larger the initial battery capacity. Under this measurement condition, 6 mAh or more is preferable.

<2サイクル目〜99サイクル目の充放電の方法>
電池を25℃に保ち、充放電測定装置(東陽テクニカ製、バッテリーアナライザー1470型)を用いて、0.2Cの電流で4.2Vまで充電し、10分間の休止後、0.2Cの電流で2.5Vまで放電した。10分間の休止後、同じ電流値と充電上限電圧および放電下限電圧で、充電と10分間の休止と放電を繰り返した。
<100サイクル目の放電容量の測定>
初回放電容量の測定時と同じ方法で充電と放電を行い、この時の放電容量を100サイクル目放電容量とした。この値が大きいほど、100サイクル後の電池容量が大きいことを示す。
<Method of charge / discharge at 2nd cycle to 99th cycle>
The battery was kept at 25 ° C., charged to 4.2 V with a current of 0.2 C using a charge / discharge measuring device (manufactured by Toyo Technica, battery analyzer 1470 type), rested for 10 minutes, and then with a current of 0.2 C The battery was discharged to 2.5V. After 10 minutes of rest, charging, 10 minutes of rest and discharge were repeated with the same current value, charge upper limit voltage and discharge lower limit voltage.
<Measurement of discharge capacity at 100th cycle>
Charging and discharging were performed in the same manner as when measuring the initial discharge capacity, and the discharge capacity at this time was taken as the 100th cycle discharge capacity. The larger this value, the greater the battery capacity after 100 cycles.

<100サイクル後放電容量維持率の算出>
上記の方法で測定した放電容量のデータを用いて「100サイクル目放電容量/初回放電容量」の値を算出し、100サイクル後放電容量維持率(%)とした結果を表1に記載した。この測定条件では90%以上が好ましい。
<Calculation of discharge capacity maintenance rate after 100 cycles>
The value of “100th cycle discharge capacity / initial discharge capacity” was calculated using the discharge capacity data measured by the above method, and the results obtained as the discharge capacity retention rate (%) after 100 cycles are shown in Table 1. Under these measurement conditions, 90% or more is preferable.

本発明の実施例1〜5のリチウムイオン二次電池用電解液は、環状ケトン化合物(B−1)による負極におけるプロピレンカーボネートの副反応が十分に抑えられているため、100サイクル後放電容量維持率が全て90%以上であり、充放電特性の劣化が小さい。
一方、環状ケトン化合物を含まない比較例1の電解液(D’−1)は負極におけるプロピレンカーボネートの副反応抑制が十分でないため、100サイクル後放電容量維持率が10%であり、充放電特性の劣化が大きい。
また、本発明の環状ケトン化合物ではなく環内部に炭素−炭素二重結合を有する環状ケトン化合物(B’−1)を添加した比較例2の電解液(D’−2)は負極におけるプロピレンカーボネートの副反応抑制が十分でないため、100サイクル後放電尿量維持率が25%であり、充放電特性の劣化が大きい。
プロピレンカーボネート/非水溶媒(A)が30重量%未満である比較例3の電解液(D’−3)は室温では不均一な固体であったため、電解液としては使用できなかった。
比較例4の電解液(D’−4)は特許文献1に記載の環状カーボネート化合物(B’−2)を用いたが、負極におけるプロピレンカーボネートの副反応抑制性能は十分でなく、100サイクル後放電容量維持率は55%で、比較例1〜5に比べて改善されたが、維持率が不十分である。
比較例5の電解液(D’−5)は特許文献2に記載の環状カーボネート化合物(B’−3)を用いたが、100サイクル後放電容量維持率は60%で不十分である。
In the electrolyte solutions for lithium ion secondary batteries of Examples 1 to 5 of the present invention, since the side reaction of propylene carbonate in the negative electrode by the cyclic ketone compound (B-1) is sufficiently suppressed, the discharge capacity is maintained after 100 cycles. All the rates are 90% or more, and the deterioration of the charge / discharge characteristics is small.
On the other hand, since the electrolytic solution (D′-1) of Comparative Example 1 containing no cyclic ketone compound does not sufficiently suppress the side reaction of propylene carbonate in the negative electrode, the discharge capacity retention rate after 100 cycles is 10%, and the charge / discharge characteristics Degradation is large.
In addition, the electrolytic solution (D′-2) of Comparative Example 2 in which the cyclic ketone compound (B′-1) having a carbon-carbon double bond inside the ring was added instead of the cyclic ketone compound of the present invention was propylene carbonate in the negative electrode. Since the side reaction is not sufficiently suppressed, the discharge urine volume retention rate after 100 cycles is 25%, and the charge / discharge characteristics are greatly deteriorated.
Since the electrolytic solution (D′-3) of Comparative Example 3 in which the propylene carbonate / nonaqueous solvent (A) was less than 30% by weight was a non-uniform solid at room temperature, it could not be used as the electrolytic solution.
The cyclic carbonate compound (B′-2) described in Patent Document 1 was used as the electrolytic solution (D′-4) of Comparative Example 4, but the side reaction suppression performance of propylene carbonate in the negative electrode was not sufficient, and after 100 cycles. The discharge capacity maintenance rate was 55%, which was improved as compared with Comparative Examples 1 to 5, but the maintenance rate was insufficient.
As the electrolytic solution (D′-5) of Comparative Example 5, the cyclic carbonate compound (B′-3) described in Patent Document 2 was used, but the discharge capacity retention rate after 100 cycles was insufficient at 60%.

本発明のリチウムイオン二次電池用電解液は、負極におけるプロピレンカーボネートの副反応の抑制性能が優れているため、高引火点かつ低融点のプロピレンカーボネートを用いることで安全性を高めたリチウムイオン二次電池用の電解液として好適に使用できる。
本発明のリチウムイオン二次電池用電解液を用いたリチウムイオン二次電池は、高い安全性が求められる車載用二次電池やモバイル機器用の二次電池して有用である。
Since the electrolyte solution for lithium ion secondary batteries of the present invention has an excellent ability to suppress side reaction of propylene carbonate in the negative electrode, the lithium ion secondary battery having improved safety by using propylene carbonate having a high flash point and a low melting point. It can be suitably used as an electrolyte for a secondary battery.
The lithium ion secondary battery using the electrolytic solution for a lithium ion secondary battery of the present invention is useful as an in-vehicle secondary battery or a secondary battery for mobile devices that require high safety.

Claims (4)

プロピレンカーボネート(a)を含有する非水溶媒(A)と、下記一般式(1)で表される環状ケトン化合物(B)と、電解質(C)とを含有し、(A)の重量に基づいて(a)の含有量が25〜100重量%であるリチウムイオン二次電池用電解液(D)。
Figure 2019029088
[RとRはそれぞれ独立に水素原子、炭素数1〜4のアルキル基またはフェニル基である。]
A non-aqueous solvent (A) containing propylene carbonate (a), a cyclic ketone compound (B) represented by the following general formula (1), and an electrolyte (C), and based on the weight of (A) The electrolyte solution for lithium ion secondary batteries (D) whose content of (a) is 25-100 weight%.
Figure 2019029088
[R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group. ]
前記(A)〜(C)の合計重量に基づいて前記(B)の含有量が0.5〜10重量%である請求項1記載のリチウムイオン二次電池用電解液。 2. The electrolyte solution for a lithium ion secondary battery according to claim 1, wherein the content of (B) is 0.5 to 10 wt% based on the total weight of (A) to (C). 一般式(1)中のRとRが水素原子である請求項1または2記載のリチウムイオン二次電池用電解液。 The electrolytic solution for a lithium ion secondary battery according to claim 1 or 2, wherein R 1 and R 2 in the general formula (1) are hydrogen atoms. 請求項1〜3いずれか記載のリチウムイオン二次電池用電解液(D)と正極と負極からなるリチウムイオン二次電池。   The lithium ion secondary battery which consists of electrolyte solution (D) for lithium ion secondary batteries in any one of Claims 1-3, a positive electrode, and a negative electrode.
JP2017144346A 2017-07-26 2017-07-26 Electrolyte for lithium ion secondary battery and lithium ion secondary battery Pending JP2019029088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144346A JP2019029088A (en) 2017-07-26 2017-07-26 Electrolyte for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144346A JP2019029088A (en) 2017-07-26 2017-07-26 Electrolyte for lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2019029088A true JP2019029088A (en) 2019-02-21

Family

ID=65476396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144346A Pending JP2019029088A (en) 2017-07-26 2017-07-26 Electrolyte for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2019029088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203985A (en) * 2021-11-08 2022-03-18 风帆有限责任公司 Lithium ion battery with wide temperature range and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203985A (en) * 2021-11-08 2022-03-18 风帆有限责任公司 Lithium ion battery with wide temperature range and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101607024B1 (en) Lithium secondary battery
US20070190408A1 (en) Separator and method of manufacturing non-aqueous electrolyte secondary battery using the same
JP6015653B2 (en) Non-aqueous electrolyte and lithium ion battery
US20090311585A1 (en) Nonaqueous electrolyte secondary battery
KR20010051629A (en) Non-aqueous Secondary Electrolyte Battery
WO2008147751A1 (en) Non-aqueous electrolytes and electrochemical devices including the same
JPWO2016121322A1 (en) Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
CN113994512B (en) Lithium secondary battery and method for manufacturing the same
KR100838986B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR20150050082A (en) Lithium secondary battery having improved cycle life
KR101997812B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN108292738B (en) Sodium ion secondary battery and positive electrode active material particle
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
US20150056521A1 (en) Lithium ion battery electrolytes and electrochemical cells
JP2015162304A (en) Nonaqueous electrolyte battery
JP2019029088A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2009129632A (en) Nonaqueous electrolyte battery
JP5426809B2 (en) Secondary battery, electronic equipment using secondary battery and transportation equipment
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2012146399A (en) Lithium-ion battery
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery