JP6859234B2 - Manufacturing method of all-solid-state battery - Google Patents

Manufacturing method of all-solid-state battery Download PDF

Info

Publication number
JP6859234B2
JP6859234B2 JP2017170613A JP2017170613A JP6859234B2 JP 6859234 B2 JP6859234 B2 JP 6859234B2 JP 2017170613 A JP2017170613 A JP 2017170613A JP 2017170613 A JP2017170613 A JP 2017170613A JP 6859234 B2 JP6859234 B2 JP 6859234B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
negative electrode
positive electrode
solid
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170613A
Other languages
Japanese (ja)
Other versions
JP2019046722A (en
Inventor
高田 和典
和典 高田
剛 大西
剛 大西
鳴海 太田
鳴海 太田
南田 善隆
善隆 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toyota Motor Corp
Original Assignee
National Institute for Materials Science
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toyota Motor Corp filed Critical National Institute for Materials Science
Priority to JP2017170613A priority Critical patent/JP6859234B2/en
Publication of JP2019046722A publication Critical patent/JP2019046722A/en
Application granted granted Critical
Publication of JP6859234B2 publication Critical patent/JP6859234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本開示は、全固体電池の製造方法に関する。 The present disclosure relates to a method for manufacturing an all-solid-state battery.

近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。
リチウムイオン全固体電池は、リチウムイオンの移動を伴う電池反応を利用するためエネルギー密度が高いという点、また、正極と負極の間に介在する電解質として、有機溶媒を含む電解液に替えて固体電解質を用いるという点で注目されている。
With the rapid spread of information-related devices such as personal computers, video cameras and mobile phones, and communication devices in recent years, the development of batteries used as their power sources has been emphasized. In addition, the automobile industry and the like are also developing high-output and high-capacity batteries for electric vehicles or hybrid vehicles.
Lithium-ion all-solid-state batteries have a high energy density because they utilize a battery reaction that involves the movement of lithium ions, and as an electrolyte interposed between the positive electrode and the negative electrode, a solid electrolyte is used instead of an electrolyte solution containing an organic solvent. It is attracting attention in that it uses.

Si系材料からなる活物質は、体積当たりの理論容量が大きいことから、Si系材料を負極に用いたリチウムイオン全固体電池が提案されている。
特許文献1には、無機固体電解質と、式(1):Si(1−x)で表される活物質と、粒子ポリマーを含む固体電解質組成物を集電体上に塗布し、乾燥することにより形成した負極活物質層を具備する全固体二次電池が記載されている。
Since the active material made of Si-based material has a large theoretical capacity per volume, a lithium ion all-solid-state battery using Si-based material as a negative electrode has been proposed.
In Patent Document 1, an inorganic solid electrolyte , an active material represented by the formula (1): Si x M (1-x) , and a solid electrolyte composition containing a particle polymer are applied onto a current collector and dried. An all-solid-state secondary battery including the negative electrode active material layer formed by the above-mentioned method is described.

特開2016−149238号公報Japanese Unexamined Patent Publication No. 2016-149238

特許文献1の全固体二次電池においては、負極中にSi系材料と共に結着材や固体電解質を含有している。
一方、全固体電池の電極中にSi系材料と共に結着材や固体電解質を共存させない場合には、Si系材料の粒子相互の接触性が不十分となり、充分な電池性能が得られにくくなる。
そのため、全固体電池の電極にSi系材料を用いる場合には、Si系材料の粒子相互の接触性を向上させるために電極内に結着材や固体電解質を含有させる必要がある。
しかし、全固体電池の電極中にSi系材料と共に結着材や固体電解質を共存させる場合には、Si系材料そのものの体積当たり理論容量は大きいにもかかわらず、電極中でのSi系材料の含有量が少なくなるため、電池全体としてのエネルギー密度が低くなるという問題がある。
本開示は、上記実情に鑑み、活物質としてSi系材料を含む負極を有し、エネルギー密度が高い全固体電池の製造方法を提供することを目的とする。
In the all-solid-state secondary battery of Patent Document 1, a binder and a solid electrolyte are contained in the negative electrode together with a Si-based material.
On the other hand, when the binder and the solid electrolyte are not coexisted with the Si-based material in the electrodes of the all-solid-state battery, the contact property between the particles of the Si-based material becomes insufficient, and it becomes difficult to obtain sufficient battery performance.
Therefore, when a Si-based material is used for the electrode of an all-solid-state battery, it is necessary to include a binder or a solid electrolyte in the electrode in order to improve the mutual contact property between the particles of the Si-based material.
However, when a binder or a solid electrolyte coexists with the Si-based material in the electrode of the all-solid-state battery, the Si-based material in the electrode has a large theoretical capacity per volume of the Si-based material itself. Since the content is low, there is a problem that the energy density of the battery as a whole is low.
In view of the above circumstances, an object of the present disclosure is to provide a method for manufacturing an all-solid-state battery having a negative electrode containing a Si-based material as an active material and having a high energy density.

本開示は、正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池の製造方法であって、
Liを含有する正極活物質を含む正極材料部、負極活物質としてSi単体粉末を含み且つ結着材、導電材、及び固体電解質を含まない負極材料部、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体を、前記正極材料部、前記固体電解質材料部及び前記負極材料部の配列方向に98MPa以上の圧力で加圧する加圧工程を有する、全固体電池の製造方法を提供する。
The present disclosure is a method for manufacturing an all-solid-state battery including a positive electrode, a negative electrode, and a solid electrolyte layer arranged between the positive electrode and the negative electrode.
A positive electrode material part containing a positive electrode active material containing Li, a negative electrode material part containing Si single powder as a negative electrode active material and not containing a binder, a conductive material, and a solid electrolyte, and the positive electrode material part and the negative electrode material. A preparatory step for preparing a primary assembly with solid electrolyte material sections arranged between the sections, and
Provided is a method for manufacturing an all-solid-state battery, which comprises a pressurizing step of pressurizing the primary assembly at a pressure of 98 MPa or more in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion.

本開示によれば、活物質としてSi系材料を含む負極を有し、エネルギー密度が高い全固体電池の製造方法が提供される。 According to the present disclosure, there is provided a method for manufacturing an all-solid-state battery having a negative electrode containing a Si-based material as an active material and having a high energy density.

本開示の全固体電池の製造方法における1次組立体を概念的に示す図である。It is a figure which conceptually shows the primary assembly in the manufacturing method of the all-solid-state battery of this disclosure. 本開示の製造方法により得られた全固体電池を概念的に示す図である。It is a figure which conceptually shows the all-solid-state battery obtained by the manufacturing method of this disclosure. 実施例1で製造された全固体電池の充放電サイクル数に対する電池容量を示す図である。It is a figure which shows the battery capacity with respect to the number of charge / discharge cycles of the all-solid-state battery manufactured in Example 1. FIG.

本開示は、正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池の製造方法であって、
Liを含有する正極活物質を含む正極材料部、負極活物質としてSi単体粉末を含み且つ結着材、導電材、及び固体電解質を含まない負極材料部、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体を、前記正極材料部、前記固体電解質材料部及び前記負極材料部の配列方向に98MPa以上の圧力で加圧する加圧工程を有する、全固体電池の製造方法を提供する。
The present disclosure is a method for manufacturing an all-solid-state battery including a positive electrode, a negative electrode, and a solid electrolyte layer arranged between the positive electrode and the negative electrode.
A positive electrode material part containing a positive electrode active material containing Li, a negative electrode material part containing Si single powder as a negative electrode active material and not containing a binder, a conductive material, and a solid electrolyte, and the positive electrode material part and the negative electrode material. A preparatory step for preparing a primary assembly with solid electrolyte material sections arranged between the sections, and
Provided is a method for manufacturing an all-solid-state battery, which comprises a pressurizing step of pressurizing the primary assembly at a pressure of 98 MPa or more in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion.

上記製造方法には、次の一態様が含まれる。
正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池の製造方法であって、
Liを含有する正極活物質を含む正極材料層、負極活物質としてSi単体粉末を含み且つ結着材、導電材、及び固体電解質を含まない負極材料層、並びに、前記正極材料層と前記負極材料層の間に配置された固体電解質材料層を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体を、前記正極材料層、前記固体電解質材料層及び前記負極材料層の積層方向に98MPa以上の圧力で加圧する加圧工程を有する、全固体電池の製造方法。
The manufacturing method includes the following aspect.
A method for manufacturing an all-solid-state battery including a positive electrode, a negative electrode, and a solid electrolyte layer arranged between the positive electrode and the negative electrode.
A positive electrode material layer containing a positive electrode active material containing Li, a negative electrode material layer containing Si single powder as a negative electrode active material and not containing a binder, a conductive material, and a solid electrolyte, and the positive electrode material layer and the negative electrode material. A preparatory step to prepare a primary assembly with solid electrolyte material layers arranged between the layers, as well as
A method for manufacturing an all-solid-state battery, comprising a pressurizing step of pressurizing the primary assembly at a pressure of 98 MPa or more in the stacking direction of the positive electrode material layer, the solid electrolyte material layer, and the negative electrode material layer.

本開示の製造方法では、負極活物質としてSi単体粒子を含み且つ結着材、導電材、及び固体電解質を含まない負極材料部を用いることにより、体積当たりの理論容量が大きいSi系材料からなる負極活物質を高密度に含む負極が形成されるため、電池全体としてのエネルギー密度が高い全固体電池を得ることができる。
また、本開示の上記製造方法では、前記1次組立体を、当該1次組立体に含まれる正極材料部、固体電解質材料部及び負極材料部の配列方向に98MPa以上の圧力で加圧することによりSi粉末と固体電解質の界面を形成し、固体電解質からSiにLiイオンが供給されやすい状態とすることができる。結果として、充放電時に、7MPa程度の低拘束圧にしても充放電可能な全固体電池ができる。
Si単体粉末を含み且つ結着材、導電材、及び固体電解質を含まない負極は、Si粒子同士が点接触であるため、固体電解質と接している最初の1層目の電池反応が起きない限り、2層目以降のその後のSi/Si界面の電池反応が進行しないと考えられる。
本開示の製造方法によれば、固体電解質と接している最初の1層目のSi粒子にLiイオンが挿入されると、そのSi粒子が膨張して粒子間の隙間を埋めることにより2層目のSi粒子との接触がとれるようになるため、初めにねじ締め等で加圧しておけば充放電時に大きな圧力をかけ続ける必要はなく、低拘束力でも連鎖的に電池反応が進行すると推察される。これは、Liイオン挿入時の体積変化が大きいSi等の材料ならではの現象であると推察される。
したがって、本開示の製造方法により得られた全固体電池は、充放電させるために高い圧力で加圧し続ける必要がないため、充放電中に圧力をかけ続けるための加圧治具が不要になり、電池パッケージ全体として考えた時の実質的な体積エネルギー密度を大きくすることができる。
The manufacturing method of the present disclosure comprises a Si-based material having a large theoretical capacity per volume by using a negative electrode material portion containing Si single particles as the negative electrode active material and not containing a binder, a conductive material, and a solid electrolyte. Since the negative electrode containing the negative electrode active material at a high density is formed, an all-solid-state battery having a high energy density of the battery as a whole can be obtained.
Further, in the above-mentioned manufacturing method of the present disclosure, the primary assembly is pressurized at a pressure of 98 MPa or more in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion and the negative electrode material portion contained in the primary assembly. It is possible to form an interface between the Si powder and the solid electrolyte so that Li ions can be easily supplied from the solid electrolyte to Si. As a result, an all-solid-state battery that can be charged / discharged even at a low restraint pressure of about 7 MPa can be produced during charging / discharging.
In the negative electrode containing Si single powder and not containing the binder, the conductive material, and the solid electrolyte, the Si particles are in point contact with each other, so unless the battery reaction of the first first layer in contact with the solid electrolyte occurs. It is considered that the subsequent battery reaction at the Si / Si interface after the second layer does not proceed.
According to the manufacturing method of the present disclosure, when Li ions are inserted into the first layer Si particles in contact with the solid electrolyte, the Si particles expand to fill the gaps between the particles, thereby filling the gaps between the particles to form the second layer. Since it becomes possible to make contact with the Si particles, it is not necessary to continue applying a large pressure during charging and discharging if the pressure is first applied by screwing, etc., and it is presumed that the battery reaction proceeds in a chain reaction even with a low binding force. To. It is presumed that this is a phenomenon unique to materials such as Si, which has a large volume change when Li ions are inserted.
Therefore, the all-solid-state battery obtained by the manufacturing method of the present disclosure does not need to be continuously pressurized at a high pressure in order to be charged and discharged, so that a pressurizing jig for continuously applying pressure during charging and discharging is not required. , It is possible to increase the substantial volumetric energy density when considering the battery package as a whole.

A.製造方法の概略
図1〜図2を用いて、本開示の全固体電池の製造方法を説明する。
先ず、図1に示すように、Liを含有する正極活物質を含む正極材料部3、負極活物質としてSi単体粉末を含み且つ結着材、導電材、及び固体電解質を含まない負極材料部2、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部1を備えた1次組立体101を準備する準備工程を行う。この1次組立体101は、正極材料部3、固体電解質材料部1及び負極材料部2が、この順序で配列された配列構造を有する。
次に、前記1次組立体101を、前記正極材料部3、前記固体電解質材料部1及び前記負極材料部2の配列方向に98MPa以上の圧力で加圧する加圧工程を行うことにより、図2に示すように、正極6、負極5及び前記正極6と前記負極5の間に接合された固体電解質層4を有する全固体電池(正極−固体電解質層−負極集合体)102が得られる。
A. Schematic of the manufacturing method The manufacturing method of the all-solid-state battery of the present disclosure will be described with reference to FIGS. 1 and 2.
First, as shown in FIG. 1, a positive electrode material portion 3 containing a positive electrode active material containing Li, and a negative electrode material portion 2 containing Si single powder as a negative electrode active material and not containing a binder, a conductive material, and a solid electrolyte. , And a preparatory step for preparing the primary assembly 101 including the solid electrolyte material portion 1 arranged between the positive electrode material portion and the negative electrode material portion. The primary assembly 101 has an array structure in which the positive electrode material portion 3, the solid electrolyte material portion 1, and the negative electrode material portion 2 are arranged in this order.
Next, FIG. 2 is performed by performing a pressurizing step of pressurizing the primary assembly 101 in the arrangement direction of the positive electrode material portion 3, the solid electrolyte material portion 1 and the negative electrode material portion 2 at a pressure of 98 MPa or more. As shown in the above, an all-solid-state battery (positive electrode-solid electrolyte layer-negative electrode aggregate) 102 having a positive electrode 6, a negative electrode 5, and a solid electrolyte layer 4 bonded between the positive electrode 6 and the negative electrode 5 is obtained.

B.準備工程
(1)負極材料部
本開示の製造方法において、負極材料部は、負極活物質としてSi単体粉末を含み、結着材、導電材、及び固体電解質を含まず、必要に応じ、他の成分を含む。電池のエネルギー密度を上げる観点から、負極材料部はSi単体粉末のみを含んでいてもよい。
Si単体粉末を構成するSi単体の粒子は、平均粒径(D50)が通常10nm以上50μm以下の範囲内、さらに50nm以上5μm以下の範囲内である。粒子の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、粒子の平均粒径が大きすぎると、平坦な負極材料部を得るのが困難になる場合がある。Si単体粒子同士の接触性を十分に高くする観点から、Si単体粒子の平均粒径は、1μm以下、特に100nm以下であってもよい。
負極材料部中のSi単体粉末の割合は、特に限定されるものではないが、活物質をできるだけ多く充填する観点から、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよく、100質量%であってもよい。
B. Preparation Step (1) Negative Electrode Material Part In the manufacturing method of the present disclosure, the negative electrode material part contains Si single powder as the negative electrode active material, does not contain a binder, a conductive material, and a solid electrolyte, and if necessary, other parts. Contains ingredients. From the viewpoint of increasing the energy density of the battery, the negative electrode material portion may contain only Si simple substance powder.
The particles of Si simple substance constituting the Si simple substance powder usually have an average particle size (D 50 ) in the range of 10 nm or more and 50 μm or less, and further in the range of 50 nm or more and 5 μm or less. If the average particle size of the particles is too small, the handleability may be poor, and if the average particle size of the particles is too large, it may be difficult to obtain a flat negative electrode material portion. From the viewpoint of sufficiently increasing the contact property between the Si simple substance particles, the average particle size of the Si simple substance particles may be 1 μm or less, particularly 100 nm or less.
The ratio of Si single powder in the negative electrode material portion is not particularly limited, but from the viewpoint of filling as much active material as possible, it is, for example, 50% by mass or more, and is within the range of 60% by mass or more and 100% by mass or less. It may be in the range of 70% by mass or more and 100% by mass or less, and may be 100% by mass.

前記負極材料部を形成するための材料(最終的に、負極を形成するための材料)、すなわち負極用合材は、電池のエネルギー密度を高くする観点から、典型的にはSi単体粉末のみ含有するが、必要に応じSi単体粉末以外の成分を含んでいてもよく、例えば、負極材料部を形成する途中で除去される成分を含んでいてもよい。
負極用合材中に含まれるが、負極材料部を形成する途中で除去される成分としては、溶剤や除去可能な結着材が挙げられる。
除去可能な結着材としては、負極用合材層を形成するときには結着材として機能するが、負極用合材層を焼成することにより分解又は揮散等し除去され、結着材を含まない負極材料部とすることができる結着材を用いることができる。そのような除去可能な結着材としては、ポリビニルブチラール、アクリル樹脂等が挙げられる。
The material for forming the negative electrode material portion (finally, the material for forming the negative electrode), that is, the negative electrode mixture, typically contains only Si simple substance powder from the viewpoint of increasing the energy density of the battery. However, if necessary, it may contain a component other than the Si simple substance powder, and for example, it may contain a component that is removed during the formation of the negative electrode material portion.
Examples of the components contained in the negative electrode mixture but removed during the formation of the negative electrode material include a solvent and a removable binder.
As a removable binder, it functions as a binder when forming a negative electrode mixture layer, but it is decomposed or volatilized and removed by firing the negative electrode mixture layer, and does not contain a binder. A binder material that can be used as the negative electrode material portion can be used. Examples of such a removable binder include polyvinyl butyral and acrylic resin.

負極材料部を形成する方法としては、Si単体粉末を含む負極用合材の粉末を加圧成形する方法が挙げられる。
Si単体粉末を含む負極用合材の粉末を加圧成形する場合には、通常、1MPa以上400MPa以下程度のプレス圧を負荷する。
その他の方法としては、例えば、Si単体粉末及び除去可能な結着材を含む負極用合材の粉末を加圧成形して負極用合材層を形成した後、焼成することにより結着材を除去する方法や、Si単体粉末、溶剤及び除去可能な結着材を含む負極用合材の分散液を固体電解質材料部の上又は他の支持体の上に塗布、乾燥して負極用合材層を形成した後、焼成することにより結着材を除去する方法等が挙げられる。
Examples of the method for forming the negative electrode material portion include a method of pressure molding a powder of a negative electrode mixture containing Si simple substance powder.
When the powder of the negative electrode mixture containing Si simple substance powder is pressure-molded, a press pressure of about 1 MPa or more and 400 MPa or less is usually applied.
As another method, for example, the binder is formed by pressure-molding the powder of the negative electrode mixture containing the Si single powder and the removable binder to form the negative electrode mixture layer, and then firing the binder. A method for removing the negative electrode, or a dispersion of the negative electrode mixture containing Si single powder, a solvent, and a removable binder is applied on the solid electrolyte material part or on another support, dried, and the negative electrode mixture is dried. Examples thereof include a method of removing the binder by firing after forming the layer.

(2)正極材料部
正極材料部は、Liを含有する正極活物質を含み、必要に応じ、結着材、固体電解質、及び導電材等の他の成分を含む。
本開示においてLiを含有する正極活物質は、Li元素を含む活物質であれば特に制限されるものではなく、単体状態のLiに限られず、リチウム化合物であってもよい。対極との関係で電池化学反応上の正極として機能し、Liイオンの移動を伴う電池化学反応を進行させる物質であれば、正極活物質として用いることができ、従来リチウムイオン電池の正極活物質として知られている物質も、本開示において用いることができる。
正極活物質としては例えば、リチウム単体金属、リチウム合金及びリチウム含有金属酸化物が挙げられる。リチウム合金としては、例えば、In−Li合金等を用いることができる。リチウム含有金属酸化物としては、例えば、LiCoO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCoPO等のオリビン型活物質等を挙げることができる。
前記正極活物質の形状は特に限定されないが、膜状であっても粒子状であってもよい。
正極材料部中の正極活物質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよい。
(2) Positive Electrode Material Part The positive electrode material part contains a positive electrode active material containing Li, and if necessary, contains other components such as a binder, a solid electrolyte, and a conductive material.
In the present disclosure, the positive electrode active material containing Li is not particularly limited as long as it is an active material containing a Li element, and is not limited to Li in a simple substance state, and may be a lithium compound. Any substance that functions as a positive electrode in the battery chemical reaction in relation to the counter electrode and promotes the battery chemical reaction accompanied by the movement of Li ions can be used as a positive electrode active material, and can be used as a positive electrode active material of a conventional lithium ion battery. Known substances can also be used in this disclosure.
Examples of the positive electrode active material include elemental lithium metals, lithium alloys, and lithium-containing metal oxides. As the lithium alloy, for example, an In-Li alloy or the like can be used. Examples of the lithium-containing metal oxide include rock salt layered active materials such as LiCoO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , Li (Ni 0). .5 Mn 1.5) spinel active material O 4 or the like, can be cited LiFePO 4, LiMnPO 4, LiNiPO 4, LiCoPO olivine active material such as 4.
The shape of the positive electrode active material is not particularly limited, but may be in the form of a film or particles.
The ratio of the positive electrode active material in the positive electrode material portion is not particularly limited, but may be, for example, 50% by mass or more, 60% by mass or more and 100% by mass or less, and 70% by mass or more. It may be in the range of 100% by mass or less.

前記結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を用いることができる。
前記導電材としては、アセチレンブラック、ケッチェンブラック、カーボンファイバー等の炭素材料を挙げることができる。
前記固体電解質としては、固体電解質結晶、非晶性固体電解質、固体電解質ガラスセラミックスのいずれであってもよく、後述する固体電解質材料部に用いられる固体電解質と同様のものを用いることができる。
As the binder, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), butylene rubber (BR), styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), acrylic resin and the like can be used. it can.
Examples of the conductive material include carbon materials such as acetylene black, ketjen black, and carbon fiber.
The solid electrolyte may be any of a solid electrolyte crystal, an amorphous solid electrolyte, and a solid electrolyte glass ceramics, and the same solid electrolyte as that used in the solid electrolyte material portion described later can be used.

正極材料部を形成するための材料(最終的に、正極を形成するための材料)、すなわち正極用合材は、さらに、正極材料部を形成する途中で除去される成分を含んでいてもよい。
正極用合材中に含まれるが、正極材料部を形成する途中で除去される成分としては、負極用合材に含有させることができる溶剤や除去可能な結着材と同様の成分が挙げられる。
正極材料部を形成する方法としては、負極材料部を形成する方法と同様の方法が挙げられる。
The material for forming the positive electrode material portion (finally, the material for forming the positive electrode), that is, the positive electrode mixture may further contain a component that is removed during the formation of the positive electrode material portion. ..
Examples of the components contained in the positive electrode mixture but removed during the formation of the positive electrode material include a solvent that can be contained in the negative electrode mixture and components similar to the removable binder. ..
Examples of the method for forming the positive electrode material portion include the same method as the method for forming the negative electrode material portion.

(3)固体電解質材料部
固体電解質材料部は、固体電解質を含み、必要に応じ、他の成分を含む。
固体電解質としては、Liイオンの伝導度が高い酸化物系固体電解質、硫化物系固体電解質等が挙げられる。
前記酸化物系固体電解質としては、例えばLi6.25LaZrAl0.2512、LiPO、Li3+xPO4−x(LiPON)等が挙げられ、前記硫化物系固体電解質としては、例えばLi11、LiPS、Li、Li13GeP16、Li10GeP12等が挙げられる。
固体電解質材料部を形成するための固体電解質として、粉末状の固体電解質を用いてもよく、その場合に粉末を構成する固体電解質粒子の平均粒径(D50)は、通常10nm以上50μm以下の範囲内、さらに50nm以上10μm以下の範囲内である。
(3) Solid Electrolyte Material Part The solid electrolyte material part contains a solid electrolyte and, if necessary, contains other components.
Examples of the solid electrolyte include oxide-based solid electrolytes having high Li ion conductivity, sulfide-based solid electrolytes, and the like.
Examples of the oxide-based solid electrolyte include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 , Li 3 + x PO 4-x N x (LiPON), and the like. Examples of the solid electrolyte include Li 7 P 3 S 11 , Li 3 PS 4 , Li 8 P 2 S 9 , Li 13 GeP 3 S 16 , Li 10 GeP 2 S 12, and the like.
A powdered solid electrolyte may be used as the solid electrolyte for forming the solid electrolyte material portion, and in that case, the average particle size (D 50 ) of the solid electrolyte particles constituting the powder is usually 10 nm or more and 50 μm or less. It is within the range, and further within the range of 50 nm or more and 10 μm or less.

前記固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよく、又は2層以上の固体電解質それぞれの層を形成して多層構造としてもよい。
固体電解質を2層構造とする場合には、例えば、正極側に硫化物系固体電解質、負極側に酸化物系固体電解質を配置してもよいし、その逆の順序で配置してもよい。固体電解質の電位窓に対応した配置であれば、どのような配置順序にしてもよい。
固体電解質材料部中の固体電解質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよく、100質量%であってもよい。
固体電解質材料部に含まれる他の成分としては、結着材、可塑剤、分散剤等が挙げられる。
As the solid electrolyte, one kind alone or two or more kinds can be used. When two or more kinds of solid electrolytes are used, two or more kinds of solid electrolytes may be mixed, or two or more layers of each solid electrolyte may be formed to form a multilayer structure.
When the solid electrolyte has a two-layer structure, for example, the sulfide-based solid electrolyte may be arranged on the positive electrode side and the oxide-based solid electrolyte may be arranged on the negative electrode side, or vice versa. Any arrangement may be used as long as it corresponds to the potential window of the solid electrolyte.
The ratio of the solid electrolyte in the solid electrolyte material portion is not particularly limited, but may be, for example, 50% by mass or more, 60% by mass or more and 100% by mass or less, and 70% by mass or more. It may be in the range of 100% by mass or less, or may be 100% by mass.
Examples of other components contained in the solid electrolyte material portion include binders, plasticizers, dispersants and the like.

固体電解質材料部を形成する方法としては、固体電解質及び必要に応じ他の成分を含む固体電解質材料の粉末を加圧成形する方法が挙げられる。固体電解質材料の粉末を加圧成形する場合には、通常、負極用合材の粉末を加圧成形する場合と同様に、1MPa以上400MPa以下程度のプレス圧を負荷する。
また、他の方法としては、固体電解質及び必要に応じ他の成分を含有する固体電解質材料の溶液又は分散液を用いたキャスト成膜法などを行うことができる。
Examples of the method for forming the solid electrolyte material portion include a method of pressure molding a powder of a solid electrolyte material containing a solid electrolyte and, if necessary, other components. When the powder of the solid electrolyte material is pressure-molded, a press pressure of about 1 MPa or more and 400 MPa or less is usually applied as in the case of pressure-molding the powder of the negative electrode mixture.
As another method, a cast film formation method using a solution or dispersion of a solid electrolyte and a solid electrolyte material containing other components as needed can be performed.

(4)1次組立体
本開示において1次組立体は、正極材料部、固体電解質材料部、及び、負極材料部がこの順序で配列され、直接または他の材料からなる部分を介して接合しており、さらに、正極材料部上の固体電解質材料部が存在する位置とは反対側(正極材料部の外方側)、及び、負極材料部上の固体電解質材料部が存在する位置とは反対側(負極材料部の外方側)のうちの片方又は両方の側に、他の材料からなる部分が接合していてもよい配列構造を有する各部の集合体(正極材料部−固体電解質材料部−負極材料部集合体)である。
前記1次組立体は、後述の加圧工程において、均一に加圧できる限り、他の材料からなる部分が付属していてもよい。正極材料部と固体電解質材料部の間には、例えば、LiNbO、LiTi12、LiPOのような被覆層が設けられていても良く、負極材料部と固体電解質材料部の間にも、同様の被覆層が設けられていても良い。
正極材料部の外方側及び負極材料部の外方側のいずれか一方又は両方の側には、例えば、集電体や外装体が後述する加圧工程前に付属していてもよい。
上記1次組立体は、典型的には、正極材料部、負極材料部、及び、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部が直接接合し、且つ、正極材料部の外方側及び負極材料部の外方側のいずれにも他の材料からなる部分が接合していない配列構造を有する集合体である。
(4) Primary Assembly In the present disclosure, in the primary assembly, the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion are arranged in this order and joined directly or via a portion made of another material. Further, the side opposite to the position where the solid electrolyte material part exists on the positive electrode material part (outside side of the positive electrode material part) and the position opposite to the position where the solid electrolyte material part exists on the negative electrode material part. An aggregate of each part having an arrangement structure in which a part made of another material may be joined to one or both sides of one side (outer side of the negative electrode material part) (positive electrode material part-solid electrolyte material part). -Negative electrode material part aggregate).
The primary assembly may be provided with a portion made of another material as long as it can be uniformly pressurized in the pressurizing step described later. A coating layer such as LiNbO 3 , Li 4 Ti 5 O 12 , or Li 3 PO 4 may be provided between the positive electrode material portion and the solid electrolyte material portion, and the negative electrode material portion and the solid electrolyte material portion may be provided. A similar coating layer may be provided between them.
For example, a current collector or an exterior body may be attached to either one or both of the outer side of the positive electrode material portion and the outer side of the negative electrode material portion before the pressurizing step described later.
In the primary assembly, typically, the positive electrode material portion, the negative electrode material portion, and the solid electrolyte material portion arranged between the positive electrode material portion and the negative electrode material portion are directly bonded to each other, and the positive electrode material is formed. It is an aggregate having an arrangement structure in which a portion made of another material is not joined to either the outer side of the portion or the outer side of the negative electrode material portion.

上記1次組立体を作製する方法の一実施形態として、固体電解質材料の粉末、負極材料の粉末、及び、正極材料の粉末を用い、固体電解質材料の粉体加圧成形を行うことにより固体電解質材料部を形成し、固体電解質材料部の一面上での負極材料の粉末の粉体加圧成形、及び、固体電解質材料部の負極材料を形成した面とは反対側の面上での正極材料の粉末の粉体加圧成形を順次行う方法である。
この場合、固体電解質材料の粉末、負極材料の粉末及び正極材料の粉末を加圧成形する際のプレス圧は、通常1MPa以上600MPa以下程度である。
As one embodiment of the method for producing the primary assembly, the solid electrolyte is formed by powder pressure molding of the solid electrolyte material using the powder of the solid electrolyte material, the powder of the negative electrode material, and the powder of the positive electrode material. The material part is formed, and the powder pressure molding of the powder of the negative electrode material on one surface of the solid electrolyte material part, and the positive electrode material on the surface opposite to the surface on which the negative electrode material of the solid electrolyte material part is formed. This is a method of sequentially performing powder pressure molding of the powder of.
In this case, the press pressure when the powder of the solid electrolyte material, the powder of the negative electrode material, and the powder of the positive electrode material are pressure-molded is usually about 1 MPa or more and 600 MPa or less.

また、上記1次組立体を作製する方法の別の実施形態として、例えば、粉体加圧成形の加圧シリンダ内に、Si単体粉末を含む負極材料の粉末を投入し均一な厚みに堆積して負極材料粉末堆積層を形成する。
上記負極材料粉末堆積層の上に、固体電解質粉末及び必要に応じ他の成分を含む固体電解質材料の粉末を投入し均一な厚みに堆積して固体電解質材料粉末層を形成する。
上記固体電解質材料粉末層の上に、Liを含有する正極活物質を含む材料の粉末を投入し均一な厚みに堆積して正極材料粉末層を形成する。
その後、このようにして形成された3層の粉末堆積層を有する粉末堆積体を一度に加圧成形することにより、1次組立体を作製してもよい。
Further, as another embodiment of the method for producing the primary assembly, for example, powder of a negative electrode material containing Si single powder is put into a pressure cylinder for powder pressure molding and deposited to a uniform thickness. To form a negative electrode material powder deposit layer.
A solid electrolyte powder and, if necessary, a powder of a solid electrolyte material containing other components are put on the negative electrode material powder deposit layer and deposited to a uniform thickness to form a solid electrolyte material powder layer.
On the solid electrolyte material powder layer, powder of a material containing a positive electrode active material containing Li is put and deposited to a uniform thickness to form a positive electrode material powder layer.
Then, the primary assembly may be produced by pressure-molding the powder deposits having the three powder deposit layers thus formed at one time.

また、固体電解質材料部、負極材料部、及び、正極材料部は、粉体加圧成形以外の手法で作製してもよい。例えば、固体電解質材料部は、固体電解質を含む固体電解質材料の溶液又は分散液を用いたキャスト成膜法により成形してもよい。負極材料部及び正極材料部は、例えば、負極材料の粉末又は正極材料の粉末、及び、除去可能な結着材を含む分散液を固体電解質材料部の上に塗布することにより塗膜を形成した後、この塗膜を加熱して塗膜から結着材を除去する方法や、あるいは、負極材料の粉末又は正極材料の粉末、及び、除去可能な結着材を含む粉末を加圧成形して正極材料部又は負極材料部の形状とした後、この成形体を加熱して塗膜から結着材を除去する方法により形成してもよい。
また、負極材料部及び正極材料部は、固体電解質材料部以外の支持体上に形成してもよい。その場合、当該支持体から負極材料部及び正極材料部を剥離し、剥離した負極材料部又は正極材料部を、固体電解質材料部の上に接合する。
Further, the solid electrolyte material part, the negative electrode material part, and the positive electrode material part may be manufactured by a method other than powder pressure molding. For example, the solid electrolyte material portion may be formed by a cast film forming method using a solution or dispersion of a solid electrolyte material containing a solid electrolyte. The negative electrode material part and the positive electrode material part formed a coating film by applying, for example, a powder of the negative electrode material or a powder of the positive electrode material, and a dispersion liquid containing a removable binder on the solid electrolyte material part. After that, the coating film is heated to remove the binder from the coating film, or the powder of the negative electrode material or the powder of the positive electrode material and the powder containing the removable binder are pressure-molded. After forming the shape of the positive electrode material portion or the negative electrode material portion, the molded body may be formed by a method of heating to remove the binder from the coating film.
Further, the negative electrode material portion and the positive electrode material portion may be formed on a support other than the solid electrolyte material portion. In that case, the negative electrode material portion and the positive electrode material portion are peeled from the support, and the peeled negative electrode material portion or the positive electrode material portion is joined onto the solid electrolyte material portion.

C.加圧工程
本開示の製造方法において加圧工程は、前記1次組立体を、正極材料部、固体電解質材料部及び負極材料部の配列方向に98MPa以上の圧力で加圧する工程である。
C. Pressurization Step In the manufacturing method of the present disclosure, the pressurization step is a step of pressurizing the primary assembly at a pressure of 98 MPa or more in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion.

1次組立体に負荷する圧力は、98MPa以上であればよいが、全固体電池内部のラミネーションを防止する観点から、400MPa以下であってもよい。
なお、負荷される圧力が十分でない場合には、Si系材料の粒子同士の接着が不十分となり、電池の充放電が困難になる恐れがある。
The pressure applied to the primary assembly may be 98 MPa or more, but may be 400 MPa or less from the viewpoint of preventing lamination inside the all-solid-state battery.
If the applied pressure is not sufficient, the particles of the Si-based material may not be sufficiently adhered to each other, making it difficult to charge and discharge the battery.

前記1次組立体を加圧する方法としては、特に制限されないが、例えば、平板プレス、ロールプレス等を用いて圧力を付加する方法等が挙げられる。 The method of pressurizing the primary assembly is not particularly limited, and examples thereof include a method of applying pressure using a flat plate press, a roll press, or the like.

D.全固体電池
上記1次組立体は、上記「C.加圧工程」を経て、全固体電池となる。全固体電池の典型的な構成は正極−固体電解質層−負極集合体である。
正極−固体電解質層−負極集合体は、正極、固体電解質層及び負極がこの順序で配列され、直接または他の材料からなる部分を介して接合しており、さらに、正極上の固体電解質層が存在する位置とは反対側(正極の外方側)、及び、負極上の固体電解質層が存在する位置とは反対側(負極の外方側)のうちの片方又は両方の側に、他の材料からなる部分が接合していてもよい配列構造を有する各部の集合体である。
正極−固体電解質層−負極集合体の正極と負極それぞれの厚みは、通常0.1μm以上100μm以下程度であり、固体電解質層の厚みは、通常0.1μm以上1mm以下程度である。
本開示の全固体電池には、集電体、外装体等の他の部材を取り付けてもよい。
本開示の全固体電池は、その後通電(充電)により、負極活物質にLiイオンを挿入して放電可能な状態としてもよい。
したがって、本開示における全固体電池は、初回充電前の状態を含む概念である。
本開示において、全固体電池の充電時の拘束圧は、特に限定されず、通常1MPa以上600MPa以下程度とすることができるが、電池の体積エネルギー密度を大きくする観点から、98MPa未満であってもよく、7MPa程度の低拘束圧であってもよい。
D. All-solid-state battery The primary assembly becomes an all-solid-state battery through the above-mentioned "C. pressurization step". A typical configuration of an all-solid-state battery is a positive electrode-solid electrolyte layer-negative electrode assembly.
In the positive electrode-solid electrolyte layer-negative electrode assembly, the positive electrode, the solid electrolyte layer and the negative electrode are arranged in this order and bonded directly or via a portion made of another material, and the solid electrolyte layer on the positive electrode is further formed. On one or both sides of the side opposite to the position where the solid electrolyte layer exists (outside the positive electrode) and the side opposite to the position where the solid electrolyte layer exists on the negative electrode (outside the negative electrode), the other. It is an aggregate of each part having an arrangement structure in which parts made of a material may be joined.
The thickness of each of the positive electrode and the negative electrode of the positive electrode-solid electrolyte layer-negative electrode aggregate is usually about 0.1 μm or more and 100 μm or less, and the thickness of the solid electrolyte layer is usually about 0.1 μm or more and about 1 mm or less.
Other members such as a current collector and an exterior body may be attached to the all-solid-state battery of the present disclosure.
The all-solid-state battery of the present disclosure may be in a state in which Li ions can be inserted into the negative electrode active material and discharged by energization (charging) thereafter.
Therefore, the all-solid-state battery in the present disclosure is a concept including a state before the first charge.
In the present disclosure, the restraining pressure during charging of the all-solid-state battery is not particularly limited and can be usually about 1 MPa or more and 600 MPa or less, but from the viewpoint of increasing the volumetric energy density of the battery, it may be less than 98 MPa. It may be as low as 7 MPa.

(固体電解質Aの合成)
アルゴン雰囲気下のグローブボックス内で、LiS及びPをモル比で4:1の組成となるように混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(5mmφ、80個)とともに、ジルコニア製のポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(フリッチュ・ジャパン社製P7)に取り付け、台盤回転数500rpmで、20時間メカニカルミリングを行った。これにより、固体電解質AとしてLiの粉末を得た。
(Synthesis of solid electrolyte A)
In a glove box under an argon atmosphere, Li 2 S and P 2 S 5 were mixed so as to have a molar ratio of 4: 1 to obtain a raw material composition. Next, 1 g of the raw material composition was placed in a zirconia pot (45 ml) together with zirconia balls (5 mmφ, 80 pieces), and the pot was completely sealed (argon atmosphere). This pot was attached to a planetary ball mill machine (P7 manufactured by Fritsch Japan Co., Ltd.), and mechanical milling was performed at a base rotation speed of 500 rpm for 20 hours. As a result, a powder of Li 8 P 2 S 9 was obtained as the solid electrolyte A.

(固体電解質Bの準備)
固体電解質Bとしては、直径φ10mm、厚み0.5mmのLi6.25LaZrAl0.2512(豊島製作所製)焼結体を用いた。
(Preparation of solid electrolyte B)
As the solid electrolyte B, a sintered body of Li 6.25 La 3 Zr 2 Al 0.25 O 12 (manufactured by Toyoshima Seisakusho) having a diameter of φ10 mm and a thickness of 0.5 mm was used.

(実施例1)
[準備工程]
1.まず、固体電解質Aの粉末150mgを、ポリエチレンテレフタラート(PET)製のシリンダに添加し、3.5ton/cm(≒343MPa)でプレスし、固体電解質材料部を形成した。
2.全固体電池の正極活物質としては、In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付したLiIn箔を用いた。当該LiIn箔を前記固体電解質材料部の一方の表面に配置し、続けて当該固体電解質材料部の他方の表面に、負極活物質であるSi単体の粉末(Alfa aesar社製 平均粒径100nm)を、単位面積当たりの添加量を0.9mg/cmとして堆積させた。
その後、負極材料部、固体電解質材料部、正極材料部(LiIn箔)をあわせて、1次組立体を得た。
[加圧工程]
得られた1次組立体を1ton/cm(≒98MPa)でプレスし、全固体電池を得た。
(Example 1)
[Preparation process]
1. 1. First, 150 mg of solid electrolyte A powder was added to a cylinder made of polyethylene terephthalate (PET ) and pressed at 3.5 ton / cm 2 (≈343 MPa) to form a solid electrolyte material portion.
2. As the positive electrode active material of the all-solid-state battery, a LiIn foil in which Li foil (manufactured by Honjo Chemical Co., Ltd.) was attached to In foil (φ10 mm manufactured by Niraco Co., Ltd., thickness 0.1 mm) was used. The LiIn foil is placed on one surface of the solid electrolyte material portion, and subsequently, a powder of Si alone as a negative electrode active material (average particle size 100 nm manufactured by Alpha aesar) is placed on the other surface of the solid electrolyte material portion. , The addition amount per unit area was 0.9 mg / cm 2 .
Then, the negative electrode material part, the solid electrolyte material part, and the positive electrode material part (LiIn foil) were combined to obtain a primary assembly.
[Pressure process]
The obtained primary assembly was pressed at 1 ton / cm 2 (≈98 MPa) to obtain an all-solid-state battery.

(実施例2)
[準備工程]
1.まず、固体電解質Aの粉末150mgを、PET製のシリンダに添加し、3.5ton/cm(≒343MPa)でプレスし、次に固体電解質Bの焼結体(φ10mm×t0.5mm)を、PET製のシリンダ内に配置することで固体電解質材料部を形成した。
2.In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付した正極材料部(LiIn箔)を用意し、固体電解質A側の表面に配置し、続けて固体電解質B側の表面に、負極活物質であるSi単体の粉末(Alfa aesar社製 平均粒径100nm)を、単位面積当たりの添加量を0.6mg/cmとして堆積させた。
そして、正極材料部(LiIn箔)、固体電解質材料部(固体電解質A、固体電解質B)、負極材料部をあわせて、1次組立体を得た。
[加圧工程]
得られた1次組立体を5ton/cm(≒490MPa)でプレスし、全固体電池を得た。
(Example 2)
[Preparation process]
1. 1. First, 150 mg of powder of solid electrolyte A was added to a cylinder made of PET , pressed at 3.5 ton / cm 2 (≈343 MPa), and then a sintered body of solid electrolyte B (φ10 mm × t0.5 mm) was added. The solid electrolyte material part was formed by arranging it in a PET cylinder.
2. Prepare a positive electrode material part (LiIn foil) in which Li foil (manufactured by Honjo Chemical Co., Ltd.) is attached to In foil (φ10 mm manufactured by Niraco Co., Ltd., thickness 0.1 mm), place it on the surface of the solid electrolyte A side, and then solid A powder of Si alone (manufactured by Alpha aesar, with an average particle size of 100 nm), which is a negative electrode active material, was deposited on the surface of the electrolyte B side with an addition amount of 0.6 mg / cm 2 per unit area.
Then, the positive electrode material part (LiIn foil), the solid electrolyte material part (solid electrolyte A, solid electrolyte B), and the negative electrode material part were combined to obtain a primary assembly.
[Pressure process]
The obtained primary assembly was pressed at 5 ton / cm 2 (≈490 MPa) to obtain an all-solid-state battery.

(比較例1)
上記[準備工程]で得られた1次組立体に対して加圧工程での98MPaのプレス処理を行わなかったこと以外は、実施例1と同様に全固体電池を得た。
(Comparative Example 1)
An all-solid-state battery was obtained in the same manner as in Example 1 except that the primary assembly obtained in the above [preparation step] was not pressed at 98 MPa in the pressurizing step.

[充放電試験]
実施例1〜2及び比較例1で得られた全固体電池を用いて、充放電試験を行った。
充放電試験は、実施例1及び比較例1の全固体電池については、0.4Nmのトルクでネジ締めすることにより、積層方向に7MPaの拘束圧を印加して、低拘束圧の状態で行った。
一方、実施例2の全固体電池については、6Nmのトルクでネジ締めすることにより、積層方向に100MPaの拘束圧を印加して、高拘束圧の状態で充放電試験を行った。結果を表1に示す。
[Charge / discharge test]
A charge / discharge test was performed using the all-solid-state batteries obtained in Examples 1 and 2 and Comparative Example 1.
The charge / discharge test was performed on the all-solid-state batteries of Example 1 and Comparative Example 1 in a low confining pressure state by applying a confining pressure of 7 MPa in the stacking direction by screwing with a torque of 0.4 Nm. It was.
On the other hand, the all-solid-state battery of Example 2 was subjected to a charge / discharge test in a state of high restraint pressure by applying a restraint pressure of 100 MPa in the stacking direction by screwing with a torque of 6 Nm. The results are shown in Table 1.

Figure 0006859234
Figure 0006859234

[充放電試験結果]
表1に示すように実施例1〜2では、充放電が可能であることがわかった。
図3は、実施例1で製造された全固体電池の充放電の1〜7サイクルに対する電池容量を示す図である。
図3に示すように、実施例1は、5〜6サイクル程度の充放電で電池容量が安定することがわかる。
一方、比較例1では、Si含有負極にLiイオンがほとんど挿入できず、充電が不可能であった。
なお、比較例1の充電は電圧が0.01Vになるまで0.1mA/cmの電流密度で定電流(CC)充電し、その後、得られた電圧で10時間定電圧(CV)充電を行ったが電流密度が1μA/cmにしかならなかった。これは、1次組立体に対して加圧工程でのプレス処理を行わなかったためと推察される。
[Charge / discharge test results]
As shown in Table 1, it was found that charging / discharging is possible in Examples 1 and 2.
FIG. 3 is a diagram showing the battery capacity for 1 to 7 cycles of charging and discharging of the all-solid-state battery manufactured in Example 1.
As shown in FIG. 3, it can be seen that in the first embodiment, the battery capacity is stabilized by charging and discharging for about 5 to 6 cycles.
On the other hand, in Comparative Example 1, Li ions could hardly be inserted into the Si-containing negative electrode, and charging was impossible.
In Comparative Example 1, constant current (CC) charging is performed at a current density of 0.1 mA / cm 2 until the voltage reaches 0.01 V, and then constant voltage (CV) charging is performed at the obtained voltage for 10 hours. However, the current density was only 1 μA / cm 2. It is presumed that this is because the primary assembly was not pressed in the pressurizing process.

以上の結果から、本開示の製造方法により得られた全固体電池は、電池として充放電させるために高い圧力で加圧し続ける必要がないため、充放電中に圧力をかけ続けるための加圧治具が不要になり、電池パッケージ全体として考えた時の実質的な体積エネルギー密度を大きくすることができる。 From the above results, the all-solid-state battery obtained by the manufacturing method of the present disclosure does not need to be continuously pressurized at a high pressure in order to be charged and discharged as a battery. No tools are required, and the actual volumetric energy density when considering the battery package as a whole can be increased.

1 固体電解質材料部(固体電解質材料層)
2 負極材料部(負極材料層)
3 正極材料部(正極材料層)
4 固体電解質層
5 負極
6 正極
101 1次組立体
102 全固体電池
1 Solid electrolyte material part (solid electrolyte material layer)
2 Negative electrode material part (negative electrode material layer)
3 Positive electrode material part (positive electrode material layer)
4 Solid electrolyte layer 5 Negative electrode 6 Positive electrode 101 Primary assembly 102 All-solid-state battery

Claims (1)

正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池の製造方法であって、
Liを含有する正極活物質を含む正極材料部、負極活物質としてSi単体粉末を含み且つ結着材、導電材、及び固体電解質を含まない負極材料部、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体を、前記正極材料部、前記固体電解質材料部及び前記負極材料部の配列方向に98MPa以上の圧力で加圧する加圧工程を有する、全固体電池の製造方法。
A method for manufacturing an all-solid-state battery including a positive electrode, a negative electrode, and a solid electrolyte layer arranged between the positive electrode and the negative electrode.
A positive electrode material part containing a positive electrode active material containing Li, a negative electrode material part containing Si single powder as a negative electrode active material and not containing a binder, a conductive material, and a solid electrolyte, and the positive electrode material part and the negative electrode material. A preparatory step for preparing a primary assembly with solid electrolyte material sections arranged between the sections, and
A method for manufacturing an all-solid-state battery, which comprises a pressurizing step of pressurizing the primary assembly at a pressure of 98 MPa or more in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion.
JP2017170613A 2017-09-05 2017-09-05 Manufacturing method of all-solid-state battery Active JP6859234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017170613A JP6859234B2 (en) 2017-09-05 2017-09-05 Manufacturing method of all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170613A JP6859234B2 (en) 2017-09-05 2017-09-05 Manufacturing method of all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2019046722A JP2019046722A (en) 2019-03-22
JP6859234B2 true JP6859234B2 (en) 2021-04-14

Family

ID=65814587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170613A Active JP6859234B2 (en) 2017-09-05 2017-09-05 Manufacturing method of all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6859234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985407B2 (en) 2017-11-21 2021-04-20 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339778A (en) * 1998-05-25 1999-12-10 Kao Corp Manufacture of secondary battery negative electrode
JP2007134272A (en) * 2005-11-14 2007-05-31 Sony Corp Current collector, anode, and battery
JP4941632B2 (en) * 2005-11-30 2012-05-30 ソニー株式会社 Negative electrode and battery
JP5194709B2 (en) * 2007-10-19 2013-05-08 住友電気工業株式会社 All-solid battery and method for manufacturing the same
JP5817657B2 (en) * 2012-06-20 2015-11-18 トヨタ自動車株式会社 Battery system, battery system manufacturing method, battery control device
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
JP6204671B2 (en) * 2013-03-26 2017-09-27 出光興産株式会社 All solid battery
JP6601204B2 (en) * 2015-12-18 2019-11-06 トヨタ自動車株式会社 Battery system
JP6759051B2 (en) * 2016-10-25 2020-09-23 日立造船株式会社 All-solid-state lithium-ion secondary battery
JP6696920B2 (en) * 2017-02-13 2020-05-20 国立研究開発法人物質・材料研究機構 All-solid-state lithium-ion secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP2019046722A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6172083B2 (en) Lithium solid state secondary battery and manufacturing method thereof
JP5741689B2 (en) All-solid battery and method for manufacturing the same
JP6881382B2 (en) All solid state battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP2016012495A (en) Lithium solid type secondary battery, and method for manufacturing the same
JP2019106286A (en) Positive electrode mixture, positive electrode active material layer, all-solid battery and method for manufacturing positive electrode active material layer
JP5796687B2 (en) Positive electrode material, secondary battery and manufacturing method thereof
JP5796798B2 (en) Positive electrode material, all solid state battery, and manufacturing method thereof
JP5796686B2 (en) All-solid battery and method for manufacturing the same
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
JPWO2018193992A1 (en) All-solid-state lithium-ion secondary battery
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
JP6859234B2 (en) Manufacturing method of all-solid-state battery
JP7107880B2 (en) Negative electrode mixture layer
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
JP6748035B2 (en) Method for manufacturing electrode member for all-solid-state battery
JP2014053166A (en) Sintered body for battery, all solid state lithium battery, and method for producing sintered body for battery
JP2021026836A (en) Positive electrode mixture material
CN112602208B (en) Electrode for all-solid battery and method of manufacturing electrode assembly including the same
CN114665148A (en) All-solid-state battery and method for manufacturing same
JP6875208B2 (en) Negative electrode raw materials for all-solid-state lithium-ion secondary batteries, negative electrode members, and methods for manufacturing all-solid-state lithium-ion secondary batteries using these.
WO2013035526A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP2018181708A (en) Negative electrode mixture material for all-solid lithium ion secondary battery, negative electrode including the same, and all-solid lithium ion secondary battery having negative electrode hereof
JP6992710B2 (en) A composite solid electrolyte layer, a method for manufacturing the same, and a method for manufacturing an all-solid-state battery.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210325

R150 Certificate of patent or registration of utility model

Ref document number: 6859234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250