JP2010080422A - Electrode body and nonaqueous electrolyte battery - Google Patents

Electrode body and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010080422A
JP2010080422A JP2009058659A JP2009058659A JP2010080422A JP 2010080422 A JP2010080422 A JP 2010080422A JP 2009058659 A JP2009058659 A JP 2009058659A JP 2009058659 A JP2009058659 A JP 2009058659A JP 2010080422 A JP2010080422 A JP 2010080422A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode body
active material
battery
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009058659A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
Ryoko Kanda
良子 神田
Kentaro Yoshida
健太郎 吉田
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009058659A priority Critical patent/JP2010080422A/en
Publication of JP2010080422A publication Critical patent/JP2010080422A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode body for manufacturing a nonaqueous electrolyte battery having a large discharge capacity, and to provide a nonaqueous electrolyte battery using the electrode body. <P>SOLUTION: The electrode body has an average thickness of 0.05 to 0.3 mm and a porosity of 15 vol.% or less. The electrode body is used as a cathode active material layer 11 in a nonaqueous electrolyte battery 100. The electrode body can be a supporting body for forming other composition members 12, 31, 21, 22 of the battery when the nonaqueous electrolyte battery 100 is manufactured. By making the electrode body to be the supporting body, a cathode collector can be made an average thickness of 0.01 to 30 μm; and since the ratio of the cathode active material layer 11 in the battery can be made large, the nonaqueous electrolyte battery 100 can have an excellent discharging capacity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質電池に利用される電極体、およびこの電極体を使用した非水電解質電池、ならびに非水電解質電池の製造方法に関するものである。   The present invention relates to an electrode body used for a nonaqueous electrolyte battery, a nonaqueous electrolyte battery using the electrode body, and a method for producing a nonaqueous electrolyte battery.

携帯機器といった比較的小型の電気機器の電源に、非水電解質電池が利用されている。非水電解質電池は、正極活物質層と、負極活物質層と、これらの間でリチウムイオンの伝導を媒介するリチウムイオン伝導層とを備える(例えば、特許文献1や2を参照)。   Nonaqueous electrolyte batteries are used as power sources for relatively small electric devices such as portable devices. The non-aqueous electrolyte battery includes a positive electrode active material layer, a negative electrode active material layer, and a lithium ion conductive layer that mediates lithium ion conduction therebetween (see, for example, Patent Documents 1 and 2).

特許文献1の非水電解質電池では、正極活物質を樹脂バインダーや溶剤と混合したペースト(スラリー)を作製し、このスラリーを基板(支持体)に塗布したものを正極として使用している。この正極では、支持体が正極集電体として機能し、支持体上に塗布されたスラリーが乾燥したものが正極活物質層として機能する。   In the non-aqueous electrolyte battery of Patent Document 1, a paste (slurry) in which a positive electrode active material is mixed with a resin binder or a solvent is prepared, and this slurry applied to a substrate (support) is used as a positive electrode. In this positive electrode, the support functions as a positive electrode current collector, and a slurry obtained by drying the slurry applied on the support functions as a positive electrode active material layer.

特許文献2では、基板の上に金属製の集電体層を形成したものを支持体として、この支持体の上に正極活物質を気相法により成膜したものを正極として利用している。   In patent document 2, what formed the metal electrical power collector layer on the board | substrate is used as a support body, and what formed the positive electrode active material into a film by the vapor phase method on this support body is utilized as a positive electrode. .

特公平7−50617号公報Japanese Patent Publication No. 7-50617 特開2005−251417号公報JP 2005-251417 A

しかし、上記いずれの特許文献に記載の非水電解質電池も、支持体上に正極活物質層を形成しているため、正極活物質層を形成するにあたって支持体に割れや欠け、曲げなどの損傷が生じない厚みが要求される。つまり、非水電解質電池に占める支持体の割合が大きく、相対的に非水電解質電池に占める正極活物質層の割合が小さくなる。そのため、全体的なサイズが決められている非水電解質電池にあって、支持体上に正極活物質層を形成した正極では、用途に応じた放電容量を有する非水電解質電池とできない虞がある。   However, since the non-aqueous electrolyte battery described in any of the above patent documents has a positive electrode active material layer formed on the support, damage to the support such as cracks, chips, and bending is caused when the positive electrode active material layer is formed. Thickness that does not occur is required. That is, the proportion of the support in the nonaqueous electrolyte battery is large, and the proportion of the positive electrode active material layer in the nonaqueous electrolyte battery is relatively small. Therefore, in a non-aqueous electrolyte battery whose overall size is determined, a positive electrode in which a positive electrode active material layer is formed on a support may not be a non-aqueous electrolyte battery having a discharge capacity according to the application. .

上記の問題点に加えて、特許文献1に記載の塗布法で正極活物質層を形成すると、正極活物質層に空隙ができ易く、この空隙の分だけさらに放電容量が低下する問題もある。また、特許文献2に記載の気相法で正極活物質層を形成すると、正極活物質層に応力が残留して、支持体から剥離し易くなる。特に、正極活物質層の厚さが厚くなるほど残留応力が高くなり、支持体から剥離し易くなるので、実用上、正極活物質層の厚さを10μm程度にしかできず、放電容量が頭打ちになるという問題もある。   In addition to the above problems, when the positive electrode active material layer is formed by the coating method described in Patent Document 1, there is a problem that voids are easily formed in the positive electrode active material layer, and the discharge capacity is further reduced by the amount of the voids. In addition, when the positive electrode active material layer is formed by the vapor phase method described in Patent Document 2, stress remains in the positive electrode active material layer, and is easily peeled off from the support. In particular, as the thickness of the positive electrode active material layer increases, the residual stress increases and it becomes easier to peel off from the support. Therefore, the thickness of the positive electrode active material layer can be practically only about 10 μm, and the discharge capacity reaches a peak. There is also a problem of becoming.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、放電容量の大きな非水電解質電池を作製するための電極体を提供することにある。また、本発明の別の目的は、本発明電極体を使用した非水電解質電池と、その製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide an electrode body for producing a nonaqueous electrolyte battery having a large discharge capacity. Another object of the present invention is to provide a nonaqueous electrolyte battery using the electrode body of the present invention and a method for producing the same.

(1)本発明電極体は、非水電解質電池の正極活物質層または負極活物質層として利用される電極体であって、平均厚さが0.05mm〜0.3mmで、空隙率が15体積%以下であることを特徴とする。なお、平均厚さは、異なる複数箇所の厚さを平均した厚さとし、後述する非水電解質電池における各層の平均厚さも同様とする。 (1) The electrode body of the present invention is an electrode body used as a positive electrode active material layer or a negative electrode active material layer of a nonaqueous electrolyte battery, and has an average thickness of 0.05 mm to 0.3 mm and a porosity of 15 It is characterized by being not more than volume%. The average thickness is the thickness obtained by averaging the thicknesses of different locations, and the same applies to the average thickness of each layer in the non-aqueous electrolyte battery described later.

本発明電極体は、電極体を構成する活物質の種類によって、正極活物質層として利用されるもの(正極体)と、負極活物質層として利用されるもの(負極体)とに分けられる。例えば、LiCoOで構成される電極体は正極体であり、LiTi12で構成される電極体は負極体である。 The electrode body of the present invention is classified into one used as a positive electrode active material layer (positive electrode body) and one used as a negative electrode active material layer (negative electrode body) depending on the type of active material constituting the electrode body. For example, an electrode body made of LiCoO 2 is a positive electrode body, and an electrode body made of Li 5 Ti 4 O 12 is a negative electrode body.

上記本発明の構成によれば、電極体を単体で扱うことができるので、非水電解質電池を製造する際に、電極体を他の電池構成部材(具体的には、集電体やリチウムイオン伝導層)の支持体とすることができる。つまり、本発明の電極体によれば、従来の電池のように、正極活物質層または負極活物質層を形成する際に、電池の放電容量を大きくすることに直接寄与しない集電体を支持体として利用する必要がなくなる。その結果、従来の非水電解質電池に比べて非常に薄い集電体を利用することができるので、電池に占める正極活物質層の割合を大きくすることができ、非水電解質電池の放電容量を大きくすることができる。   According to the configuration of the present invention, since the electrode body can be handled alone, when manufacturing a non-aqueous electrolyte battery, the electrode body is replaced with other battery constituent members (specifically, a current collector or a lithium ion). The support can be a conductive layer. That is, according to the electrode body of the present invention, like the conventional battery, when forming the positive electrode active material layer or the negative electrode active material layer, the current collector that does not directly contribute to increasing the discharge capacity of the battery is supported. There is no need to use it as a body. As a result, a very thin current collector can be used as compared with the conventional nonaqueous electrolyte battery, so that the proportion of the positive electrode active material layer in the battery can be increased, and the discharge capacity of the nonaqueous electrolyte battery can be increased. Can be bigger.

電極体を単体で扱うことができるのは、電極体が割れや欠けなどの生じ難い強度を有するからであり、その強度は、電極体の厚さと空隙率により担保される。本発明の電極体の平均厚さdは、0.05mm〜0.3mmであり、この範囲の厚さとすることで、電極体の強度を保持しつつ、十分な放電容量を確保することができる。また、本発明の電極体の空隙率は15体積%以下であり、この範囲の空隙率とすることで、電極体の強度を保持しつつ、十分な放電容量を確保することができる。空隙率が15体積%超であると、電極体が脆くなる虞があるし、電極体内のリチウムイオンの拡散抵抗が高くなりすぎて、電池としたときの放電容量が低下する。なお、空隙率が0.1体積%以下の電極体を製造することは技術的に難しい。   The reason why the electrode body can be handled as a single body is that the electrode body has a strength that does not easily cause cracking or chipping, and the strength is ensured by the thickness and porosity of the electrode body. The average thickness d of the electrode body of the present invention is 0.05 mm to 0.3 mm. By setting the thickness within this range, a sufficient discharge capacity can be secured while maintaining the strength of the electrode body. . Moreover, the porosity of the electrode body of this invention is 15 volume% or less, By setting it as the porosity of this range, sufficient discharge capacity can be ensured, maintaining the intensity | strength of an electrode body. If the porosity exceeds 15% by volume, the electrode body may become brittle, the diffusion resistance of lithium ions in the electrode body becomes too high, and the discharge capacity of the battery decreases. In addition, it is technically difficult to manufacture an electrode body having a porosity of 0.1% by volume or less.

(2)本発明電極体の一形態として、電極体の平均厚さdに対する厚みのばらつきが±0.05d以下であり、かつ電極体の反りが、半径1.5m以上の反りであることが好ましい。 (2) As an embodiment of the electrode body of the present invention, the variation in thickness with respect to the average thickness d of the electrode body is ± 0.05 d or less, and the warp of the electrode body is a warp having a radius of 1.5 m or more. preferable.

電極体の厚みのばらつきが小さければ、この電極体を非水電解質電池に組み込んで充放電を行ったときに、部分的に過充電または過放電となる箇所がなくなり、電池性能が劣化し難い。ここで、電極体の厚みのばらつきは、例えば、電極体の面内における任意の複数箇所(3箇所以上、好ましくは10箇所以上、より好ましくは50箇所以上)で厚さを測定して求めれば良い。また、大きな電極体においては、その電極体に対して例えば1cm角の方眼マスを仮定して、各々のマスの位置における電極体の厚さを測定することにより、ばらつきを求めれば良い。そして、測定した箇所で厚みのばらつきが±0.05d以下であれば、電極体の面内全体で厚みのばらつきが±0.05d以下であると見做せば良い。   If the variation in the thickness of the electrode body is small, when this electrode body is incorporated in a nonaqueous electrolyte battery and charged and discharged, there are no portions that are partially overcharged or overdischarged, and the battery performance is unlikely to deteriorate. Here, the variation in the thickness of the electrode body can be determined by measuring the thickness at any of a plurality of locations (3 or more, preferably 10 or more, more preferably 50 or more) in the plane of the electrode body. good. Further, in a large electrode body, for example, assuming a square square of 1 cm square with respect to the electrode body, the variation may be obtained by measuring the thickness of the electrode body at each square position. If the thickness variation at the measured location is ± 0.05 d or less, it can be considered that the thickness variation is ± 0.05 d or less over the entire surface of the electrode body.

また、電極体の反りが上記半径以上であるということは、電極体が平坦に近いということであるので、電極体に他の層(例えば、固体電解質層など)をプレスにより形成する場合、電極体に割れなどの不具合が生じる虞が殆どない。この電極体の反りは、以下のように求める。まず、電極体を上面が凹となるように平面に置いたときに、平面に対向する側の構造体の両端部における平面からの浮き量を測定する。次に、測定した浮き量と電極体の寸法とから、浮き量の測定点である構造体の両端部を通り、平面に接する円弧を仮定する。この円弧の半径を電極体の反りの半径と見做す。   In addition, since the warpage of the electrode body is equal to or larger than the above radius, the electrode body is nearly flat. Therefore, when another layer (for example, a solid electrolyte layer) is formed on the electrode body by pressing, the electrode There is almost no risk of defects such as cracks in the body. The warpage of the electrode body is obtained as follows. First, when the electrode body is placed on a flat surface so that the upper surface is concave, the floating amount from the flat surface at both ends of the structure on the side facing the flat surface is measured. Next, from the measured floating amount and the dimensions of the electrode body, an arc that touches the plane passing through both ends of the structure, which is the measurement point of the floating amount, is assumed. The radius of this arc is regarded as the radius of curvature of the electrode body.

(3)上述した電極体を利用して非水電解質電池を作製することができる。非水電解質電池は、正極と、負極と、これらの間でリチウムイオンの伝導を媒介するリチウムイオン伝導層を備える。この正極または負極として、本発明電極体の一方の面に、平均厚さ0.01μm〜30μmの金属薄膜を設けたものを使用する。金属薄膜の形成には、気相法を利用すれば良く、具体的には、本発明電極体を用意し、この電極体を支持体として、電極体の一方の面に気相法により金属薄膜を形成すると良い。 (3) A nonaqueous electrolyte battery can be produced using the electrode body described above. The nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a lithium ion conductive layer that mediates lithium ion conduction therebetween. As this positive electrode or negative electrode, one having a metal thin film having an average thickness of 0.01 μm to 30 μm is used on one surface of the electrode body of the present invention. For the formation of the metal thin film, a vapor phase method may be used. Specifically, the electrode body of the present invention is prepared, the electrode body is used as a support, and the metal thin film is formed on one surface of the electrode body by the vapor phase method. It is good to form.

本発明非水電解質電池では、電極体が正極活物質層として機能し、金属薄膜が集電体として機能する。ここで、本発明非水電解質電池は、電極体を支持体として、その一方の面に金属薄膜を設けているため、前記金属薄膜の平均厚さを0.01μm〜30μmの範囲とすることができる。この厚さの金属薄膜は、それ自体を単体で扱うことが困難であり、金属薄膜を支持体として電極体を形成することも、金属薄膜と正極材料とを金型に入れて加圧成形することも実質的にできない。つまり、本発明の非水電解質電池は、従来の非水電解質電池ではあり得なかった薄さの集電体(金属薄膜)を有する非水電解質電池である。そのため、本発明の非水電解質電池は、従来の非水電解質電池に比べて、電池における正極活物質層の割合が大きく、電池の体積当たりの放電容量が大きい。   In the nonaqueous electrolyte battery of the present invention, the electrode body functions as a positive electrode active material layer, and the metal thin film functions as a current collector. Here, in the nonaqueous electrolyte battery of the present invention, since the electrode body is used as a support and a metal thin film is provided on one surface thereof, the average thickness of the metal thin film may be in the range of 0.01 μm to 30 μm. it can. The metal thin film of this thickness is difficult to handle by itself, and the electrode body can be formed by using the metal thin film as a support, or the metal thin film and the positive electrode material are put into a mold and pressure-molded. I can't really do that either. That is, the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery having a thin current collector (metal thin film) that could not be a conventional non-aqueous electrolyte battery. Therefore, the nonaqueous electrolyte battery of the present invention has a larger proportion of the positive electrode active material layer in the battery and a larger discharge capacity per battery volume than the conventional nonaqueous electrolyte battery.

(4)本発明非水電解質電池の一形態として、リチウムイオン伝導層は、リチウムを含有する高分子樹脂としても良い。例えば、高分子樹脂製のセパレータにリチウムを含む電解液(例えば、リチウム化合物を有機溶媒に溶解させた非水系有機電解液)を含浸させたものや、リチウムを含有するゲル状の高分子樹脂などが代表的である。 (4) As one form of the nonaqueous electrolyte battery of the present invention, the lithium ion conductive layer may be a polymer resin containing lithium. For example, a polymer resin separator impregnated with an electrolyte containing lithium (for example, a non-aqueous organic electrolyte obtained by dissolving a lithium compound in an organic solvent), a gel polymer resin containing lithium, etc. Is representative.

リチウムイオン伝導層として高分子樹脂を利用することで、正極と負極とを別々に用意し、これら正極と負極とを高分子樹脂を挟んで重ね合わせると言う簡単な操作で非水電解質電池を作製することができる。   By using a polymer resin as the lithium ion conductive layer, a positive electrode and a negative electrode are prepared separately, and a non-aqueous electrolyte battery is produced by a simple operation of stacking the positive electrode and the negative electrode with the polymer resin in between. can do.

(5)本発明非水電解質電池の一形態として、電極体のうち、集電体が形成される面(一方の面)とは異なる面(他方の面)の算術平均粗さRa(JIS B0601 01)を0.1μm以下とし、この他方の面の上に固体電解質からなるリチウムイオン伝導層を形成しても良い。 (5) As one form of the nonaqueous electrolyte battery of the present invention, arithmetic mean roughness Ra (JIS B0601) of a surface (one surface) different from the surface (one surface) on which the current collector is formed in the electrode body 01) may be 0.1 μm or less, and a lithium ion conductive layer made of a solid electrolyte may be formed on the other surface.

リチウムイオン伝導層として固体電解質を使用することで、液性の電解質を利用する際の問題、例えば、電池からの液漏れの問題を解決することができる。また、電極体の他方の面の表面粗さを規定することで、電極体の他方の面に固体電解質からなるリチウムイオン伝導層を形成する際、被覆不良が生じ難い。そのため、この被覆不良に起因する正・負極間の短絡を防止することができる。   By using a solid electrolyte as the lithium ion conductive layer, problems when using a liquid electrolyte, for example, a problem of liquid leakage from the battery can be solved. In addition, by defining the surface roughness of the other surface of the electrode body, when forming a lithium ion conductive layer made of a solid electrolyte on the other surface of the electrode body, a coating failure is unlikely to occur. Therefore, it is possible to prevent a short circuit between the positive electrode and the negative electrode due to this defective coating.

(6)本発明非水電解質電池の製造方法は、以下の構成を備えることを特徴とする。
上述した本発明電極体を用意する工程。
この電極体の一方の面に気相法により平均厚さ0.01〜30μmの金属薄膜を形成する工程。
(6) The manufacturing method of the nonaqueous electrolyte battery of the present invention is characterized by having the following configuration.
A step of preparing the above-described electrode body of the present invention.
Forming a metal thin film having an average thickness of 0.01 to 30 μm on one surface of the electrode body by a vapor phase method;

上記非水電解質電池の製造方法によれば、正極活物質または負極活物質となる電極体に対して、集電体となる金属薄膜を非常に薄く形成することができる。その結果、非水電解質に占める集電体の割合を低く抑えることができるので、容量の大きな電池を作製できる。   According to the method for producing a nonaqueous electrolyte battery, a metal thin film serving as a current collector can be formed very thinly with respect to an electrode body serving as a positive electrode active material or a negative electrode active material. As a result, since the proportion of the current collector in the nonaqueous electrolyte can be kept low, a battery with a large capacity can be manufactured.

本発明電極体は、電極体自身を、非水電解質電池を作製する際の支持体とすることができる。そのため、本発明電極体を使用して非水電解質電池を作製した場合、電池に占める正極活物質層の割合が高くなるので、電池の体積当たりの放電容量を高くすることができる。   In the electrode body of the present invention, the electrode body itself can be used as a support when producing a nonaqueous electrolyte battery. Therefore, when a non-aqueous electrolyte battery is produced using the electrode body of the present invention, the ratio of the positive electrode active material layer to the battery is increased, so that the discharge capacity per battery volume can be increased.

実施形態1に係る非水電解質電池の縦断面図である。1 is a longitudinal sectional view of a nonaqueous electrolyte battery according to Embodiment 1. FIG. 実施形態2に係る非水電解質電池の縦断面図である。3 is a longitudinal sectional view of a nonaqueous electrolyte battery according to Embodiment 2. FIG.

<実施形態1>
≪全体構成≫
図1は、本実施形態における非水電解質電池の縦断面図である。この非水電解質電池100は、正極1、負極2、および、両電極間に配置されるリチウムイオン伝導層31を備える。正極1は、正極活物質層11と正極集電体12とからなり、負極2は、負極活物質層21と負極集電体22とからなる。さらに、この電池100は、正極活物質層11とリチウムイオン伝導層31との間にリチウムイオンの偏りを緩衝する緩衝層41を備える。
<Embodiment 1>
≪Overall structure≫
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte battery according to this embodiment. The non-aqueous electrolyte battery 100 includes a positive electrode 1, a negative electrode 2, and a lithium ion conductive layer 31 disposed between both electrodes. The positive electrode 1 includes a positive electrode active material layer 11 and a positive electrode current collector 12, and the negative electrode 2 includes a negative electrode active material layer 21 and a negative electrode current collector 22. Furthermore, the battery 100 includes a buffer layer 41 that buffers the bias of lithium ions between the positive electrode active material layer 11 and the lithium ion conductive layer 31.

≪各構成部材≫
(正極活物質層)
正極活物質層11は、リチウムイオンの吸蔵及び放出を行う活物質を含む層である。特に、LiAOやLiB(A,Bは、Co、Mn、AlおよびNiの少なくとも一種以上を含む)で表される酸化物が好適である。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、LiNi0.5Mn0.5、LiNi0.5Mn1.5またはLiMn若しくはこれらの混合物を好適に使用することができる。また、A,BにおけるCo,Mn,Al,Niの合計は50%以上あれば良く、正極活物質は、例えば、LiCo0.5Fe0.5などであっても良い。その他、正極活物質としてLiNi0.5Mn1.5やLiMnなどのスピネル結晶からなる正極活物質を用いても良い。
≪Each component≫
(Positive electrode active material layer)
The positive electrode active material layer 11 is a layer containing an active material that occludes and releases lithium ions. In particular, an oxide represented by LiAO 2 or LiB 2 O 4 (A and B include at least one of Co, Mn, Al, and Ni) is preferable. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), LiNi 0.5 Mn 0.5 O 2 , LiNi 0.5 Mn 1.5 O 4 or LiMn 2 O 4 or a mixture thereof is suitable. Can be used for The total of Co, Mn, Al, and Ni in A and B may be 50% or more, and the positive electrode active material may be, for example, LiCo 0.5 Fe 0.5 O 2 . Other may be used a positive electrode active material composed of spinel crystals such as LiNi 0.5 Mn 1.5 O 4 and LiMn 2 O 4 as a cathode active material.

正極活物質層11は、平均厚さが0.05mm〜0.3mmで、空隙率が15体積%以下である。このような厚さと空隙率を有することにより、正極活物質層11のみを取り出した状態(以下、この状態を正極体とする)であっても、割れや欠けなどを生じることなく扱うことができる。その結果、後述するように、正極体を支持体として、正極集電体12を形成することができる。   The positive electrode active material layer 11 has an average thickness of 0.05 mm to 0.3 mm and a porosity of 15% by volume or less. By having such a thickness and porosity, even when only the positive electrode active material layer 11 is taken out (hereinafter, this state is referred to as a positive electrode body), it can be handled without causing cracks or chips. . As a result, as will be described later, the positive electrode current collector 12 can be formed using the positive electrode body as a support.

正極活物質層11の厚さが小さすぎる、即ち、正極体の厚さが小さすぎると、電池の容量が小さくなるし、正極体を単体で扱うことが難しくなる。一方、厚さが厚すぎると、正極活物質層11内部でのリチウムイオンの拡散が律速となって、正極活物質層11としての性能が低下する虞がある。   If the thickness of the positive electrode active material layer 11 is too small, that is, if the thickness of the positive electrode body is too small, the capacity of the battery becomes small and it becomes difficult to handle the positive electrode body alone. On the other hand, if the thickness is too thick, the diffusion of lithium ions inside the positive electrode active material layer 11 becomes rate limiting, and the performance as the positive electrode active material layer 11 may be reduced.

また、正極活物質層11の空隙率が大きいと、正極活物質層11の内部におけるリチウムイオンの拡散抵抗や電子伝導抵抗が増加するので、電池の性能が低下する。より好ましい空隙率は、8体積%以下である。   Further, when the porosity of the positive electrode active material layer 11 is large, the diffusion resistance of lithium ions and the electron conduction resistance inside the positive electrode active material layer 11 increase, so that the performance of the battery decreases. A more preferable porosity is 8% by volume or less.

ところで、正極活物質層11に形成される空隙部は、同層11のリチウムイオン伝導性を低下させる要因であるので、この空隙部にリチウムイオン伝導性の物質が配置されていることが好ましい。例えば、Liと、Ti,NbおよびTaのうち少なくとも一種とを含有する酸化物(Li−La−Tiの複合酸化物や、Li−Tiの複合酸化物など)、Liと、Laと、ZrおよびTiのうち少なくとも一種とを含有する酸化物(Li−La−Zrの複合酸化物など)を空隙部に配置すると、空隙部によるリチウムイオン伝導性の低下を複合酸化物により補うことができる。   By the way, since the void portion formed in the positive electrode active material layer 11 is a factor that lowers the lithium ion conductivity of the layer 11, it is preferable that a lithium ion conductive material is disposed in the void portion. For example, an oxide containing Li and at least one of Ti, Nb, and Ta (a Li-La-Ti composite oxide, a Li-Ti composite oxide, or the like), Li, La, Zr, and When an oxide containing at least one of Ti (such as a Li-La-Zr composite oxide) is disposed in the void portion, the decrease in lithium ion conductivity due to the void portion can be compensated by the complex oxide.

正極体の空隙部に配置するリチウムイオン伝導性の物質として、リチウムイオン伝導性を有する高分子材を挙げることもできる。例えば、LiPFなどのリチウムを含む化合物を溶解させた高分子材(例えば、ポリエチレンオキサイドなど)を空隙部に充填させると良い。この構成によれば、空隙部に複合酸化物を配置した電極体と同様に、リチウムイオンの伝導の妨げとなる空隙部をリチウムイオンの伝導路とすることができるので、非水電解質電池に利用した際に電池の放電容量を高くすることができる。 Examples of the lithium ion conductive substance disposed in the gap of the positive electrode body include a polymer material having lithium ion conductivity. For example, a polymer material (for example, polyethylene oxide or the like) in which a compound containing lithium such as LiPF 6 is dissolved may be filled in the voids. According to this configuration, similarly to the electrode body in which the composite oxide is disposed in the void portion, the void portion that hinders the conduction of lithium ions can be used as a lithium ion conduction path, so it can be used for a non-aqueous electrolyte battery. In this case, the discharge capacity of the battery can be increased.

このような正極活物質層11は、例えば、後述する実施例に記載のように焼結法を利用して形成することができる。ここで、上述したように、正極活物質層11に空隙部が存在すると、同層11のリチウムイオン伝導性が低下するので、空隙部を小さくするように同層11を形成する。例えば、正極活物質層11の材料を等方的に圧縮成形した後に焼結する方法や、圧縮を加えつつ焼結する方法などが挙げられる。   Such a positive electrode active material layer 11 can be formed by using a sintering method as described in Examples described later, for example. Here, as described above, if the void portion exists in the positive electrode active material layer 11, the lithium ion conductivity of the layer 11 is lowered. Therefore, the same layer 11 is formed so as to reduce the void portion. For example, a method of sintering the material of the positive electrode active material layer 11 after isotropic compression molding, a method of sintering while applying compression, and the like can be mentioned.

(正極集電体)
正極集電体12としては、Al、Ni、これらの合金、ステンレスから選択される1種が好適に利用できる。ここで、上述したように、正極活物質層11となる電極体は支持体として使用することができるので、正極集電体12は、電極体(正極活物質層11)に対して形成することになる。つまり、従来であれば、正極集電体を支持体として、その上に正極活物質層を形成していたが、本発明では逆になる。この形成順序の逆転により、従来の非水電解質電池では、厚くせざるを得なかった正極集電体12を平均0.01μm〜30μmとすることができる。換言すれば、非水電解質電池100に占める正極集電体12が薄く、その分、正極活物質層11が厚い非水電解質電池100となる。このような正極集電体12は、正極活物質層11を基材とする気相蒸着法などを利用して形成することができる。
(Positive electrode current collector)
As the positive electrode current collector 12, one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used. Here, as described above, since the electrode body to be the positive electrode active material layer 11 can be used as a support, the positive electrode current collector 12 is formed with respect to the electrode body (positive electrode active material layer 11). become. That is, conventionally, a positive electrode current collector is used as a support and a positive electrode active material layer is formed thereon, but the reverse is true in the present invention. By reversing the formation order, in the conventional nonaqueous electrolyte battery, the positive electrode current collector 12 that must be thickened can be made 0.01 μm to 30 μm on average. In other words, the positive electrode current collector 12 occupying the nonaqueous electrolyte battery 100 is thin, and the positive electrode active material layer 11 is correspondingly thick. Such a positive electrode current collector 12 can be formed using a vapor deposition method using the positive electrode active material layer 11 as a base material.

(負極活物質層)
負極活物質層21は、リチウムイオンの吸蔵及び放出を行う活物質を含む層で構成する。例えば、負極活物質層21として、Li金属及びLi金属と合金を形成することのできる金属よりなる群より選ばれる1つ、若しくはこれらの混合物又は合金が好適に使用できる。Liと合金を形成することのできる元素としては、Al、Si、C、Sn、Bi、及びInよりなる群より選ばれる少なくとも一つが良い。その他、LiとTiの複合酸化物(LiTi12など)や、Si,Sn,Vの酸化物(SiOやSnO、Vなど)などを利用することもできる。
(Negative electrode active material layer)
The negative electrode active material layer 21 is composed of a layer containing an active material that occludes and releases lithium ions. For example, as the negative electrode active material layer 21, one selected from the group consisting of Li metal and a metal capable of forming an alloy with Li metal, or a mixture or alloy thereof can be preferably used. The element capable of forming an alloy with Li is preferably at least one selected from the group consisting of Al, Si, C, Sn, Bi, and In. In addition, a composite oxide of Li and Ti (Li 4 Ti 5 O 12 or the like), an oxide of Si, Sn, or V (SiO, SnO, V 2 O 5 or the like) can be used.

負極活物質層21も、正極活物質層11と同様に、単体で扱うことができる電極体(以下、負極体とする)とすることができる。負極体を単体で扱えるように、負極体の平均厚さと空隙率はそれぞれ、0.05mm〜0.3mmと15体積%以下とする(正極体と同じ)。負極活物質層21(負極体)の空隙部にもリチウムイオン伝導性の物質を配置しても良い。   Similarly to the positive electrode active material layer 11, the negative electrode active material layer 21 can also be an electrode body (hereinafter referred to as a negative electrode body) that can be handled alone. The average thickness and porosity of the negative electrode body are set to 0.05 mm to 0.3 mm and 15% by volume or less so that the negative electrode body can be handled alone (same as the positive electrode body). You may arrange | position a lithium ion conductive substance also to the space | gap part of the negative electrode active material layer 21 (negative electrode body).

また、負極活物質層21は、必ずしも単体で扱える負極体で構成しなくても良い。例えば、上述した正極体にリチウムイオン伝導層31を積層し、さらにその上に負極活物質層21を形成する。その際、負極活物質層21は、気相蒸着法により形成しても良いし、箔を貼り合わせることで形成しても良い。   Moreover, the negative electrode active material layer 21 does not necessarily need to be composed of a negative electrode body that can be handled alone. For example, the lithium ion conductive layer 31 is laminated on the positive electrode body described above, and the negative electrode active material layer 21 is further formed thereon. At that time, the negative electrode active material layer 21 may be formed by a vapor deposition method or may be formed by bonding a foil.

(負極集電体)
負極集電体22は、Cu、Ni、Fe、Cr、及びこれらの合金から選択される1種が好適に利用できる。負極活物質層21を負極体で構成する場合、負極集電体22を非常に薄くすることができる。なお、負極活物質層21が導電性の高い部材で構成される場合、負極集電体22を省略することができる。
(Negative electrode current collector)
As the negative electrode current collector 22, one selected from Cu, Ni, Fe, Cr, and alloys thereof can be suitably used. When the negative electrode active material layer 21 is composed of a negative electrode body, the negative electrode current collector 22 can be made very thin. In addition, when the negative electrode active material layer 21 is composed of a highly conductive member, the negative electrode current collector 22 can be omitted.

(リチウムイオン伝導層)
リチウムイオン伝導層(以下、SE層)31は、リチウムイオン伝導性を有する酸化物や硫化物の固体電解質である。このSE層31は、リチウムイオン伝導度(20℃)が10-5S/cm以上であり、かつLiイオン輸率が0.9以上であることが好ましい。また、SE層31は、電子伝導度が10-8S/cm以下であることが好ましい。SE層31の材質としては、例えば、Li、P、S、OからなるLi−P−S−Oや、LiSとPとからなるLi−P−Sのアモルファス膜あるいは多結晶膜などで構成することが好ましい。
(Lithium ion conductive layer)
The lithium ion conductive layer (hereinafter, SE layer) 31 is an oxide or sulfide solid electrolyte having lithium ion conductivity. The SE layer 31 preferably has a lithium ion conductivity (20 ° C.) of 10 −5 S / cm or more and a Li ion transport number of 0.9 or more. The SE layer 31 preferably has an electron conductivity of 10 −8 S / cm or less. Examples of the material of the SE layer 31 include Li—P—S—O composed of Li, P, S, and O, Li—PS—amorphous film or polycrystal composed of Li 2 S and P 2 S 5. It is preferable to comprise a film or the like.

SE層31の平均厚さは、0.3〜10μmとすることが好ましい。SE層31が厚すぎると、電池の内部抵抗が増加し、逆に薄すぎると正負極間の絶縁を確保することが難しくなる。   The average thickness of the SE layer 31 is preferably 0.3 to 10 μm. If the SE layer 31 is too thick, the internal resistance of the battery will increase. Conversely, if the SE layer 31 is too thin, it will be difficult to ensure insulation between the positive and negative electrodes.

(緩衝層)
緩衝層41は、SE層31が硫化物の場合に、SE層31と正極活物質層11との界面におけるリチウムイオンの偏りを緩衝するための層である。緩衝層41の材質としては、Liと、Ti,Nb,TaおよびSiの少なくとも一種とを含有する複合酸化物であることが好ましく、具体的には、LixLa(2−X)/3TiO(X=0.1〜0.5)、LiTi12、Li3.6Si0.60.4、Li1.3Al0.3Ti1.7(PO、Li1.8Cr0.8Ti1.2(PO、LiNbO,LiTaOまたは、Li1.4In0.4Ti1.6(POなどを単独あるいは組み合わせて使用できる。なお、SE層31が酸化物から構成される場合、緩衝層41を省略しても良い。
(Buffer layer)
The buffer layer 41 is a layer for buffering the bias of lithium ions at the interface between the SE layer 31 and the positive electrode active material layer 11 when the SE layer 31 is a sulfide. The material of the buffer layer 41 is preferably a composite oxide containing Li and at least one of Ti, Nb, Ta and Si. Specifically, LixLa (2-X) / 3 TiO 3 ( X = 0.1-0.5), Li 4 Ti 5 O 12 , Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 Li 1.8 Cr 0.8 Ti 1.2 (PO 4 ) 3 , LiNbO 3 , LiTaO 3 , Li 1.4 In 0.4 Ti 1.6 (PO 4 ) 3 or the like is used alone or in combination. it can. When the SE layer 31 is made of an oxide, the buffer layer 41 may be omitted.

緩衝層41の平均厚さは、5〜100nmとすることが好ましい。緩衝層41の厚さが厚すぎると、非水電解質電池の内部抵抗が増大し、電池の出力が低下する。逆に、厚さが薄すぎると、リチウムイオンの偏りを緩衝できなくなる。   The average thickness of the buffer layer 41 is preferably 5 to 100 nm. If the thickness of the buffer layer 41 is too thick, the internal resistance of the nonaqueous electrolyte battery increases and the output of the battery decreases. On the contrary, if the thickness is too thin, it is impossible to buffer the deviation of lithium ions.

<実施形態2>
≪全体構成≫
実施形態2では、実施形態1とは、リチウムイオン伝導層の構成が異なる非水電解質電池を図2に基づいて説明する。本実施形態の非水電解質電池200は、リチウムイオン伝導層32の構成が異なり、この構成の相違により緩衝層を必要としない以外は、実施形態1の電池と同様の構成を備える。従って、リチウムイオン伝導層32についてのみ説明する。
<Embodiment 2>
≪Overall structure≫
In the second embodiment, a nonaqueous electrolyte battery having a lithium ion conductive layer configuration different from that of the first embodiment will be described with reference to FIG. The nonaqueous electrolyte battery 200 of the present embodiment has the same configuration as that of the battery of the first embodiment, except that the configuration of the lithium ion conductive layer 32 is different and a buffer layer is not required due to the difference in this configuration. Therefore, only the lithium ion conductive layer 32 will be described.

≪リチウムイオン伝導層≫
本実施形態のリチウムイオン伝導層32は、リチウムイオン導電性を有する高分子樹脂で構成される。代表的には、リチウムイオン伝導性を有する電解液と、正極活物質層11と負極活物質層21との間を絶縁する高分子樹脂のセパレータとから構成される。電解液としては、エチレンカーボネートやプロピレンカーボネート、γ−ブチロラクトン、ジエチルカーボネート、テトラヒドロフラン、アセトニトリル等の有機溶媒の単独溶媒もしくは混合溶媒に、電解質としてのLiPF6やLiClO、LiBF、リチウムハロゲン化物等を1種類もしくは2種類以上を溶解した非水系有機電解液が挙げられる。また、セパレータとしては、ポリエチレンやポリプロピレンなどの多孔体(例えば、不織布)が挙げられる。
≪Lithium ion conductive layer≫
The lithium ion conductive layer 32 of the present embodiment is composed of a polymer resin having lithium ion conductivity. Typically, it is composed of an electrolytic solution having lithium ion conductivity and a polymer resin separator that insulates between the positive electrode active material layer 11 and the negative electrode active material layer 21. As an electrolytic solution, a single solvent or a mixed solvent of an organic solvent such as ethylene carbonate, propylene carbonate, γ-butyrolactone, diethyl carbonate, tetrahydrofuran, acetonitrile, etc., and LiPF 6 , LiClO 4 , LiBF 4 , lithium halide, etc. as an electrolyte are used. Nonaqueous organic electrolyte solution in which one type or two or more types are dissolved may be mentioned. Moreover, as a separator, porous bodies (for example, nonwoven fabric), such as polyethylene and a polypropylene, are mentioned.

上述した図1および図2に示す構成の非水電解質電池を実際に作製し、その電池性能を評価した。   A non-aqueous electrolyte battery having the configuration shown in FIGS. 1 and 2 was actually fabricated and its battery performance was evaluated.

まず、以下に示すように、非水電解質電池の正極活物質層となる電極体(以下、正極体とする)と、この正極体の一面側に形成された正極集電体とからなる複数の正極(正極試料1〜3、101〜103)を作製した。   First, as shown below, a plurality of electrode bodies (hereinafter, referred to as a positive electrode body) serving as a positive electrode active material layer of a nonaqueous electrolyte battery and a plurality of positive electrode current collectors formed on one surface side of the positive electrode body Positive electrodes (positive electrode samples 1-3, 101-103) were produced.

<正極試料の作製>
≪正極試料1≫
水酸化リチウム(LiOH)と酢酸コバルト(Co(CHCOO))とを等モル量混合し、蒸留水中に投入して混合撹拌した後、乾燥させて前駆体粉末を得た。この前駆体粉末を冷間等方加圧装置で80MPaの圧力をかけ、φ20mm×厚さ1mmのペレット状に成形し、仮焼き900℃×5時間、本焼き1050℃×3時間の焼成を行って、LiCoOからなる正極体を得た。この正極体は、基材を用いることなく形成されており、割れや欠けなどが生じることなく扱うことができた。
<Preparation of positive electrode sample>
Positive electrode sample 1≫
Lithium hydroxide (LiOH) and cobalt acetate (Co (CH 3 COO) 2 ) were mixed in equimolar amounts, poured into distilled water, mixed and stirred, and then dried to obtain a precursor powder. This precursor powder was pressed into a pellet shape of φ20 mm × thickness 1 mm by applying a pressure of 80 MPa with a cold isostatic press, and calcined at 900 ° C. for 5 hours and calcined at 1050 ° C. for 3 hours. Thus, a positive electrode body made of LiCoO 2 was obtained. This positive electrode body was formed without using a base material, and could be handled without causing cracks or chips.

次いで、得られた正極体の形状加工後に表面を研磨処理し、最終的なサイズをφ15mm×平均厚さ0.1mmとした。研磨の際、正極体と研磨板との平行度を調整し、正極体の厚みのばらつきが小さく、かつ、反りの半径が大きくなるようにした。研磨した正極体の表面を段差計により測定したところ、算術平均粗さRa(JIS B0601 01)が0.03μmであった。また、正極体に対して任意に位置をずらしながら、50回、厚さの測定を行い、当該測定値のばらつきを算出したところ、2%以内(正極体の平均厚さdとすると、厚みのばらつきは±0.02d)であった。さらに、正極体を平面に載置して正極体の反りの半径を算出したところ、半径R=2mの反りを有していた。また、研磨した正極体の重量と体積とから求めた同構造体の空隙率は8%であり、1cm当たりのLiCoO量は、46mgであった。 Next, after the shape processing of the obtained positive electrode body, the surface was polished, and the final size was φ15 mm × average thickness 0.1 mm. During polishing, the parallelism between the positive electrode body and the polishing plate was adjusted so that the thickness variation of the positive electrode body was small and the radius of warpage was large. When the surface of the polished positive electrode body was measured with a step gauge, the arithmetic average roughness Ra (JIS B060001) was 0.03 μm. In addition, the thickness was measured 50 times while arbitrarily shifting the position with respect to the positive electrode body, and the variation of the measured value was calculated to be within 2% (the average thickness d of the positive electrode body The variation was ± 0.02 d). Furthermore, when the positive electrode body was placed on a flat surface and the radius of curvature of the positive electrode body was calculated, the positive electrode body had a curvature of radius R = 2 m. Further, the porosity of the structure obtained from the weight and volume of the polished positive electrode body was 8%, and the amount of LiCoO 2 per 1 cm 2 was 46 mg.

最後に、研磨した正極体の一方の面にAlからなる平均厚さ0.1μmの正極集電体を形成し、正極試料1を作製した。なお、Alは、気相蒸着法により形成した。   Finally, a positive electrode current collector made of Al and having an average thickness of 0.1 μm was formed on one surface of the polished positive electrode body to prepare a positive electrode sample 1. Note that Al was formed by a vapor deposition method.

≪正極試料2≫
正極試料1の欄に記載の正極体(焼結後、研磨処理前)に、ペンタエトキシニオブおよびリチウムエトキシドをそれぞれ10mol%溶解させたエタノール溶液を減圧下(50kPa)で含浸させた。この正極体に、大気中で、400℃×1時間の加熱を行い、正極体の空隙部にLiNbO(リチウムイオン伝導性の複合酸化物)が保持されるようにした。そして、加熱処理後の正極体を研磨処理して、φ15mm×平均厚さ0.1mmとした後、この研磨した正極体の一方の面に平均厚さ0.1μmのAlからなる正極集電体を気相蒸着法により形成することで正極試料2を得た。正極試料2における正極体は、その厚みのばらつきが2%以内で、表面粗さRaが0.03μmであり、半径2mの反りを有していた。また、正極試料2の1cm2当たりのLiCoO量は46mgであった。
Positive electrode sample 2≫
The positive electrode body (after sintering and before polishing treatment) described in the column of the positive electrode sample 1 was impregnated with an ethanol solution in which 10 mol% of pentaethoxyniobium and lithium ethoxide were dissolved under reduced pressure (50 kPa). This positive electrode body was heated in the atmosphere at 400 ° C. for 1 hour so that LiNbO 3 (lithium ion conductive composite oxide) was held in the voids of the positive electrode body. Then, the positive electrode body after the heat treatment is polished to a diameter of 15 mm × average thickness of 0.1 mm, and then the positive electrode current collector made of Al having an average thickness of 0.1 μm on one surface of the polished positive electrode body Was formed by vapor deposition method to obtain a positive electrode sample 2. The positive electrode body in the positive electrode sample 2 had a thickness variation of 2% or less, a surface roughness Ra of 0.03 μm, and a warp with a radius of 2 m. Further, the amount of LiCoO 2 per 1 cm 2 of the positive electrode sample 2 was 46 mg.

≪正極試料3≫
正極試料1の欄に記載の正極体(焼結後、研磨処理前)に、過塩素酸リチウム(LiClO)を5mol%溶解させたエチレンカーバイドとポリエチレンオキシド(PEO)とを当重量混合した溶液を減圧下(50kPa)で含浸させた。この正極体に、アルゴン中で、45℃×1時間の加熱処理を行い、正極体の空隙部にPEO(リチウムイオン伝導性高分子材)が保持されるようにした。そして、加熱処理後の正極体を研磨処理して、φ15mm×厚さ0.1mmとした後、この研磨した正極体の一方の面に厚さ0.1μmのAlからなる正極集電体を気相蒸着法により形成することで正極試料3を得た。正極試料3における正極体は、その厚みのばらつきが2%以内で、表面粗さRaが0.02μmであり、半径2mの反りを有していた。また、正極試料3の1cm2当たりのLiCoO量は46mgであった。
≪Positive electrode sample 3≫
A solution in which an equal weight of ethylene carbide and polyethylene oxide (PEO) in which 5 mol% of lithium perchlorate (LiClO 4 ) is dissolved in the positive electrode body (after sintering and before polishing treatment) described in the column of the positive electrode sample 1 is mixed. Was impregnated under reduced pressure (50 kPa). This positive electrode body was heat-treated in argon at 45 ° C. for 1 hour so that PEO (lithium ion conductive polymer material) was held in the voids of the positive electrode body. Then, the positive electrode body after the heat treatment was polished to φ15 mm × thickness 0.1 mm, and then a positive electrode current collector made of Al having a thickness of 0.1 μm was deposited on one surface of the polished positive electrode body. The positive electrode sample 3 was obtained by forming by the phase evaporation method. The positive electrode body in the positive electrode sample 3 had a thickness variation of 2% or less, a surface roughness Ra of 0.02 μm, and a warp with a radius of 2 m. Further, the amount of LiCoO 2 per 1 cm 2 of the positive electrode sample 3 was 46 mg.

≪正極試料101≫
LiCoO粉末(8重量部)と、ポリフッ化ビニリデン(1重量部)と、N−メチル−2−ピロリドン(10重量部)とを混合したスラリーを作製した。そして、このスラリーをAl箔(φ15mm、平均厚さ10μm)上に塗布し、150℃×2時間で乾燥させ、最終的な平均厚さが90μmの正極集電体層を有する正極試料101を得た。この正極試料101の1cm当たりのLiCoO量は25mgであった。なお、正極試料101ではAl箔が正極集電体となる。
≪Positive electrode sample 101≫
A slurry was prepared by mixing LiCoO 2 powder (8 parts by weight), polyvinylidene fluoride (1 part by weight), and N-methyl-2-pyrrolidone (10 parts by weight). And this slurry is apply | coated on Al foil ((phi) 15mm, average thickness 10micrometer), it is made to dry at 150 degreeC x 2 hours, and the positive electrode sample 101 which has a positive electrode collector layer whose final average thickness is 90 micrometers is obtained. It was. The amount of LiCoO 2 per 1 cm 2 of this positive electrode sample 101 was 25 mg. In the positive electrode sample 101, an Al foil serves as a positive electrode current collector.

≪正極試料102≫
平均厚さ20μmのステンレス箔基材(正極集電体)の上に、電子ビーム蒸着法によりLiCoOからなる平均厚さ10μmの薄膜を形成し、正極試料102を得た。電子ビーム蒸着法は、基材温度を500℃とし、1〜10Paの酸素雰囲気下で実施した。この正極試料102の1cm当たりのLiCoO量は5mgであった。なお、薄膜の平均厚さを10μm超とすると、薄膜に蓄積される応力が大きくなり、ステンレス箔から非常に剥がれ易かった。
≪Positive electrode sample 102≫
On a stainless foil base material (positive electrode current collector) having an average thickness of 20 μm, a thin film having an average thickness of 10 μm made of LiCoO 2 was formed by an electron beam evaporation method, and a positive electrode sample 102 was obtained. The electron beam evaporation method was performed in an oxygen atmosphere of 1 to 10 Pa with a base material temperature of 500 ° C. The amount of LiCoO 2 per 1 cm 2 of this positive electrode sample 102 was 5 mg. In addition, when the average thickness of the thin film was more than 10 μm, the stress accumulated in the thin film increased, and it was very easy to peel off from the stainless steel foil.

≪正極試料103≫
水酸化リチウム(LiOH)と酢酸コバルト(Co(CHCOO))とを等モル量混合し、蒸留水中に投入して混合撹拌した後、乾燥させて前駆体粉末を得た。この前駆体粉末を冷間等方加圧装置で80MPaの圧力をかけ、φ20mm×平均厚さ1mmのペレット状に成形し、仮焼き900℃×5時間、本焼き950℃×3時間の焼成を行って、LiCoOからなる正極体を得た。
≪Positive electrode sample 103≫
Lithium hydroxide (LiOH) and cobalt acetate (Co (CH 3 COO) 2 ) were mixed in equimolar amounts, poured into distilled water, mixed and stirred, and then dried to obtain a precursor powder. This precursor powder was pressed into a pellet with a diameter of 20 mm and an average thickness of 1 mm by applying a pressure of 80 MPa with a cold isostatic pressing device, and calcined at 900 ° C. for 5 hours and calcined at 950 ° C. for 3 hours. And a positive electrode body made of LiCoO 2 was obtained.

次いで、得られた正極体の形状加工後に、正極体の厚さのばらつきが小さく、かつ、反りの半径が大きくなるように表面を研磨処理し、最終的なサイズをφ15mm×平均厚さ0.1mmとした。研磨した正極体は、その表面粗さRaが0.2μm、厚みのばらつきが2%以内で、半径Rが2mの反りを有していた。また、研磨した正極体の重量と体積とから求めた同構造体の空隙率は20%であり、1cm当たりのLiCoO量は、40mgであった。この正極試料103は、空隙率が高いため、割れが生じないように扱いに注意を要した。 Next, after the shape processing of the obtained positive electrode body, the surface is polished so that the variation in the thickness of the positive electrode body is small and the radius of warpage is large, and the final size is φ15 mm × average thickness of 0.1 mm. It was 1 mm. The polished positive electrode body had a warp with a surface roughness Ra of 0.2 μm, a thickness variation of 2% or less, and a radius R of 2 m. Moreover, the porosity of the structure determined from the weight and volume of the polished positive electrode body was 20%, and the amount of LiCoO 2 per 1 cm 2 was 40 mg. Since this positive electrode sample 103 had a high porosity, it was necessary to handle it carefully so as not to cause cracks.

最後に、研磨した正極体の一方の面にAlからなる平均厚さ0.1μmの正極集電体を気相蒸着法により形成した。   Finally, a positive electrode current collector made of Al and having an average thickness of 0.1 μm was formed on one surface of the polished positive electrode body by vapor deposition.

<非水電解質電池の作製と、その電池性能の評価>
上述した正極試料1〜3、101〜103をそれぞれ使用した複数の非水電解質電池(電池A〜I)を作製した。非水電解質電池における各層の構成を表1に示す。
<Preparation of nonaqueous electrolyte battery and evaluation of battery performance>
A plurality of nonaqueous electrolyte batteries (batteries A to I) using the above-described positive electrode samples 1 to 101 and 101 to 103 were produced. Table 1 shows the configuration of each layer in the nonaqueous electrolyte battery.

Figure 2010080422
Figure 2010080422

≪図1の構成の製造条件≫
図1の構成を有する電池B,C,D,E,G,H,Iは、正極1を基材とし、正極1の上に緩衝層41(電池E,Hは設けない)、リチウムイオン伝導層31、負極2の順に気相蒸着法により形成した。各構成の形成方法を以下に詳述する。
<< Manufacturing conditions for the configuration of FIG. 1 >>
The batteries B, C, D, E, G, H, and I having the configuration of FIG. 1 have the positive electrode 1 as a base material, a buffer layer 41 (no batteries E and H are provided) on the positive electrode 1, and lithium ion conduction. The layer 31 and the negative electrode 2 were formed in this order by vapor deposition. The formation method of each structure is explained in full detail below.

LiNbOからなる緩衝層41は、正極1を基材とする、エキシマレーザアブレーション法により形成した。緩衝層41の平均厚さは、10nmであった。緩衝層41の成膜条件は、蒸発源出力500mJ、圧力1Paの酸素雰囲気下とし、成膜した後、400℃×0.5時間、大気炉で酸素アニールを行った。酸素アニールを行うことで、緩衝層41を構成するLiNbOを正極活物質層11に拡散させた。 The buffer layer 41 made of LiNbO 3 was formed by excimer laser ablation using the positive electrode 1 as a base material. The average thickness of the buffer layer 41 was 10 nm. The buffer layer 41 was deposited under an oxygen atmosphere with an evaporation source output of 500 mJ and a pressure of 1 Pa. After deposition, oxygen annealing was performed in an atmospheric furnace at 400 ° C. for 0.5 hour. By performing oxygen annealing, LiNbO 3 constituting the buffer layer 41 was diffused into the positive electrode active material layer 11.

リチウムイオン伝導層31をLiS+Pとする場合、同層31は、1PaのAr雰囲気下、硫化リチウム(LiS)及び五硫化リン(P)をターゲットとするエキシマレーザアブレーション法により形成した。また、リチウムイオン伝導層31をLi−P−O−Nとする場合、同層31は、1PaのN雰囲気下、LiPOをターゲットとする高周波マグネトロンスパッタ法により形成した。 When the lithium ion conductive layer 31 is Li 2 S + P 2 S 5 , the layer 31 is an excimer laser that targets lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) in an Ar atmosphere of 1 Pa. It was formed by the ablation method. Further, when the lithium ion conductive layer 31 is Li—P—O—N, the layer 31 is formed by a high frequency magnetron sputtering method using LiPO 4 as a target in an N 2 atmosphere of 1 Pa.

Liからなる負極活物質層21は、10−4Pa以下の真空下での抵抗加熱法により形成した。この負極活物質層21は、集電体を兼ねるので、本実施例においては、図1における負極集電体22を省略している。 The negative electrode active material layer 21 made of Li was formed by a resistance heating method under a vacuum of 10 −4 Pa or less. Since this negative electrode active material layer 21 also serves as a current collector, the negative electrode current collector 22 in FIG. 1 is omitted in this embodiment.

≪図2の構成の製造条件≫
図2の構成を有する電池A,Fは、正極1とは別に平均厚さ100μmのLi箔からなる負極2を用意し、正極1と負極2との間にリチウムイオン伝導層32を挟み込んで形成した。
<< Manufacturing conditions for the configuration of FIG. 2 >>
The batteries A and F having the configuration of FIG. 2 are formed by preparing a negative electrode 2 made of Li foil with an average thickness of 100 μm separately from the positive electrode 1 and sandwiching a lithium ion conductive layer 32 between the positive electrode 1 and the negative electrode 2. did.

リチウムイオン伝導層32は、ポリエチレンとポリプロピレンの混合多孔体(商品名:セルガード)を使用した。また、電解液は、エチレンカーボネート:ジエチルカーボネートを体積比で3:7の割合で混合した溶媒にLiPF6を溶解させた非水系有機電解液を使用した。 As the lithium ion conductive layer 32, a mixed porous body of polyethylene and polypropylene (trade name: Celgard) was used. As the electrolytic solution, a non-aqueous organic electrolytic solution in which LiPF 6 was dissolved in a solvent in which ethylene carbonate: diethyl carbonate was mixed at a volume ratio of 3: 7 was used.

<電池の性能評価>
上述した電池A〜Iについて、0.05mAの定電流で4.2Vまで充電し、3Vで放電したときの放電容量(mAh/cm)を測定した。また、放電開始時の電圧降下により、電池の内部抵抗を求めた。その結果を表2に示す。なお、表2では、電池の各層の構成についても合わせて記載した。
<Battery performance evaluation>
Regarding the batteries A to I described above, the discharge capacity (mAh / cm 2 ) when charged to 4.2 V with a constant current of 0.05 mA and discharged at 3 V was measured. Also, the internal resistance of the battery was determined from the voltage drop at the start of discharge. The results are shown in Table 2. In Table 2, the structure of each layer of the battery is also shown.

Figure 2010080422
Figure 2010080422

表2の結果から以下のことが明らかになった。   From the results in Table 2, the following became clear.

まず、図2に示す電解液タイプの電池である電池Aと電池Fとの比較により、ほぼ同一サイズの電池を作製した場合、正極体(正極試料1)を使用した電池Aは、正極集電体を基材とする塗布法により正極活物質層を形成した電池F(正極試料101を使用)よりも放電容量が大きかった。その理由は、焼結体で構成される正極試料1の正極活物質層(正極体)における単位体積あたりの活物質量が、塗布法で形成される正極試料101の正極活物質層における単位体積あたりの活物質量よりも多いからである。また、電池Aと電池Fにおける正極集電体の厚さも電池Aの放電容量の方が電池Fよりも大きい原因である。正極試料1では、正極体を基材として正極集電体を気相蒸着法により形成できるため、電池に占める集電体の厚さが薄い。これに対して、正極試料101では、集電体となる箔の上に塗布法で正極活物質層を形成しているため、ある程度の厚さを有する箔を使用しなければならず、電池に占める集電体の厚さが厚くなってしまう。   First, when a battery of almost the same size is manufactured by comparing the battery A and the battery F, which are electrolyte type batteries shown in FIG. 2, the battery A using the positive electrode body (positive electrode sample 1) The discharge capacity was larger than that of the battery F (using the positive electrode sample 101) in which the positive electrode active material layer was formed by a coating method using the body as a base material. The reason is that the amount of active material per unit volume in the positive electrode active material layer (positive electrode body) of the positive electrode sample 1 composed of a sintered body is the unit volume in the positive electrode active material layer of the positive electrode sample 101 formed by a coating method. This is because the amount of active material per unit is larger. Further, the thickness of the positive electrode current collector in the batteries A and F is also a cause of the discharge capacity of the battery A being larger than that of the battery F. In the positive electrode sample 1, since the positive electrode current collector can be formed by a vapor deposition method using the positive electrode body as a base material, the thickness of the current collector in the battery is thin. On the other hand, in the positive electrode sample 101, since the positive electrode active material layer is formed on the foil serving as a current collector by a coating method, a foil having a certain thickness must be used. The thickness of the current collector is increased.

次に、図1に示す固体電解質タイプ(硫化物系の固体電解質)の電池である電池B,C,Dと電池Gとを比較した。正極体(正極試料1、2、3)を使用した電池B,C,Dは、電池G(正極試料102を使用)よりも大量の正極活物質を有するため、電池Gよりも大きな放電容量を有していた。これは、正極試料102の正極活物質層が、10μm超の薄膜を形成することが困難な気相蒸着法により形成されているため、その厚さを10μmとせざるを得なかったからである。実際には困難だが、仮に気相蒸着法により電池Gの正極活物質層の厚さを100μmとできたとしても、電池Gの集電体は電池B,C,Dのものよりも厚いため、単位体積あたりの放電容量を比較すれば、電池B,C,Dの方が電池Gよりも高くなる。   Next, batteries B, C, and D, which are batteries of the solid electrolyte type (sulfide-based solid electrolyte) shown in FIG. Batteries B, C, and D using the positive electrode body (positive electrode samples 1, 2, and 3) have a larger amount of positive electrode active material than the battery G (using the positive electrode sample 102). Had. This is because the positive electrode active material layer of the positive electrode sample 102 is formed by a vapor deposition method in which it is difficult to form a thin film having a thickness of more than 10 μm, and thus the thickness has to be 10 μm. Although it is actually difficult, even if the thickness of the positive electrode active material layer of the battery G can be set to 100 μm by vapor deposition, the current collector of the battery G is thicker than those of the batteries B, C, D. If the discharge capacities per unit volume are compared, the batteries B, C, and D are higher than the battery G.

さらに、固体電解質に酸化物を利用した電池Eと電池Hとの関係を見ると、電池B,C,Dと電池Gとの関係と同様の傾向が認められた。   Further, looking at the relationship between the battery E and the battery H using an oxide as a solid electrolyte, the same tendency as the relationship between the batteries B, C, D and the battery G was recognized.

また、電池B(正極試料1を使用)と電池I(正極試料103を使用)との比較により、固体電解質を利用した電池において、正極体の空隙率が高い電池Iは、正極体の空隙率の低い電池Bよりも放電容量が小さく、内部抵抗が高いことが明らかになった。同じように正極体を利用した電池であっても、リチウムイオン伝導層が固体電解質である場合、電池の内部抵抗に対する正極体の空隙率の影響が大きいことが明らかになった。   Further, by comparing the battery B (using the positive electrode sample 1) and the battery I (using the positive electrode sample 103), in the battery using the solid electrolyte, the battery I having a high porosity of the positive electrode body has the porosity of the positive electrode body. It was revealed that the discharge capacity was smaller than that of the battery B having a low value and the internal resistance was high. Similarly, even in a battery using a positive electrode body, when the lithium ion conductive layer is a solid electrolyte, it has been found that the influence of the porosity of the positive electrode body on the internal resistance of the battery is large.

実施例2では、反りの調整を厳密に行わなかった電極体(正極試料4)の性能を検討した。   In Example 2, the performance of the electrode body (positive electrode sample 4) in which the warpage was not adjusted strictly was examined.

<正極試料4>
実施例1の正極試料1と同様の手法により、φ20mm×平均厚さ1mmの焼結体(正極体)を得、その表面を研磨処理して、最終的なサイズをφ15mm×0.2μmとした。そして、正極体の一面に気相蒸着法により正極集電体を形成し、正極試料4を作製した。ここで、研磨の際に、焼結体と研磨板との平行度を厳密に規定しなかった。研磨後の正極試料1は、空隙率が8%、1cmあたりのLiCoO量が46mg、表面粗さRaが0.03μm、厚みのばらつきが6%で、半径R=1mの反りを有していた。
<Positive electrode sample 4>
A sintered body (positive electrode body) having a diameter of 20 mm and an average thickness of 1 mm was obtained by the same method as that of the positive electrode sample 1 of Example 1, and the surface was polished to have a final size of 15 mm × 0.2 μm. . And the positive electrode electrical power collector was formed in the one surface of the positive electrode body by the vapor deposition method, and the positive electrode sample 4 was produced. Here, the degree of parallelism between the sintered body and the polishing plate was not strictly specified during polishing. Positive sample 1 after polishing, 8% porosity, 46 mg is LiCoO 2 per 1 cm 2, the surface roughness Ra is 0.03 .mu.m, with variations in the thickness of 6% has a warping of the radius R = 1 m It was.

上記正極試料4に対して、電池の他の層(固体電解質層や負極層)を形成する際、正極試料4に圧力をかけるような処理を行うと、正極試料4に割れが生じることがあった。圧力をかける処理とは、例えば、正極試料4と電解質粉末を金型に入れてプレスするなど、固相法により固体電解質層を形成する場合などである。正極試料4に割れなどの損傷が生じるのは、正極試料4の厚みのばらつきが大きく、反りの半径が小さいためであると推察される。しかし、上記他の層を気相法により形成すれば、正極試料4に割れなどの不具合が生じることはなく、実施例1に示す電池Bと同等の放電容量を備え、内部抵抗の小さな電池となった。   When the other layer (solid electrolyte layer or negative electrode layer) of the battery is formed on the positive electrode sample 4, if the treatment is performed such that pressure is applied to the positive electrode sample 4, the positive electrode sample 4 may be cracked. It was. The treatment for applying pressure is, for example, a case where a solid electrolyte layer is formed by a solid phase method such as pressing the positive electrode sample 4 and electrolyte powder into a mold. It is assumed that the damage such as cracking occurs in the positive electrode sample 4 because the thickness variation of the positive electrode sample 4 is large and the radius of warpage is small. However, if the other layer is formed by a vapor phase method, the positive electrode sample 4 does not have a defect such as a crack, and has a discharge capacity equivalent to that of the battery B shown in Example 1 and a battery with a small internal resistance. became.

なお、上述した実施例は、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、負極活物質層を焼結体で形成すると共に、この焼結体に負極集電体を気相蒸着法に形成するようにしても良い。この場合も、負極集電体を基板として負極活物質層を形成するよりも、電池に占める負極集電体の厚さを薄くできることは言うまでもない。   The above-described embodiments can be modified as appropriate without departing from the gist of the present invention. For example, the negative electrode active material layer may be formed of a sintered body, and the negative electrode current collector may be formed on the sintered body by a vapor deposition method. Also in this case, it goes without saying that the thickness of the negative electrode current collector in the battery can be made thinner than when the negative electrode active material layer is formed using the negative electrode current collector as a substrate.

本発明非水電解質電池は、携帯機器などの電源として好適に利用することができる。   The nonaqueous electrolyte battery of the present invention can be suitably used as a power source for portable devices and the like.

100,200 非水電解質電池
1 正極 11 正極活物質層 12 正極集電体
2 負極 21 負極活物質層 22 負極集電体
31,32 リチウムイオン伝導層
41 緩衝層
DESCRIPTION OF SYMBOLS 100,200 Nonaqueous electrolyte battery 1 Positive electrode 11 Positive electrode active material layer 12 Positive electrode collector 2 Negative electrode 21 Negative electrode active material layer 22 Negative electrode collector 31,32 Lithium ion conductive layer 41 Buffer layer

Claims (6)

非水電解質電池の正極活物質層または負極活物質層として利用される電極体であって、
平均厚さdが0.05mm〜0.3mmで、空隙率が15体積%以下であることを特徴とする電極体。
An electrode body used as a positive electrode active material layer or a negative electrode active material layer of a nonaqueous electrolyte battery,
An electrode body having an average thickness d of 0.05 mm to 0.3 mm and a porosity of 15% by volume or less.
電極体の平均厚みに対する厚みのばらつきが±0.05d以下であり、かつ、電極体の反りが、半径1.5m以上の反りであることを特徴とする請求項1に記載の電極体。   2. The electrode body according to claim 1, wherein the variation in thickness with respect to the average thickness of the electrode body is ± 0.05 d or less, and the warpage of the electrode body is a warp having a radius of 1.5 m or more. 正極と、負極と、両極の間でリチウムイオンの伝導を媒介するリチウムイオン伝導層とを備える非水電解質電池であって、
前記正極および負極の少なくとも一方は、
請求項1または2に記載される電極体と、
この電極体の一方の面に設けられる金属薄膜とからなり、
前記金属薄膜は、その平均厚さが0.01μm〜30μmであることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a lithium ion conductive layer that mediates conduction of lithium ions between the two electrodes,
At least one of the positive electrode and the negative electrode is
An electrode body according to claim 1 or 2,
It consists of a metal thin film provided on one surface of this electrode body,
The metal thin film has an average thickness of 0.01 μm to 30 μm.
前記リチウムイオン伝導層は、リチウムを含有する高分子樹脂からなることを特徴とする請求項3に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 3, wherein the lithium ion conductive layer is made of a polymer resin containing lithium. 前記電極体の他方の面は、算術平均粗さRa(JIS B0601 01)が0.1μm以下であり、
この他方の面の上に固体電解質からなるリチウムイオン伝導層が形成されていることを特徴とする請求項3に記載の非水電解質電池。
The other surface of the electrode body has an arithmetic average roughness Ra (JIS B060001) of 0.1 μm or less,
4. The nonaqueous electrolyte battery according to claim 3, wherein a lithium ion conductive layer made of a solid electrolyte is formed on the other surface.
請求項1または2に記載の電極体を用意する工程と、
この電極体の一方の面に気相法により平均厚さ0.01〜30μmの金属薄膜を形成する工程とを備えることを特徴とする非水電解質電池の製造方法。
Preparing the electrode body according to claim 1 or 2,
And a step of forming a metal thin film having an average thickness of 0.01 to 30 μm on one surface of the electrode body by a vapor phase method.
JP2009058659A 2008-04-10 2009-03-11 Electrode body and nonaqueous electrolyte battery Pending JP2010080422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058659A JP2010080422A (en) 2008-04-10 2009-03-11 Electrode body and nonaqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008102747 2008-04-10
JP2008217612 2008-08-27
JP2009058659A JP2010080422A (en) 2008-04-10 2009-03-11 Electrode body and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010080422A true JP2010080422A (en) 2010-04-08

Family

ID=42210597

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009058659A Pending JP2010080422A (en) 2008-04-10 2009-03-11 Electrode body and nonaqueous electrolyte battery
JP2009084866A Pending JP2010080426A (en) 2008-04-10 2009-03-31 Method of manufacturing cathode body and cathode body

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009084866A Pending JP2010080426A (en) 2008-04-10 2009-03-31 Method of manufacturing cathode body and cathode body

Country Status (1)

Country Link
JP (2) JP2010080422A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009194A (en) * 2010-06-23 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery and lithium secondary battery
JP2012009193A (en) * 2010-06-23 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery and lithium secondary battery
JP2012099225A (en) * 2010-10-29 2012-05-24 Ohara Inc All-solid lithium ion secondary battery and method of manufacturing the same
JP2012109052A (en) * 2010-11-15 2012-06-07 National Institute Of Advanced Industrial & Technology Thin film for electrode, all-solid lithium battery, and manufacturing method of thin film for electrode
WO2013011871A1 (en) * 2011-07-20 2013-01-24 トヨタ自動車株式会社 All solid-state battery and manufacturing method therefor
JP2018170280A (en) * 2011-11-02 2018-11-01 アイ テン All-solid thin film battery
JP2018186099A (en) * 2011-11-02 2018-11-22 アイ テン Method for production of thin film lithium ion micro-battery, and micro-battery obtained by the same
JP2018206469A (en) * 2017-05-30 2018-12-27 三星電子株式会社Samsung Electronics Co.,Ltd. Solid-state secondary battery and manufacturing method of all-solid secondary battery
CN110521046A (en) * 2017-06-09 2019-11-29 日本电气硝子株式会社 Total solids sodium ion secondary battery
JP2020129446A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
US11799171B2 (en) 2017-05-30 2023-10-24 Samsung Electronics Co., Ltd. All-solid secondary battery and method of preparing the same
JP7398231B2 (en) 2019-10-01 2023-12-14 日産自動車株式会社 All-solid-state battery system
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211496B2 (en) 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US20120196189A1 (en) * 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
JP2010248045A (en) * 2009-04-17 2010-11-04 Sumitomo Electric Ind Ltd LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS
JP2010248044A (en) * 2009-04-17 2010-11-04 Sumitomo Electric Ind Ltd LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS
CN103493261A (en) * 2011-04-18 2014-01-01 日本碍子株式会社 Positive electrode active material for lithium secondary battery
WO2013130983A2 (en) * 2012-03-01 2013-09-06 Excellatron Solid State, Llc Impregnated sintered solid state composite electrode, solid state battery, and methods of preparation
JP6173357B2 (en) 2012-03-01 2017-08-02 ジョンソン・アイピー・ホールディング・エルエルシー High-capacity solid composite cathode, solid composite separator, solid lithium secondary battery, and production method thereof
JP5784819B2 (en) * 2012-03-15 2015-09-24 株式会社東芝 Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
JP6163774B2 (en) * 2013-02-05 2017-07-19 セイコーエプソン株式会社 Method for producing composite and method for producing lithium battery
JP2014154239A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Method for manufacturing active material compact, active material compact, method for manufacturing lithium battery, and lithium battery
JP2014154236A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Method for manufacturing electrode composite body
JP6201327B2 (en) * 2013-02-05 2017-09-27 セイコーエプソン株式会社 Method for producing electrode composite for lithium battery, electrode composite for lithium battery, and lithium battery
JP2015133197A (en) * 2014-01-10 2015-07-23 セイコーエプソン株式会社 Method for manufacturing electrode material for secondary batteries
JP6464556B2 (en) * 2014-01-31 2019-02-06 セイコーエプソン株式会社 Electrode composite manufacturing method, electrode composite, and battery
JP5752303B2 (en) * 2014-07-23 2015-07-22 日本碍子株式会社 Lithium composite oxide sintered plate
JP2016025020A (en) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 Electrode complex, lithium battery, and electrode complex manufacturing method
JP2017004673A (en) 2015-06-08 2017-01-05 セイコーエプソン株式会社 Electrode composite, method for manufacturing electrode composite, and lithium battery
JP2017004672A (en) 2015-06-08 2017-01-05 セイコーエプソン株式会社 Electrode composite, method for manufacturing electrode composite, and lithium battery
JP6763965B2 (en) 2015-12-21 2020-09-30 ジョンソン・アイピー・ホールディング・エルエルシー Solid-state batteries, separators, electrodes and manufacturing methods
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
JP2017168282A (en) * 2016-03-16 2017-09-21 セイコーエプソン株式会社 Electrode composite, battery, method for manufacturing electrode composite, and method for manufacturing battery
JP6672971B2 (en) * 2016-04-08 2020-03-25 トヨタ自動車株式会社 Method of manufacturing electrode body
JP7021479B2 (en) * 2017-09-08 2022-02-17 セイコーエプソン株式会社 Batteries, battery manufacturing methods and electronic devices
JP7225714B2 (en) * 2018-03-14 2023-02-21 株式会社リコー Electrode and its manufacturing method, electrode element, non-aqueous electrolyte storage element
US20200212435A1 (en) 2018-12-27 2020-07-02 Panasonic Intellectual Property Management Co., Ltd. Electrode active substance, method for producing electrode active substance, and all-solid battery using electrode active substance
CN113597689A (en) * 2019-03-26 2021-11-02 日本碍子株式会社 Lithium composite oxide sintered plate
JP6828788B2 (en) * 2019-10-21 2021-02-10 セイコーエプソン株式会社 Method for manufacturing electrode composite
JP6828789B2 (en) * 2019-10-21 2021-02-10 セイコーエプソン株式会社 Method for manufacturing electrode composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011994A (en) * 1998-06-19 2000-01-14 Kao Corp Positive electrode for nonaqueous secondary battery
JP2000285910A (en) * 1999-03-30 2000-10-13 Kyocera Corp Lithium battery
JP2001243984A (en) * 2000-02-28 2001-09-07 Kyocera Corp Solid electrolyte battery and its manufacturing method
KR100728108B1 (en) * 2001-04-02 2007-06-13 삼성에스디아이 주식회사 Positive electrode for lithium secondary battery and method of preparing same
JP4029266B2 (en) * 2001-12-04 2008-01-09 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP4615339B2 (en) * 2005-03-16 2011-01-19 独立行政法人科学技術振興機構 Porous solid electrode and all-solid lithium secondary battery using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009193A (en) * 2010-06-23 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery and lithium secondary battery
JP2012009194A (en) * 2010-06-23 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery and lithium secondary battery
JP2012099225A (en) * 2010-10-29 2012-05-24 Ohara Inc All-solid lithium ion secondary battery and method of manufacturing the same
JP2012109052A (en) * 2010-11-15 2012-06-07 National Institute Of Advanced Industrial & Technology Thin film for electrode, all-solid lithium battery, and manufacturing method of thin film for electrode
WO2013011871A1 (en) * 2011-07-20 2013-01-24 トヨタ自動車株式会社 All solid-state battery and manufacturing method therefor
JP2013026003A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp All-solid battery, and method of manufacturing the same
JP2021012887A (en) * 2011-11-02 2021-02-04 アイ テン All solid thin film battery
JP2018170280A (en) * 2011-11-02 2018-11-01 アイ テン All-solid thin film battery
JP2018186099A (en) * 2011-11-02 2018-11-22 アイ テン Method for production of thin film lithium ion micro-battery, and micro-battery obtained by the same
JP2018206469A (en) * 2017-05-30 2018-12-27 三星電子株式会社Samsung Electronics Co.,Ltd. Solid-state secondary battery and manufacturing method of all-solid secondary battery
US11799171B2 (en) 2017-05-30 2023-10-24 Samsung Electronics Co., Ltd. All-solid secondary battery and method of preparing the same
JP7075726B2 (en) 2017-05-30 2022-05-26 三星電子株式会社 Manufacturing method of all-solid-state secondary battery and all-solid-state secondary battery
JPWO2018225494A1 (en) * 2017-06-09 2020-04-09 日本電気硝子株式会社 All solid sodium ion secondary battery
US11404726B2 (en) 2017-06-09 2022-08-02 Nippon Electric Glass Co., Ltd. All-solid-state sodium ion secondary battery
JP7120230B2 (en) 2017-06-09 2022-08-17 日本電気硝子株式会社 All-solid-state sodium-ion secondary battery
CN110521046A (en) * 2017-06-09 2019-11-29 日本电气硝子株式会社 Total solids sodium ion secondary battery
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices
JP2020129446A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP7107867B2 (en) 2019-02-07 2022-07-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP7398231B2 (en) 2019-10-01 2023-12-14 日産自動車株式会社 All-solid-state battery system

Also Published As

Publication number Publication date
JP2010080426A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP2010080422A (en) Electrode body and nonaqueous electrolyte battery
JP5316809B2 (en) Lithium battery and manufacturing method thereof
KR101372089B1 (en) Current collector, negative electrode and battery
JP4415241B2 (en) Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
US8785051B2 (en) Nonaqueous-electrolyte battery and method for producing the same
JP7128624B2 (en) All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP5311283B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
EP3014689B1 (en) Substrate for solid-state battery
JP2008226728A (en) Thin-film solid secondary battery and complex type apparatus equipped with this
JP2009259696A (en) Lithium cell
JP2009199920A (en) Lithium battery
KR20140026345A (en) Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP5217455B2 (en) Lithium battery and method for producing lithium battery
JPWO2018181667A1 (en) All-solid lithium-ion secondary battery
JP2009181901A (en) Solid battery
JP2010225390A (en) All-solid battery and its manufacturing method
JP5775444B2 (en) Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery
WO2018181662A1 (en) All-solid-state lithium ion secondary battery
JP5902579B2 (en) Secondary battery and manufacturing method thereof
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
JP5097260B2 (en) Method for producing positive electrode for lithium ion secondary battery and positive electrode current collector for lithium ion secondary battery
JP2010160987A (en) Positive electrode body and nonaqueous electrolyte battery
JP2012160324A (en) Nonaqueous electrolyte battery
JP2010123396A (en) Positive electrode, nonaqueous electrolyte secondary battery, and methods of manufacturing them
JP5556252B2 (en) Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery