JP2013109881A - Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle - Google Patents

Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle Download PDF

Info

Publication number
JP2013109881A
JP2013109881A JP2011252423A JP2011252423A JP2013109881A JP 2013109881 A JP2013109881 A JP 2013109881A JP 2011252423 A JP2011252423 A JP 2011252423A JP 2011252423 A JP2011252423 A JP 2011252423A JP 2013109881 A JP2013109881 A JP 2013109881A
Authority
JP
Japan
Prior art keywords
active material
electrode
material layer
nonaqueous electrolyte
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252423A
Other languages
Japanese (ja)
Inventor
Ryoko Kanda
良子 神田
Taku Kamimura
卓 上村
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011252423A priority Critical patent/JP2013109881A/en
Publication of JP2013109881A publication Critical patent/JP2013109881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: an electrode for a nonaqueous electrolyte battery, in which the porosity of an active material layer is small, so that battery performance thereof can be improved; and a nonaqueous electrolyte battery.SOLUTION: A nonaqueous electrolyte battery electrode includes an active material layer containing an active material. The active material layer comprises a powder compact obtained by pressure forming an electrode material containing powder of the active material, and has a porosity of 2% or less. The active material layer can be obtained by pressure forming the electrode material at a surface pressure exceeding 490 MPa (5 ton/cm) by cold isostatic pressing (CIP).

Description

本発明は、活物質を含有する活物質層を有する非水電解質電池用電極、及びこの電極を用いた非水電解質電池、並びにこの電池を備える電動車両に関する。   The present invention relates to a nonaqueous electrolyte battery electrode having an active material layer containing an active material, a nonaqueous electrolyte battery using the electrode, and an electric vehicle including the battery.

非水電解質電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの携帯機器に使用されている。非水電解質電池の代表例としては、正極・負極間のリチウムイオンの授受反応を利用したリチウム電池やリチウムイオン二次電池(以下、単に「リチウム系電池」と呼ぶ)が挙げられる。   Non-aqueous electrolyte batteries have a long life, high efficiency, and high capacity, and are used in mobile devices such as mobile phones, notebook computers, and digital cameras. Typical examples of the nonaqueous electrolyte battery include a lithium battery and a lithium ion secondary battery (hereinafter simply referred to as “lithium battery”) using a lithium ion transfer reaction between the positive electrode and the negative electrode.

このリチウム系電池は、正極活物質を含有する正極活物質層を有する正極と、負極活物質を含有する負極活物質層を有する負極と、これら正負の活物質層間に介在される電解質層と、を備える。そして、正極活物質層と負極活物質層との間で電解質層を介してリチウムイオンが移動することによって充放電を行う。また近年では、有機電解液に代えて不燃性の無機固体電解質を用いた全固体電池が提案されている(特許文献1参照)。   The lithium-based battery includes a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, an electrolyte layer interposed between these positive and negative active material layers, Is provided. And charging / discharging is performed by a lithium ion moving through an electrolyte layer between a positive electrode active material layer and a negative electrode active material layer. In recent years, an all-solid battery using an incombustible inorganic solid electrolyte instead of an organic electrolyte has been proposed (see Patent Document 1).

非水電解質用電極の活物質層は通常、湿式法又は乾式法により形成されている。湿式法であれば、活物質の粉末を含有する電極材に溶媒を加えてスラリーを作製し、このスラリーを基板(集電体)上に塗布して乾燥した後、これをロールプレス又はプレスにより加圧成形する。乾式法であれば、活物質の粉末を含有する電極材を金型に入れ、金型成形により加圧成形する。例えば、特許文献1には、活物質に導電助剤や結着剤を混合した電極材を2ton/cm2で加圧成形した活物質層が開示されている。 The active material layer of the electrode for nonaqueous electrolyte is usually formed by a wet method or a dry method. In the case of a wet method, a slurry is prepared by adding a solvent to an electrode material containing an active material powder, this slurry is applied on a substrate (current collector) and dried, and then this is rolled or pressed. Press molding. In the case of the dry method, an electrode material containing an active material powder is placed in a mold and pressure-molded by mold molding. For example, Patent Document 1 discloses an active material layer in which an electrode material obtained by mixing a conductive additive or a binder with an active material is pressure-formed at 2 ton / cm 2 .

特開2006−202552号公報JP 2006-202552 A

しかし、従来の形成方法では、活物質層内に空隙が生じ、活物質層の空隙率が大きい。例えば、上記した特許文献1に記載の活物質層の形成方法では、加圧成形時の面圧が低いため、活物質層内に空隙が生じ易いと考えられる。このような空隙率の大きい活物質層を有する非水電解質電池用電極を非水電解質電池に用いた場合、活物質層内の空隙は、電池性能を低下させる原因となる。具体的には、活物質粒子間の接触面積が小さく、電池反応面積が少なくなることから、内部抵抗の増大を招く。また、活物質層内に空隙が多く存在することから、放電容量の低下を招く。さらに、活物質粒子間の密着性が低く、サイクル特性の低下を招く。したがって、活物質層の空隙率が小さいことが望まれる。特に、活物質粉末の粒径が小さい場合(例えば、平均粒径D50(重量比が50%にあたる粒径)が5μm未満)には、嵩密度が小さく、充填率が低下するため、活物質層内に空隙が生じ易い。   However, in the conventional forming method, voids are generated in the active material layer, and the porosity of the active material layer is large. For example, in the method for forming an active material layer described in Patent Document 1 described above, it is considered that voids are likely to occur in the active material layer because the surface pressure during pressure molding is low. When such a nonaqueous electrolyte battery electrode having an active material layer having a large porosity is used for a nonaqueous electrolyte battery, the voids in the active material layer cause a decrease in battery performance. Specifically, the contact area between the active material particles is small, and the battery reaction area is reduced, which leads to an increase in internal resistance. In addition, since there are many voids in the active material layer, the discharge capacity is reduced. Furthermore, the adhesiveness between the active material particles is low, and the cycle characteristics are deteriorated. Therefore, it is desired that the porosity of the active material layer is small. In particular, when the particle size of the active material powder is small (for example, the average particle size D50 (particle size corresponding to a weight ratio of 50% is less than 5 μm)), the bulk density is small and the filling rate is reduced. There is a tendency for voids to form inside.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、活物質層の空隙率が小さく、電池性能を向上させることが可能な非水電解質電池用電極、及び非水電解質電池を提供することにある。また、別の目的は、上記した非水電解質電池を備える電動車両を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects thereof is a nonaqueous electrolyte battery electrode capable of improving battery performance and a nonaqueous electrolyte layer having a small porosity of an active material layer. The object is to provide an electrolyte battery. Another object is to provide an electric vehicle including the above-described non-aqueous electrolyte battery.

(1)本発明の非水電解質電池用電極は、活物質を含有する活物質層を有する。そして、活物質層は、活物質の粉末を含有する電極材を加圧成形した粉末成形体からなり、活物質層の空隙率が、2%以下であることを特徴とする。   (1) The electrode for nonaqueous electrolyte batteries of the present invention has an active material layer containing an active material. The active material layer is made of a powder molded body obtained by pressure-molding an electrode material containing an active material powder, and the porosity of the active material layer is 2% or less.

本発明の非水電解質電池用電極によれば、活物質層の空隙率が2%以下であり、活物質層の空隙率が小さいので、電池性能を向上させることができる。具体的には、活物質層内の空隙がほとんど無く、活物質粒子間の接触面積(電池反応面積)が増大するため、電池の内部抵抗を低減できると共に、電池の放電容量の向上を図ることができる。また、活物質間の密着性が向上するため、電池のサイクル特性の向上を図ることができる。なお、空隙率(%)とは、活物質層の断面観察を行い、観察視野内の空隙の合計面積を求め、観察視野面積に占める空隙の合計面積の割合(%)をいう。具体的には、空隙率の測定は、観察視野を撮像し、撮像された画像について、画像解析ソフトを用いて空隙が黒、その他が白となるように2値化処理して空隙を抽出することにより行う。空隙率は、3つ以上の観察視野において測定し、その平均値を用いる。また、観察視野面積は、例えば20μm×20μmとする。   According to the electrode for a nonaqueous electrolyte battery of the present invention, since the porosity of the active material layer is 2% or less and the porosity of the active material layer is small, the battery performance can be improved. Specifically, there is almost no void in the active material layer, and the contact area between the active material particles (battery reaction area) increases, so that the internal resistance of the battery can be reduced and the discharge capacity of the battery is improved. Can do. In addition, since the adhesion between the active materials is improved, the cycle characteristics of the battery can be improved. Note that the porosity (%) refers to the ratio (%) of the total area of the voids in the observation visual field area by performing cross-sectional observation of the active material layer, obtaining the total area of the voids in the observation visual field. Specifically, the void ratio is measured by taking an image of the observation visual field, and using the image analysis software to binarize the extracted image so that the void is black and the others are white. By doing. The porosity is measured in three or more observation fields, and the average value is used. Further, the observation visual field area is, for example, 20 μm × 20 μm.

(2)本発明の非水電解質電池用電極の一形態としては、活物質層は上記電極材を冷間等方加圧により面圧490MPa超で加圧成形したことが挙げられる。   (2) As an embodiment of the electrode for a non-aqueous electrolyte battery of the present invention, the active material layer may be formed by pressing the above electrode material by cold isostatic pressing with a surface pressure exceeding 490 MPa.

上記電極材を冷間等方加圧(CIP)により面圧490MPa(5ton/cm2)超で加圧成形することで、空隙率が2%以下の活物質層(粉末成形体)が得られる。冷間等方加圧であるため、活物質層の圧密化に効果的であり、通常のプレスや金型成形などの一軸加圧に比べて、充填率が向上する。また、面圧が490MPa超であることで、活物質層内の空隙が減少する。特に、活物質粉末の粒径が小さい場合(例えば、平均粒径D50(重量比が50%にあたる粒径)が5μm未満)であっても、活物質層の空隙率2%以下を実現できる。 An active material layer (powder molded body) with a porosity of 2% or less can be obtained by pressing and molding the above electrode material by cold isostatic pressing (CIP) at a surface pressure exceeding 490 MPa (5 ton / cm 2 ). . Since it is cold isostatic pressurization, it is effective for consolidation of the active material layer, and the filling rate is improved as compared with uniaxial pressurization such as ordinary press and mold forming. Further, when the surface pressure exceeds 490 MPa, voids in the active material layer are reduced. In particular, even when the particle size of the active material powder is small (for example, the average particle size D50 (particle size corresponding to 50% by weight) is less than 5 μm), the porosity of the active material layer can be 2% or less.

(3)本発明の非水電解質電池用電極の一形態としては、活物質がチタン酸リチウムであることが挙げられる。   (3) As one form of the electrode for nonaqueous electrolyte batteries of the present invention, the active material is lithium titanate.

特に、活物質にチタン酸リチウム(Li4Ti5O12)を適用した場合、チタン酸リチウムは比表面積が大きいため、活物質層内に空隙が生じ易い。本発明では、空隙率が2%以下であるので、活物質がチタン酸リチウムである場合に効果が大きい。また、チタン酸リチウムは充放電に伴う体積変化がほとんど無いため、活物質層内に空隙が存在しないことは、電池性能を向上させる点で非常に有効である。 In particular, when lithium titanate (Li 4 Ti 5 O 12 ) is applied to the active material, since lithium titanate has a large specific surface area, voids are easily generated in the active material layer. In the present invention, since the porosity is 2% or less, the effect is large when the active material is lithium titanate. In addition, since lithium titanate has almost no volume change associated with charge / discharge, the absence of voids in the active material layer is very effective in improving battery performance.

(4)本発明の非水電解質電池用電極の一形態としては、電極材が固体電解質の粉末を含有することが挙げられる。   (4) As one form of the electrode for nonaqueous electrolyte batteries of this invention, it is mentioned that an electrode material contains the powder of a solid electrolyte.

固体電解質で電解質層を形成した固体電解質層を有する電池(固体電解質型電池)では、活物質層に固体電解質を含有しない場合、活物質層と固体電解質層との界面でのみリチウムイオンの授受が行われ、活物質層内部(界面から離れた部分)ではイオンが十分に拡散せず、活物質層内部の活物質が電池反応に有効に活用されない問題が起こり得る。よって、活物質層が活物質と固体電解質とを含有し、活物質層中に活物質と固体電解質とが混在することで、活物質層内部でのイオン拡散を固体電解質が促進させ、活物質層内部の活物質を電池反応に有効に活用することができる。その結果、電池の内部抵抗をより低減することができる。   In a battery having a solid electrolyte layer in which an electrolyte layer is formed with a solid electrolyte (solid electrolyte type battery), when the active material layer does not contain a solid electrolyte, lithium ions can be exchanged only at the interface between the active material layer and the solid electrolyte layer. However, the ions are not sufficiently diffused inside the active material layer (parts away from the interface), and the active material inside the active material layer may not be effectively used for the battery reaction. Therefore, the active material layer contains the active material and the solid electrolyte, and the active material and the solid electrolyte are mixed in the active material layer, whereby the solid electrolyte promotes ion diffusion inside the active material layer, and the active material The active material inside the layer can be effectively used for the battery reaction. As a result, the internal resistance of the battery can be further reduced.

固体電解質としては、Li2Sを含む硫化物系固体電解質、Li3PO4、Li3PO4-xNx(LIPON)などの酸化物系固体電解質が代表的である。硫化物系固体電解質としては、例えば、Li2S‐P2S5系、Li2S‐SiS2系、Li2S‐B2S3系などが挙げられ、更にP2O5やLi3PO4が添加されてもよい。硫化物系固体電解質は、酸化物系のものに比較して、一般的に高いリチウムイオン伝導性を示すので好適である。特に、硫化物系固体電解質の中でもLi2S‐P2S5系の固体電解質は、高いリチウムイオン伝導性を示すのでより好適である。 Typical examples of the solid electrolyte include sulfide-based solid electrolytes containing Li 2 S, and oxide-based solid electrolytes such as Li 3 PO 4 and Li 3 PO 4-x N x (LIPON). Examples of the sulfide-based solid electrolyte include Li 2 S-P 2 S 5 system, Li 2 S-SiS 2 system, Li 2 S-B 2 S 3 system, and further P 2 O 5 and Li 3 PO 4 may be added. A sulfide-based solid electrolyte is preferable because it generally exhibits higher lithium ion conductivity than an oxide-based solid electrolyte. In particular, among sulfide-based solid electrolytes, Li 2 S—P 2 S 5 -based solid electrolytes are more preferable because they exhibit high lithium ion conductivity.

一方、活物質としては、用途(正極又は負極)に応じて、正極活物質又は負極活物質を用いる。正極活物質としては、LiCoO2、LiNiO2、LiMn2O4、LiFePO4、LiNi1/3Co1/3Mn1/3O2、LiNi0.8Co0.15Al0.05O2などのリチウム含有複合酸化物が挙げられる。負極活物質としては、リチウム金属、グラファイトなどの炭素材料、或いはAl、Si、Sn、Zn、Inなどのリチウムと合金化する金属又は合金、FeS2、TiS2などの金属硫化物が挙げられる。なお、チタン酸リチウムは、正極活物質及び負極活物質のいずれにも用いることができるが、負極活物質に用いることが好適である。 On the other hand, as the active material, a positive electrode active material or a negative electrode active material is used depending on the application (positive electrode or negative electrode). Lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 Is mentioned. Examples of the negative electrode active material include carbon materials such as lithium metal and graphite, metals or alloys alloyed with lithium such as Al, Si, Sn, Zn, and In, and metal sulfides such as FeS 2 and TiS 2 . Note that lithium titanate can be used for both the positive electrode active material and the negative electrode active material, but is preferably used for the negative electrode active material.

その他、活物質層は、活物質と固体電解質の他、必要に応じて導電助剤や結着剤(バインダー)を含有してもよい。導電助剤としては、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラック(CB)などが挙げられる。結着剤としては、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)、シリコーン樹脂などが挙げられる。   In addition to the active material and the solid electrolyte, the active material layer may contain a conductive additive or a binder (binder) as necessary. Examples of the conductive assistant include carbon black (CB) such as acetylene black (AB) and ketjen black (KB). Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a silicone resin.

(5)本発明の非水電解質電池は、正極と、負極と、これら両極の間に介在される固体電解質層を有する。そして、正極又は負極が、上記した本発明の非水電解質電池用電極であることを特徴とする。   (5) The nonaqueous electrolyte battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between these two electrodes. And a positive electrode or a negative electrode is the electrode for non-aqueous electrolyte batteries of the present invention described above.

本発明の非水電解質電池用電極は、非水電解質電池の正極又は負極のいずれにも適用することが可能であり、正極に適用する場合は、正極活物質を用い、負極に適用する場合は、負極活物質を用いる。本発明の非水電解質電池によれば、正極又は負極に上記した本発明の非水電解質電池用電極を利用することで、従来の電池に比較して、電池性能が向上する。   The electrode for a nonaqueous electrolyte battery of the present invention can be applied to either a positive electrode or a negative electrode of a nonaqueous electrolyte battery. When applied to a positive electrode, a positive electrode active material is used, and when applied to a negative electrode, A negative electrode active material is used. According to the nonaqueous electrolyte battery of the present invention, battery performance is improved by using the above-described electrode for nonaqueous electrolyte battery of the present invention for the positive electrode or the negative electrode as compared with the conventional battery.

(6)本発明の電動車両は、上記した本発明の非水電解質電池を駆動用モータの電源として備えることを特徴とする。   (6) The electric vehicle of the present invention includes the above-described non-aqueous electrolyte battery of the present invention as a power source for a driving motor.

電動車両は、駆動源としてモータを備える車両のことであり、本発明の電動車両は、この駆動用モータの電源に上記した本発明の非水電解質電池を利用することで、高い電池性能を有する非水電解質電池を駆動用モータの電源として備える。電動車両には、ハイブリッド自動車や電気自動車などが含まれる。   The electric vehicle is a vehicle including a motor as a drive source, and the electric vehicle of the present invention has high battery performance by using the above-described non-aqueous electrolyte battery of the present invention as a power source of the drive motor. A non-aqueous electrolyte battery is provided as a power source for the drive motor. The electric vehicle includes a hybrid vehicle and an electric vehicle.

本発明の非水電解質電池用電極、及びの非水電解質電池は、活物質層の空隙率が2%以下であるので、電池性能を向上させることができる。   Since the nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery of the present invention have a porosity of the active material layer of 2% or less, the battery performance can be improved.

〔実施例1〕
本発明の非水電解質電池用電極を備える非水電解質電池を作製し、その電池性能を評価した。
[Example 1]
A nonaqueous electrolyte battery including the electrode for a nonaqueous electrolyte battery of the present invention was produced, and the battery performance was evaluated.

この例では、非水電解質電池は、正極集電体、正極活物質層、硫化物系固体電解質層、負極活物質層、及び負極集電体を順に積層した構造とし、後述するように、個別に作製した正極体と負極体とを重ね合わせ接合することで作製した。   In this example, the non-aqueous electrolyte battery has a structure in which a positive electrode current collector, a positive electrode active material layer, a sulfide-based solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are sequentially laminated. The positive electrode body and the negative electrode body manufactured in (1) were stacked and bonded together.

[正極体の作製]
正極集電体となる基板には、Al箔を用いた。正極活物質には、LiNi0.8Co0.15Al0.05O2の粉末(平均粒径(D50)6μm)を用いた。そして、LiNi0.8Co0.15Al0.05O2の粉末とLi2S‐P2S5系固体電解質(Li2S:P2S5のモル比80:20)の粉末とを質量比で70:30の割合で混合した正極電極材を金型に入れ、金型成形により加圧成形して、粉末成形体からなる正極活物質層を作製した。加圧成形は、200℃の雰囲気下、面圧353MPa(3.6ton/cm2)で行った。正極活物質層の厚さは80μmとした。正極集電体となるAl箔の上に、LiNi0.8Co0.15Al0.05O2及びLi2S‐P2S5系固体電解質とを混合してなる上記した正極活物質層を積層し、正極を作製した。さらに、正極活物質層の上に、真空蒸着法によりLi2S‐P2S5系固体電解質(Li2S:P2S5のモル比80:20)を成膜して、アモルファス状態のLi2S‐P2S5系固体電解質からなる固体電解質層を形成し、正極体とした。固体電解質層の厚さは10μmとした。
[Preparation of positive electrode body]
An Al foil was used for the substrate to be the positive electrode current collector. LiNi 0.8 Co 0.15 Al 0.05 O 2 powder (average particle size (D50) 6 μm) was used as the positive electrode active material. And the powder of LiNi 0.8 Co 0.15 Al 0.05 O 2 and the powder of Li 2 S-P 2 S 5 solid electrolyte (Li 2 S: P 2 S 5 molar ratio 80:20) in a mass ratio of 70:30 The positive electrode material mixed at the ratio was put into a mold and pressure-molded by mold molding to prepare a positive electrode active material layer made of a powder molded body. The pressure molding was performed under an atmosphere of 200 ° C. and a surface pressure of 353 MPa (3.6 ton / cm 2 ). The thickness of the positive electrode active material layer was 80 μm. On the Al foil serving as the positive electrode current collector, the above-described positive electrode active material layer formed by mixing LiNi 0.8 Co 0.15 Al 0.05 O 2 and Li 2 S-P 2 S 5 based solid electrolyte is laminated, and the positive electrode is Produced. Furthermore, a Li 2 S-P 2 S 5 solid electrolyte (Li 2 S: P 2 S 5 molar ratio 80:20) was deposited on the positive electrode active material layer by vacuum deposition, and the amorphous state A solid electrolyte layer made of a Li 2 S-P 2 S 5 solid electrolyte was formed to obtain a positive electrode body. The thickness of the solid electrolyte layer was 10 μm.

[負極体の作製]
負極集電体となる基板には、Al箔を用いた。負極活物質には、Li4Ti5O12の粉末(平均粒径(D50)4μm)を用いた。そして、Li4Ti5O12の粉末とLi2S‐P2S5系固体電解質(Li2S:P2S5のモル比70:30)の粉末と導電助剤のアセチレンブラック(AB)とを質量比で62:38:3.6の割合で混合した負極電極材を冷間等方加圧(CIP)装置を用いて、冷間等方加圧により面圧3922MPa(40ton/cm2)で加圧成形して、粉末成形体からなる負極活物質層を作製した。負極活物質層の厚さは120μmとした。負極集電体となるAl箔の上に、Li4Ti5O12、Li2S‐P2S5系固体電解質及びABを混合してなる上記した負極活物質層を積層し、負極を作製した。さらに、負極活物質層の上に、真空蒸着法によりLi2S‐P2S5系固体電解質(Li2S:P2S5のモル比80:20)を成膜して、アモルファス状態のLi2S‐P2S5系固体電解質からなる固体電解質層を形成し、これを負極体とした。固体電解質層の厚さは10μmとした。
[Preparation of negative electrode body]
Al foil was used for the substrate used as the negative electrode current collector. Li 4 Ti 5 O 12 powder (average particle size (D50) 4 μm) was used as the negative electrode active material. And Li 4 Ti 5 O 12 powder and Li 2 S-P 2 S 5 solid electrolyte (Li 2 S: P 2 S 5 molar ratio 70:30) powder and conductive auxiliary agent acetylene black (AB) A negative electrode material mixed with a mass ratio of 62: 38: 3.6 was cold isostatically pressed with a surface pressure of 3922 MPa (40 ton / cm 2 ) using a cold isostatic pressing (CIP) device. A negative electrode active material layer made of a powder compact was produced by pressure molding. The thickness of the negative electrode active material layer was 120 μm. On the Al foil as the negative electrode current collector, the negative electrode active material layer formed by mixing Li 4 Ti 5 O 12 , Li 2 S-P 2 S 5 solid electrolyte and AB is laminated to produce a negative electrode did. Furthermore, a Li 2 S-P 2 S 5 solid electrolyte (Li 2 S: P 2 S 5 molar ratio 80:20) was deposited on the negative electrode active material layer by vacuum deposition, and the amorphous state A solid electrolyte layer composed of a Li 2 S—P 2 S 5 solid electrolyte was formed, and this was used as a negative electrode body. The thickness of the solid electrolyte layer was 10 μm.

(負極活物質層の分析)
作製した負極活物質層の厚さ方向断面を走査型電子顕微鏡により観察を行い、負極活物質層の空隙率を測定したところ、負極活物質層の空隙率は0.5%であった。空隙率は、任意の3つの観察視野(20μm×20μm)について、画像解析ソフトを用いて2値化処理して空隙率を測定し、その平均値を空隙率とした。
(Analysis of negative electrode active material layer)
When the cross section in the thickness direction of the produced negative electrode active material layer was observed with a scanning electron microscope and the porosity of the negative electrode active material layer was measured, the porosity of the negative electrode active material layer was 0.5%. The porosity was binarized using image analysis software for any three observation fields (20 μm × 20 μm), the porosity was measured, and the average value was taken as the porosity.

[電池の作製]
露点温度−40℃の乾燥雰囲気中で、正極体と負極体とを互いの固体電解質層同士が対向するように重ね合わせ、加圧加熱処理することにより、固体電解質層同士を接合して、電池を作製した。この加圧加熱処理は、正極体と負極体の重ね合わせ方向に16MPaで加圧し、190℃に加熱して130分間保持することで行った。この加圧加熱処理により、アモルファス状態の固体電解質層を結晶化させ、正極側の固体電解質層と負極側の固体電解質層とを接合して一体化する。ここで、アモルファスが結晶化するときの原子の相互拡散を利用して、正極側の固体電解質層と負極側の固体電解質層とを接合しているので、両層の間に接合界面が形成されず、固体電解質層内のイオン移動抵抗を低減することができる。また、加圧することにより、一体化を促進することができる。
[Production of battery]
In a dry atmosphere with a dew point temperature of −40 ° C., the positive electrode body and the negative electrode body are overlapped so that the solid electrolyte layers face each other, and the solid electrolyte layers are bonded to each other by pressurizing and heating treatment. Was made. This pressurizing and heating treatment was performed by applying a pressure of 16 MPa in the overlapping direction of the positive electrode body and the negative electrode body, heating to 190 ° C. and holding for 130 minutes. By this pressure heat treatment, the solid electrolyte layer in an amorphous state is crystallized, and the solid electrolyte layer on the positive electrode side and the solid electrolyte layer on the negative electrode side are joined and integrated. Here, since the solid electrolyte layer on the positive electrode side and the solid electrolyte layer on the negative electrode side are bonded by utilizing the mutual diffusion of atoms when the amorphous crystallizes, a bonding interface is formed between both layers. Therefore, the ion transfer resistance in the solid electrolyte layer can be reduced. Moreover, integration can be promoted by applying pressure.

なお、理由は定かではないが、気相法によりLi2S‐P2S5系固体電解質を成膜して形成されたアモルファス状のLi2S‐P2S5系固体電解質層の結晶化温度と、アモルファス状のLi2S‐P2S5系固体電解質粉末を加圧成形して形成された固体電解質層の結晶化温度と、は異なる。具体的には、Li2SとP2S5とのモル比が80:20のLi2S‐P2S5系固体電解質の場合、気相法により形成された固体電解質層の結晶化温度は約150℃であり、粉末成形体の固体電解質層の結晶化温度は約220℃である。本例では、正極側の固体電解質層と負極側の固体電解質層とがそれぞれ気相法で形成されているので、正極側の固体電解質層と負極側の固体電解質層とを接合する際の加熱温度を150℃以上とすれば、両層を結晶化させて接合できる。 Although the reason is not clear, crystallization of an amorphous Li 2 S-P 2 S 5 solid electrolyte layer formed by depositing a Li 2 S-P 2 S 5 solid electrolyte by a vapor phase method The temperature is different from the crystallization temperature of the solid electrolyte layer formed by pressing the amorphous Li 2 S—P 2 S 5 solid electrolyte powder. Specifically, in the case of a Li 2 S-P 2 S 5 solid electrolyte having a molar ratio of Li 2 S to P 2 S 5 of 80:20, the crystallization temperature of the solid electrolyte layer formed by the vapor phase method Is about 150 ° C., and the crystallization temperature of the solid electrolyte layer of the powder compact is about 220 ° C. In this example, since the solid electrolyte layer on the positive electrode side and the solid electrolyte layer on the negative electrode side are respectively formed by a gas phase method, heating at the time of joining the solid electrolyte layer on the positive electrode side and the solid electrolyte layer on the negative electrode side is performed. If the temperature is 150 ° C. or higher, both layers can be crystallized and bonded.

(電池性能の評価)
以上のようにして作製した非水電解質電池(リチウム系電池)を評価試験用ケースに組み込み、カットオフ電圧:3.5V−1.0V、電流密度:0.3mA/cm2の条件で充放電試験を行って、電池性能を評価した。
(Evaluation of battery performance)
Above manner embedded in the evaluation test for the case the nonaqueous electrolyte battery fabricated (lithium-based batteries), the cut-off voltage: 3.5 V-1.0 V, current density: subjected to a charge-discharge test under the condition of 0.3 mA / cm 2 The battery performance was evaluated.

<内部抵抗>
1サイクル目の充電後における電池の内部抵抗をインピーダンスアナライザーで測定したところ、電池の内部抵抗(全抵抗)は65Ωcm2であった。
<放電容量>
1サイクル目の放電容量を測定したところ、放電容量は2.90mAh/cm2であった。
<サイクル特性>
1サイクル目の放電容量に対する100サイクル目の放電容量の維持率を求めたところ、99%であった。
<Internal resistance>
When the internal resistance of the battery after charging in the first cycle was measured with an impedance analyzer, the internal resistance (total resistance) of the battery was 65 Ωcm 2 .
<Discharge capacity>
When the discharge capacity at the first cycle was measured, the discharge capacity was 2.90 mAh / cm 2 .
<Cycle characteristics>
The retention rate of the discharge capacity at the 100th cycle relative to the discharge capacity at the 1st cycle was determined to be 99%.

〔実施例2〕
負極活物質層を作製する際の冷間等方加圧による面圧を1961MPa(20ton/cm2)とした以外は、実施例1と同様にして負極活物質層を作製すると共に、電池を作製した。そして、実施例1と同じように、負極活物質層を分析したところ、負極活物質層の空隙率は1.5%であった。また、実施例1と同じようにして電池性能を評価したところ、内部抵抗(全抵抗)は80Ωcm2、放電容量は2.75mAh/cm2、100サイクル目の放電容量維持率は99%であった。
[Example 2]
A negative electrode active material layer was produced in the same manner as in Example 1 except that the surface pressure by cold isostatic pressing during production of the negative electrode active material layer was 1961 MPa (20 ton / cm 2 ), and a battery was produced. did. And when the negative electrode active material layer was analyzed similarly to Example 1, the porosity of the negative electrode active material layer was 1.5%. Further, when the battery performance was evaluated in the same manner as in Example 1, the internal resistance (total resistance) was 80 Ωcm 2 , the discharge capacity was 2.75 mAh / cm 2 , and the discharge capacity maintenance rate at the 100th cycle was 99%. .

〔比較例1〕
負極活物質層を正極活物質層と同様に金型成形により加圧成形して作製し、加圧成形の条件を200℃の雰囲気下、面圧490MPa(5ton/cm2)とした以外は、実施例1と同様にして負極活物質層を作製すると共に、電池を作製した。そして、実施例1と同じように、負極活物質層を分析したところ、負極活物質層の空隙率は10%であった。また、実施例1と同じようにして電池性能を評価したところ、内部抵抗(全抵抗)は800Ωcm2、放電容量は2.00mAh/cm2、100サイクル目の放電容量維持率は85%であった。
[Comparative Example 1]
The negative electrode active material layer was formed by pressure molding by die molding in the same manner as the positive electrode active material layer, and the pressure molding conditions were 200 ° C. under a surface pressure of 490 MPa (5 ton / cm 2 ). A negative electrode active material layer was produced in the same manner as in Example 1, and a battery was produced. And when the negative electrode active material layer was analyzed similarly to Example 1, the porosity of the negative electrode active material layer was 10%. Further, when the battery performance was evaluated in the same manner as in Example 1, the internal resistance (total resistance) was 800 Ωcm 2 , the discharge capacity was 2.00 mAh / cm 2 , and the discharge capacity maintenance rate at the 100th cycle was 85%. .

〔比較例2〕
負極活物質層を作製する際の金型成形による面圧を196MPa(2ton/cm2)とした以外は、比較例1と同様にして負極活物質層を作製した。この場合、加圧成形時の面圧が低く、負極活物質層を十分に保形することができなかったため、加圧成形後に負極活物質層の形状が崩れ、電池を作製することができなかった。
[Comparative Example 2]
A negative electrode active material layer was produced in the same manner as in Comparative Example 1 except that the surface pressure by mold forming when producing the negative electrode active material layer was 196 MPa ( 2 ton / cm 2 ). In this case, the surface pressure at the time of pressure molding was low, and the negative electrode active material layer could not be sufficiently retained, so the shape of the negative electrode active material layer collapsed after pressure molding, and a battery could not be produced. It was.

以上の結果から、負極活物質層の空隙率が2%以下である負極を備える実施例1及び2の電池は、比較例1の電池に比較して、内部抵抗、放電容量、及びサイクル特性(放電容量維持率)の全ての点で優れることが分かる。   From the above results, the batteries of Examples 1 and 2 including the negative electrode having a negative electrode active material layer having a porosity of 2% or less were compared with the battery of Comparative Example 1 in terms of internal resistance, discharge capacity, and cycle characteristics ( It can be seen that the discharge capacity retention ratio is excellent in all points.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、正極活物質にLiCoO2を用いてもよい。 Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, LiCoO 2 may be used as the positive electrode active material.

本発明の非水電解質電池用電極は、例えば、リチウム系電池の電極に好適に利用することが可能である。また、本発明の非水電解質電池は、例えば、携帯電話、ノートパソコン、デジタルカメラの他、電気自動車などの電動車両の電源にも使用することが可能である。   The electrode for nonaqueous electrolyte batteries of the present invention can be suitably used for, for example, an electrode of a lithium battery. Further, the nonaqueous electrolyte battery of the present invention can be used, for example, as a power source for an electric vehicle such as an electric vehicle as well as a mobile phone, a notebook computer, and a digital camera.

Claims (6)

活物質を含有する活物質層を有する非水電解質電池用電極であって、
前記活物質層は、前記活物質の粉末を含有する電極材を加圧成形した粉末成形体からなり、
前記活物質層の空隙率が、2%以下であることを特徴とする非水電解質電池用電極。
An electrode for a non-aqueous electrolyte battery having an active material layer containing an active material,
The active material layer comprises a powder molded body obtained by pressure molding an electrode material containing the active material powder,
A nonaqueous electrolyte battery electrode, wherein the active material layer has a porosity of 2% or less.
前記活物質層は、前記電極材を冷間等方加圧により面圧490MPa超で加圧成形したことを特徴とする請求項1に記載の非水電解質電池用電極。   2. The electrode for a non-aqueous electrolyte battery according to claim 1, wherein the active material layer is formed by pressure forming the electrode material at a surface pressure exceeding 490 MPa by cold isostatic pressing. 前記活物質が、チタン酸リチウムであることを特徴とする請求項1又は2に記載の非水電解質電池用電極。   The electrode for a nonaqueous electrolyte battery according to claim 1, wherein the active material is lithium titanate. 前記電極材が、更に、固体電解質の粉末を含有することを特徴とする請求項1〜3のいずれか一項に記載の非水電解質電池用電極。   The said electrode material contains the powder of a solid electrolyte further, The electrode for nonaqueous electrolyte batteries as described in any one of Claims 1-3 characterized by the above-mentioned. 正極と、負極と、これら両極の間に介在される固体電解質層を有する非水電解質電池であって、
前記正極又は前記負極が、請求項1〜4のいずれか一項に記載の非水電解質電池用電極であることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery having a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the two electrodes,
The said positive electrode or the said negative electrode is a nonaqueous electrolyte battery electrode as described in any one of Claims 1-4, The nonaqueous electrolyte battery characterized by the above-mentioned.
請求項5に記載の非水電解質電池を駆動用モータの電源として備えることを特徴とする電動車両。   An electric vehicle comprising the nonaqueous electrolyte battery according to claim 5 as a power source for a drive motor.
JP2011252423A 2011-11-18 2011-11-18 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle Pending JP2013109881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252423A JP2013109881A (en) 2011-11-18 2011-11-18 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252423A JP2013109881A (en) 2011-11-18 2011-11-18 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle

Publications (1)

Publication Number Publication Date
JP2013109881A true JP2013109881A (en) 2013-06-06

Family

ID=48706468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252423A Pending JP2013109881A (en) 2011-11-18 2011-11-18 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle

Country Status (1)

Country Link
JP (1) JP2013109881A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097159A (en) * 2013-11-15 2015-05-21 株式会社デンソー Electrode for secondary batteries, method for manufacturing electrode for secondary batteries, and secondary battery
WO2015132845A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 All-solid-state battery
JP2018077938A (en) * 2016-11-07 2018-05-17 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2018077937A (en) * 2016-11-07 2018-05-17 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2021128883A (en) * 2020-02-14 2021-09-02 トヨタ自動車株式会社 Negative electrode for all-solid-state battery
EP3890063A4 (en) * 2018-11-29 2022-01-19 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery
KR20220087230A (en) * 2020-12-17 2022-06-24 한국에너지기술연구원 Composite process of nano cathode material and all-solid battery using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097159A (en) * 2013-11-15 2015-05-21 株式会社デンソー Electrode for secondary batteries, method for manufacturing electrode for secondary batteries, and secondary battery
WO2015132845A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 All-solid-state battery
JP2018077938A (en) * 2016-11-07 2018-05-17 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2018077937A (en) * 2016-11-07 2018-05-17 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
EP3890063A4 (en) * 2018-11-29 2022-01-19 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery
JP2021128883A (en) * 2020-02-14 2021-09-02 トヨタ自動車株式会社 Negative electrode for all-solid-state battery
KR20220087230A (en) * 2020-12-17 2022-06-24 한국에너지기술연구원 Composite process of nano cathode material and all-solid battery using the same
KR102495339B1 (en) * 2020-12-17 2023-02-06 한국에너지기술연구원 Composite process of nano cathode material and all-solid battery using the same

Similar Documents

Publication Publication Date Title
JP5376412B2 (en) Non-aqueous electrolyte battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP5348607B2 (en) All-solid lithium secondary battery
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
JP2014107163A (en) Metho for manufacturing all-solid-state lithium secondary battery
CN111463437B (en) All-solid battery
KR20170003544A (en) Electrode, method of producing the same, battery, and electronic device
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
JP7047667B2 (en) All solid state battery
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2015050153A (en) Laminate for all-solid state battery
JP6070471B2 (en) All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
JP2021051866A (en) All-solid battery
JP2020087783A (en) Negative electrode
JP7052710B2 (en) Laminate
WO2017217079A1 (en) All-solid battery
JP7107880B2 (en) Negative electrode mixture layer
JP5454459B2 (en) Non-aqueous electrolyte battery
JP2020129519A (en) All-solid battery
JP6859234B2 (en) Manufacturing method of all-solid-state battery
JP2013089417A (en) Nonaqueous electrolyte battery
JP6748035B2 (en) Method for manufacturing electrode member for all-solid-state battery
JP2021089814A (en) All-solid battery
JP2020021606A (en) Manufacturing method of all-solid battery