JP2013089417A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2013089417A
JP2013089417A JP2011228045A JP2011228045A JP2013089417A JP 2013089417 A JP2013089417 A JP 2013089417A JP 2011228045 A JP2011228045 A JP 2011228045A JP 2011228045 A JP2011228045 A JP 2011228045A JP 2013089417 A JP2013089417 A JP 2013089417A
Authority
JP
Japan
Prior art keywords
active material
electrode active
negative electrode
layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011228045A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshida
健太郎 吉田
Kazuhiro Goto
和宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011228045A priority Critical patent/JP2013089417A/en
Publication of JP2013089417A publication Critical patent/JP2013089417A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery capable of suppressing occurrence of a short circuit between positive and negative electrodes due to a Li dendrite.SOLUTION: A nonaqueous electrolyte battery includes: a positive electrode including a positive electrode active material layer containing a positive electrode active material; a negative electrode including a negative electrode active material layer containing a negative electrode active material; and a solid electrolyte layer interposed between the positive and negative electrode active material layers. The negative electrode includes: a negative electrode active material layer containing a Li-containing negative electrode active material; and a conductive powder layer containing conductive powder. The conductive powder layer is provided on an opposite side to a solid electrolyte layer side of the negative electrode active material layer. The conductive powder layer is formed by pressure molding, and the solid electrolyte layer is formed by a gas phase method.

Description

本発明は、非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery.

非水電解質電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの携帯機器に使用されている。非水電解質電池の代表例としては、正極・負極間のリチウムイオンの授受反応を利用したリチウム電池やリチウムイオン二次電池(以下、単に「リチウム系電池」と呼ぶ)が挙げられる。   Non-aqueous electrolyte batteries have a long life, high efficiency, and high capacity, and are used in mobile devices such as mobile phones, notebook computers, and digital cameras. Typical examples of the nonaqueous electrolyte battery include a lithium battery and a lithium ion secondary battery (hereinafter simply referred to as “lithium battery”) using a lithium ion transfer reaction between the positive electrode and the negative electrode.

このリチウム系電池は、正極活物質を含む正極活物質層を有する正極と、負極活物質を含む負極活物質層を有する負極と、これら正負の活物質層間に介在される電解質層と、を備える。そして、正極活物質層と負極活物質層との間で電解質層を介してリチウムイオンが移動することによって充放電を行う。また近年では、有機電解液に代えて不燃性の無機固体電解質を用いた全固体電池が提案されている(特許文献1参照)。   The lithium battery includes a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and an electrolyte layer interposed between the positive and negative active material layers. . And charging / discharging is performed by a lithium ion moving through an electrolyte layer between a positive electrode active material layer and a negative electrode active material layer. In recent years, an all-solid battery using an incombustible inorganic solid electrolyte instead of an organic electrolyte has been proposed (see Patent Document 1).

この特許文献1には、負極活物質として、グラファイトなどの炭素材料(C)や金属リチウム(Li)及びその合金を用いることが開示されている。   Patent Document 1 discloses that a carbon material (C) such as graphite, metallic lithium (Li), and an alloy thereof are used as the negative electrode active material.

特開2008‐103289号公報JP 2008-103289 A

非水電解質電池(リチウム系電池)において、金属Li又はLi合金といったLiを含有する負極活物質を用いた場合、グラファイトに比べて高容量化を図ることが可能であることが知られている。しかし、上記したLiを含有する負極活物質(例えば、金属Li)を用いた場合、充電時に負極活物質層に金属Liが析出し、この析出した金属Liが固体電解質層のピンホールやクラックなどの微小な貫通欠陥を通ってデンドライト状に成長することで、正負極間短絡を引き起こす虞がある。   In a nonaqueous electrolyte battery (lithium-based battery), it is known that when a negative electrode active material containing Li, such as metal Li or a Li alloy, is used, the capacity can be increased as compared with graphite. However, when the above-described negative electrode active material containing Li (for example, metal Li) is used, metal Li is deposited on the negative electrode active material layer during charging, and the deposited metal Li is a pinhole or crack in the solid electrolyte layer. There is a possibility of causing a short circuit between the positive and negative electrodes by growing in a dendrite shape through the minute penetrating defects.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、Liデンドライトによる正負極間短絡を抑制することが可能な非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a nonaqueous electrolyte battery capable of suppressing a short circuit between positive and negative electrodes due to Li dendrite.

本発明は、負極が負極活物質層の固体電解質層側とは反対側に導電性粉末層を備えることで、上記課題を解決する。   This invention solves the said subject by providing a conductive powder layer in a negative electrode on the opposite side to the solid electrolyte layer side of a negative electrode active material layer.

(1)本発明の非水電解質電池は、正極活物質を含む正極活物質層を有する正極と、負極活物質を含む負極活物質層を有する負極と、これら正負の活物質層間に介在される固体電解質層と、を備える。そして、負極が、Liを含有する負極活物質を含む負極活物質層と、導電性粉末を含む導電性粉末層とを有する。導電性粉末層は、負極活物質層の固体電解質層側とは反対側に設けられている。導電性粉末層は加圧成形により形成され、固体電解質層は気相法により形成されている。   (1) The nonaqueous electrolyte battery of the present invention is interposed between a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and these positive and negative active material layers. A solid electrolyte layer. And a negative electrode has the negative electrode active material layer containing the negative electrode active material containing Li, and the electroconductive powder layer containing electroconductive powder. The conductive powder layer is provided on the side opposite to the solid electrolyte layer side of the negative electrode active material layer. The conductive powder layer is formed by pressure molding, and the solid electrolyte layer is formed by a gas phase method.

本発明の非水電解質電池によれば、負極が負極活物質層の固体電解質層側とは反対側に導電性粉末層を備えることで、充電時に負極活物質層に析出した金属Liが固体電解質側にデンドライト状に成長することを抑制することができる。その結果、Liデンドライトによる正負極間短絡を抑制することができる。固体電解質層側へのLiデンドライト成長を抑制することができるメカニズムについては、次のように考えられる。導電性粉末層は加圧成形により形成されているため空隙を有し、一方、固体電解質層は気相法により形成されているため緻密である。そして、負極活物質層の固体電解質層側とは反対側に導電性粉末層を備えることで、緻密な固体電解質層側よりも空隙の多い導電性粉末層側に金属Liが析出し易くなるため、固体電解質層側へのLiデンドライト成長を抑制することができると考えられる。   According to the nonaqueous electrolyte battery of the present invention, the negative electrode includes a conductive powder layer on the side opposite to the solid electrolyte layer side of the negative electrode active material layer, so that the metal Li deposited on the negative electrode active material layer during charging is a solid electrolyte. It is possible to suppress the dendrite-like growth on the side. As a result, it is possible to suppress a short circuit between positive and negative electrodes due to Li dendrite. The mechanism that can suppress Li dendrite growth on the solid electrolyte layer side is considered as follows. Since the conductive powder layer is formed by pressure molding, it has voids, while the solid electrolyte layer is dense because it is formed by a vapor phase method. And, by providing the conductive powder layer on the side opposite to the solid electrolyte layer side of the negative electrode active material layer, it becomes easier for metal Li to precipitate on the conductive powder layer side with more voids than on the dense solid electrolyte layer side. It is considered that Li dendrite growth on the solid electrolyte layer side can be suppressed.

気相法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、及びパルスレーザーデポジション法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法が挙げられる。   Examples of the vapor phase method include a physical vapor deposition (PVD) method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, and a pulse laser deposition method, and a chemical vapor deposition (CVD) method.

(2)本発明の非水電解質電池において、負極活物質が、C、Si、Ge、Sn及びAlから選択される少なくとも一種の元素とLiとを含有することが挙げられる。   (2) In the nonaqueous electrolyte battery of the present invention, it is mentioned that the negative electrode active material contains at least one element selected from C, Si, Ge, Sn, and Al and Li.

Liを含有する負極活物質としては、金属Li(Li金属単体)又はLi合金(Liと添加元素を含有する合金)を用いることができる。中でも、金属Liを負極活物質に用いた場合、エネルギー密度が高く、高容量化に有利である。一方、C、Si、Ge、Sn及びAlから選択される少なくとも一種の元素とLiとを含有する負極活物質を用いた場合、金属Liに比べて金属Liの析出が少なく、Liデンドライトによる正負極間短絡をより抑制することが可能である。   As the negative electrode active material containing Li, metal Li (Li metal simple substance) or Li alloy (an alloy containing Li and an additive element) can be used. In particular, when metal Li is used for the negative electrode active material, the energy density is high, which is advantageous for increasing the capacity. On the other hand, when a negative electrode active material containing at least one element selected from C, Si, Ge, Sn and Al and Li is used, the deposition of metal Li is less than that of metal Li, and the positive and negative electrodes are made of Li dendrite. It is possible to further suppress the short circuit.

負極活物質層は、負極活物質の粉末を用いて加圧成形により形成したり、負極活物質の箔を用いて形成したり、或いは、負極活物質の薄膜を気相法により成膜して形成することができる。   The negative electrode active material layer is formed by pressure molding using a powder of a negative electrode active material, formed using a foil of a negative electrode active material, or a thin film of a negative electrode active material is formed by a vapor phase method. Can be formed.

(3)本発明の非水電解質電池において、導電性粉末が、炭素粉末であることが挙げられる。   (3) In the nonaqueous electrolyte battery of the present invention, the conductive powder is a carbon powder.

導電性粉末としては、炭素(C)粉末が好適に用いることができる。導電性粉末層は、導電性粉末のみで形成してもよいし、必要に応じてバインダを添加してもよい。C粉末としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラックなどが挙げられる。バインダとしては、Liと反応して還元分解し難いものを用いることができ、具体例としては、テトラフルオロエチレン(TFE)、フッ化ビニリデン(VdF)、ヘキサフルオロプロピレン(HFP)の共重合体などが挙げられる。導電性粉末層は、導電性を有することから、集電体の機能も兼ねることが可能である。   As the conductive powder, carbon (C) powder can be suitably used. The conductive powder layer may be formed of only conductive powder, or a binder may be added as necessary. Examples of the C powder include carbon black such as acetylene black (AB) and ketjen black (KB). As the binder, one that does not easily undergo reductive decomposition by reacting with Li can be used. Specific examples include a copolymer of tetrafluoroethylene (TFE), vinylidene fluoride (VdF), hexafluoropropylene (HFP), etc. Is mentioned. Since the conductive powder layer has conductivity, it can also function as a current collector.

(4)本発明の非水電解質電池において、固体電解質層が、Li2SとP2S5を含有する硫化物系固体電解質を含むことが挙げられる。 (4) In the nonaqueous electrolyte battery of the present invention, the solid electrolyte layer includes a sulfide-based solid electrolyte containing Li 2 S and P 2 S 5 .

固体電解質層を形成する固体電解質としては、Li2Sを含む硫化物系固体電解質や、Li3PO4、LiPONなどの酸化物系固体電解質を用いることができるが、硫化物系固体電解質は、酸化物系固体電解質に比べて高いLiイオン伝導性を示すので好適である。硫化物系固体電解質としては、Li2S‐P2S5系、Li2S‐SiS2系、Li2S‐B2S3系などが挙げられ、更にP2O5やLi3PO4を添加してもよい。特に、硫化物系固体電解質の中でも、Li2SとP2S5を含有する硫化物系固体電解質は、高いLiイオン伝導性を示すのでより好適である。 As the solid electrolyte forming the solid electrolyte layer, a sulfide-based solid electrolyte containing Li 2 S and an oxide-based solid electrolyte such as Li 3 PO 4 , LiPON can be used. This is preferable because it exhibits higher Li ion conductivity than oxide-based solid electrolytes. Examples of sulfide-based solid electrolytes include Li 2 S-P 2 S 5 system, Li 2 S-SiS 2 system, Li 2 S-B 2 S 3 system, and also P 2 O 5 and Li 3 PO 4. May be added. In particular, among sulfide-based solid electrolytes, sulfide-based solid electrolytes containing Li 2 S and P 2 S 5 are more preferable because they exhibit high Li ion conductivity.

(5)本発明の非水電解質電池において、正極活物質層が、Co、Mn、Ni及びFeから選択される少なくとも一種の金属とLiとを含有する酸化物からなる正極活物質と、Li2SとP2S5を含有する硫化物系固体電解質と、を含むことが挙げられる。 (5) In the nonaqueous electrolyte battery of the present invention, the positive electrode active material the positive electrode active material layer, made of oxide containing Co, Mn, and at least one metal and Li is selected from Ni and Fe, Li 2 And a sulfide-based solid electrolyte containing S and P 2 S 5 .

正極活物質としては、Co、Mn、Ni及びFeから選択される少なくとも一種の金属とLiとを含有する酸化物、具体例としては、LiCoO2、LiNiO2、LiMn2O4、LiFePO4、LiNi1/3Co1/3Mn1/3O2、LiNi0.8Co0.15Al0.05O2、LiNi0.5Mn0.5O2、LiCo0.5Fe0.5O2、LiNi0.5Mn1.5O4などのLi含有複合酸化物を用いることができる。また、電極の活物質層において、活物質の他、固体電解質を含むことで、電池の内部抵抗を低減することが可能である。電解質層を固体電解質で形成した固体電解質層を備える電池(全固体電池)では、電極の活物質層に固体電解質を含まない場合、活物質層と固体電解質層の界面でのみLiイオンの授受が行われ、活物質層内部(界面から離れた部分)ではイオンが十分に拡散せず、活物質層内部の活物質が電池反応に有効に活用されない問題が起こり得る。この問題は、活物質層の厚さが厚膜(例えば50μm以上)になるほど顕著に現れる傾向がある。よって、活物質層が活物質と固体電解質とを含み、活物質層中に活物質と固体電解質とが混在することで、活物質層内部でのイオン拡散を固体電解質が促進させ、活物質層内部の活物質を電池反応に有効に活用することができる。その結果、電池の内部抵抗を低減することができる。上述したように、Li2SとP2S5を含有する硫化物系固体電解質は、高いLiイオン伝導性を示すので好適である。 As the positive electrode active material, an oxide containing at least one metal selected from Co, Mn, Ni and Fe and Li, specific examples include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , LiNi Li-containing composite oxides such as 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiCo 0.5 Fe 0.5 O 2 , LiNi 0.5 Mn 1.5 O 4 Can be used. Moreover, in the active material layer of the electrode, the internal resistance of the battery can be reduced by including a solid electrolyte in addition to the active material. In a battery having an electrolyte layer formed of a solid electrolyte (all-solid battery), if the electrode active material layer does not contain a solid electrolyte, Li ions can be exchanged only at the interface between the active material layer and the solid electrolyte layer. However, the ions are not sufficiently diffused inside the active material layer (parts away from the interface), and the active material inside the active material layer may not be effectively used for the battery reaction. This problem tends to become more prominent as the thickness of the active material layer becomes thicker (for example, 50 μm or more). Therefore, the active material layer includes the active material and the solid electrolyte, and the active material layer includes the active material and the solid electrolyte, so that the solid electrolyte promotes ion diffusion inside the active material layer, and the active material layer The internal active material can be effectively used for the battery reaction. As a result, the internal resistance of the battery can be reduced. As described above, a sulfide-based solid electrolyte containing Li 2 S and P 2 S 5 is suitable because it exhibits high Li ion conductivity.

正極活物質層は、正極活物質の粉末を用いて加圧成形により形成したり、正極活物質の薄膜を気相法により成膜して形成することができる。   The positive electrode active material layer can be formed by pressure molding using a powder of the positive electrode active material, or a thin film of the positive electrode active material can be formed by a vapor phase method.

負極活物質層においても、正極活物質層と同様に、負極活物質と、Li2SとP2S5を含有する硫化物系固体電解質とを含む構成としてもよい。特に、粉末を用いて加圧成形により活物質層を形成した場合、気相法により形成する場合に比べて、厚膜になり易いことから、粉末を用いて加圧成形により形成する場合は、活物質粉末と固体電解質粉末とを混合して用いるとよい。 Similarly to the positive electrode active material layer, the negative electrode active material layer may include a negative electrode active material and a sulfide-based solid electrolyte containing Li 2 S and P 2 S 5 . In particular, when an active material layer is formed by pressure molding using powder, it tends to be thicker than when formed by a vapor phase method, so when forming by pressure molding using powder, An active material powder and a solid electrolyte powder may be mixed and used.

本発明の非水電解質電池は、負極が負極活物質層の固体電解質層側とは反対側に導電性粉末層を備えることで、充電時に負極活物質層に析出した金属Liが固体電解質側にデンドライト状に成長することを抑制することができる。その結果、Liデンドライトによる正負極間短絡を抑制することができる。   In the non-aqueous electrolyte battery of the present invention, the negative electrode includes a conductive powder layer on the side opposite to the solid electrolyte layer side of the negative electrode active material layer, so that the metal Li deposited on the negative electrode active material layer during charging is on the solid electrolyte side. It can suppress the growth of dendrites. As a result, it is possible to suppress a short circuit between positive and negative electrodes due to Li dendrite.

(実施例1)
本発明の非水電解質電池(リチウム系電池)を作製し、その電池性能を評価した。
Example 1
A non-aqueous electrolyte battery (lithium battery) of the present invention was produced and its battery performance was evaluated.

[正極体の作製]
LiCoO2の粉末とLi2S‐P2S5系固体電解質の粉末とを質量比で70:30の割合で混合して正極合剤を作製した。次に、直径16mmの円形状の金型に正極集電体となるAl箔(直径:16mm、厚さ:100μm)を配置し、その上から正極合剤を充填した後、これを360MPaで加圧成形して、正極集電体の上にLiCoO2とLi2S‐P2S5系固体電解質とを混合してなる正極活物質層が形成された正極体を作製した。この正極活物質層の厚さは80μmとした。さらに、この正極体の正極活物質層の上に、真空蒸着法によりアモルファス状のLi2S‐P2S5系固体電解質を成膜して、Li2S‐P2S5系固体電解質からなる固体電解質層を形成した。この固体電解質層の厚さは5μmとした。
[Preparation of positive electrode body]
A positive electrode mixture was prepared by mixing LiCoO 2 powder and Li 2 S-P 2 S 5 solid electrolyte powder in a mass ratio of 70:30. Next, an Al foil (diameter: 16 mm, thickness: 100 μm) serving as a positive electrode current collector was placed in a circular mold having a diameter of 16 mm, and the positive electrode mixture was filled from above, and this was added at 360 MPa. A positive electrode body in which a positive electrode active material layer formed by mixing LiCoO 2 and a Li 2 S—P 2 S 5 solid electrolyte was formed on a positive electrode current collector was produced. The thickness of this positive electrode active material layer was 80 μm. Furthermore, an amorphous Li 2 S-P 2 S 5 solid electrolyte is formed on the positive electrode active material layer of the positive electrode body by vacuum deposition, and the Li 2 S-P 2 S 5 solid electrolyte is formed. A solid electrolyte layer was formed. The thickness of this solid electrolyte layer was 5 μm.

[負極体の作製]
直径16mmの円形状の金型に負極集電体となるステンレス箔(直径:16mm、厚さ:100μm)を配置し、その上からC粉末を充填した後、これを360MPaで加圧成形して、負極集電体の上にC粉末からなる導電性粉末層を形成した。この導電性粉末層の厚さは100μmとした。次いで、この導電性粉末層の上に、真空蒸着法により金属Liを成膜して、金属Liからなる負極活物質層が形成された負極体を作製した。この負極活物質層の厚さは1μmとした。さらに、この負極体の負極活物質層の上に、真空蒸着法によりアモルファス状のLi2S‐P2S5系固体電解質を成膜して、Li2S‐P2S5系固体電解質からなる固体電解質層を形成した。この固体電解質層の厚さは5μmとした。
[Preparation of negative electrode body]
Place a stainless steel foil (diameter: 16mm, thickness: 100μm) as a negative electrode current collector in a circular mold with a diameter of 16mm, fill with C powder from above, and press mold it at 360MPa A conductive powder layer made of C powder was formed on the negative electrode current collector. The thickness of this conductive powder layer was 100 μm. Next, a metal Li film was formed on the conductive powder layer by a vacuum vapor deposition method to produce a negative electrode body in which a negative electrode active material layer made of metal Li was formed. The thickness of this negative electrode active material layer was 1 μm. Further, an amorphous Li 2 S-P 2 S 5 solid electrolyte is formed on the negative electrode active material layer of the negative electrode body by vacuum deposition, and the Li 2 S-P 2 S 5 solid electrolyte is formed. A solid electrolyte layer was formed. The thickness of this solid electrolyte layer was 5 μm.

ここでは、平均粒径が10μmのC粉末を用いた。また、加圧成形により形成された導電性粉末層の厚さ方向断面を走査型電子顕微鏡により観察して、導電性粉末層の空隙率を求めた。導電性粉末層の空隙率は、観察視野内の空隙の合計面積を求め、観察視野面積に占める空隙の合計面積の割合(%)として求めた。その結果、空隙率は20%であった。   Here, C powder having an average particle size of 10 μm was used. In addition, the cross section in the thickness direction of the conductive powder layer formed by pressure molding was observed with a scanning electron microscope to determine the porosity of the conductive powder layer. The porosity of the conductive powder layer was obtained as a ratio (%) of the total area of the voids in the observation visual field area by obtaining the total area of the voids in the observation visual field. As a result, the porosity was 20%.

[電池の作製]
そして、露点温度−50℃の大気中で、正極体と負極体とを互いの固体電解質層同士が対向するように重ね合わせ、加圧加熱処理することにより、固体電解質層同士を接合して、電池を作製した。この加圧加熱処理は、正極体と負極体の重ね合わせ方向に16MPaで加圧し、150℃に加熱して30分間保持することで行った。
[Production of battery]
And, in the atmosphere with a dew point temperature of −50 ° C., the positive electrode body and the negative electrode body are overlapped so that the solid electrolyte layers face each other, and subjected to pressure heat treatment, thereby joining the solid electrolyte layers, A battery was produced. This pressurizing and heating treatment was performed by applying a pressure of 16 MPa in the overlapping direction of the positive electrode body and the negative electrode body, heating to 150 ° C., and holding for 30 minutes.

以上のようにして作製した非水電解質電池を充放電試験用セルに組み込み、これを試料No.1-1とした。   The nonaqueous electrolyte battery produced as described above was incorporated into a charge / discharge test cell, and this was designated as Sample No. 1-1.

比較として、負極集電体の上にC粉末からなる導電性粉末層を形成しなかった以外は、試料No.1-1と同様にして電池を作製した。この電池を充放電試験用セルに組み込み、これを試料No.1-2とした。   For comparison, a battery was fabricated in the same manner as Sample No. 1-1 except that the conductive powder layer made of C powder was not formed on the negative electrode current collector. This battery was incorporated into a charge / discharge test cell, and this was designated as Sample No. 1-2.

[電池の評価]
作製した各電池について、充放電試験を実施し、動作確認を行った。充放電試験は、電流密度:0.05mA/cm2、カットオフ電圧:3.0V〜4.2Vの条件で実施した。
[Battery evaluation]
About each produced battery, the charging / discharging test was implemented and operation | movement confirmation was performed. The charge / discharge test was performed under the conditions of current density: 0.05 mA / cm 2 and cut-off voltage: 3.0 V to 4.2 V.

その結果、試料No.1-1の電池では、正負極間短絡を生じることなく、安定した充放電動作が可能であった。これに対し、試料No.1-2の電池では、初回の充電時に正負極間短絡が生じて、電池動作が不安定となった。   As a result, the battery of Sample No. 1-1 was capable of stable charge / discharge operation without causing a short circuit between the positive and negative electrodes. On the other hand, in the battery of sample No. 1-2, a short circuit between the positive and negative electrodes occurred during the first charge, and the battery operation became unstable.

以上の結果から、負極が負極活物質層の固体電解質層側とは反対側に導電性粉末層を備えることで、充電時に負極活物質層に析出した金属Liが固体電解質側にデンドライト状に成長することを抑制して、Liデンドライトによる正負極間短絡を抑制できることが分かる。   From the above results, the negative electrode has a conductive powder layer on the side opposite to the solid electrolyte layer side of the negative electrode active material layer, so that the metal Li deposited on the negative electrode active material layer during charging grows in a dendrite shape on the solid electrolyte side It can be seen that the short circuit between the positive and negative electrodes due to Li dendrite can be suppressed.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、負極活物質にLi合金を用いてもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, a Li alloy may be used for the negative electrode active material.

本発明の非水電解質電池は、リチウム系電池の分野に好適に利用することができ、例えば、携帯電話、ノートパソコン、デジタルカメラの他、電気自動車などの電源にも使用することが可能である。   The nonaqueous electrolyte battery of the present invention can be suitably used in the field of lithium-based batteries, and can be used, for example, as a power source for electric vehicles as well as mobile phones, notebook computers, digital cameras, and the like. .

Claims (5)

正極活物質を含む正極活物質層を有する正極と、負極活物質を含む負極活物質層を有する負極と、これら正負の活物質層間に介在される固体電解質層と、を備える非水電解質電池であって、
前記負極は、Liを含有する負極活物質を含む負極活物質層と、前記負極活物質層の前記固体電解質層側とは反対側に設けられ、導電性粉末を含む導電性粉末層と、を有し、
前記導電性粉末層は、加圧成形により形成され、
前記固体電解質層は、気相法により形成されていることを特徴とする非水電解質電池。
A nonaqueous electrolyte battery comprising a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and a solid electrolyte layer interposed between the positive and negative active material layers. There,
The negative electrode includes a negative electrode active material layer containing a negative electrode active material containing Li, and a conductive powder layer provided on the opposite side of the negative electrode active material layer from the solid electrolyte layer side, and containing a conductive powder. Have
The conductive powder layer is formed by pressure molding,
The non-aqueous electrolyte battery, wherein the solid electrolyte layer is formed by a vapor phase method.
前記負極活物質が、C、Si、Ge、Sn及びAlから選択される少なくとも一種の元素とLiとを含有することを特徴とする請求項1に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode active material contains at least one element selected from C, Si, Ge, Sn, and Al and Li. 前記導電性粉末が、炭素粉末であることを特徴とする請求項1又は2に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the conductive powder is carbon powder. 前記固体電解質層が、Li2SとP2S5を含有する硫化物系固体電解質を含むことを特徴とする請求項1〜3のいずれか一項に記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 1, wherein the solid electrolyte layer includes a sulfide-based solid electrolyte containing Li 2 S and P 2 S 5 . 前記正極活物質層が、Co、Mn、Ni及びFeから選択される少なくとも一種の金属とLiとを含有する酸化物からなる正極活物質と、Li2SとP2S5を含有する硫化物系固体電解質と、を含むことを特徴とする請求項1〜4のいずれか一項に記載の非水電解質電池。 The positive electrode active material layer is a positive electrode active material comprising an oxide containing at least one metal selected from Co, Mn, Ni and Fe and Li, and a sulfide containing Li 2 S and P 2 S 5 The non-aqueous electrolyte battery according to claim 1, further comprising: a solid electrolyte.
JP2011228045A 2011-10-17 2011-10-17 Nonaqueous electrolyte battery Pending JP2013089417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228045A JP2013089417A (en) 2011-10-17 2011-10-17 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228045A JP2013089417A (en) 2011-10-17 2011-10-17 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2013089417A true JP2013089417A (en) 2013-05-13

Family

ID=48533131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228045A Pending JP2013089417A (en) 2011-10-17 2011-10-17 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2013089417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442054A1 (en) 2017-08-10 2019-02-13 Toyota Jidosha Kabushiki Kaisha Lithium solid battery
JP2021089814A (en) * 2019-12-03 2021-06-10 トヨタ自動車株式会社 All-solid battery
CN113544894A (en) * 2018-12-04 2021-10-22 太瓦技术公司 Anode-less solid-state battery cell with dendrite resistance and functional layer with controlled interfacial adhesion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442054A1 (en) 2017-08-10 2019-02-13 Toyota Jidosha Kabushiki Kaisha Lithium solid battery
US20190051933A1 (en) * 2017-08-10 2019-02-14 Toyota Jidosha Kabushiki Kaisha Lithium solid battery
KR20190017661A (en) 2017-08-10 2019-02-20 도요타 지도샤(주) Lithium solid battery
CN109390622A (en) * 2017-08-10 2019-02-26 丰田自动车株式会社 Lithium solid state battery
JP2019036537A (en) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 Lithium solid battery
JP7028100B2 (en) 2017-08-10 2022-03-02 トヨタ自動車株式会社 Lithium solid state battery
US11646443B2 (en) 2017-08-10 2023-05-09 Toyota Jidosha Kabushiki Kaisha Lithium solid battery
CN113544894A (en) * 2018-12-04 2021-10-22 太瓦技术公司 Anode-less solid-state battery cell with dendrite resistance and functional layer with controlled interfacial adhesion
JP2021089814A (en) * 2019-12-03 2021-06-10 トヨタ自動車株式会社 All-solid battery
JP7318511B2 (en) 2019-12-03 2023-08-01 トヨタ自動車株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP5376412B2 (en) Non-aqueous electrolyte battery
KR102094991B1 (en) lithium secondary battery
WO2010021205A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP5348607B2 (en) All-solid lithium secondary battery
KR102198115B1 (en) Electrode, method of producing the same, battery, and electronic device
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP2017517842A (en) Galvanic element and manufacturing method thereof
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
CN108886169A (en) Nonaqueous electrolyte and lithium secondary battery including the nonaqueous electrolyte
JP2012014892A (en) Nonaqueous electrolyte battery
JP2015056349A (en) Lithium battery
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2012221749A (en) Nonaqueous electrolyte battery
JP2011086554A (en) Nonaqueous electrolyte battery
KR20160018379A (en) Cathode active material for lithium battery, lithium battery, and method for producing cathode active material for lithium battery
CN111193058B (en) All-solid-state lithium secondary battery and degradation determination method for all-solid-state lithium secondary battery
KR20210007483A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
JP2015032535A (en) Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
JP2013161646A (en) Nonaqueous electrolyte battery and manufacturing method therefor, and electric vehicle using the same
JP2010113968A (en) Method of manufacturing nonaqueous electrolyte battery
JP2013089417A (en) Nonaqueous electrolyte battery
JP2011113735A (en) Nonaqueous electrolyte battery
JP2012099289A (en) Nonaqueous electrolyte battery
JP5454459B2 (en) Non-aqueous electrolyte battery