JP2013089470A - Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery - Google Patents

Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2013089470A
JP2013089470A JP2011229292A JP2011229292A JP2013089470A JP 2013089470 A JP2013089470 A JP 2013089470A JP 2011229292 A JP2011229292 A JP 2011229292A JP 2011229292 A JP2011229292 A JP 2011229292A JP 2013089470 A JP2013089470 A JP 2013089470A
Authority
JP
Japan
Prior art keywords
layer
solid
positive electrode
active material
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229292A
Other languages
Japanese (ja)
Inventor
Tomoharu Takeyama
知陽 竹山
Taku Kamimura
卓 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011229292A priority Critical patent/JP2013089470A/en
Publication of JP2013089470A publication Critical patent/JP2013089470A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonaqueous electrolyte battery capable of preventing a short circuit with higher reliability than conventional nonaqueous electrolyte batteries.SOLUTION: A method for manufacturing a nonaqueous electrolyte battery 100 comprises: a step α of making a positive electrode body including a positive electrode active material layer 12; a step β of forming a first solid layer 31 to constitute a portion of a solid electrolyte (SE) layer 3 by arranging a powder of an amorphous solid electrolyte on the positive electrode body and pressing the powder with a mold heated to temperatures higher than the glass-transition temperature and lower than the crystallization temperature of the solid electrolyte; and a step γ of forming the SE layer 3 composed of the first solid layer 31 and a second solid layer 32 by forming the second solid layer 32 composed of a solid electrolyte on the first solid layer 31 by a gas phase method.

Description

本発明は、正極活物質層、負極活物質層、およびこれら活物質層の間に介在される固体電解質層を備える非水電解質電池に関するものである。特に、本発明は、繰り返し充放電しても短絡が生じ難い非水電解質電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery including a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer interposed between these active material layers. In particular, the present invention relates to a non-aqueous electrolyte battery that is unlikely to cause a short circuit even when repeatedly charged and discharged.

充放電を繰り返すことを前提とした電源として、正極層と負極層とこれら電極層の間に配される電解質層とを備える非水電解質電池が利用されている。この電池に備わる電極層はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。このような非水電解質電池のなかでも特に、正・負極体間のLiイオンの移動により充放電を行なう非水電解質電池は、小型でありながら高い放電容量を備える。   A nonaqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between these electrode layers is used as a power source on the premise that charging and discharging are repeated. The electrode layer included in the battery further includes a current collector having a current collecting function and an active material layer containing an active material. Among such non-aqueous electrolyte batteries, in particular, a non-aqueous electrolyte battery that charges and discharges by movement of Li ions between the positive and negative electrode bodies has a high discharge capacity while being small.

上述した非水電解質電池において、デンドライトに起因する正・負極間の短絡を抑制するために、電解質層を固体とすることが提案されている。デンドライトは、電池の充放電に伴って負極活物質層の表面に生成する針状のLiの結晶である。このデンドライトの成長をより効果的に抑制する技術として、例えば特許文献1には、固体電解質層をさらに粉末成形体部と表面蒸着膜の2層構造とする技術が開示されている。固体電解質粉末を加圧成形した粉末成形体部は、その内部にデンドライトの成長経路となる空隙ができ易いという欠点がある。しかし、粉末成形体部は割れ難いため、割れによる新たなデンドライトの成長経路が形成され難いという利点がある。一方、気相形成した表面蒸着膜は、緻密であるためデンドライトの成長経路となる空隙を殆ど有さないという利点があるものの、緻密であるが故に割れ易いため、形成後にデンドライトの成長経路ができる可能性があるという欠点がある。これら粉末成形体部と表面蒸着膜とを備える特許文献1の非水電解質電池では、粉末成形体部の欠点を表面蒸着膜の利点でカバーし、表面蒸着膜の欠点を粉末成形体部の利点でカバーすることで、デンドライトの成長を抑制している。   In the non-aqueous electrolyte battery described above, it has been proposed to make the electrolyte layer solid in order to suppress a short circuit between the positive electrode and the negative electrode caused by dendrites. The dendrite is a needle-like Li crystal generated on the surface of the negative electrode active material layer as the battery is charged and discharged. As a technique for more effectively suppressing the dendrite growth, for example, Patent Document 1 discloses a technique in which the solid electrolyte layer is further formed into a two-layer structure of a powder molded body portion and a surface vapor deposition film. The powder molded body portion obtained by pressure-molding the solid electrolyte powder has a drawback that voids that become dendrite growth paths are easily formed inside. However, since the powder molded body portion is difficult to break, there is an advantage that a new dendrite growth path due to cracking is hardly formed. On the other hand, the vapor-deposited surface-deposited film has the advantage of having almost no voids as a dendrite growth path because it is dense. There is a drawback that there is a possibility. In the non-aqueous electrolyte battery of Patent Document 1 provided with these powder molded body part and surface deposited film, the disadvantages of the powder molded body part are covered with the advantages of the surface deposited film, and the defects of the surface deposited film are covered with the advantages of the powder molded body part. By covering with, dendrite growth is suppressed.

特開2009−301959号公報JP 2009-301959 A

特許文献1の技術ではデンドライトの成長を十分に抑制できない場合があった。粉末成形体部の上に表面蒸着膜を形成するときに、粉末成形体部の表面があまりに粗いと、その表面の欠陥を表面蒸着膜で埋めきれない場合があるからである。また、粉末成形体部の表面が粗いと、表面蒸着膜が異常成長し、表面蒸着膜にピンホールなどの欠陥が生じる恐れもある。そうなると、粉末成形体部の欠点を表面蒸着膜で補うことができなくなり、短絡を抑制する効果も減少する。さらに、粉末成形体部の表面が粗いことで、その表面に形成される表面蒸着膜の表面も粗くなると、これら粉末成形体部および表面蒸着膜からなる固体電解質層と、負極活物質層との間に隙間が形成される恐れがある。当該隙間は、短絡の原因となるデンドライトの成長起点となり易い。   In the technique of Patent Document 1, dendrite growth may not be sufficiently suppressed. This is because when the surface vapor-deposited film is formed on the powder molded body, if the surface of the powder molded body is too rough, defects on the surface may not be filled with the surface vapor-deposited film. Further, if the surface of the powder molded body is rough, the surface vapor deposition film may grow abnormally, and defects such as pinholes may occur in the surface vapor deposition film. If it becomes so, it will become impossible to make up for the fault of a powder fabrication object part with a surface vapor deposition film, and the effect which controls a short circuit will also decrease. Furthermore, when the surface of the powder molded body portion is rough and the surface of the surface vapor deposition film formed on the surface becomes rough, the solid electrolyte layer composed of the powder molded body portion and the surface vapor deposition film, and the negative electrode active material layer There may be a gap between them. The gap is likely to become a dendrite growth starting point causing a short circuit.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、従来よりも確実に短絡を防止できる非水電解質電池を作製することができる非水電解質電池の製造方法を提供することにある。また、本発明の別の目的は、本発明非水電解質電池の製造方法により得られた非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a method for producing a non-aqueous electrolyte battery capable of producing a non-aqueous electrolyte battery that can prevent a short circuit more reliably than in the past. There is. Another object of the present invention is to provide a nonaqueous electrolyte battery obtained by the method for producing a nonaqueous electrolyte battery of the present invention.

本発明者らが上記課題を鋭意検討した結果、固体電解質粉末を構成する固体電解質粒子が結晶質であることが、粉末成形体部の表面が粗くなる原因であることが分かった。結晶質の固体電解質粒子は塑性変形し難いため、各粒子の粒径や形状が当該表面に反映され易いからである。この知見に基づいて、本発明者らは、固体電解質層を形成するにあたり、塑性変形性に優れるアモルファスの固体電解質粉末を使用すると共に、粉末を加圧成形する際に特定範囲の温度条件で熱処理を施すことを提案する。   As a result of intensive studies of the above problems by the present inventors, it has been found that the solid electrolyte particles constituting the solid electrolyte powder are crystalline, which is the cause of the rough surface of the powder molded body. This is because crystalline solid electrolyte particles are difficult to be plastically deformed, and the particle size and shape of each particle are easily reflected on the surface. Based on this knowledge, the present inventors used an amorphous solid electrolyte powder excellent in plastic deformability in forming the solid electrolyte layer, and heat-treated in a specific range of temperature conditions when the powder is pressed. Propose to apply.

(1)本発明非水電解質電池の製造方法は、正極活物質層と、負極活物質層と、これら活物質層の間に配される固体電解質層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、以下の工程α〜γを備えることを特徴とする。
[工程α]…正極活物質層を有する正極体を作製する。
[工程β]…正極体の上に、アモルファスの固体電解質の粉末を配置し、その固体電解質のガラス転移温度超、結晶化温度未満に加熱した金型でその粉末を加圧成形することで、固体電解質層の一部となる第一固体層を形成する。
[工程γ]…第一固体層の上に、気相法によって固体電解質からなる第二固体層を形成することで、これら第一固体層と第二固体層とからなる固体電解質層を形成する。
(1) A method for producing a nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte for producing a nonaqueous electrolyte battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer disposed between these active material layers. A method for producing an electrolyte battery, comprising the following steps α to γ.
[Step α] A positive electrode body having a positive electrode active material layer is prepared.
[Step β] ... An amorphous solid electrolyte powder is placed on the positive electrode body, and the powder is pressure-molded with a mold heated above the crystallization temperature above the glass transition temperature of the solid electrolyte, A first solid layer that becomes a part of the solid electrolyte layer is formed.
[Step γ]... A solid electrolyte layer composed of the first solid layer and the second solid layer is formed on the first solid layer by forming a second solid layer composed of the solid electrolyte by a vapor phase method. .

上記構成によれば、塑性変形性に優れるアモルファスの固体電解質粉末を加圧成形することで、表面が滑らかな第一固体層を形成することができる。また、その加圧成形の際に当該粉末を加圧する金型をガラス転移温度超、結晶化温度未満に加熱することで、当該粉末が過冷却状態(融液状態)となるため、粉末の塑性変形と相まって第一固体層の表面が滑らかに仕上がる(最大高さRz(JIS B0601);0.2〜0.35μm前後)。そして、表面が滑らかな第一固体層の上に第二固体層を形成すれば、ピンホールなどの欠陥が殆どなく、表面が滑らかな第二固体層を形成することができる(Rz;0.1μm以下)。その結果、短絡を効果的に防止できる固体電解質層を備える非水電解質電池とすることができる。   According to the said structure, the 1st solid layer with the smooth surface can be formed by press-molding the amorphous solid electrolyte powder excellent in plastic deformability. In addition, by heating the mold that pressurizes the powder during the pressure molding to a temperature above the glass transition temperature and below the crystallization temperature, the powder becomes supercooled (melt state), so that the plasticity of the powder Combined with the deformation, the surface of the first solid layer is smoothly finished (maximum height Rz (JIS B0601); around 0.2 to 0.35 μm). If the second solid layer is formed on the first solid layer having a smooth surface, the second solid layer having a smooth surface with almost no defects such as pinholes can be formed (Rz; 1 μm or less). As a result, it can be set as a nonaqueous electrolyte battery provided with the solid electrolyte layer which can prevent a short circuit effectively.

なお、固体電解質層全体を気相法により形成しても、その固体電解質層の表面を、本発明の第二固体層の表面よりも滑らかにすることは難しい。気相法で固体電解質層を厚膜化すると、スプラッシュや異常成長によって固体電解質層の表面が粗くなる傾向にあるからである。具体的には、気相法のみで非水電解質電池に必要な厚さの固体電解質層を形成すれば、その表面のRzは0.5μm程度が限界である。   Even if the entire solid electrolyte layer is formed by a vapor phase method, it is difficult to make the surface of the solid electrolyte layer smoother than the surface of the second solid layer of the present invention. This is because when the solid electrolyte layer is thickened by the vapor phase method, the surface of the solid electrolyte layer tends to become rough due to splash or abnormal growth. Specifically, if a solid electrolyte layer having a thickness necessary for a nonaqueous electrolyte battery is formed only by a vapor phase method, the limit of Rz on the surface is about 0.5 μm.

(2)本発明非水電解質電池の製造方法の一形態として、粉末を加圧成形する時間は、1〜12時間であることが好ましい。 (2) As one form of the manufacturing method of this invention nonaqueous electrolyte battery, it is preferable that the time which press-molds powder is 1 to 12 hours.

加圧する時間、即ち熱処理を施す時間は、粉体を過冷却状態とするために重要な要件である。加圧時間を1時間以上とすることで、第一固体層の表面全体にわたって固体電解質の粉末を十分に過冷却状態とすることができ、第一固体層の表面を滑らかにすることができる。また、加圧時間を12時間以下とすることで、電池の生産性が低下することを抑制できる。電池の生産性をより向上させることを考慮すれば、加圧時間を4時間以下とすることが好ましい。   The time for pressing, that is, the time for performing the heat treatment, is an important requirement for bringing the powder into a supercooled state. By setting the pressurization time to 1 hour or longer, the solid electrolyte powder can be sufficiently supercooled over the entire surface of the first solid layer, and the surface of the first solid layer can be made smooth. Moreover, it can suppress that the productivity of a battery falls by making pressurization time into 12 hours or less. In consideration of further improving the productivity of the battery, the pressing time is preferably 4 hours or less.

(3)本発明非水電解質電池の製造方法の一形態として、粉末を加圧成形する際の圧力は、360MPa以上であることが好ましい。 (3) As one form of the manufacturing method of this invention nonaqueous electrolyte battery, it is preferable that the pressure at the time of pressure-molding powder is 360 Mpa or more.

加圧の圧力を360MPa以上とすることで、各粒子間の空隙を小さくでき、欠陥の少ない第一固体層を形成することができる。   By setting the pressure of the pressurization to 360 MPa or more, the gap between the particles can be reduced, and the first solid layer with few defects can be formed.

(4)本発明非水電解質電池の製造方法の一形態として、第一固体層と第二固体層を構成する固体電解質は共に、LiS−Pを含む硫化物であることが好ましい。 (4) As one form of the manufacturing method of the nonaqueous electrolyte battery of the present invention, the solid electrolyte constituting the first solid layer and the second solid layer are both sulfides containing Li 2 S—P 2 S 5. preferable.

上記硫化物は、高Liイオン伝導性で、かつ低電子伝導性であるため、固体電解質層を構成する固体電解質として好適である。また、硫化物の固体電解質は比較的柔らかく、塑性変形性に優れるため、加圧成形により第一固体層を形成する際、当該第一固体層に空隙などが生じ難い。   Since the sulfide has high Li ion conductivity and low electron conductivity, it is suitable as a solid electrolyte constituting the solid electrolyte layer. Further, since the sulfide solid electrolyte is relatively soft and excellent in plastic deformability, when the first solid layer is formed by pressure molding, voids or the like are unlikely to occur in the first solid layer.

(5)一方、本発明非水電解質電池は、正極活物質層と、負極活物質層と、これら活物質層の間に配される固体電解質層を備え、当該固体電解質層は、上記本発明非水電解質電池の製造方法により得られたことを特徴とする。 (5) On the other hand, the nonaqueous electrolyte battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer disposed between these active material layers. It was obtained by the manufacturing method of a nonaqueous electrolyte battery.

上記構成によれば、固体電解質層にデンドライトの成長経路となり得る空隙や欠陥が殆どないため、充放電を繰り返しても短絡し難い非水電解質電池とすることができる。   According to the said structure, since there are almost no space | gap and defect which can become a dendrite growth path | route in a solid electrolyte layer, it can be set as a nonaqueous electrolyte battery which is hard to be short-circuited even if charging / discharging is repeated.

本発明非水電解質電池の構成によれば、充放電を繰り返しても短絡が生じ難い電池とすることができる。   According to the configuration of the nonaqueous electrolyte battery of the present invention, it is possible to obtain a battery in which a short circuit hardly occurs even when charging and discharging are repeated.

実施形態に係る本発明非水電解質電池の概略断面図である。It is a schematic sectional drawing of the nonaqueous electrolyte battery of this invention which concerns on embodiment.

以下、図に基づいて、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<非水電解質電池の全体構成>
図1に示す非水電解質電池100は、正極層1、固体電解質層(SE層)3、および負極層2を備える。正極層1はさらに正極集電体11と正極活物質層12を、負極層2はさらに負極集電体21と負極活物質層22とを備える。また、SE層3はさらに、粉末成形により形成された第一固体層31と、気相法により形成された第二固体層32とを備える。このような電池100は、以下に示す非水電解質電池の製造方法により製造することができる。
<Overall configuration of nonaqueous electrolyte battery>
A nonaqueous electrolyte battery 100 shown in FIG. 1 includes a positive electrode layer 1, a solid electrolyte layer (SE layer) 3, and a negative electrode layer 2. The positive electrode layer 1 further includes a positive electrode current collector 11 and a positive electrode active material layer 12, and the negative electrode layer 2 further includes a negative electrode current collector 21 and a negative electrode active material layer 22. The SE layer 3 further includes a first solid layer 31 formed by powder molding and a second solid layer 32 formed by a vapor phase method. Such a battery 100 can be manufactured by the manufacturing method of the nonaqueous electrolyte battery shown below.

<非水電解質電池の製造方法>
非水電解質電池の製造方法は次の工程を備える。
(A)正極活物質層12を有する正極体(正極層1)を作製する。
(B)正極体の上に、アモルファスの固体電解質粉末を加圧成形することで第一固体層31を形成する。
(C)第一固体層31の上に、気相法により第二固体層32を形成する。
(D)第二固体層32の上に負極層2を形成する。
※ 後述するように、工程Aと工程Bは同時に行うこともできる。
<Method for producing non-aqueous electrolyte battery>
The manufacturing method of a nonaqueous electrolyte battery includes the following steps.
(A) A positive electrode body (positive electrode layer 1) having a positive electrode active material layer 12 is produced.
(B) The first solid layer 31 is formed on the positive electrode body by press-molding amorphous solid electrolyte powder.
(C) The second solid layer 32 is formed on the first solid layer 31 by a vapor phase method.
(D) The negative electrode layer 2 is formed on the second solid layer 32.
* As will be described later, Step A and Step B can be performed simultaneously.

≪工程A:正極層の作製≫
正極体の作製は、[1]工程Bの第一固体層31の形成に先立って行っても良いし、[2]後述する工程Bと同時に行っても良い。この工程Aの項では上記[1]について説明し、上記[2]については後述する工程Bの項目で説明する。
<< Step A: Preparation of positive electrode layer >>
The production of the positive electrode body may be performed prior to the formation of the first solid layer 31 in [1] Step B, or [2] may be performed simultaneously with Step B described later. In the section of step A, the above [1] will be described, and the above [2] will be described in the item of step B described later.

正極体は、正極活物質層12のみで構成されていても良いし、正極集電体11と正極活物質層12とで構成されていても良い。正極活物質層12のみの正極体を作製する場合、原料となる粉末(正極活物質粉末+必要に応じて固体電解質粉末)を加圧成形すれば良い。この場合、工程Bや工程Cの後など、任意のタイミングで正極集電体11を正極体に設ければ良い。   The positive electrode body may be composed of only the positive electrode active material layer 12, or may be composed of the positive electrode current collector 11 and the positive electrode active material layer 12. When a positive electrode body having only the positive electrode active material layer 12 is produced, the raw material powder (positive electrode active material powder + solid electrolyte powder as required) may be pressure-molded. In this case, the positive electrode current collector 11 may be provided on the positive electrode body at an arbitrary timing such as after the process B or the process C.

正極集電体11と正極活物質層12とが一体となった正極体を作製するには、まず正極集電体11となる基板を用意し、次にその基板の上に残りの正極活物質層12を形成すれば良い。この場合、正極活物質層12は、原料となる粉末を加圧成形することで作製しても良いし、真空蒸着法やレーザーアブレーション法などの気相法で作製しても良い。   In order to produce a positive electrode body in which the positive electrode current collector 11 and the positive electrode active material layer 12 are integrated, a substrate to be the positive electrode current collector 11 is first prepared, and then the remaining positive electrode active material is formed on the substrate. The layer 12 may be formed. In this case, the positive electrode active material layer 12 may be produced by pressure forming a raw material powder, or may be produced by a vapor phase method such as a vacuum deposition method or a laser ablation method.

上記正極集電体11としては、AlやNi、これらの合金、ステンレスなどの導電材料を用いることができる。また、正極活物質層12に用いられる正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、Liαβ(1−X)(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Bi,Co,Ni,Mnから選択される1種、α≠β、Xは0.5以上)で表わされる物質を挙げることができる。特に、正極活物質にはLiCoOが好ましい。その他、スピネル型の結晶構造を有する正極活物質や、オリビン型の結晶構造を有する正極活物質を用いることもできる。なお、正極活物質層12は、この層12のLiイオン伝導性を改善する電解質粒子を含有していても良いし、導電助材や結着剤を含有していても良い。 As the positive electrode current collector 11, a conductive material such as Al, Ni, an alloy thereof, or stainless steel can be used. As the positive electrode active material used in the positive electrode active material layer 12, is selected substances having a layered rock-salt crystal structure, for example, Liα X β (1-X ) O 2 (α is Co, Ni, Mn, 1 type, β is a material selected from Fe, Al, Ti, Cr, Zn, Mo, Bi, Co, Ni, Mn, α ≠ β, and X is 0.5 or more). it can. In particular, LiCoO 2 is preferable for the positive electrode active material. In addition, a positive electrode active material having a spinel crystal structure and a positive electrode active material having an olivine crystal structure can also be used. The positive electrode active material layer 12 may contain electrolyte particles that improve the Li ion conductivity of the layer 12, or may contain a conductive additive or a binder.

≪工程B:第一固体層の形成≫
第一固体層31を形成するには、まず平均粒径0.5〜3μm程度のアモルファスの固体電解質粉末(粒子の集合体)を用意する。固体電解質粉末は、LPONなどの酸化物でも良いし、LiS−Pなどの硫化物でも良い。特に硫化物は、高Liイオン伝導性であるため好ましい。硫化物は、第一固体層31の耐還元性を向上させる効果のあるPなどの酸化物を含んでいても良い。
<< Step B: Formation of first solid layer >>
In order to form the first solid layer 31, first, an amorphous solid electrolyte powder (aggregate of particles) having an average particle diameter of about 0.5 to 3 μm is prepared. The solid electrolyte powder may be an oxide such as LPON or a sulfide such as Li 2 S—P 2 S 5 . In particular, sulfide is preferable because of its high Li ion conductivity. The sulfide may contain an oxide such as P 2 O 5 that has an effect of improving the reduction resistance of the first solid layer 31.

次に、金型の内部に工程Aで作製した正極体を配置し、その正極体の上に固体電解質粉末を載せる。そして、正極体ごと固体電解質粉末を加圧して、正極体の表面に第一固体層31を形成する。加圧圧力は、360〜720MPa、加圧時間は1〜12時間とすることが好ましい。   Next, the positive electrode body produced in step A is placed inside the mold, and the solid electrolyte powder is placed on the positive electrode body. Then, the solid electrolyte powder is pressurized together with the positive electrode body to form the first solid layer 31 on the surface of the positive electrode body. The pressing pressure is preferably 360 to 720 MPa, and the pressing time is preferably 1 to 12 hours.

固体電解質粉末の加圧成形は、固体電解質のガラス転移温度超、結晶化温度未満の温度条件で行なう。例えば、LiS−P粉末の場合、そのガラス転移温度は約200℃、結晶化温度は約240℃であるので、210〜230℃の範囲で加圧成形を行なうと良い(因みに、気相法でアモルファスのLiS−P膜を形成した場合、原因は不明であるが、当該膜の結晶化温度は200℃未満となる)。このような特定範囲の温度条件下で加圧成形することで、アモルファスの固体電解質を過冷却状態(融液状態)とすることができる。その結果、出来上がる第一固体層31の表面(正極体とは反対側の表面)を滑らかにすることができる。第一固体層31の表面の滑らかさは、例えば最大高さRz(JIS B0601)で評価することができる。具体的には、Rzが0.35μm以下であれば第一固体層31の表面が滑らかであると判断できる。なお、結晶化温度未満の温度条件で作製された第一固体層31の結晶構造は、アモルファスである。 The pressure molding of the solid electrolyte powder is performed under a temperature condition that is higher than the glass transition temperature of the solid electrolyte and lower than the crystallization temperature. For example, in the case of Li 2 S—P 2 S 5 powder, the glass transition temperature is about 200 ° C., and the crystallization temperature is about 240 ° C., so it is better to perform pressure molding in the range of 210 to 230 ° C. When the amorphous Li 2 S—P 2 S 5 film is formed by the vapor phase method, the cause is unknown, but the crystallization temperature of the film is less than 200 ° C.). By performing pressure molding under such a specific range of temperature conditions, the amorphous solid electrolyte can be brought into a supercooled state (melt state). As a result, the surface of the completed first solid layer 31 (surface opposite to the positive electrode body) can be smoothed. The smoothness of the surface of the first solid layer 31 can be evaluated by, for example, the maximum height Rz (JIS B0601). Specifically, if Rz is 0.35 μm or less, it can be determined that the surface of the first solid layer 31 is smooth. Note that the crystal structure of the first solid layer 31 produced under a temperature condition lower than the crystallization temperature is amorphous.

別の第一固体層31の形成方法として、正極活物質層12の原料となる粉末と、第一固体層31の原料となる粉末を層状に金型内に充填し、それらを一度に加圧成形することが挙げられる。これにより、工程Aと工程Bとが同時に行われ、第一固体層31を備える正極体が製造される。その他、正極集電体11となる金属箔を金型内の一番底に配置しておいて、部材11,12,31が一体となったものを一度に作製しても良い。   As another method for forming the first solid layer 31, the powder used as the raw material of the positive electrode active material layer 12 and the powder used as the raw material of the first solid layer 31 are filled in a mold in layers and are pressed at once. Molding is mentioned. Thereby, the process A and the process B are performed simultaneously, and the positive electrode body provided with the first solid layer 31 is manufactured. In addition, the metal foil used as the positive electrode current collector 11 may be disposed at the bottom of the mold, and the members 11, 12, and 31 may be integrally manufactured at a time.

上記第一固体層31の厚さは、SE層3全体の厚さの90〜98%とすることが好ましい。第一固体層31の具体的な厚さは、100〜200μmとすることが好ましい。   The thickness of the first solid layer 31 is preferably 90 to 98% of the total thickness of the SE layer 3. The specific thickness of the first solid layer 31 is preferably 100 to 200 μm.

≪工程C:第二固体層の作製≫
第二固体層32の形成には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法などの気相法を利用できる。具体的には、第一固体層31を形成した正極体を真空チャンバーの中に配置し、その真空チャンバー内で固体電解質を蒸発させ、第一固体層31の表面に第二固体層32を形成する。
<< Step C: Production of second solid layer >>
For the formation of the second solid layer 32, for example, a vapor phase method such as a vacuum deposition method, a sputtering method, an ion plating method, or a laser ablation method can be used. Specifically, the positive electrode body on which the first solid layer 31 is formed is placed in a vacuum chamber, the solid electrolyte is evaporated in the vacuum chamber, and the second solid layer 32 is formed on the surface of the first solid layer 31. To do.

第二固体層32を構成する固体電解質は、第一固体層31と異なる種類の固体電解質で構成されていても良いが、第一固体層31と同じ種類の固体電解質で構成されていることが好ましい。両層31,32が同じ固体電解質でできていれば、SE層3のLiイオン伝導性にムラができ難い。   The solid electrolyte constituting the second solid layer 32 may be composed of a different type of solid electrolyte from the first solid layer 31, but may be composed of the same type of solid electrolyte as the first solid layer 31. preferable. If both layers 31 and 32 are made of the same solid electrolyte, it is difficult to cause unevenness in the Li ion conductivity of the SE layer 3.

気相法の条件は、第一固体層31が結晶化しない条件であれば特に限定されない。具体的には、気相法を実施する際、基板となる部材(ここでは、正極体上に第一固体層31を形成したもの)を加熱することになるが、その温度が固体電解質の結晶化温度以上とならないようにする。このような条件であれば、第一固体層31はアモルファスの状態を保ち、しかも第一固体層31の上に形成される第二固体層32もアモルファスの状態となる。ここで、第一固体層31と第二固体層32を構成する固体電解質が共通する場合、両層31,32間に実質的に界面は形成されない。   The conditions of the vapor phase method are not particularly limited as long as the first solid layer 31 is not crystallized. Specifically, when the vapor phase method is performed, a member to be a substrate (here, the first solid layer 31 formed on the positive electrode body) is heated, and the temperature is a solid electrolyte crystal. Do not exceed the conversion temperature. Under such conditions, the first solid layer 31 is kept in an amorphous state, and the second solid layer 32 formed on the first solid layer 31 is also in an amorphous state. Here, when the solid electrolyte constituting the first solid layer 31 and the second solid layer 32 is common, an interface is not substantially formed between the layers 31 and 32.

気相法における温度以外の条件として、成膜時の成膜室雰囲気中の不純物濃度を低くすることを挙げることができる。成膜雰囲気中の不純物濃度を低くするほど、緻密な第二固体層32を形成することができる。従って、成膜開始前に成膜室の真空度を0.002Pa以下とすることが好ましい。   As a condition other than the temperature in the vapor phase method, the impurity concentration in the film formation chamber atmosphere at the time of film formation can be reduced. As the impurity concentration in the film forming atmosphere is lowered, the dense second solid layer 32 can be formed. Therefore, it is preferable that the degree of vacuum in the film formation chamber be 0.002 Pa or less before the start of film formation.

第一固体層31上に形成される第二固体層32の厚さは、SE層3全体の厚さの2〜10%とすることが好ましい。第二固体層32の具体的な厚さは、5〜10μmとすることが好ましい。気相法により形成する第二固体層32の厚さを5μm以上とすることで、気相法のスムージング効果により、第一固体層31よりもRzの小さな第二固体層32を形成することができる。また、第二固体層32の厚さを10μm以下とすることで、スプラッシュや異常成長の可能性を抑制し、Rzの小さな第二固体層32を形成することができる。   The thickness of the second solid layer 32 formed on the first solid layer 31 is preferably 2 to 10% of the total thickness of the SE layer 3. The specific thickness of the second solid layer 32 is preferably 5 to 10 μm. By setting the thickness of the second solid layer 32 formed by the vapor phase method to 5 μm or more, the second solid layer 32 having a smaller Rz than the first solid layer 31 can be formed by the smoothing effect of the vapor phase method. it can. Further, by setting the thickness of the second solid layer 32 to 10 μm or less, the possibility of splash and abnormal growth can be suppressed, and the second solid layer 32 having a small Rz can be formed.

≪工程D:負極層2の作製≫
負極層2を形成するには、部材11,12,31,32を備える積層体の上に、順次、負極活物質層22と負極集電体21を積層すれば良い。例えば、積層体の第二固体層32上に気相法により負極活物質層22を成膜し、その負極活物質層22の上に、金属箔からなる負極集電体21を貼り合せると良い。
<< Step D: Production of Negative Electrode Layer 2 >>
In order to form the negative electrode layer 2, the negative electrode active material layer 22 and the negative electrode current collector 21 may be sequentially stacked on the stacked body including the members 11, 12, 31, and 32. For example, the negative electrode active material layer 22 may be formed on the second solid layer 32 of the laminate by a vapor phase method, and the negative electrode current collector 21 made of a metal foil may be bonded onto the negative electrode active material layer 22. .

負極活物質層22に用いられる負極活物質としては、C、Si、Ge、Sn、Al、Li合金、又はLiTi12などのLiを含む酸化物を利用することができる。負極活物質層22は、電解質粒子や導電助材、結着剤などを含んでいても良い。また、負極集電体21としては、Cu、Ni、Fe、Cr、及びこれらの合金(例えば、ステンレスなど)などの導電材料を好適に利用できる。 As the negative electrode active material used for the negative electrode active material layer 22, an oxide containing Li such as C, Si, Ge, Sn, Al, Li alloy, or Li 4 Ti 5 O 12 can be used. The negative electrode active material layer 22 may contain electrolyte particles, a conductive additive, a binder, and the like. Moreover, as the negative electrode current collector 21, a conductive material such as Cu, Ni, Fe, Cr, and alloys thereof (for example, stainless steel) can be suitably used.

≪非水電解質電池の効果≫
以上説明した工程を経て得られた非水電解質電池100は、従来構成の電池(粉末成形体部と表面蒸着膜とを備える電池)よりも短絡が生じ難い。それは、粉末を加圧成形することで第一固体層31を形成する際、特定範囲の温度条件で熱処理を施すことで、第一固体層31の表面を滑らかにすることができ、その結果として、第一固体層31の上に気相法で形成される第二固体層32にピンホールなどの欠陥が殆ど生じなくなるからである。また、滑らかな表面の第一固体層31上に気相法で第二固体層32を形成すれば、その第二固体層32の表面も滑らかになるため、第一固体層31および第二固体層32からなるSE層3と負極活物質層22との間にデンドライトの成長起点となる隙間が形成され難くなることも、非水電解質電池100に短絡が生じ難い原因と考えられる。
≪Effect of nonaqueous electrolyte battery≫
The nonaqueous electrolyte battery 100 obtained through the above-described steps is less likely to cause a short circuit than a battery having a conventional configuration (a battery including a powder molded body portion and a surface-deposited film). That is, when the first solid layer 31 is formed by pressure molding the powder, the surface of the first solid layer 31 can be smoothed by performing heat treatment under a specific range of temperature conditions. This is because defects such as pinholes hardly occur in the second solid layer 32 formed on the first solid layer 31 by a vapor phase method. Further, if the second solid layer 32 is formed on the first solid layer 31 having a smooth surface by a vapor phase method, the surface of the second solid layer 32 is also smoothed. It is considered that the formation of a gap serving as a dendrite growth starting point between the SE layer 3 made of the layer 32 and the negative electrode active material layer 22 is less likely to cause a short circuit in the nonaqueous electrolyte battery 100.

(実施例)
図1の構成を備える非水電解質電池100(試料1〜11)を実際に作製した。各試料は、SE層3の形成条件が異なる以外、共通である。共通する部分は以下の通りである。
正極集電体11…Al板
正極活物質層12…LiCoO:LiS−P:アセチレンブラック:VT470(ダイキン工業株式会社製の正極用バインダ)=44:48:2:6(体積%);厚み100μm
負極集電体21…SUS板
負極活物質層22…金属Li;厚み1.0μm
(Example)
Nonaqueous electrolyte batteries 100 (samples 1 to 11) having the configuration of FIG. 1 were actually produced. Each sample is common except that the formation conditions of the SE layer 3 are different. The common parts are as follows.
Positive electrode current collector 11 ... Al plate Positive electrode active material layer 12 ... LiCoO 2 : Li 2 S—P 2 S 5 : acetylene black: VT470 (Binder for positive electrode manufactured by Daikin Industries, Ltd.) = 44: 48: 2: 6 ( Volume%); thickness 100 μm
Negative electrode current collector 21 ... SUS plate Negative electrode active material layer 22 ... Metal Li; thickness 1.0 µm

一方、各試料のSE層3は、次のようにして形成した。まず、平均粒径5μmの結晶質の固体電解質粉末(LiS−P)と、同じく平均粒径3μmのアモルファスの固体電解質粉末(LiS−P)を用意した。そして、用意した固体電解質粉末のいずれか一方を正極層1の上に配置し、ホットプレス(加圧成形)によって正極層1上に平均厚さ100μmの第一固体層31を形成した。各試料で使用した粉末の種類、およびホットプレスの圧力(MPa)、プレス金型の温度(℃)、時間(h)は、表1に示す。 On the other hand, the SE layer 3 of each sample was formed as follows. First, a crystalline solid electrolyte powder (Li 2 S—P 2 S 5 ) having an average particle diameter of 5 μm and an amorphous solid electrolyte powder (Li 2 S—P 2 S 5 ) having an average particle diameter of 3 μm were prepared. Then, any one of the prepared solid electrolyte powders was placed on the positive electrode layer 1, and the first solid layer 31 having an average thickness of 100 μm was formed on the positive electrode layer 1 by hot pressing (pressure forming). Table 1 shows the types of powder used in each sample, the hot press pressure (MPa), the press mold temperature (° C.), and the time (h).

異なる条件で形成された第一固体層31上に、気相蒸着法で厚さ約5μmの第二固体層32を形成した。気相蒸着法の条件は各試料で共通であり、形成される第二固体層32はアモルファスであった。気相蒸着法の条件は以下の通りである。
ターゲット…LiS−Pのペレット
雰囲気圧力…0.01Pa
A second solid layer 32 having a thickness of about 5 μm was formed on the first solid layer 31 formed under different conditions by a vapor deposition method. The conditions of the vapor deposition method were common to each sample, and the formed second solid layer 32 was amorphous. The conditions of the vapor deposition method are as follows.
Target: Li 2 S—P 2 S 5 pellets Atmospheric pressure: 0.01 Pa

作製した各試料について、第一固体層31を形成した時点での第一固体層31の表面状態、第二固体層32を形成した時点での第二固体層32の表面状態、第一固体層31上に第二固体層32を形成した時点での第一固体層31と第二固体層32との粒界の有無を調べた。表面状態は、レーザー顕微鏡にて第一固体層31(第二固体層32)の表面における任意の五つの領域(300×300μm)での最大高さRzを測定し、その平均値で評価した。また、粒界の有無は、試料をSEM観察したときに目視にて確認した。その結果を表1に示す。   For each prepared sample, the surface state of the first solid layer 31 when the first solid layer 31 is formed, the surface state of the second solid layer 32 when the second solid layer 32 is formed, and the first solid layer The presence or absence of grain boundaries between the first solid layer 31 and the second solid layer 32 at the time when the second solid layer 32 was formed on the substrate 31 was examined. The surface state was evaluated by measuring the maximum height Rz in any five regions (300 × 300 μm) on the surface of the first solid layer 31 (second solid layer 32) with a laser microscope, and evaluating the average value. The presence or absence of grain boundaries was confirmed visually when the sample was observed by SEM. The results are shown in Table 1.

Figure 2013089470
Figure 2013089470

表1に示すように、アモルファスの固体電解質粉末を使用し、かつ加圧成形時の温度が200℃(ガラス転移温度)超、240℃(結晶化温度)未満の範囲にある試料5,6の第一固体層31は、Rzが0.35μm以下の滑らかな表面を有していた。そのため、第一固体層31の上に、ピンホールなどの欠陥が殆どなく、Rzが0.1μm以下の第二固体層32を形成できた。また、第一固体層31と第二固体層32との間に粒界が認められなかった。   As shown in Table 1, samples 5 and 6 were prepared using amorphous solid electrolyte powder and having a pressure molding temperature in the range of more than 200 ° C. (glass transition temperature) and less than 240 ° C. (crystallization temperature). The first solid layer 31 had a smooth surface with Rz of 0.35 μm or less. Therefore, the second solid layer 32 having almost no defects such as pinholes and having Rz of 0.1 μm or less could be formed on the first solid layer 31. Further, no grain boundary was observed between the first solid layer 31 and the second solid layer 32.

また、試料5,6と同様に、加圧成形時の温度が200℃超、240℃未満の範囲にある試料8〜11の第一固体層31のRzは0.35μm以下であった。そのため、測定していないが、試料5,6の結果から推察するに、第一固体層31の上に形成した第二固体層32の表面も滑らか(Rzが0.1μm以下)であると予想される。   Further, similarly to Samples 5 and 6, the Rz of the first solid layer 31 of Samples 8 to 11 in which the temperature during pressure molding was in the range of more than 200 ° C. and less than 240 ° C. was 0.35 μm or less. Therefore, although not measured, it is expected that the surface of the second solid layer 32 formed on the first solid layer 31 is also smooth (Rz is 0.1 μm or less) as inferred from the results of the samples 5 and 6. Is done.

一方、試料1,2は、結晶質の固体電解質粉末を利用しているため、加圧成形時に210℃の熱処理を施しても粉末を構成する粒子の形状が維持されるため、第一固体層31の表面が粗くなっていた(Rz=0.64μm,0.55μm>0.35μm)。また、第一固体層31の表面の粗さを反映して、第二固体層32の表面も粗くなっていた(Rz≧0.5)。   On the other hand, since the samples 1 and 2 use crystalline solid electrolyte powder, the shape of the particles constituting the powder is maintained even when heat treatment at 210 ° C. is performed during pressure molding. The surface of 31 was rough (Rz = 0.64 μm, 0.55 μm> 0.35 μm). Further, the surface of the second solid layer 32 was also rough (Rz ≧ 0.5) reflecting the roughness of the surface of the first solid layer 31.

試料3,4は、アモルファスの固体電解質粉末を使用しているものの、熱処理温度がガラス転移温度を下回っているため、粉末を構成する粒子の形状が維持され、第一固体層31の表面が粗くなっていた(Rz=0.68μm,0.50μm>0.35μm)。また、第一固体層31の表面の粗さを反映して、第二固体層32の表面も粗くなっていた(Rz≧0.43μm)。   Samples 3 and 4 use amorphous solid electrolyte powder, but the heat treatment temperature is lower than the glass transition temperature, so the shape of the particles constituting the powder is maintained, and the surface of the first solid layer 31 is rough. (Rz = 0.68 μm, 0.50 μm> 0.35 μm). Further, the surface of the second solid layer 32 was also rough (Rz ≧ 0.43 μm) reflecting the surface roughness of the first solid layer 31.

試料7は、アモルファスの固体電解質粉末を使用しているものの、熱処理温度が結晶化温度を上回っているため、粉末を構成する粒子が融液状態となって第一固体層31が平坦になる前に、粒子の形状が維持された状態で粒子が結晶化する。そのため、第一固体層31の表面が粗くなっていた(Rz=2.24μm>0.35μm)。しかも、試料7の第一固体層31にはクラックが生じていた。なお、第二固体層32のRzは測定していないが、試料3,4の結果を考慮すれば、1.0μmを大きく超えると予想される。   Sample 7 uses an amorphous solid electrolyte powder, but since the heat treatment temperature exceeds the crystallization temperature, before the first solid layer 31 becomes flat because the particles constituting the powder are in a molten state. In addition, the particles are crystallized while maintaining the shape of the particles. Therefore, the surface of the first solid layer 31 was rough (Rz = 2.24 μm> 0.35 μm). Moreover, the first solid layer 31 of the sample 7 was cracked. In addition, although Rz of the 2nd solid layer 32 was not measured, if the result of the samples 3 and 4 is considered, it will be expected to greatly exceed 1.0 μm.

以上のようにして作製した非水電解質電池をコインセルに仕込んで、カットオフ電圧3.0V−4.1V、0.2Cの条件で30サイクルの充放電試験を行ったところ、試料5,6,8〜11の非水電解質電池は、全サイクルを通じて充電終止電圧の4.2Vまで充電することができた。一方、試料1〜4,7の非水電解質電池は全て、30サイクルに満たないうちに短絡した。   The non-aqueous electrolyte battery produced as described above was charged in a coin cell and subjected to a 30-cycle charge / discharge test under the conditions of a cutoff voltage of 3.0 V to 4.1 V and 0.2 C. The 8-11 nonaqueous electrolyte batteries were able to be charged to the end-of-charge voltage of 4.2 V throughout the entire cycle. On the other hand, all the nonaqueous electrolyte batteries of Samples 1 to 4 and 7 were short-circuited before less than 30 cycles.

なお、本発明は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲で適宜変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the gist of the present invention.

本発明の非水電解質電池は、充放電を繰り返すことを前提とした電気機器の電源、例えば各種電子機器の電源に好適に利用できる他、ハイブリッド自動車、電気自動車の電源としての利用も期待できる。   The non-aqueous electrolyte battery of the present invention can be suitably used as a power source for electric devices based on repeated charge and discharge, for example, a power source for various electronic devices, and can also be expected to be used as a power source for hybrid vehicles and electric vehicles.

100 非水電解質電池
1 正極層 11 正極集電体 12 正極活物質層
2 負極層 21 負極集電体 22 負極活物質層
3 固体電解質層(SE層) 31 第一固体層 32 第二固体層
DESCRIPTION OF SYMBOLS 100 Nonaqueous electrolyte battery 1 Positive electrode layer 11 Positive electrode collector 12 Positive electrode active material layer 2 Negative electrode layer 21 Negative electrode collector 22 Negative electrode active material layer 3 Solid electrolyte layer (SE layer) 31 First solid layer 32 Second solid layer

Claims (5)

正極活物質層と、負極活物質層と、これら活物質層の間に配される固体電解質層を備える非水電解質電池を製造する非水電解質電池の製造方法であって、
前記正極活物質層を有する正極体を作製する工程αと、
前記正極体の上に、アモルファスの固体電解質の粉末を配置し、その固体電解質のガラス転移温度超、結晶化温度未満に加熱した金型でその粉末を加圧成形することで、前記固体電解質層の一部となる第一固体層を形成する工程βと、
前記第一固体層の上に、気相法によって固体電解質からなる第二固体層を形成することで、これら第一固体層と第二固体層とからなる前記固体電解質層を形成する工程γと、
を備えることを特徴とする非水電解質電池の製造方法。
A nonaqueous electrolyte battery manufacturing method for manufacturing a nonaqueous electrolyte battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer disposed between these active material layers,
Producing a positive electrode body having the positive electrode active material layer;
An amorphous solid electrolyte powder is disposed on the positive electrode body, and the solid electrolyte layer is pressure-molded with a mold heated to a temperature higher than the glass transition temperature of the solid electrolyte and lower than the crystallization temperature. Forming a first solid layer that becomes a part of
Forming a solid electrolyte layer comprising the first solid layer and the second solid layer by forming a second solid layer comprising a solid electrolyte on the first solid layer by a vapor phase method; ,
A method for producing a nonaqueous electrolyte battery, comprising:
前記加圧成形の時間は、1〜12時間であることを特徴とする請求項1に記載の非水電解質電池の製造方法。   The method for producing a nonaqueous electrolyte battery according to claim 1, wherein the pressure molding time is 1 to 12 hours. 前記加圧成形の圧力は、360MPa以上であることを特徴とする請求項1または2に記載の非水電解質電池の製造方法。   The method for producing a nonaqueous electrolyte battery according to claim 1 or 2, wherein the pressure of the pressure molding is 360 MPa or more. 前記第一固体層と第二固体層を構成する固体電解質は共に、LiS−Pを含む硫化物であることを特徴とする請求項1〜3のいずれか一項に記載の非水電解質電池の製造方法。 4. The solid electrolyte constituting the first solid layer and the second solid layer is a sulfide containing Li 2 S—P 2 S 5 , according to claim 1. A method for producing a nonaqueous electrolyte battery. 正極活物質層と、負極活物質層と、これら活物質層の間に配される固体電解質層を備える非水電解質電池であって、
前記固体電解質層は、請求項1〜4のいずれか一項に記載の非水電解質電池の製造方法により得られたことを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer disposed between these active material layers,
The said solid electrolyte layer was obtained by the manufacturing method of the nonaqueous electrolyte battery as described in any one of Claims 1-4, The nonaqueous electrolyte battery characterized by the above-mentioned.
JP2011229292A 2011-10-18 2011-10-18 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery Pending JP2013089470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229292A JP2013089470A (en) 2011-10-18 2011-10-18 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229292A JP2013089470A (en) 2011-10-18 2011-10-18 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2013089470A true JP2013089470A (en) 2013-05-13

Family

ID=48533173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229292A Pending JP2013089470A (en) 2011-10-18 2011-10-18 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2013089470A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028854A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery
WO2015098551A1 (en) 2013-12-26 2015-07-02 トヨタ自動車株式会社 Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
DE102015102030A1 (en) 2014-02-20 2015-08-20 Toyota Jidosha Kabushiki Kaisha A method of manufacturing a solid state lithium battery module
JP2016015397A (en) * 2014-07-02 2016-01-28 ルネサスエレクトロニクス株式会社 Semiconductor memory and manufacturing method thereof
CN106252719A (en) * 2015-06-12 2016-12-21 丰田自动车株式会社 The manufacture method of lithium compositions and the manufacture method of sulfide solid electrolyte material
CN106299443A (en) * 2015-06-23 2017-01-04 丰田自动车株式会社 The manufacture method of all-solid-state battery
JP2017054792A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Lithium battery
KR20190085739A (en) 2018-01-11 2019-07-19 삼성전자주식회사 Electrochemical device
JP2020087782A (en) * 2018-11-28 2020-06-04 トヨタ自動車株式会社 Manufacturing method of electrode laminate
KR20200131297A (en) 2018-03-30 2020-11-23 후지필름 가부시키가이샤 Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
KR20200131298A (en) 2018-03-30 2020-11-23 후지필름 가부시키가이샤 Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
EP4117058A1 (en) * 2021-07-08 2023-01-11 Toyota Jidosha Kabushiki Kaisha All solid-state battery and manufacturing method for all solid-state battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028854A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery
WO2015098551A1 (en) 2013-12-26 2015-07-02 トヨタ自動車株式会社 Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
KR20160089432A (en) 2013-12-26 2016-07-27 도요타 지도샤(주) Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
US10141602B2 (en) 2013-12-26 2018-11-27 Toyota Jidosha Kabushiki Kaisha Lithium solid battery, lithium solid battery module, and producing method for lithium solid battery
US9577286B2 (en) 2014-02-20 2017-02-21 Toyota Jidosha Kabushiki Kaisha Method of producing solid state lithium battery module
DE102015102030A1 (en) 2014-02-20 2015-08-20 Toyota Jidosha Kabushiki Kaisha A method of manufacturing a solid state lithium battery module
DE102015102030B4 (en) 2014-02-20 2018-06-28 Toyota Jidosha Kabushiki Kaisha A method of manufacturing a solid state lithium battery module
JP2016015397A (en) * 2014-07-02 2016-01-28 ルネサスエレクトロニクス株式会社 Semiconductor memory and manufacturing method thereof
CN106252719B (en) * 2015-06-12 2018-03-23 丰田自动车株式会社 The manufacture method of lithium composition and the manufacture method of sulfide solid electrolyte material
CN106252719A (en) * 2015-06-12 2016-12-21 丰田自动车株式会社 The manufacture method of lithium compositions and the manufacture method of sulfide solid electrolyte material
JP2017010816A (en) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 Method of manufacturing all-solid battery
CN106299443A (en) * 2015-06-23 2017-01-04 丰田自动车株式会社 The manufacture method of all-solid-state battery
JP2017054792A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Lithium battery
KR20190085739A (en) 2018-01-11 2019-07-19 삼성전자주식회사 Electrochemical device
KR102579828B1 (en) * 2018-01-11 2023-09-18 삼성전자주식회사 Electrochemical device
KR20200131297A (en) 2018-03-30 2020-11-23 후지필름 가부시키가이샤 Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
KR20200131298A (en) 2018-03-30 2020-11-23 후지필름 가부시키가이샤 Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
JP2020087782A (en) * 2018-11-28 2020-06-04 トヨタ自動車株式会社 Manufacturing method of electrode laminate
JP7110943B2 (en) 2018-11-28 2022-08-02 トヨタ自動車株式会社 Method for manufacturing electrode laminate
EP4117058A1 (en) * 2021-07-08 2023-01-11 Toyota Jidosha Kabushiki Kaisha All solid-state battery and manufacturing method for all solid-state battery

Similar Documents

Publication Publication Date Title
JP2013089470A (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US8785051B2 (en) Nonaqueous-electrolyte battery and method for producing the same
KR102154143B1 (en) Method for charging secondary battery
JP5626654B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
KR20180091678A (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
JP6801596B2 (en) All-solid-state lithium-ion secondary battery
JP5495196B2 (en) Non-aqueous electrolyte battery manufacturing method and non-aqueous electrolyte battery
JP2010080422A (en) Electrode body and nonaqueous electrolyte battery
US20140234725A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
US20130302698A1 (en) Nonaqueous electrolyte battery
CN109216657B (en) All-solid lithium ion secondary battery
JP2012160379A (en) Nonaqueous electrolyte battery and method for manufacturing the same
KR101559225B1 (en) Electrode material and manufacturing method thereof
JP2021072283A (en) Solid electrolyte, solid electrolyte battery and method for manufacturing the same
JP5643732B2 (en) Negative electrode current collector copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode current collector copper foil for lithium ion secondary battery
JP2013065531A (en) Method of manufacturing nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2010113968A (en) Method of manufacturing nonaqueous electrolyte battery
JP2013054949A (en) Nonaqueous electrolyte battery
JP2010177042A (en) Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery
JP2012146395A (en) Electrode body, manufacturing method for the same, and nonaqueous electrolyte battery
JP5648978B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
US20210399309A1 (en) Rolled copper foil for lithium ion battery current collector, and lithium ion battery
WO2019123981A1 (en) Method of manufacturing lithium ion secondary battery
JP2013016280A (en) Nonaqueous electrolyte battery
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same