JP6100473B2 - Electrochemical devices - Google Patents

Electrochemical devices Download PDF

Info

Publication number
JP6100473B2
JP6100473B2 JP2012089163A JP2012089163A JP6100473B2 JP 6100473 B2 JP6100473 B2 JP 6100473B2 JP 2012089163 A JP2012089163 A JP 2012089163A JP 2012089163 A JP2012089163 A JP 2012089163A JP 6100473 B2 JP6100473 B2 JP 6100473B2
Authority
JP
Japan
Prior art keywords
vol
carbonate
positive electrode
negative electrode
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012089163A
Other languages
Japanese (ja)
Other versions
JP2013218910A (en
Inventor
前田 光司
光司 前田
昌子 大家
昌子 大家
勝洋 吉田
勝洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2012089163A priority Critical patent/JP6100473B2/en
Priority to DE102013102444.0A priority patent/DE102013102444B4/en
Publication of JP2013218910A publication Critical patent/JP2013218910A/en
Application granted granted Critical
Publication of JP6100473B2 publication Critical patent/JP6100473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオンキャパシタ、リチウムイオン二次電池などの電気化学デバイスに関する。   The present invention relates to electrochemical devices such as lithium ion capacitors and lithium ion secondary batteries.

充放電可能な電池機能を有する電気化学デバイスには、電気二重層キャパシタ、リチウムイオン二次電池などがある。また、電気二重層キャパシタの正極電極とリチウムイオン二次電池の負極電極とで構成されたリチウムイオンキャパシタ等のハイブリッドタイプのキャパシタも知られている。   Examples of the electrochemical device having a chargeable / dischargeable battery function include an electric double layer capacitor and a lithium ion secondary battery. A hybrid type capacitor such as a lithium ion capacitor constituted by a positive electrode of an electric double layer capacitor and a negative electrode of a lithium ion secondary battery is also known.

このような電気化学デバイスは、エネルギー源、エネルギー回生用途への適用において、更なる高エネルギー密度化、低抵抗化、低コスト化が求められている。   Such electrochemical devices are required to have higher energy density, lower resistance, and lower cost in application to energy sources and energy regeneration applications.

これらの電気化学デバイスの負極電極には、易黒鉛化炭素や難黒鉛化炭素が用途に応じて使用され、難黒鉛化炭素は、高出力特性やサイクル特性に優れるという特徴がある。   For the negative electrode of these electrochemical devices, graphitizable carbon or non-graphitizable carbon is used depending on the application, and the non-graphitizable carbon is characterized by excellent high output characteristics and cycle characteristics.

従来、難黒鉛化炭素を負極電極に用いた電気化学デバイスにおいて、エチレンカーボネートを含有した電解液を使用することによって、初期の充放電で負極電極の表面にSEI(Solid electrolyte interface:固体電解質界面)皮膜が形成される。このSEI皮膜は、主にLi含有無機物やLi含有有機物からなる。SEI皮膜が形成されることにより、電解液の分解が抑制や負極電極へのリチウムイオンの挿入(以下、ドープという)および脱離の円滑化が図られ、サイクル特性が良好となる。   Conventionally, in an electrochemical device using non-graphitizable carbon as a negative electrode, by using an electrolyte containing ethylene carbonate, the surface of the negative electrode is subjected to SEI (Solid electrolyte interface) by initial charge and discharge. A film is formed. This SEI film is mainly composed of a Li-containing inorganic substance or a Li-containing organic substance. By forming the SEI film, the decomposition of the electrolytic solution is suppressed, the insertion of lithium ions into the negative electrode (hereinafter referred to as “dope”) and the elimination are facilitated, and the cycle characteristics are improved.

特許文献1には、電解液として、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートの混合液にLiPFを溶解させた溶液を用い、負極電極の表面に皮膜が形成されることが開示されている。 Patent Document 1 discloses that a film is formed on the surface of a negative electrode using a solution obtained by dissolving LiPF 6 in a mixed solution of ethylene carbonate, propylene carbonate, and dimethyl carbonate as an electrolytic solution.

特開2001−126760号公報JP 2001-126760 A

しかし、特許文献1に開示されているような電解液を用いた電気化学デバイスは、充放電を繰り返すことにより、SEI皮膜が成長して皮膜が厚く形成される傾向が見られる。負極電極の表面に形成されたSEI皮膜の厚みが大きくなると、リチウムイオンの拡散を阻害し、内部抵抗が上昇するという課題がある。   However, an electrochemical device using an electrolytic solution as disclosed in Patent Document 1 has a tendency that the SEI film grows and the film is formed thick by repeating charge and discharge. When the thickness of the SEI film formed on the surface of the negative electrode is increased, there is a problem that diffusion of lithium ions is inhibited and internal resistance is increased.

本発明は、上述した課題を解決するためになされたもので、その目的は、SEI皮膜の成長を抑制し、低抵抗化を図った電気化学デバイスを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrochemical device in which the growth of the SEI film is suppressed and the resistance is reduced.

活性炭又はリチウムを含有する酸化物からなる正極活物質を有する正極電極と、前記リチウムをドープまたは脱ドープ可能な難黒鉛化炭素材料からなる負極活物質を有する負極電極と、少なくともプロピレンカーボネートとエチレンカーボネートとを含有し、さらに鎖状カーボネートを含有する混合液の溶媒にリチウム塩を溶解させた溶液からなる電解液と、前記負極電極に前記リチウムをドープするリチウムイオン供給源を備え、前記溶媒は、前記エチレンカーボネートの含有率が、0.01vol%以上5.00vol%未満であり、前記プロピレンカーボネートの含有率が、60.00vol%超え99.90vol%以下であり、前記鎖状カーボネートの含有率が、0以上35.00vol%以下であることを特徴とする電気化学デバイスである。   A positive electrode having a positive electrode active material made of activated carbon or an oxide containing lithium, a negative electrode having a negative electrode active material made of a non-graphitizable carbon material that can be doped or dedoped with lithium, and at least propylene carbonate and ethylene carbonate And an electrolytic solution composed of a solution obtained by dissolving a lithium salt in a solvent of a mixed solution containing a chain carbonate, and a lithium ion supply source for doping the lithium into the negative electrode, The ethylene carbonate content is 0.01 vol% or more and less than 5.00 vol%, the propylene carbonate content is 60.00 vol% or more and 99.90 vol% or less, and the chain carbonate content is 0 to 35.00 vol% of electrochemical data A chair.

また、前記鎖状カーボネートは、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートから選択される少なくとも1種であるのが好ましい。   The chain carbonate is preferably at least one selected from diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate.

また、前記リチウム塩は、LiPF、LiBF、LiCFSO、LiSbF、LiN(CSO及びLiClOから選択される少なくとも一種であることが好ましい。 The lithium salt is preferably at least one selected from LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiSbF 5 , LiN (C 2 F 5 SO 2 ) 2 and LiClO 4 .

本発明によれば、SEI皮膜の成長を抑制し、低抵抗化を図った電気化学デバイスを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the electrochemical device which suppressed the growth of the SEI film and aimed at low resistance.

本発明の電気化学デバイスを示す断面図。Sectional drawing which shows the electrochemical device of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施の形態の電気化学デバイスは、正極電極と負極電極と電解液とリチウムイオン供給源を備えている。正極電極は、活性炭又はリチウムを含有する酸化物からなる正極活物質を有し、負極電極は、リチウムをドープまたは脱ドープ可能な難黒鉛化炭素材料からなる負極活物質を有している。また、本実施の形態の電解液は、少なくともプロピレンカーボネートとエチレンカーボネートとを含有し、さらに鎖状カーボネートを含有する混合液の溶媒にリチウム塩を溶解させた溶液からなる。この溶媒において、エチレンカーボネートの含有率が、0.01vol%以上5.00vol%未満であり、プロピレンカーボネートの含有率が、60.00vol%超え99.90vol%以下であり、鎖状カーボネートの含有率が、0以上35.00vol%以下であることを特徴としている。   The electrochemical device of the present embodiment includes a positive electrode, a negative electrode, an electrolytic solution, and a lithium ion supply source. The positive electrode has a positive electrode active material made of activated carbon or an oxide containing lithium, and the negative electrode has a negative electrode active material made of a non-graphitizable carbon material that can be doped or dedoped with lithium. Moreover, the electrolytic solution of the present embodiment is a solution in which a lithium salt is dissolved in a solvent of a mixed solution containing at least propylene carbonate and ethylene carbonate and further containing a chain carbonate. In this solvent, the ethylene carbonate content is 0.01 vol% or more and less than 5.00 vol%, the propylene carbonate content is more than 60.00 vol% and 99.90 vol% or less, and the chain carbonate content is Is 0 or more and 35.00 vol% or less.

図1は、本発明の電気化学デバイスを示す図である。本実施の形態では、電気化学デバイスとしてリチウムイオンキャパシタを例にとって説明する。   FIG. 1 is a view showing an electrochemical device of the present invention. In this embodiment, a lithium ion capacitor will be described as an example of an electrochemical device.

図1に示すように、本実施の形態の電気化学デバイスは、正極電極11と負極電極12と電解液13を有している。正極電極11は、正極集電体14と、正極集電体14の片面または両面に正極活物質が形成された正極活物質層15を備えている。負極電極12は、負極集電体16と、負極集電体16の片面または両面に負極活物質が形成された負極活物質層17を備えている。また、正極電極11と負極電極12には、セパレータ18が対向するように配置されている。   As shown in FIG. 1, the electrochemical device of the present embodiment includes a positive electrode 11, a negative electrode 12, and an electrolytic solution 13. The positive electrode 11 includes a positive electrode current collector 14 and a positive electrode active material layer 15 in which a positive electrode active material is formed on one surface or both surfaces of the positive electrode current collector 14. The negative electrode 12 includes a negative electrode current collector 16 and a negative electrode active material layer 17 in which a negative electrode active material is formed on one surface or both surfaces of the negative electrode current collector 16. A separator 18 is disposed so as to face the positive electrode 11 and the negative electrode 12.

正極電極11と負極電極12は、セパレータ18を介して交互に積層され、電極体101が構成される。このとき、電極体101の最外層が負極電極12となるように、積層するのが好ましい。電極体101の外側の少なくとも一部には、電極体101に対向するように、リチウムイオン供給源19が配置されている。   The positive electrode 11 and the negative electrode 12 are alternately stacked via the separator 18 to form an electrode body 101. At this time, the electrode body 101 is preferably laminated so that the outermost layer of the electrode body 101 becomes the negative electrode 12. A lithium ion supply source 19 is disposed on at least a part of the outer side of the electrode body 101 so as to face the electrode body 101.

電極体101は、リチウムイオン供給源19とともに外装材20へ収納され、電解液13に含侵している。この状態で、リチウムイオン供給源19から負極活物質層17に、リチウムイオンがドープされる。本実施の形態において、負極活物質層17にリチウムイオンをドープさせる手段は特に限定されず、例えば、リチウムイオンを負極活物質層17に電気化学的にドープさせる方法や、負極活物質層17とリチウムイオン供給源19を物理的に短絡してドープさせる方法で行うことができる。   The electrode body 101 is housed in the exterior material 20 together with the lithium ion supply source 19 and is impregnated in the electrolytic solution 13. In this state, lithium ions are doped into the negative electrode active material layer 17 from the lithium ion supply source 19. In the present embodiment, the means for doping the negative electrode active material layer 17 with lithium ions is not particularly limited. For example, a method of electrochemically doping the negative electrode active material layer 17 with lithium ions, The lithium ion source 19 can be physically short-circuited and doped.

電極体101を構成する正極電極11および負極電極12の枚数は、所望の容量および抵抗に応じて、適宜設定できる。また、リチウムイオン供給源19の数量も、リチウムイオンのドープ量やドープ時間を考慮して適宜設定できる。さらに、リチウムイオン供給源19の位置も、電極体101の外側である電極体101の上下面や側面だけでなく、電極体101の中央部に積層することも可能である。   The number of positive electrodes 11 and negative electrodes 12 constituting the electrode body 101 can be appropriately set according to the desired capacity and resistance. The quantity of the lithium ion supply source 19 can also be set as appropriate in consideration of the lithium ion doping amount and the doping time. Further, the position of the lithium ion supply source 19 can be laminated not only on the upper and lower surfaces and side surfaces of the electrode body 101 which is the outside of the electrode body 101 but also on the central portion of the electrode body 101.

本実施の形態の電解液13には、少なくともプロピレンカーボネート(PC)とエチレンカーボネート(EC)とを含有する混合液の溶媒にリチウム塩を溶解させた溶液が用いられる。この溶媒には、さらに鎖状カーボネートを含有していてもよい。   As the electrolytic solution 13 of the present embodiment, a solution in which a lithium salt is dissolved in a solvent of a mixed solution containing at least propylene carbonate (PC) and ethylene carbonate (EC) is used. This solvent may further contain a chain carbonate.

上記溶媒において、エチレンカーボネートの含有率が、0.01vol%以上5.00vol%未満であり、プロピレンカーボネートの含有率が、60.00vol%超え99.90vol%以下であり、鎖状カーボネートの含有率が、0以上35.00vol%以下である。本実施の形態では、溶媒の含有率を上記の範囲とすることにより、負極電極の表面にSEI皮膜を形成し、かつ充放電を繰り返してもSEI皮膜の成長を抑制することが可能となり、電気化学デバイスの低抵抗化が図れる。   In the said solvent, the content rate of ethylene carbonate is 0.01 vol% or more and less than 5.00 vol%, the content rate of propylene carbonate is more than 60.00 vol% and 99.90 vol% or less, and the content rate of chain carbonate However, it is 0 or more and 35.00 vol% or less. In the present embodiment, by setting the content of the solvent within the above range, it becomes possible to form the SEI film on the surface of the negative electrode, and to suppress the growth of the SEI film even when charging and discharging are repeated. The resistance of chemical devices can be reduced.

上記溶媒において、鎖状カーボネートは必ずしも含有させる必要は無いが、エチレンカーボネートを含有する電解液は、一般に粘度が高いため、鎖状カーボネートを含有させることで電解液の粘度を低くする効果が得られる。鎖状カーボネートとして、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が好ましく使用できる。   In the above-mentioned solvent, it is not always necessary to contain a chain carbonate, but an electrolyte solution containing ethylene carbonate generally has a high viscosity, so that the effect of lowering the viscosity of the electrolyte solution can be obtained by containing a chain carbonate. . As the chain carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like can be preferably used.

また、上記の溶媒の範囲内において、さらにビニレンカーボネート(VC)、エチレンサルファイト(ES)、フルオロエチレンカーボネート(FEC)等の添加剤を加えることも可能である。これらの添加剤を加えることで、SEI皮膜の形成をさらに円滑に行うことが可能となり、サイクル特性の向上が期待できる。   Moreover, it is also possible to add additives, such as vinylene carbonate (VC), ethylene sulfite (ES), and fluoroethylene carbonate (FEC), within the range of the above solvent. By adding these additives, it becomes possible to form the SEI film more smoothly, and an improvement in cycle characteristics can be expected.

また、上記溶媒に溶解させるリチウム塩は、電離してリチウムイオンを生成するものであれば良く、LiPF、LiBF、LiCFSO、LiSbF、LiN(CSO及びLiClOから選択される少なくとも一種であることが好ましい。 The lithium salt dissolved in the solvent may be any one that ionizes to generate lithium ions, such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiSbF 5 , LiN (C 2 F 5 SO 2 ) 2 and It is preferably at least one selected from LiClO 4 .

負極集電体16の材質としては、一般にリチウムイオン二次電池などに使用されている種々の材質、すなわち、ステンレス、銅、ニッケル等をそれぞれ用いることができる。また、リチウムイオン供給源19の集電体にも、同様の材質を用いることができる。これらの集電体には、圧延箔、電解箔、表裏面を貫通する孔を備えた貫通箔、エキスパンドメタルなど網状の多孔ラス箔等を用いることができる。   As the material of the negative electrode current collector 16, various materials generally used for lithium ion secondary batteries and the like, that is, stainless steel, copper, nickel and the like can be used. The same material can be used for the current collector of the lithium ion supply source 19. For these current collectors, rolled foil, electrolytic foil, penetrating foil with holes penetrating the front and back surfaces, net-like porous lath foil such as expanded metal, and the like can be used.

負極活物質層17の主成分である負極活物質は、リチウムイオンを可逆的にドープできる物質から形成され、難黒鉛化炭素材料からなる。難黒鉛化炭素材料の中でも、特に、X線回折法により得られるC軸方向の面間隔d002値が、0.341nm以上0.339nm以下で、C軸方向の結晶の大きさ(Lc)が0.5〜18nmである無定形炭素材料が、エネルギー密度等の特性を考慮すると好ましい。また、負極活物質層17の比表面積は1〜40m/g程度とすることで、エネルギー密度等の出力特性を向上させることが期待できるため好ましい。 The negative electrode active material that is the main component of the negative electrode active material layer 17 is formed of a material that can be reversibly doped with lithium ions, and is made of a non-graphitizable carbon material. Among non-graphitizable carbon materials, the C-axis direction plane distance d 002 value obtained by the X-ray diffraction method is 0.341 nm or more and 0.339 nm or less, and the crystal size (Lc) in the C axis direction is An amorphous carbon material having a thickness of 0.5 to 18 nm is preferable in consideration of characteristics such as energy density. In addition, the specific surface area of the negative electrode active material layer 17 is preferably about 1 to 40 m 2 / g because output characteristics such as energy density can be expected to be improved.

正極集電体14にはアルミニウム、ステンレス等を用いることができる。低抵抗化かつ低コスト化には、一般的にアルミ電解コンデンサや電気二重層キャパシタに用いられているアルミエッチング箔を使用することが好ましい。アルミエッチング箔は、アルミをエッチング処理することで比表面積を増やしているため、正極活物質層15との接触面積が増えて抵抗が低減し、出力特性が向上する。また、汎用品であることから低コストが期待できる。アルミエッチング箔のエッチング処理は圧延箔、電解箔のいずれのものでも使用できる。またリチウムイオン二次電池などに使用されている種々の圧延箔、電解箔、多孔ラス箔を用いることもできる。   Aluminum, stainless steel, or the like can be used for the positive electrode current collector 14. In order to reduce the resistance and the cost, it is preferable to use an aluminum etching foil generally used for an aluminum electrolytic capacitor or an electric double layer capacitor. Since the aluminum etching foil increases the specific surface area by etching aluminum, the contact area with the positive electrode active material layer 15 is increased, the resistance is reduced, and the output characteristics are improved. Moreover, since it is a general-purpose product, low cost can be expected. The etching treatment of the aluminum etching foil can be any of rolled foil and electrolytic foil. Various rolled foils, electrolytic foils, and porous lath foils used for lithium ion secondary batteries can also be used.

正極活物質層15の主成分である正極活物質は、アニオンまたはカチオンを可逆的に担持できる物質から形成される。例えば、分極性を有するフェノール樹脂系活性炭、ヤシガラ系活性炭、石油コークス系活性炭やポリアセンなどの炭素材料を用いることができる。またリチウムイオン二次電池の正極材料なども用いることができる。   The positive electrode active material that is the main component of the positive electrode active material layer 15 is formed of a material that can reversibly carry anions or cations. For example, carbon materials such as polarizable phenol resin activated carbon, coconut shell activated carbon, petroleum coke activated carbon, and polyacene can be used. Moreover, the positive electrode material etc. of a lithium ion secondary battery can also be used.

正極活物質層15および負極活物質層17には、必要により導電助剤やバインダが添加される。導電助剤としては、黒鉛、カーボンブラック、ケッチェンブラック、気相成長カーボンやカーボンナノチューブなどが挙げられ、特にカーボンブラック、黒鉛が好ましい。バインダとしては、例えば、スチレンブタジエンゴム(SBR)等のゴム系バインダやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。   A conductive additive and a binder are added to the positive electrode active material layer 15 and the negative electrode active material layer 17 as necessary. Examples of the conductive assistant include graphite, carbon black, ketjen black, vapor-grown carbon, and carbon nanotube, and carbon black and graphite are particularly preferable. As the binder, for example, a rubber-based binder such as styrene-butadiene rubber (SBR), a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used.

リチウムイオン供給源19には、金属リチウムまたはリチウムーアルミニウム合金のようにリチウムイオンを供給できる物質を使用することができる。リチウムイオン供給源19の厚みはリチウムイオンのドープ量によって変更することができるが、好ましくは5μm以上、400μm以下がよい。5μm以上とすることで、作業性が良くなり、400μm以下とすることで、リチウムイオン供給源19の残存を抑制することが可能となる。リチウムイオン供給源19は、電荷の取り出しのための集電体を有していてもよい。   The lithium ion supply source 19 may be a material that can supply lithium ions, such as metallic lithium or a lithium-aluminum alloy. The thickness of the lithium ion supply source 19 can be changed depending on the doping amount of lithium ions, but is preferably 5 μm or more and 400 μm or less. When the thickness is 5 μm or more, workability is improved, and when the thickness is 400 μm or less, it is possible to suppress the remaining lithium ion supply source 19. The lithium ion supply source 19 may have a current collector for taking out electric charges.

以上、本実施の形態について、リチウムイオンキャパシタを例にとって説明したが、本発明の電気化学デバイスとして、リチウムイオン二次電池を適用することも可能である。   As mentioned above, although this Embodiment was demonstrated taking the case of the lithium ion capacitor as an example, it is also possible to apply a lithium ion secondary battery as an electrochemical device of this invention.

しかしながら、一般に、リチウムイオン二次電池は正極活物質にLi遷移金属酸化物が用いられ、負極電極への初期充電(リチウムイオンのドープ)は、正極活物質から供給される。このため、リチウムイオン二次電池において、負極活物質に不可逆容量の多い難黒鉛化炭素材料を使用すると、正極活物質層の厚み(重量)を大きくする必要があり、エネルギー密度が低くなるという問題がある。したがって、一般には、リチウムイオン二次電池の負極活物質には、不可逆容量の少ない易黒鉛化炭素材料を使用することが多いが、上記の問題を許容できる使用方法であれば、負極活物質に難黒鉛化材料を使用したリチウムイオン二次電池にも本発明を適用することが可能である。また、リチウムイオン二次電池は、充放電により、一部を除きSEI皮膜の破壊および再生が繰り返されるのに対して、リチウムイオンキャパシタは、SEI皮膜が破壊されることが無いため、電気化学デバイスとしてリチウムイオンキャパシタを用いた場合に、本発明の効果をより顕著に得られる。   However, in general, a lithium ion secondary battery uses a Li transition metal oxide as a positive electrode active material, and initial charge to the negative electrode (dope of lithium ions) is supplied from the positive electrode active material. For this reason, in a lithium ion secondary battery, when a non-graphitizable carbon material having a large irreversible capacity is used as the negative electrode active material, it is necessary to increase the thickness (weight) of the positive electrode active material layer, resulting in a low energy density. There is. Therefore, in general, a graphitizable carbon material having a small irreversible capacity is often used for the negative electrode active material of the lithium ion secondary battery. The present invention can also be applied to a lithium ion secondary battery using a non-graphitizing material. In addition, the lithium ion secondary battery is repeatedly destroyed and regenerated in the SEI film except for a part due to charge and discharge, whereas the lithium ion capacitor does not break the SEI film. When a lithium ion capacitor is used, the effects of the present invention can be obtained more remarkably.

(実施例1)
正極活物質である比表面積1500m/gのフェノール系活性炭の粉末を92質量部と、導電剤として黒鉛を8質量部混合した粉末に対し、バインダとしてスチレンブタジエンゴム3質量部、カルボキシルメチルセルロース3質量部、溶媒として水200質量部となるように加え、混練してスラリーを得た。次いでエッチング処理により両表面が粗面化された厚さ20μmのアルミニウム箔を正極集電体として、その両面に上記スラリーを均一に塗布し、その後乾燥させて圧延プレスし、厚さが両面にそれぞれ30μmの正極活物質層を形成し正極電極を得た。この正極電極の厚さは80μmとした。また正極電極の端面の一部からは集電体をタブ状に延出した延出部を形成し、この延出部の集電体の両面には負極活物質層を形成せず、アルミニウム箔を露出させ、外部端子と接続し電荷が取り出せるようにした。なお、正極集電体は、貫通孔が設けられていないプレーン箔を使用した。
Example 1
92 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g, which is a positive electrode active material, and 8 parts by mass of graphite as a conductive agent, 3 parts by mass of styrene butadiene rubber as a binder and 3 parts by mass of carboxymethyl cellulose And 200 parts by mass of water as a solvent and kneaded to obtain a slurry. Next, an aluminum foil having a thickness of 20 μm whose both surfaces are roughened by etching treatment is used as a positive electrode current collector, and the slurry is uniformly applied to both sides thereof, then dried and rolled and pressed. A positive electrode active material layer of 30 μm was formed to obtain a positive electrode. The thickness of this positive electrode was 80 μm. Further, an extension part in which the current collector is extended in a tab shape is formed from a part of the end face of the positive electrode, and the negative electrode active material layer is not formed on both surfaces of the current collector of the extension part, and the aluminum foil Was exposed and connected to an external terminal so that charges could be taken out. In addition, the positive electrode collector used the plain foil in which the through-hole was not provided.

負極活物質である比表面積20m/gの難黒鉛化材料粉末88質量部と、導電剤としてアセチレンブラック6質量部混合した粉末に対し、バインダとしてスチレンブタジエンゴム5質量部、カルボキシルメチルセルロース4質量部、溶媒として水200質量部となるように加え、混練してスラリーを得た。次いで厚さ10μmの銅箔を負極集電体として、その両面に上記スラリーを均一に塗布し、その後乾燥させて圧延プレスし、厚さが両面にそれぞれ20μmの負極活物質層を形成し負極電極を得た。この負極電極の厚さは50μmとした。また、負極電極の端面の一部からは集電体をタブ状に延出した延出部を形成し、この延出部の集電体の両面には負極活物質層を形成せず、銅箔を露出させ、外部端子と接続し電荷が取り出せるようにした。なお、負極集電体は、貫通孔が設けられていないプレーン箔を使用した。 For the powder obtained by mixing 88 parts by mass of the non-graphitizing material powder having a specific surface area of 20 m 2 / g as the negative electrode active material and 6 parts by mass of acetylene black as a conductive agent, 5 parts by mass of styrene butadiene rubber and 4 parts by mass of carboxymethyl cellulose are used as binders. The solvent was added to 200 parts by mass of water and kneaded to obtain a slurry. Next, a copper foil having a thickness of 10 μm is used as a negative electrode current collector, and the slurry is uniformly applied on both sides thereof, then dried and rolled and pressed to form a negative electrode active material layer having a thickness of 20 μm on both sides, thereby forming a negative electrode Got. The thickness of this negative electrode was 50 μm. Further, an extension part in which the current collector is extended in a tab shape is formed from a part of the end face of the negative electrode, and the negative electrode active material layer is not formed on both surfaces of the current collector of the extension part, and the copper The foil was exposed and connected to an external terminal so that charges could be taken out. The negative electrode current collector used was a plain foil without a through hole.

セパレータとして、厚さ35μmの天然セルロース材の薄板を使用した。このセパレータの寸法形状は、正極電極および負極電極よりも少しだけ大きくなるように構成した。   As a separator, a thin plate of a natural cellulose material having a thickness of 35 μm was used. The size and shape of this separator was configured to be slightly larger than the positive electrode and the negative electrode.

次いで、セパレータ、負極電極、セパレータ、正極電極、セパレータの順番でこれら三者を積層し、電極体を得た。この電極体の最上部と最下部にはそれぞれセパレータが1枚ずつ配置されるようにした。本実施例では、1試料あたりの積層した正極電極は4枚、負極電極は5枚、セパレータは10枚とし、延出部を除いたその寸法は、正極電極が53mm×70mm、負極電極が55mm×72mm、セパレータが57mm×74mmとした。また、各電極に形成した延出部は、それぞれの電極の同一短辺から延出し、延出部の寸法は、それぞれ9mm×12mmとした。   Subsequently, these three members were laminated in the order of a separator, a negative electrode, a separator, a positive electrode, and a separator to obtain an electrode body. One separator was arranged on each of the uppermost part and the lowermost part of the electrode body. In this example, four positive electrodes, five negative electrodes, and ten separators were stacked per sample, and the dimensions excluding the extension were 53 mm x 70 mm for the positive electrode and 55 mm for the negative electrode. X 72 mm, separator was 57 mm x 74 mm. Moreover, the extension part formed in each electrode extended from the same short side of each electrode, and the dimension of the extension part was 9 mm x 12 mm, respectively.

次に、電極体から延出している正極電極および負極電極の延出部を各々束ね、一括して外部端子の端部にそれぞれ超音波溶接により固定した。また、銅箔に金属リチウムを貼り合わせてリチウムイオン供給源を作製し、銅箔の一部から延出した延出部に、リチウムイオン供給源の外部端子を超音波溶接により固定した。作製したリチウムイオン供給源を、電極体の上面に、金属リチウムが電極体と対向するように配置した。その後、2枚の外装材で電極体を包み込み、正極電極、負極電極、リチウムイオン供給源の外部端子を配置する辺を含む3辺の周縁部を熱圧着し、外装材の内面に形成した熱可塑性樹脂層を接合させて袋状とした。この外装材の内面の熱可塑性樹脂層は、酸変性ポリオレフィン樹脂からなり、その厚さは40μmとした。   Next, the extending portions of the positive electrode and the negative electrode extending from the electrode body were bundled and collectively fixed to the end portions of the external terminals by ultrasonic welding. In addition, a lithium ion supply source was prepared by laminating metal lithium to the copper foil, and an external terminal of the lithium ion supply source was fixed to the extension part extending from a part of the copper foil by ultrasonic welding. The produced lithium ion supply source was disposed on the upper surface of the electrode body so that the metallic lithium faced the electrode body. Thereafter, the electrode body is wrapped with two exterior materials, and the peripheral edge of the three sides including the side where the positive electrode, the negative electrode, and the external terminal of the lithium ion supply source are arranged is thermocompression bonded, and the heat formed on the inner surface of the exterior material The plastic resin layer was joined to form a bag. The thermoplastic resin layer on the inner surface of the exterior material is made of an acid-modified polyolefin resin, and its thickness is 40 μm.

さらに、電極体を内蔵した袋状の外装材の内部に電解液を注入した。本実施例における電解液は、エチレンカーボネートを0.01vol%、プロピレンカーボネートを99.99vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。 Further, an electrolytic solution was injected into a bag-shaped exterior material containing the electrode body. The electrolyte solution in this example was prepared to a concentration of 1.0 mol / l by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 0.01 vol% and propylene carbonate at a ratio of 99.99 vol%. I used something.

電解液を注入した後に、2枚の外装材の残る1辺を、真空雰囲気中にて熱圧着により封止した。さらに、電気化学的手法によりリチウムイオン供給源から負極電極の負極活物質にリチウムイオンをドープした。ドープ量は、負極活物質の質量に対し400mAh/gとした。   After injecting the electrolytic solution, the remaining one side of the two exterior members was sealed by thermocompression bonding in a vacuum atmosphere. Further, lithium ions were doped from the lithium ion source to the negative electrode active material of the negative electrode by an electrochemical method. The dope amount was 400 mAh / g with respect to the mass of the negative electrode active material.

(実施例2)
実施例2の電解液は、エチレンカーボネート0.05vol%、プロピレンカーボネート99.95vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 2)
The electrolyte solution of Example 2 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of 0.05 vol% ethylene carbonate and 99.95 vol% propylene carbonate to prepare a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例3)
実施例3の電解液は、エチレンカーボネート0.10vol%、プロピレンカーボネート99.90vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 3)
The electrolytic solution of Example 3 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 0.10 vol% and propylene carbonate 99.90 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例4)
実施例4の電解液は、エチレンカーボネート0.50vol%、プロピレンカーボネート99.50vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
Example 4
The electrolyte solution of Example 4 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate 0.50 vol% and propylene carbonate 99.50 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例5)
実施例5の電解液は、エチレンカーボネート1.00vol%、プロピレンカーボネート99.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 5)
The electrolyte solution of Example 5 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate 1.00 vol% and propylene carbonate 99.00 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例6)
実施例6の電解液は、エチレンカーボネート3.00vol%、プロピレンカーボネート97.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 6)
The electrolyte solution of Example 6 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate of 3.00 vol% and propylene carbonate of 97.00 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例7)
実施例7の電解液は、エチレンカーボネート4.50vol%、プロピレンカーボネート95.50vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 7)
The electrolyte solution of Example 7 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate 4.50 vol% and propylene carbonate 95.50 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

参考例
参考例の電解液は、エチレンカーボネート4.90vol%、プロピレンカーボネート95.10vol%の割合で混合した混合液の溶媒に、LiPF6を溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
( Reference example )
The electrolyte solution of the reference example was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of 4.90 vol% ethylene carbonate and 95.10 vol% propylene carbonate and adjusting the concentration to 1.0 mol / l. did. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(比較例1)
比較例1の電解液は、エチレンカーボネートを含有させず、プロピレンカーボネートのみからなる溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Comparative Example 1)
The electrolytic solution of Comparative Example 1 was prepared by dissolving LiPF 6 in a solvent containing only propylene carbonate without containing ethylene carbonate, and adjusting the concentration to 1.0 mol / l. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(比較例2)
比較例2の電解液は、エチレンカーボネート6.00vol%、プロピレンカーボネート94.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Comparative Example 2)
The electrolytic solution of Comparative Example 2 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate 6.00 vol% and propylene carbonate 94.00 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(比較例3)
比較例3の電解液は、エチレンカーボネート40.00vol%、プロピレンカーボネート60.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Comparative Example 3)
The electrolytic solution of Comparative Example 3 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate 40.00 vol% and propylene carbonate 60.00 vol% to a concentration of 1.0 mol / l. used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例9)
実施例9の電解液は、エチレンカーボネート3.00vol%、プロピレンカーボネート96.00vol%、ジエチルカーボネート1.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
Example 9
The electrolyte solution of Example 9 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 3.00 vol%, propylene carbonate 96.00 vol%, and diethyl carbonate 1.00 vol%. What was adjusted to the density | concentration of was used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例10)
実施例10の電解液は、エチレンカーボネート3.00vol%、プロピレンカーボネート77.00vol%、ジエチルカーボネート20.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 10)
The electrolyte solution of Example 10 was prepared by dissolving LiPF 6 in a solvent of a mixed solution obtained by mixing ethylene carbonate at 3.00 vol%, propylene carbonate at 77.00 vol%, and diethyl carbonate at 20.00 vol%. What was adjusted to the density | concentration of was used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例11)
実施例11の電解液は、エチレンカーボネート3.00vol%、プロピレンカーボネート62.00vol%、ジエチルカーボネート35.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Example 11)
The electrolyte solution of Example 11 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 3.00 vol%, propylene carbonate 62.00 vol%, and diethyl carbonate 35.00 vol%. What was adjusted to the density | concentration of was used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(比較例4)
比較例4の電解液は、エチレンカーボネート3.00vol%、プロピレンカーボネート59.00vol%、ジエチルカーボネート38.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例1と同様とした。
(Comparative Example 4)
The electrolytic solution of Comparative Example 4 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 3.00 vol%, propylene carbonate 59.00 vol%, and diethyl carbonate 38.00 vol%. What was adjusted to the density | concentration of was used. Except for the configuration of this electrolytic solution, it was the same as Example 1.

(実施例12)
実施例12では、電気化学デバイスとして、リチウムイオン二次電池を作製した。正極活物質にコバルト酸リチウムを使用し、セパレータにポリエチレン系セパレータを使用した。
(Example 12)
In Example 12, a lithium ion secondary battery was produced as an electrochemical device. Lithium cobalt oxide was used as the positive electrode active material, and a polyethylene separator was used as the separator.

また、実施例12の電解液は、エチレンカーボネート3.00vol%、プロピレンカーボネート97.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。 In addition, the electrolyte solution of Example 12 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 3.00 vol% and propylene carbonate at 97.00 vol% to a concentration of 1.0 mol / l. I used something.

正極活物質、セパレータ、電解液の構成以外は、実施例1と同様とした。   Except for the configuration of the positive electrode active material, the separator, and the electrolytic solution, it was the same as Example 1.

(実施例13)
実施例13の電解液は、エチレンカーボネート4.50vol%、プロピレンカーボネート85.50vol%、ジエチルカーボネート10.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例12と同様とした。
(Example 13)
The electrolyte solution of Example 13 was prepared by dissolving LiPF 6 in a solvent of a mixed solution mixed at a ratio of ethylene carbonate 4.50 vol%, propylene carbonate 85.50 vol%, diethyl carbonate 10.00 vol%, and 1.0 mol / l. What was adjusted to the density | concentration of was used. Except for the configuration of the electrolytic solution, the same procedure as in Example 12 was performed.

(実施例14)
実施例14の電解液は、エチレンカーボネート4.50vol%、プロピレンカーボネート85.50vol%、エチルメチルカーボネート10.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例12と同様とした。
(Example 14)
The electrolyte solution of Example 14 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate was mixed at a ratio of 4.50 vol%, propylene carbonate 85.50 vol%, and ethyl methyl carbonate 10.00 vol%. What was prepared to the density | concentration of 1 was used. Except for the configuration of the electrolytic solution, the same procedure as in Example 12 was performed.

(実施例15)
実施例15の電解液は、エチレンカーボネート4.50vol%、プロピレンカーボネート85.50vol%、ジメチルカーボネート10.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例12と同様とした。
(Example 15)
The electrolytic solution of Example 15 was prepared by dissolving LiPF 6 in a solvent of a mixed solution in which ethylene carbonate 4.50 vol%, propylene carbonate 85.50 vol%, and dimethyl carbonate 10.00 vol% were mixed, and 1.0 mol / l. What was adjusted to the density | concentration of was used. Except for the configuration of the electrolytic solution, the same procedure as in Example 12 was performed.

(比較例5)
比較例5の電解液は、エチレンカーボネート5.00vol%、プロピレンカーボネート50.00vol%、ジエチルカーボネート45.00vol%の割合で混合した混合液の溶媒に、LiPFを溶解させ、1.0mol/lの濃度に調製したものを使用した。この電解液の構成以外は、実施例12と同様とした。
(Comparative Example 5)
The electrolyte solution of Comparative Example 5 was prepared by dissolving LiPF 6 in a solvent of a mixed solution obtained by mixing ethylene carbonate at 5.00 vol%, propylene carbonate at 50.00 vol%, and diethyl carbonate at 45.00 vol%. What was adjusted to the density | concentration of was used. Except for the configuration of the electrolytic solution, the same procedure as in Example 12 was performed.

以上の方法により、電気化学デバイスをそれぞれ20個作製した。この作製した電気化学デバイスについて、定電流定電圧にて3.8Vにて充電を1時間行い、電圧が2.2Vになるまで80mVで放電した。放電時の電圧降下により直流抵抗(DC−R)を算出し、20個の平均値を求めた。初期特性として、リチウムイオンキャパシタでは、従来技術である比較例3を基準として、比較例3の平均値の5%以下の値を合格と判定した。また、リチウムイオン二次電池では、比較例5を基準として、比較例5の平均値の5%以下の値と合格と判定した。   Twenty electrochemical devices were produced by the above method. The produced electrochemical device was charged at a constant current and a constant voltage at 3.8 V for 1 hour, and discharged at 80 mV until the voltage reached 2.2 V. The direct current resistance (DC-R) was calculated from the voltage drop during discharge, and the average value of 20 was obtained. As an initial characteristic, in the lithium ion capacitor, a value of 5% or less of the average value of Comparative Example 3 was determined to be acceptable with reference to Comparative Example 3 which is a conventional technique. Moreover, in the lithium ion secondary battery, the value of 5% or less of the average value of the comparative example 5 and the pass were determined based on the comparative example 5.

また、耐久試験として、フロート試験およびサイクル試験を実施した。フロート試験は、リチウムイオンキャパシタでは、70℃の環境下にて電圧を3.8V印加した状態で2000時間経過後、室温にてDC−Rを測定した。リチウムイオン二次電池では、60℃の環境下にて電圧を4.2V印加した状態で2000時間経過後、室温にてDC−Rを測定した。   Moreover, the float test and the cycle test were implemented as an endurance test. In the float test, in a lithium ion capacitor, DC-R was measured at room temperature after 2000 hours in a state where a voltage of 3.8 V was applied in an environment of 70 ° C. In a lithium ion secondary battery, DC-R was measured at room temperature after 2000 hours in a state where a voltage of 4.2 V was applied in an environment of 60 ° C.

サイクル試験は、リチウムイオンキャパシタでは、70℃の環境下にて充放電を5000サイクル繰り返し、その後室温にて容量およびDC−Rを測定した。リチウムイオン二次電池では、60℃の環境下にて充放電を1000サイクル繰り返し、その後室温にて容量およびDC−Rを測定した。   In the cycle test, for a lithium ion capacitor, charge and discharge were repeated 5000 cycles in an environment at 70 ° C., and then the capacity and DC-R were measured at room temperature. In the lithium ion secondary battery, charging / discharging was repeated 1000 cycles in an environment of 60 ° C., and then the capacity and DC-R were measured at room temperature.

フロート試験およびサイクル試験では、試験前と試験後の測定値の平均値から、DC−Rの変化率を算出した。また、フロート試験においては変化率が20%以内を合格、サイクル試験においては変化率が50%以内を合格として判定した。   In the float test and the cycle test, the rate of change of DC-R was calculated from the average value of the measured values before and after the test. In the float test, the change rate was determined to be within 20%, and in the cycle test, the change rate was determined to be within 50%.

表1に、実施例および比較例の、初期特性および耐久試験の評価結果を示す。   Table 1 shows the evaluation results of the initial characteristics and durability tests of the examples and comparative examples.

Figure 0006100473
Figure 0006100473

表1に示すように、本発明の実施例において、初期特性は従来の比較例と同様のレベルを維持し、耐久試験では、DC−Rの変化率を大幅に改善し、DC−Rの上昇を抑制することが可能となった。したがって、本発明の構成により、SEI皮膜の成長を抑制し、低抵抗化を図った電気化学デバイスが得られた。   As shown in Table 1, in the examples of the present invention, the initial characteristics are maintained at the same level as in the conventional comparative example, and in the durability test, the rate of change of DC-R is greatly improved and the increase in DC-R Can be suppressed. Therefore, the electrochemical device in which the growth of the SEI film is suppressed and the resistance is reduced is obtained by the configuration of the present invention.

以上、実施の形態および実施例を用いて、本発明について説明したが、本発明は、これらに限定されるものではなく、この発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   As described above, the present invention has been described using the embodiment and the examples. However, the present invention is not limited to these, and even if there is a design change or the like without departing from the gist of the present invention, the present invention is not limited thereto. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

11 正極電極
12 負極電極
13 電解液
14 正極集電体
15 正極活物質層
16 負極集電体
17 負極活物質層
18 セパレータ
19 リチウムイオン供給源
20 外装材
101 電極体
DESCRIPTION OF SYMBOLS 11 Positive electrode 12 Negative electrode 13 Electrolytic solution 14 Positive electrode collector 15 Positive electrode active material layer 16 Negative electrode collector 17 Negative electrode active material layer 18 Separator 19 Lithium ion supply source 20 Exterior material 101 Electrode body

Claims (7)

活性炭又はリチウムを含有する酸化物からなる正極活物質を有する正極電極と、前記リチウムをドープまたは脱ドープ可能な難黒鉛化炭素材料からなる負極活物質を有する負極電極と、少なくともプロピレンカーボネートとエチレンカーボネートとを含有る混合液の溶媒にリチウム塩を溶解させた溶液からなる電解液と、前記負極電極に前記リチウムをドープするリチウムイオン供給源を備え、
前記溶媒は、前記エチレンカーボネートの含有率が、0.01vol%以上4.50vol%以下であり、
前記プロピレンカーボネートの含有率が、60.00vol%超え99.99vol%以下であり、
状カーボネートの含有率が、0以上35.00vol%以下であることを特徴とする電気化学デバイス。
A positive electrode having a positive electrode active material made of activated carbon or an oxide containing lithium, a negative electrode having a negative electrode active material made of a non-graphitizable carbon material that can be doped or dedoped with lithium, and at least propylene carbonate and ethylene carbonate DOO comprising an electrolyte solution in a solvent mixture consisting of a solution obtained by dissolving a lithium salt you containing a lithium ion supply source to dope the lithium into the negative electrode, and
The content of the ethylene carbonate is 0.01 vol% or more and 4.50 vol% or less,
The propylene carbonate content is more than 60.00 vol% and not more than 99.99 vol%,
An electrochemical device having a chain carbonate content of 0 or more and 35.00 vol% or less.
前記溶媒は、前記鎖状カーボネートの含有率が、1.00vol%以上35.00vol%以下である、請求項1に記載の電気化学デバイス。2. The electrochemical device according to claim 1, wherein the content of the chain carbonate is 1.00 vol% or more and 35.00 vol% or less. 前記鎖状カーボネートは、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートから選択される少なくとも1種であることを特徴とする請求項1又は2に記載の電気化学デバイス。 The linear carbonate electrochemical device according to claim 1 or 2, characterized in that at least one selected diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate. 前記リチウム塩は、LiPF、LiBF、LiCFSO、LiSbF、LiN(CSO及びLiClOから選択される少なくとも一種であることを特徴とする請求項1から3のいずれか一項に記載の電気化学デバイス。 The lithium salt, LiPF 6, LiBF 4, LiCF 3 SO 3, LiSbF 5, LiN (C 2 F 5 SO 2) 2 and claims 1-3, characterized in that at least one selected from LiClO 4 The electrochemical device according to any one of the above. 前記溶媒は、エチレンカーボネートとプロピレンカーボネートの合計の含有率が65vol%以上であり、
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の容量比率(EC/PC)が0.01/99.99〜3/62である請求項1からのいずれか一項に記載の電気化学デバイス。
The solvent has a total content of ethylene carbonate and propylene carbonate of 65 vol% or more,
The electrochemical device according to any one of claims 1 to 4 , wherein a volume ratio (EC / PC) of ethylene carbonate (EC) to propylene carbonate (PC) is 0.01 / 99.99 to 3/62.
前記電気化学デバイスはリチウムイオンキャパシタであり、前記正極電極は前記正極活物質として活性炭を有する請求項に記載の電気化学デバイス。 The electrochemical device according to claim 5 , wherein the electrochemical device is a lithium ion capacitor, and the positive electrode has activated carbon as the positive electrode active material. 前記電気化学デバイスはリチウムイオンキャパシタであり、前記正極電極は前記正極活物質として活性炭を有する請求項1からのいずれか一項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 4 , wherein the electrochemical device is a lithium ion capacitor, and the positive electrode includes activated carbon as the positive electrode active material.
JP2012089163A 2012-04-10 2012-04-10 Electrochemical devices Active JP6100473B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012089163A JP6100473B2 (en) 2012-04-10 2012-04-10 Electrochemical devices
DE102013102444.0A DE102013102444B4 (en) 2012-04-10 2013-03-12 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089163A JP6100473B2 (en) 2012-04-10 2012-04-10 Electrochemical devices

Publications (2)

Publication Number Publication Date
JP2013218910A JP2013218910A (en) 2013-10-24
JP6100473B2 true JP6100473B2 (en) 2017-03-22

Family

ID=49210031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089163A Active JP6100473B2 (en) 2012-04-10 2012-04-10 Electrochemical devices

Country Status (2)

Country Link
JP (1) JP6100473B2 (en)
DE (1) DE102013102444B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519558B2 (en) 2016-09-15 2019-05-29 トヨタ自動車株式会社 Lithium ion secondary battery and method of manufacturing the same
JP6718905B2 (en) * 2018-03-22 2020-07-08 太陽誘電株式会社 Lithium ion capacitor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126760A (en) 1999-10-22 2001-05-11 Sony Corp Nonaqueous electrolyte secondary battery
EP1239495B1 (en) 2001-03-09 2006-08-09 Asahi Glass Company Ltd. Secondary power source
JP3968772B2 (en) * 2001-11-29 2007-08-29 株式会社ジーエス・ユアサコーポレーション Non-aqueous electrolyte battery
JP2005327785A (en) * 2004-05-12 2005-11-24 Honda Motor Co Ltd Electric double layer capacitor and electrolyte therefor
US7233481B2 (en) 2004-01-28 2007-06-19 Honda Motor Co., Ltd. Electric double layer capacitor and electrolyte solution therefor
JP4731967B2 (en) 2005-03-31 2011-07-27 富士重工業株式会社 Lithium ion capacitor
JP4994628B2 (en) * 2005-10-06 2012-08-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2008117939A (en) * 2006-11-06 2008-05-22 Meidensha Corp Electric double layer capacitor
JP5027540B2 (en) * 2007-03-29 2012-09-19 富士重工業株式会社 Lithium ion capacitor

Also Published As

Publication number Publication date
JP2013218910A (en) 2013-10-24
DE102013102444B4 (en) 2021-09-23
DE102013102444A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP2008103596A (en) Lithium-ion capacitor
JP2009200302A (en) Method of manufacturing electricity storage device, and electricity storage device
JP2008252013A (en) Lithium-ion capacitor
JP2014199723A (en) Pre-doping agent, power storage device including the same, and method for manufacturing the power storage device
US9991563B2 (en) Energy storage device and energy storage apparatus
JP6911655B2 (en) A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element.
WO2021132208A1 (en) Electricity storage element
JP2021503692A (en) Non-aqueous solvent electrolyte composition for energy storage equipment
US20210296645A1 (en) Nonaqueous electrolyte energy storage device and energy storage apparatus
JP6100473B2 (en) Electrochemical devices
JP7003775B2 (en) Lithium ion secondary battery
CN109643828B (en) Nonaqueous electrolyte storage element
JP6848363B2 (en) Negative electrode and non-aqueous electrolyte power storage element
JP2013197052A (en) Lithium ion power storage device
JP2012028366A (en) Power storage device
JP2008166342A (en) Lithium ion capacitor
JP2019102231A (en) Power storage element
CN110710046B (en) Electrolyte solution and electrochemical device
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2020077575A (en) Lithium ion secondary battery
JP2014197511A (en) Nonaqueous electrolyte secondary battery
JP2012114201A (en) Power storage device
JP7484884B2 (en) Nonaqueous electrolyte storage element and storage device
JP6035883B2 (en) Method for measuring the remaining capacity of a lithium ion battery
CN110710047B (en) Electrolyte and electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250