JP7128624B2 - All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery - Google Patents

All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery Download PDF

Info

Publication number
JP7128624B2
JP7128624B2 JP2018002161A JP2018002161A JP7128624B2 JP 7128624 B2 JP7128624 B2 JP 7128624B2 JP 2018002161 A JP2018002161 A JP 2018002161A JP 2018002161 A JP2018002161 A JP 2018002161A JP 7128624 B2 JP7128624 B2 JP 7128624B2
Authority
JP
Japan
Prior art keywords
active material
material layer
negative electrode
secondary battery
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018002161A
Other languages
Japanese (ja)
Other versions
JP2019121558A (en
Inventor
亮 面田
好伸 山田
友透 白土
浩二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2018002161A priority Critical patent/JP7128624B2/en
Priority to KR1020180053930A priority patent/KR102532604B1/en
Priority to US16/244,273 priority patent/US11264641B2/en
Publication of JP2019121558A publication Critical patent/JP2019121558A/en
Application granted granted Critical
Publication of JP7128624B2 publication Critical patent/JP7128624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体二次電池、積層全固体二次電池および全固体二次電池の製造方法に関する。 TECHNICAL FIELD The present invention relates to an all-solid secondary battery, a stacked all-solid secondary battery, and a method for manufacturing an all-solid secondary battery.

近年、全固体二次電池が注目されている。全固体二次電池は、正極活物質層、負極活物質層、及びこれらの活物質層の間に配置された固体電解質層を有する。全固体二次電池では、リチウムイオン(lithium ion)を伝導させる媒体が固体電解質となっている。 In recent years, attention has been focused on all-solid secondary batteries. An all-solid secondary battery has a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer arranged between these active material layers. In an all-solid secondary battery, a medium that conducts lithium ions is a solid electrolyte.

このような固体電解質を用いた全固体二次電池は、電解液を用いた従来のリチウムイオン電池と比較すると、エネルギー密度を向上させられると期待される。また、全固体二次電池のエネルギー密度をさらに向上させる方法の一つとして、全固体二次電池の単セルを、複数積層することにより電池全体に占める外装体を少なくする方法が挙げられる。例えば、特許文献1には、正極集電体が粗面化された一対の仮電池体を押圧し、積層全固体二次電池を得る方法が開示されている。 An all-solid secondary battery using such a solid electrolyte is expected to have an improved energy density compared to a conventional lithium-ion battery using an electrolytic solution. Moreover, as one of the methods for further improving the energy density of the all-solid secondary battery, there is a method of stacking a plurality of unit cells of the all-solid secondary battery to reduce the exterior body occupying the entire battery. For example, Patent Literature 1 discloses a method of obtaining a stacked all-solid secondary battery by pressing a pair of temporary battery bodies having roughened positive electrode current collectors.

特開2017-157271号公報JP 2017-157271 A

ところで、本発明者らが検討を行ったところ、複数の全固体二次電池の単セルを単純に積層すると、十分に電池特性が発揮されない状況に直面した。具体的には、積層全固体二次電池で、特に充電時において短絡が生じる、または良好なサイクル特性が得られない状況に直面した。 By the way, when the inventors of the present invention conducted studies, they faced a situation in which simply stacking a plurality of single cells of all-solid-state secondary batteries does not sufficiently exhibit battery characteristics. Specifically, in a laminated all-solid-state secondary battery, we faced a situation in which a short circuit occurred or good cycle characteristics could not be obtained, especially during charging.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、電池特性を低下させることなく複数の積層が可能な、新規かつ改良された全固体二次電池、該全固体二次電池を積層した積層全固体二次電池および該全固体二次電池の製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved all-solid secondary battery that can be laminated in multiple layers without deteriorating battery characteristics. , to provide a laminated all-solid secondary battery in which the all-solid secondary batteries are laminated and a method for manufacturing the all-solid secondary battery.

上記課題を解決するために、本発明のある観点によれば、
第1の集電体と、
前記第1の集電体の両面に配置された一対の第1の活物質層と、
前記一対の第1の活物質層の前記第1の集電体と反対側の面に配置された一対の固体電解質層と、
前記一対の固体電解質層の前記第1の活物質層と反対側の面に配置された一対の第2の活物質層と、
前記一対の第2の活物質層の前記固体電解質層と反対側の面に配置された一対の第2の集電体と、を備え、
前記一対の第2の集電体のうち、一方の第2の集電体の前記第2の活物質層と反対側の面において5.0μm超の高さを有する凸部が存在せず、他方の第2の集電体の前記第2の活物質層と反対側の面において8.0μm超の高さを有する凸部が1cmあたり0個以上1.0個以下存在する、全固体二次電池が提供される。
In order to solve the above problems, according to one aspect of the present invention,
a first current collector;
a pair of first active material layers arranged on both sides of the first current collector;
a pair of solid electrolyte layers disposed on the surface of the pair of first active material layers opposite to the first current collector;
a pair of second active material layers disposed on the surface of the pair of solid electrolyte layers opposite to the first active material layer;
a pair of second current collectors disposed on the surface of the pair of second active material layers opposite to the solid electrolyte layer;
Among the pair of second current collectors, there is no convex portion having a height of more than 5.0 μm on the surface opposite to the second active material layer of one of the second current collectors, 0 or more and 1.0 or less projections having a height of more than 8.0 μm per 1 cm 2 on the surface of the other second current collector opposite to the second active material layer, all solid A secondary battery is provided.

本観点によれば、電池特性を低下させることなく、複数の全固体二次電池の積層が可能となる。 According to this aspect, it is possible to stack a plurality of all-solid secondary batteries without deteriorating battery characteristics.

ここで、上記一方の第2の集電体の上記第2の活物質層と反対側の面において5.0μm超の高さを有する凸部が存在しなくてもよい。
この観点によれば、積層時における全固体二次電池の特性の低下をより確実に抑制することができる。
Here, there may be no projections having a height of more than 5.0 μm on the surface of the one second current collector opposite to the second active material layer.
From this point of view, deterioration of the characteristics of the all-solid secondary battery during stacking can be more reliably suppressed.

ここで、上記他方の第2の集電体の上記第2の活物質層と反対側の面において5.0μm超の高さを有する凸部が存在しなくてもよい。
この観点によれば、積層時における全固体二次電池の特性の低下をより確実に抑制することができる。
Here, the surface of the other second current collector opposite to the second active material layer may not have a convex portion having a height of more than 5.0 μm.
From this point of view, deterioration of the characteristics of the all-solid secondary battery during stacking can be more reliably suppressed.

また、前記第1の活物質層は、正極活物質層であり、
前記第2の活物質層は、負極活物質層であってもよい。
この観点によれば、池特性を低下させることなく、複数の全固体二次電池の積層が可能となる。
Further, the first active material layer is a positive electrode active material layer,
The second active material layer may be a negative electrode active material layer.
From this point of view, it is possible to stack a plurality of all-solid secondary batteries without deteriorating battery characteristics.

また、前記第2の活物質層は、リチウムと合金を形成する負極活物質およびリチウムと化合物を形成する負極活物質の少なくとも一方を含み、
充電時に前記第2の活物質層において前記負極活物質を介して金属リチウムが析出可能であってもよい。
この観点によれば、全固体二次電池の電池特性が向上する。また、このような第2の活物質層は、比較的薄く、隣接する第2の集電体の形状に影響を受けやすいが、本発明においては、このような影響が防止されている。
In addition, the second active material layer includes at least one of a negative electrode active material that forms an alloy with lithium and a negative electrode active material that forms a compound with lithium,
During charging, metallic lithium may be deposited in the second active material layer through the negative electrode active material.
From this point of view, the battery characteristics of the all-solid secondary battery are improved. In addition, such a second active material layer is relatively thin and easily affected by the shape of the adjacent second current collector, but such an influence is prevented in the present invention.

また、前記第1の活物質層を正極活物質層とし、前記第2の活物質層を負極活物質層とした際の前記第1の活物質層と前記第2の活物質層との充電容量の比は、以下の式(1)
0.002<b/a<0.5 (1)
式中、aは、第1の活物質層の充電容量(mAh)であり、bは、第2の活物質層の充電容量(mAh)である、
を充足してもよい。
この観点によれば、全固体二次電池の電池特性が向上する。また、このような第2の活物質層は、比較的薄く、隣接する第2の集電体の形状に影響を受けやすいが、本発明においては、このような影響が防止されている。
Further, charging of the first active material layer and the second active material layer when the first active material layer is a positive electrode active material layer and the second active material layer is a negative electrode active material layer The capacity ratio is given by the following formula (1)
0.002<b/a<0.5 (1)
where a is the charge capacity (mAh) of the first active material layer, and b is the charge capacity (mAh) of the second active material layer.
may be satisfied.
From this point of view, the battery characteristics of the all-solid secondary battery are improved. In addition, such a second active material layer is relatively thin and easily affected by the shape of the adjacent second current collector, but such an influence is prevented in the present invention.

また、前記第2の活物質層は、無定形炭素、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、および亜鉛からなる群から選択される何れか1種以上を含んでいてもよい。
この観点によれば、全固体二次電池の電池特性が向上する。
Further, the second active material layer may contain at least one selected from the group consisting of amorphous carbon, gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, and zinc. good.
From this point of view, the battery characteristics of the all-solid secondary battery are improved.

本発明の他の観点によれば、1以上の絶縁層と、
前記絶縁層を介して積層配置される複数の上記全固体二次電池と、を有し、
前記全固体二次電池の前記一方の第2の集電体は、隣接する他の前記全固体二次電池の前記他方の第2の集電体と対向するように配置される、積層全固体二次電池が提供される。
本観点によれば、電池特性を低下させることなく、複数の全固体二次電池の積層が可能となる。
According to another aspect of the invention, at least one insulating layer;
a plurality of all-solid-state secondary batteries stacked via the insulating layer,
The one second current collector of the all-solid-state secondary battery is arranged to face the other second current collector of the other adjacent all-solid-state secondary battery, and the stacked all-solid-state A secondary battery is provided.
According to this aspect, it is possible to stack a plurality of all-solid secondary batteries without deteriorating battery characteristics.

本発明の他の観点によれば、1第1の集電体と、前記第1の集電体の両面に配置された一対の第1の活物質層と、前記一対の第1の活物質層の前記第1の集電体と反対側の面に配置された一対の固体電解質層と、前記一対の固体電解質層の前記第1の活物質層と反対側の面に配置された一対の第2の活物質層と、前記一対の第2の活物質層の前記固体電解質層と反対側の面に配置された一対の第2の集電体と、を備える全固体二次電池の製造方法であって、
前記第1の活物質層または前記第2の活物質層上にスクリーン印刷により前記固体電解質層を形成する工程と、
前記第1の集電体、前記一対の第1の活物質層、前記一対の固体電解質層、前記一対の第2の活物質層および前記一対の第2の集電体を積層した積層体について、当該積層体の一方の面側に支持材を配置し、等方圧プレスを行う工程と、
を有する、全固体二次電池の製造方法が提供される。
本観点によれば、電池特性を低下させることなく、複数の全固体二次電池の積層が可能となる。
According to another aspect of the present invention, a first current collector, a pair of first active material layers disposed on both sides of the first current collector, and the pair of first active material layers A pair of solid electrolyte layers arranged on the surface of the layer opposite to the first current collector, and a pair of solid electrolyte layers arranged on the surface of the pair of solid electrolyte layers opposite to the first active material layer. Manufacture of an all-solid secondary battery comprising a second active material layer and a pair of second current collectors arranged on the surface of the pair of second active material layers opposite to the solid electrolyte layer a method,
forming the solid electrolyte layer on the first active material layer or the second active material layer by screen printing;
Regarding the laminate obtained by laminating the first current collector, the pair of first active material layers, the pair of solid electrolyte layers, the pair of second active material layers, and the pair of second current collectors , a step of placing a support material on one side of the laminate and isostatically pressing;
A method for manufacturing an all-solid secondary battery is provided.
According to this aspect, it is possible to stack a plurality of all-solid secondary batteries without deteriorating battery characteristics.

以上説明したように本発明によれば、電池特性を低下させることなく複数の積層が可能な、新規かつ改良された全固体二次電池、該全固体二次電池を積層した積層全固体二次電池および該全固体二次電池の製造方法を提供することができる。 As described above, according to the present invention, a novel and improved all-solid secondary battery that can be stacked in multiple layers without degrading battery characteristics, and a laminated all-solid secondary battery obtained by stacking the all-solid secondary batteries A battery and a method for manufacturing the all-solid secondary battery can be provided.

本発明の一実施形態に係る全固体二次電池を説明する断面模式図、A cross-sectional schematic diagram illustrating an all-solid secondary battery according to one embodiment of the present invention, 集電板における凹凸の評価方法を説明するための集電板断面分析チャートである。4 is a current collector plate cross-sectional analysis chart for explaining a method for evaluating unevenness in a current collector plate. 本発明の一実施形態に係る積層全固体二次電池を説明する断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram explaining the laminated all solid state secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る積層全固体二次電池の製造方法を模式的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the manufacturing method of the laminated all-solid-state secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る積層全固体二次電池の製造方法を模式的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the manufacturing method of the laminated all-solid-state secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る積層全固体二次電池の製造方法を模式的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the manufacturing method of the laminated all-solid-state secondary battery which concerns on one Embodiment of this invention. 本発明者らが検討に用いた全固体二次電池を説明する断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram explaining the all-solid secondary battery which the present inventors used for examination. 本発明者らが検討に用いた積層全固体二次電池を説明する断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram explaining the laminated all-solid secondary battery which the present inventors used for examination. 本発明者らが検討に用いた積層全固体二次電池を説明する断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram explaining the laminated all-solid secondary battery which the present inventors used for examination.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、図中の各構成要素は、説明の容易化のために適宜拡大または縮小されており、図中の各構成要素の大きさ、比率は、実際のものとは異なる。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description. Also, each component in the drawing is enlarged or reduced as appropriate for ease of explanation, and the size and ratio of each component in the drawing differ from the actual ones.

<1.本発明者らによる検討>
本発明者らは、まず、複数の全固体二次電池を単電池(単セル)として積層した場合に、各単電池の電池特性が十分に発揮されない原因を究明すべく、図7に示すような全固体二次電池200を使用して検討を行った。
<1. Study by the present inventors>
The present inventors first investigated the reason why the battery characteristics of each single cell are not sufficiently exhibited when a plurality of all-solid-state secondary batteries are stacked as single cells (single cells), as shown in FIG. A study was conducted using an all-solid-state secondary battery 200 .

図7に示す全固体二次電池200は、正極集電体210と、正極集電体210の両面に形成された一対の正極活物質層220と、正極活物質層220上に形成された一対の固体電解質層230と、固体電解質層230上に形成された一対の負極活物質層240と、負極活物質層240上に配置された一対の負極集電体250A、250Bとを有する。 The all-solid secondary battery 200 shown in FIG. , a pair of negative electrode active material layers 240 formed on the solid electrolyte layer 230, and a pair of negative electrode current collectors 250A and 250B arranged on the negative electrode active material layer 240.

なお、全固体二次電池200の製造においては、不織布上に形成したシート状の固体電解質層230を使用した。各層を図7に示すとおり積層した積層体を支持板上に負極集電体250Aが支持板に接するように配置して、等方圧プレスを行うことにより全固体二次電池200を製造した。 Note that in manufacturing the all-solid secondary battery 200, a sheet-like solid electrolyte layer 230 formed on a non-woven fabric was used. A laminate obtained by laminating each layer as shown in FIG. 7 was placed on a support plate so that the negative electrode current collector 250A was in contact with the support plate, and isotropic pressing was performed to manufacture an all-solid secondary battery 200 .

まず、全固体二次電池200を、図8に示すように負極集電体250A同士が対向するように、絶縁層310を介して積層、プレスして、2つの全固体二次電池200を有する積層全固体二次電池300Aを製造した。さらに、図9に示すように一方の全固体二次電池200の負極集電体250Aと他方の全固体二次電池200の負極集電体250Bとが対向するようにして積層を行い、2つの全固体二次電池200を有する積層全固体二次電池300Bを製造した。 First, as shown in FIG. 8, the all-solid secondary battery 200 is laminated and pressed with the insulating layer 310 interposed so that the negative electrode current collectors 250A face each other, and two all-solid secondary batteries 200 are obtained. A laminated all-solid secondary battery 300A was manufactured. Furthermore, as shown in FIG. 9, the negative electrode current collector 250A of one all-solid secondary battery 200 and the negative electrode current collector 250B of the other all-solid secondary battery 200 are laminated so as to face each other. A laminated all-solid secondary battery 300B having the all-solid secondary battery 200 was manufactured.

以上の積層全固体二次電池300A、300Bについて電池特性を評価した。この結果、積層全固体二次電池300Aについては、個々の全固体二次電池200の電池特性が損なわれず、十分に優れたサイクル特性が得られ、短絡も生じなかった。一方で、積層全固体二次電池300Bについては、十分に優れたサイクル特性が得られず、早期に短絡が生じた。 Battery characteristics were evaluated for the laminated all-solid secondary batteries 300A and 300B described above. As a result, in the stacked all-solid secondary battery 300A, the battery characteristics of the individual all-solid secondary batteries 200 were not impaired, sufficiently excellent cycle characteristics were obtained, and no short circuit occurred. On the other hand, the laminated all-solid-state secondary battery 300B did not have sufficiently excellent cycle characteristics, and a short circuit occurred early.

本発明者らは、積層全固体二次電池300A、300Bの電池特性の差異の原因について、全固体二次電池200の積層方向および負極集電体250A、250Bの表面状態に着目した。すなわち、全固体二次電池200は、等方圧プレスによって製造されており、この場合、負極集電体250A、250Bの表面形状は異なり得る。具体的には、支持板に支持されていた負極集電体250Aは、支持板の形状に沿って平滑になりやすい。一方で、負極集電体250Bは、支持板に支持されていないため、負極集電体250Bを構成する金属箔は、全固体二次電池200の内部の負極活物質層240および固体電解質層230の形状に起因して凹凸が生じやすい。 The present inventors focused on the lamination direction of the all-solid secondary battery 200 and the surface state of the negative electrode current collectors 250A and 250B as the cause of the difference in the battery characteristics of the laminated all-solid secondary batteries 300A and 300B. That is, the all-solid secondary battery 200 is manufactured by isostatic pressing, and in this case, the surface shapes of the negative electrode current collectors 250A and 250B may differ. Specifically, the negative electrode current collector 250A supported by the support plate tends to become smooth along the shape of the support plate. On the other hand, since the negative electrode current collector 250B is not supported by the support plate, the metal foil that constitutes the negative electrode current collector 250B does not form the negative electrode active material layer 240 and the solid electrolyte layer 230 inside the all-solid secondary battery 200. Unevenness is likely to occur due to the shape of

このため、本発明者らは、積層全固体二次電池300Bについては、全固体二次電池200同士が積層される際に、凹凸の多い負極集電体250Bが他の全固体二次電池200に対向して配置され、当該負極集電体250Bの凹凸が隣接する全固体二次電池200に物理的に影響を与えたものと推測した。一方で、本発明者らは、積層全固体二次電池300Aについては、平滑な負極集電体250A同士が対向して積層された結果、隣接する全固体二次電池200への影響が抑制され、各全固体二次電池200の電池特性が十分に維持されたものと考えた。 Therefore, with respect to the stacked all-solid secondary battery 300B, when the all-solid-state secondary batteries 200 are stacked, the negative electrode current collector 250B with many irregularities is placed in the other all-solid-state secondary battery 200B. , and the unevenness of the negative electrode current collector 250B physically affected the adjacent all-solid secondary battery 200. On the other hand, the inventors of the present invention have found that in the laminated all-solid secondary battery 300A, as a result of laminating the smooth negative electrode current collectors 250A facing each other, the influence on the adjacent all-solid secondary battery 200 is suppressed. , the battery characteristics of each all-solid secondary battery 200 were considered to be sufficiently maintained.

しかしながら、等方圧プレスにより全固体二次電池200を製造する場合、支持板によって形成される平坦な負極集電体250Aは一方のみとなる。したがって、3つ以上の全固体二次電池200を積層する場合、凹凸の大きい負極集電体250Bが隣接する全固体二次電池200に、絶縁層310を介して面してしまう。したがって、これまで使用されてきた全固体二次電池200を単純に3以上積層することは困難であった。 However, when the all-solid secondary battery 200 is manufactured by isostatic pressing, only one flat negative electrode current collector 250A is formed by the supporting plate. Therefore, when three or more all-solid secondary batteries 200 are stacked, the negative electrode current collector 250B with large unevenness faces the adjacent all-solid secondary battery 200 via the insulating layer 310 . Therefore, it has been difficult to simply stack three or more of the all-solid-state secondary batteries 200 that have been used so far.

両面に支持板を配置することにより全固体二次電池200の両面を平滑にする方法も考えられる。しかしながら、両面に支持板を配置した場合、等方圧プレスにより支持板は一度しか使用できないことから、このような方法はコスト上現実的でない。 A method of smoothing both surfaces of the all-solid secondary battery 200 by arranging support plates on both surfaces is also conceivable. However, when the support plates are arranged on both sides, the support plates can only be used once by the isostatic pressing, so such a method is not realistic in terms of cost.

以上の状況に鑑み、本発明者らは、3以上の全固体二次電池が積層可能となるための、集電体の形状およびこのような集電体を有する全固体二次電池の製造方法について検討を行い、本発明に至った。 In view of the above situation, the present inventors have proposed a shape of a current collector and a method for manufacturing an all-solid secondary battery having such a current collector so that three or more all-solid-state secondary batteries can be stacked. was investigated, and the present invention was achieved.

<2.全固体二次電池および積層全固体二次電池の構成>
次に、本実施形態に係る全固体二次電池および積層全固体二次電池について説明する。図1は、本実施形態に係る全固体二次電池を説明する断面模式図、図2は、集電板における凹凸の評価方法を説明するための集電板断面分析チャート、図3は、本実施形態に係る積層全固体二次電池を説明する断面模式図である。
<2. Configuration of All-Solid-State Secondary Battery and Laminated All-Solid-State Secondary Battery>
Next, an all-solid secondary battery and a stacked all-solid secondary battery according to the present embodiment will be described. FIG. 1 is a cross-sectional schematic diagram for explaining an all-solid secondary battery according to the present embodiment, FIG. 2 is a current collector plate cross-sectional analysis chart for explaining a method for evaluating unevenness in a current collector plate, and FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram explaining the laminated all-solid-state secondary battery which concerns on embodiment.

〔2.1. 全固体二次電池〕
図1に示すように、本実施形態に係る全固体二次電池1は、正極集電体(第1の集電体)10と、正極集電体10の両面に形成された一対の正極活物質層(第1の活物質層)20と、正極活物質層20上に形成された一対の固体電解質層30と、固体電解質層30上に形成された一対の負極活物質層(第2の活物質層)40と、負極活物質層40上に配置された一対の負極集電体(第2の集電体)50A、50Bとを有する。すなわち、正極集電体210を中心として、正極活物質層20、固体電解質層30、負極活物質層40および負極集電体50A(または負極集電体50B)がこの順で両面に積層されている。なお、全固体二次電池1は、リチウムイオンが正極活物質層20、負極活物質層40間を移動する所謂全固体型リチウムイオン二次電池である。
[2.1. All-solid secondary battery]
As shown in FIG. 1 , the all-solid secondary battery 1 according to the present embodiment includes a positive electrode current collector (first current collector) 10 and a pair of positive electrode current collectors 10 formed on both sides of the positive electrode current collector 10 . A material layer (first active material layer) 20, a pair of solid electrolyte layers 30 formed on the positive electrode active material layer 20, and a pair of negative electrode active material layers (second active material layer) formed on the solid electrolyte layer 30. active material layer) 40 and a pair of negative electrode current collectors (second current collectors) 50A and 50B arranged on the negative electrode active material layer 40 . That is, the positive electrode active material layer 20, the solid electrolyte layer 30, the negative electrode active material layer 40, and the negative electrode current collector 50A (or the negative electrode current collector 50B) are laminated in this order on both sides of the positive electrode current collector 210. there is The all-solid secondary battery 1 is a so-called all-solid lithium ion secondary battery in which lithium ions move between the positive electrode active material layer 20 and the negative electrode active material layer 40 .

そして、本実施形態においては、負極集電体50Aは、隣接する負極活物質層40と反対側の面において8.0μm超の高さを有する凸部が存在しない。一方で、負極集電体50Bは、隣接する負極活物質層40と反対側の面において8.0μm超の高さを有する凸部が1cmあたり0個以上1.0個以下のみ存在する、すなわち1.0個以下である。 In the present embodiment, the negative electrode current collector 50A does not have protrusions having a height of more than 8.0 μm on the surface opposite to the adjacent negative electrode active material layer 40 . On the other hand, the negative electrode current collector 50B has only 0 or more and 1.0 or less protrusions having a height of more than 8.0 μm per 1 cm 2 on the surface opposite to the adjacent negative electrode active material layer 40. That is, it is 1.0 or less.

これにより、複数の全固体二次電池1を積層して積層全固体二次電池100を得た場合に、積層全固体二次電池100の電池特性が優れたものとなる。すなわち、複数の、例えば3以上の全固体二次電池1を積層した場合であっても、積層全固体二次電池100における各全固体二次電池1の電池特性が低下することが防止される。 As a result, when the stacked all-solid secondary battery 100 is obtained by stacking a plurality of all-solid-state secondary batteries 1, the battery characteristics of the stacked all-solid-state secondary battery 100 are excellent. That is, even when a plurality of, for example, three or more all-solid-state secondary batteries 1 are stacked, the battery characteristics of each all-solid-state secondary battery 1 in the stacked all-solid-state secondary battery 100 are prevented from deteriorating. .

詳しく説明すると、一方の全固体二次電池1を他の全固体二次電池1に積層する際に、比較的凹凸が大きな負極集電体50Bが、他の全固体二次電池1の平滑な負極集電体50A上に配置した場合においても、得られる積層全固体二次電池100中の各全固体二次電池1の電池特性は低下しない。したがって、隣接する全固体二次電池1において、負極集電体50Aと負極集電体50Bとが対向するように積層することにより、各全固体二次電池1の電池特性の低下を防止しつつ、3以上の全固体二次電池1を積層することが可能となる。 Specifically, when one all-solid-state secondary battery 1 is stacked on the other all-solid-state secondary battery 1, the negative electrode current collector 50B having relatively large unevenness is placed on the smooth surface of the other all-solid-state secondary battery 1. Even when arranged on the negative electrode current collector 50A, the battery characteristics of each all-solid-state secondary battery 1 in the obtained laminated all-solid-state secondary battery 100 do not deteriorate. Therefore, in adjacent all-solid secondary batteries 1, by stacking the negative electrode current collector 50A and the negative electrode current collector 50B so as to face each other, deterioration of the battery characteristics of each all-solid secondary battery 1 is prevented. , three or more all-solid secondary batteries 1 can be stacked.

これに対し、従来の全固体二次電池200は、一方の負極集電体250Aは平滑であるものの、他方の負極集電体250Bの凹凸が大きい。したがって、複数の全固体二次電池200を積層する際に負極集電体250Aと負極集電体250Bとが対向すると電池特性が低下してしまう。一方で、負極集電体250A同士が対向するように全固体二次電池200を積層すると電池特性の低下を防止できる。しかしながら、3以上の全固体二次電池200を負極集電体250A同士が対向するように積層することは不可能である。 In contrast, in the conventional all-solid secondary battery 200, one negative electrode current collector 250A is smooth, but the other negative electrode current collector 250B has large irregularities. Therefore, if the negative electrode current collector 250A and the negative electrode current collector 250B face each other when stacking a plurality of all-solid-state secondary batteries 200, the battery characteristics are degraded. On the other hand, when the all-solid secondary batteries 200 are stacked so that the negative electrode current collectors 250A face each other, deterioration of battery characteristics can be prevented. However, it is impossible to stack three or more all-solid secondary batteries 200 such that the negative electrode current collectors 250A face each other.

なお、本発明者らは、上述したような所定の表面状態を有する負極集電体50A、50Bを後述する方法により、実現している。従来の一般的な全固体二次電池においては、等方圧プレスを行った場合、上述した所定の表面状態を有する負極集電体を実現することは困難である。 The present inventors realized the negative electrode current collectors 50A and 50B having the predetermined surface conditions as described above by a method to be described later. In a conventional general all-solid secondary battery, it is difficult to realize a negative electrode current collector having the above-described predetermined surface state when isotropic pressing is performed.

上述したように、本実施形態においては、負極集電体50Aは、隣接する負極活物質層40と反対側の面において8.0μm超の高さを有する凸部が存在しなければよいが、好ましくは5.0μm超の高さを有する凸部が存在しない。これにより、全固体二次電池1を積層した際に、全固体二次電池1の電池特性がより確実に発揮される。 As described above, in the present embodiment, the negative electrode current collector 50A should not have protrusions having a height of more than 8.0 μm on the surface opposite to the adjacent negative electrode active material layer 40. Preferably there are no protrusions with a height greater than 5.0 μm. As a result, when the all-solid secondary batteries 1 are stacked, the battery characteristics of the all-solid secondary batteries 1 are exhibited more reliably.

上述したように、本実施形態においては、負極集電体50Aは、隣接する負極活物質層40と反対側の面において8.0μm超の高さを有する凸部が1cmあたり0個以上1.0個以下のみ存在するが、好ましくは10.0μm超の高さを有する凸部が存在しない。これにより、全固体二次電池1を積層した際に、全固体二次電池1の電池特性がより確実に発揮される。 As described above, in the present embodiment, the negative electrode current collector 50A has 0 or more protrusions having a height of more than 8.0 μm per 1 cm 2 on the surface opposite to the adjacent negative electrode active material layer 40 . There are only 0.0 or less, but preferably there are no protrusions with a height greater than 10.0 μm. As a result, when the all-solid secondary batteries 1 are stacked, the battery characteristics of the all-solid secondary batteries 1 are exhibited more reliably.

なお、負極集電体50A、50Bの表面における凸部の高さは、以下のようにして計測することができる。まず、負極集電体50A、50Bの表面の三次元形状を計測し、計測データを得る。三次元形状の計測は、光学式の三次元形状測定機により行うことができる。
次に、三次元形状の計測データから得られた三次元形状情報で基準面の設定を行う。設定を行う際の領域は測定した全領域を選択して行い、領域指定された高さ画像の形状から、平面を最小二乗法で推定して基準面が設定される。
The height of the protrusions on the surfaces of the negative electrode current collectors 50A and 50B can be measured as follows. First, the three-dimensional shapes of the surfaces of the negative electrode current collectors 50A and 50B are measured to obtain measurement data. A three-dimensional shape can be measured by an optical three-dimensional shape measuring machine.
Next, a reference plane is set using the three-dimensional shape information obtained from the three-dimensional shape measurement data. A reference plane is set by estimating a plane by the least-squares method from the shape of the height image for which the area is specified.

次に、基準面を設定した三次元形状の計測データにおける、凸部の特定および凸部の高さの検出を行う。凸部は、例えば図3に示すような三次元形状の計測データにおける断面曲線において、頂部を中心として、その頂部から高さの単調減少幅が負となる点までと定義することができる。そして、例えば図3に示すように、頂部の位置から高さの単調減少が負となる点のうち最も低い点までにおける高さの差を、凸部の高さとすることができる。なお、負極集電体50A、50Bの表面は、その面方向において2次元であるから、頂部から高さの単調減少幅が負となる点は、閉曲線として存在する。この場合、閉曲線に存在するうち最も高さが低い点を頂部の高さの計測の基準点とすることができる。
以下、各層の構成について説明する。
Next, the projections are identified and the heights of the projections are detected in the three-dimensional shape measurement data for which the reference plane is set. A convex portion can be defined, for example, from the top of a cross-sectional curve in three-dimensional shape measurement data as shown in FIG. Then, for example, as shown in FIG. 3, the difference in height from the position of the apex to the lowest point of the points where the monotonically decreasing height is negative can be taken as the height of the convex portion. Since the surfaces of the negative electrode current collectors 50A and 50B are two-dimensional in the surface direction, the point where the monotonically decreasing width of the height from the top is negative exists as a closed curve. In this case, the lowest point on the closed curve can be used as the reference point for measuring the height of the apex.
The configuration of each layer will be described below.

(正極集電体)
正極集電体10は、シート状の導電体で構成される。正極集電体10としては、例えば、ステンレス鋼、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)またはこれらの合金からなる板状体または箔状体等が挙げられる。なお、正極集電体10は、全固体二次電池1の使用時において、図示せぬ端子(電極タブ)を介して、配線に接続される。
(Positive electrode current collector)
The positive electrode current collector 10 is composed of a sheet-like conductor. Examples of the positive electrode current collector 10 include plate-shaped bodies or foil-shaped bodies made of stainless steel, titanium (Ti), nickel (Ni), aluminum (Al), or alloys thereof. The positive electrode current collector 10 is connected to wiring via a terminal (electrode tab) (not shown) when the all-solid secondary battery 1 is used.

(正極活物質層)
正極活物質層20は、正極集電体10の両面に配置されている。正極活物質層20は、通常正極活物質及び固体電解質を含む。なお、正極活物質層20に含まれる固体電解質は、固体電解質層30に含まれる固体電解質と同種のものであっても、同種でなくてもよい。固体電解質の詳細は固体電解質層30の項にて詳細に説明する。
(Positive electrode active material layer)
The positive electrode active material layers 20 are arranged on both sides of the positive electrode current collector 10 . The cathode active material layer 20 usually contains a cathode active material and a solid electrolyte. The solid electrolyte contained in the positive electrode active material layer 20 may or may not be of the same type as the solid electrolyte contained in the solid electrolyte layer 30 . Details of the solid electrolyte will be described in detail in the section of the solid electrolyte layer 30 .

正極活物質は、リチウムイオンを可逆的に吸蔵および放出することが可能な正極活物質であればよい。 The positive electrode active material may be any positive electrode active material capable of reversibly intercalating and deintercalating lithium ions.

例えば、正極活物質は、コバルト酸リチウム(以下、LCOと称する)、ニッケル酸リチウム(Lithium nickel oxide)、ニッケルコバルト酸リチウム(lithium nickel cobalt oxide)、ニッケルコバルトアルミニウム酸リチウム(以下、NCAと称する)、ニッケルコバルトマンガン酸リチウム(以下、NCMと称する)、マンガン酸リチウム(Lithium manganate)、リン酸鉄リチウム(lithium iron phosphate)等のリチウム塩、硫化ニッケル、硫化銅、硫黄、酸化鉄、または酸化バナジウム(Vanadium oxide)等を用いて形成することができる。これらの正極活物質は、それぞれ単独で用いられてもよく、また2種以上を組み合わせて用いられてもよい。 For example, the positive electrode active material includes lithium cobalt oxide (hereinafter referred to as LCO), lithium nickel oxide, lithium nickel cobalt oxide, and lithium nickel cobalt aluminum oxide (hereinafter referred to as NCA). , nickel cobalt lithium manganate (hereinafter referred to as NCM), lithium manganate, lithium iron phosphate, nickel sulfide, copper sulfide, sulfur, iron oxide, or vanadium oxide (Vanadium oxide) or the like. These positive electrode active materials may be used alone, or two or more of them may be used in combination.

また、正極活物質は、上述したリチウム塩のうち、層状岩塩型構造を有する遷移金属酸化物のリチウム塩を含んで形成されることが好ましい。ここで、「層状」とは、薄いシート状の形状を表す。また、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことを表し、具体的には、陽イオンおよび陰イオンの各々が形成する面心立方格子が互いに単位格子の稜の1/2だけずれて配置された構造を表す。 Moreover, it is preferable that the positive electrode active material is formed by including a lithium salt of a transition metal oxide having a layered rock salt structure among the lithium salts described above. Here, "layered" represents a thin sheet-like shape. The term "rock salt structure" refers to a sodium chloride structure, which is a type of crystal structure. Represents structures that are offset by 1/2 of an edge.

このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、LiNiCoAl(NCA)、またはLiNiCoMn(NCM)(ただし、0<x<1、0<y<1、0<z<1、かつx+y+z=1)などの三元系遷移金属酸化物のリチウム塩が挙げられる。 Lithium salts of transition metal oxides having such a layered rocksalt structure include, for example, LiNixCoyAlzO2 ( NCA ) or LiNixCoyMnzO2 ( NCM ) (where 0 <x<1,0<y<1,0<z<1, and x+y+z=1), and lithium salts of ternary transition metal oxides.

正極活物質が、上記の層状岩塩型構造を有する三元系遷移金属酸化物のリチウム塩を含む場合、全固体二次電池1のエネルギー(energy)密度および熱安定性を向上させることができる。 When the positive electrode active material contains the lithium salt of the ternary transition metal oxide having the layered rock salt structure, the energy density and thermal stability of the all-solid secondary battery 1 can be improved.

正極活物質は、被覆層によって覆われていてもよい。ここで、本実施形態の被覆層は、全固体二次電池の正極活物質の被覆層として公知のものであればどのようなものであってもよい。被覆層の例としては、例えば、LiO-ZrO等が挙げられる。 The positive electrode active material may be covered with a coating layer. Here, the coating layer of the present embodiment may be of any type as long as it is known as a coating layer of a positive electrode active material for an all-solid secondary battery. Examples of coating layers include Li 2 O—ZrO 2 and the like.

また、正極活物質が、NCAまたはNCMなどの三元系遷移金属酸化物のリチウム塩にて形成されており、正極活物質としてニッケル(Ni)を含む場合、全固体二次電池1の容量密度を上昇させ、充電状態での正極活物質からの金属溶出を少なくすることができる。これにより、本実施形態に係る全固体二次電池1は、充電状態での長期信頼性およびサイクル(cycle)特性を向上させることができる。 Further, when the positive electrode active material is formed of a lithium salt of a ternary transition metal oxide such as NCA or NCM and contains nickel (Ni) as the positive electrode active material, the capacity density of the all-solid secondary battery 1 can be increased, and metal elution from the positive electrode active material in a charged state can be reduced. Thereby, the all-solid secondary battery 1 according to the present embodiment can improve long-term reliability and cycle characteristics in a charged state.

ここで、正極活物質の形状としては、例えば、真球状、楕円球状等の粒子形状を挙げることができる。また、正極活物質の粒径は特に制限されず、従来の全固体二次電池の正極活物質に適用可能な範囲であれば良い。なお、正極活物質層20における正極活物質の含有量も特に制限されず、従来の全固体二次電池の正極層に適用可能な範囲であれば良い。 Here, examples of the shape of the positive electrode active material include particle shapes such as spherical and elliptical. Moreover, the particle size of the positive electrode active material is not particularly limited as long as it is within a range applicable to the positive electrode active material of conventional all-solid secondary batteries. The content of the positive electrode active material in the positive electrode active material layer 20 is not particularly limited as long as it is within the range applicable to the positive electrode layer of the conventional all-solid secondary battery.

また、正極活物質層20には、上述した正極活物質および固体電解質に加えて、例えば、導電助剤、結着材、フィラー(filler)、分散剤、イオン導電助剤等の添加物が適宜配合されていてもよい。 Further, in the positive electrode active material layer 20, in addition to the positive electrode active material and the solid electrolyte described above, additives such as a conductive aid, a binder, a filler, a dispersant, and an ion conductive aid are appropriately added. may be blended.

正極活物質層20に配合可能な導電助剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等を挙げることができる。また、正極活物質層20に配合可能な結着剤としては、例えば、スチレンブタジエンゴム(styrene-butadiene rubber:SBR)、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリエチレン(polyethylene)等を挙げることができる。さらに、正極活物質層20に配合可能なフィラー、分散剤、イオン導電助剤等としては、一般に全固体二次電池の電極に用いられる公知の材料を用いることができる。 Examples of conductive aids that can be incorporated into the positive electrode active material layer 20 include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of binders that can be blended in the positive electrode active material layer 20 include styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. ) etc. can be mentioned. Further, as fillers, dispersants, ion-conducting aids, etc. that can be blended in the positive electrode active material layer 20, known materials that are generally used for electrodes of all-solid secondary batteries can be used.

(固体電解質層)
固体電解質層30は、正極活物質層20と負極活物質層40との間に形成され、固体電解質を含む。
(Solid electrolyte layer)
The solid electrolyte layer 30 is formed between the positive electrode active material layer 20 and the negative electrode active material layer 40 and contains a solid electrolyte.

固体電解質は、例えば硫化物系固体電解質材料で構成される。硫化物系固体電解質材料としては、例えば、LiS-P、LiS-P-LiX(Xはハロゲン元素、例えばI、Cl)、LiS-P-LiO、LiS-P-LiO-LiI、LiS-SiS、Li2-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、LiS-P-Z(m、nは正の数、ZはGe、ZnまたはGaのいずれか)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiMO(p、qは正の数、MはP、Si、Ge、B、Al、GaまたはInのいずれか)等を挙げることができる。ここで、硫化物系固体電解質材料は、出発原料(例えば、LiS、P等)を溶融急冷法やメカニカルミリング(mechanical milling)法等によって処理することで作製される。また、これらの処理の後にさらに熱処理を行っても良い。固体電解質は、非晶質であっても良く、結晶質であっても良く、両者が混ざった状態でも良い。 The solid electrolyte is composed of, for example, a sulfide-based solid electrolyte material. Sulfide-based solid electrolyte materials include, for example, Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiX (X is a halogen element, such as I, Cl), Li 2 SP 2 S 5 -Li2O, Li2SP2S5 - Li2O - LiI, Li2S - SiS2 , Li2S - SiS2 - LiI, Li2S - SiS2-LiBr, Li2S - SiS2 -LiCl , Li2S - SiS2 - B2S3 - LiI, Li2S - SiS2 - P2S5 - LiI, Li2S - B2S3 , Li2SP2S5 - Z m S n (m and n are positive numbers, Z is either Ge, Zn or Ga), Li 2 S—GeS 2 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 — Li p MO q (p and q are positive numbers; M is any one of P, Si, Ge, B, Al, Ga and In). Here, the sulfide-based solid electrolyte material is produced by processing a starting material (for example, Li 2 S, P 2 S 5 , etc.) by a melt quenching method, a mechanical milling method, or the like. Further, heat treatment may be performed after these treatments. The solid electrolyte may be amorphous, crystalline, or a mixture of both.

また、固体電解質として、上記の硫化物固体電解質材料のうち、硫黄と、ケイ素、リンおよびホウ素からなる群から選択される1種以上の元素とを含有する材料を用いることが好ましい。これにより、固体電解質層のリチウム伝導性が向上し、全固体二次電池1の電池特性が向上する。特に、固体電解質として少なくとも構成元素として硫黄(S)、リン(P)およびリチウム(Li)を含むものを用いることが好ましく、特にLiS-Pを含むものを用いることがより好ましい。 As the solid electrolyte, it is preferable to use a material containing sulfur and at least one element selected from the group consisting of silicon, phosphorus and boron among the sulfide solid electrolyte materials described above. Thereby, the lithium conductivity of the solid electrolyte layer is improved, and the battery characteristics of the all-solid secondary battery 1 are improved. In particular, it is preferable to use a solid electrolyte containing at least sulfur (S), phosphorus (P) and lithium (Li) as constituent elements, and it is particularly preferable to use a solid electrolyte containing Li 2 SP 2 S 5 . .

ここで、固体電解質を形成する硫化物系固体電解質材料としてLiS-Pを含むものを用いる場合、LiSとPとの混合モル比は、例えば、LiS:P=50:50~90:10の範囲で選択されてもよい。また、固体電解質層30には、結着剤を更に含んでいても良い。固体電解質層30に含まれる結着剤は、例えば、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリエチレンオキシド(polyethylene oxide)等を挙げることができる。固体電解質層30内の結着剤は、正極活物質層20内の結着剤と同種であってもよいし、異なっていても良い。 Here, when a material containing Li 2 S—P 2 S 5 is used as the sulfide-based solid electrolyte material forming the solid electrolyte, the mixing molar ratio of Li 2 S and P 2 S 5 is, for example, Li 2 S :P 2 S 5 =50:50 to 90:10. Moreover, the solid electrolyte layer 30 may further contain a binder. Examples of the binder contained in the solid electrolyte layer 30 include styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene oxide. The binder in the solid electrolyte layer 30 may be the same as or different from the binder in the positive electrode active material layer 20 .

(負極活物質層)
負極活物質層40は、固体電解質層30上にそれぞれ配置されている。本実施形態において、負極活物質層40は、例えば、リチウムと合金を形成する負極活物質およびリチウムと化合物を形成する負極活物質の少なくとも一方を含む。そして、負極活物質層40は、このような負極活物質を含むことにより、以下のように負極活物質層40の一方または両方の表面上に金属リチウムを析出させることができるように構成されていてもよい。
(Negative electrode active material layer)
The negative electrode active material layers 40 are respectively arranged on the solid electrolyte layers 30 . In the present embodiment, the negative electrode active material layer 40 includes, for example, at least one of a negative electrode active material that forms an alloy with lithium and a negative electrode active material that forms a compound with lithium. The negative electrode active material layer 40 contains such a negative electrode active material so that metallic lithium can be deposited on one or both surfaces of the negative electrode active material layer 40 as follows. may

まず、充電時の初期においては、負極活物質層40内のリチウムと合金又は化合物を形成する負極活物質がリチウムイオンと合金又は化合物を形成することにより、負極活物質層40内にリチウムが吸蔵される。その後、負極活物質層40の容量を超えた後は、負極活物質層40の一方または両方の表面上に金属リチウムが析出する。この金属リチウムによって金属層が形成される。金属リチウムは、合金又は化合物を形成可能な負極活物質を介して拡散しつつ形成されたものであるため、樹枝状(デンドライト状)ではなく、負極活物質層40の面に沿って均一に形成されたものとなる。放電時には、負極活物質層40および金属層中の金属リチウムがイオン化し、正極活物質層20側に移動する。したがって、結果的に金属リチウムを負極活物質として使用することができるので、エネルギー密度が向上する。 First, at the initial stage of charging, the negative electrode active material that forms an alloy or compound with lithium in the negative electrode active material layer 40 forms an alloy or compound with lithium ions, whereby lithium is occluded in the negative electrode active material layer 40. be done. After that, after the capacity of the negative electrode active material layer 40 is exceeded, metallic lithium is deposited on one or both surfaces of the negative electrode active material layer 40 . A metal layer is formed by this metallic lithium. Since metallic lithium is formed while diffusing through the negative electrode active material capable of forming an alloy or compound, it is formed uniformly along the surface of the negative electrode active material layer 40 instead of in a dendrite shape. It becomes what was done. During discharge, metallic lithium in the negative electrode active material layer 40 and the metal layer is ionized and moves toward the positive electrode active material layer 20 side. Therefore, as a result, metallic lithium can be used as a negative electrode active material, thereby improving energy density.

さらに、金属層が負極活物質層40と負極集電体50との間に形成する場合、負極活物質層40は、金属層を被覆する。これにより、負極活物質層40は、金属層の保護層として機能する。これにより、全固体二次電池1の短絡および容量低下が抑制され、ひいては、全固体二次電池の特性が向上する。 Furthermore, when a metal layer is formed between the negative electrode active material layer 40 and the negative electrode current collector 50, the negative electrode active material layer 40 covers the metal layer. Thereby, the negative electrode active material layer 40 functions as a protective layer for the metal layer. As a result, the short circuit and capacity reduction of the all-solid secondary battery 1 are suppressed, and the characteristics of the all-solid secondary battery are improved.

負極活物質層40において金属リチウムの析出を可能とする方法としては、例えば正極活物質層20の充電容量を負極活物質層40の充電容量より大きくする方法が挙げられる。具体的には、正極活物質層20の充電容量a(mAh)と負極活物質層40の充電容量b(mAh)との比(容量比)は、以下の式(1):
0.002<b/a<0.5 (1)
の関係を満足することが好ましい。
As a method for enabling deposition of metallic lithium in the negative electrode active material layer 40 , for example, there is a method of making the charge capacity of the positive electrode active material layer 20 larger than the charge capacity of the negative electrode active material layer 40 . Specifically, the ratio (capacity ratio) between the charge capacity a (mAh) of the positive electrode active material layer 20 and the charge capacity b (mAh) of the negative electrode active material layer 40 is expressed by the following formula (1):
0.002<b/a<0.5 (1)
It is preferable to satisfy the relationship of

式(1)で表される容量比が0.002以下の場合、負極活物質層40の構成によっては、負極活物質層40がリチウムイオンからの金属リチウムの析出を十分に媒介できず、金属層の形成が適切に行われなくなる場合がある。また、金属層が負極活物質層40と負極集電体50A、50Bとの間に生じる場合、負極活物質層40が保護層として十分機能しなくなる場合がある。上記容量比は、好ましくは0.01以上、より好ましくは0.03以上である。 When the capacity ratio represented by the formula (1) is 0.002 or less, depending on the configuration of the negative electrode active material layer 40, the negative electrode active material layer 40 cannot sufficiently mediate the deposition of metallic lithium from lithium ions. Layer formation may not occur properly. Further, when a metal layer is formed between the negative electrode active material layer 40 and the negative electrode current collectors 50A and 50B, the negative electrode active material layer 40 may not sufficiently function as a protective layer. The capacity ratio is preferably 0.01 or more, more preferably 0.03 or more.

また上記容量比が0.5以上であると、充電時において負極活物質層40がリチウムの大部分を貯蔵してしまい、負極活物質層40の構成によっては金属層が均一には形成されない場合がある。上記容量比は、好ましくは0.2以下、より好ましくは0.1以下である。 If the capacity ratio is 0.5 or more, most of the lithium is stored in the negative electrode active material layer 40 during charging, and depending on the structure of the negative electrode active material layer 40, the metal layer may not be uniformly formed. There is The capacity ratio is preferably 0.2 or less, more preferably 0.1 or less.

上述する機能を実現するための負極活物質としては、例えば、無定形炭素、金、白金、パラジウム(Pd)、ケイ素(Si)、銀、アルミニウム(Al)、ビスマス(Bi)、錫、アンチモン、および亜鉛等が挙げられる。ここで、無定形炭素としては、例えば、カーボンブラック(Carbon black)(アセチレンブラック、ファーネスブラック、ケッチェンブラック((acetylene black, furnace black, ketjen black)等)、グラフェン(graphene)等が挙げられる。 Examples of negative electrode active materials for realizing the functions described above include amorphous carbon, gold, platinum, palladium (Pd), silicon (Si), silver, aluminum (Al), bismuth (Bi), tin, antimony, and zinc. Examples of amorphous carbon include carbon black (acetylene black, furnace black, ketjen black ((acetylene black, furnace black, ketjen black), etc.), graphene, and the like.

負極活物質の形状は特に限定されず、粒状であってもよいし、例えば負極活物質が均一な層、例えばめっき層を構成してもよい。前者の場合、リチウムイオンは、粒状の負極活物質同士の隙間を通り、負極活物質層40と負極集電体50A、50Bとの間にリチウムの金属層を形成可能である。一方で、後者の場合、負極活物質層40と固体電解質層30との間に金属層が析出する。 The shape of the negative electrode active material is not particularly limited. In the former case, lithium ions pass through the gaps between the granular negative electrode active materials and can form lithium metal layers between the negative electrode active material layer 40 and the negative electrode current collectors 50A and 50B. On the other hand, in the latter case, a metal layer is deposited between the negative electrode active material layer 40 and the solid electrolyte layer 30 .

上述した中でも、負極活物質層40は、無定形炭素として、窒素ガス吸着法により測定される比表面積が100m/g以下である低比表面積無定形炭素と、窒素ガス吸着法により測定される比表面積が300m/g以上である高比表面積無定形炭素との混合物を含むことが好ましい。 Among the above, the negative electrode active material layer 40 includes, as amorphous carbon, a low specific surface area amorphous carbon having a specific surface area of 100 m 2 /g or less measured by a nitrogen gas adsorption method, and a low specific surface area amorphous carbon measured by a nitrogen gas adsorption method. It preferably contains a mixture with high specific surface area amorphous carbon having a specific surface area of 300 m 2 /g or more.

負極活物質層40は、これらの負極活物質をいずれか1種だけ含んでいても良いし、2種以上の負極活物質を含んでいても良い。例えば、負極活物質層40は、負極活物質として無定形炭素だけを含んでいても良いし、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、アンチモン、および亜鉛からなる群から選択されるいずれか1種以上を含んでいても良い。また、負極活物質層40は、無定形炭素と、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、アンチモン、および亜鉛からなる群から選択されるいずれか1種以上との混合物を含んでいても良い。無定形炭素と金等の金属との混合物の混合比(質量比)は、1:1~1:3程度であることが好ましい。負極活物質をこれらの物質で構成することで、全固体二次電池1の特性が更に向上する。 The negative electrode active material layer 40 may contain only one of these negative electrode active materials, or may contain two or more types of negative electrode active materials. For example, the negative electrode active material layer 40 may contain only amorphous carbon as the negative electrode active material, and may be selected from the group consisting of gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, antimony, and zinc. may contain any one or more. Further, the negative electrode active material layer 40 is a mixture of amorphous carbon and at least one selected from the group consisting of gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, antimony, and zinc. May contain. The mixing ratio (mass ratio) of the mixture of amorphous carbon and metal such as gold is preferably about 1:1 to 1:3. By forming the negative electrode active material from these materials, the characteristics of the all-solid secondary battery 1 are further improved.

ここで、負極活物質として無定形炭素とともに金、白金、パラジウム、アンチモン、ケイ素、銀、アルミニウム、ビスマス、錫、および亜鉛のいずれか1種以上を使用する場合、これらの負極活物質の粒径は4μm以下であることが好ましい。この場合、全固体二次電池1の特性が更に向上する。 Here, when one or more of gold, platinum, palladium, antimony, silicon, silver, aluminum, bismuth, tin, and zinc are used together with amorphous carbon as the negative electrode active material, the particle size of these negative electrode active materials is preferably 4 μm or less. In this case, the characteristics of the all-solid secondary battery 1 are further improved.

また、負極活物質として、リチウムと合金を形成可能な物質、例えば、金、白金、パラジウム、アンチモン、ケイ素、銀、アルミニウム、ビスマス、錫、および亜鉛のいずれか1種以上を使用する場合、負極活物質層40は、これらの金属層であってもよい。例えば、金属層は、めっき層であることができる。 Further, when using a material capable of forming an alloy with lithium as the negative electrode active material, for example, any one or more of gold, platinum, palladium, antimony, silicon, silver, aluminum, bismuth, tin, and zinc, The active material layer 40 may be these metal layers. For example, the metal layer can be a plated layer.

ここで、正極活物質層20の充電容量は、正極活物質の充電容量密度(mAh/g)に正極活物質層20中の正極活物質の質量を乗じることで得られる。正極活物質が複数種類使用される場合、正極活物質毎に充電容量密度×質量の値を算出し、これらの値の総和を正極活物質層20の充電容量とすれば良い。負極活物質層40の充電容量も同様の方法で算出される。すなわち、負極活物質層40の充電容量は、負極活物質の充電容量密度(mAh/g)に負極活物質層40中の負極活物質の質量を乗じることで得られる。負極活物質が複数種類使用される場合、負極活物質毎に充電容量密度×質量の値を算出し、これらの値の総和を負極活物質層40の容量とすれば良い。ここで、正極および負極活物質の充電容量密度は、リチウム金属を対極に用いた全固体ハーフセルを用いて見積もられた容量である。実際には、全固体ハーフセルを用いた測定により正極活物質層20および負極活物質層40の充電容量が直接測定される。この充電容量をそれぞれの活物質の質量で除算することで、充電容量密度が算出される。 Here, the charge capacity of the positive electrode active material layer 20 is obtained by multiplying the charge capacity density (mAh/g) of the positive electrode active material by the mass of the positive electrode active material in the positive electrode active material layer 20 . When a plurality of types of positive electrode active materials are used, the value of charge capacity density×mass is calculated for each positive electrode active material, and the sum of these values is used as the charge capacity of the positive electrode active material layer 20 . The charge capacity of the negative electrode active material layer 40 is also calculated in a similar manner. That is, the charge capacity of the negative electrode active material layer 40 is obtained by multiplying the charge capacity density (mAh/g) of the negative electrode active material by the mass of the negative electrode active material in the negative electrode active material layer 40 . When multiple kinds of negative electrode active materials are used, the value of charged capacity density×mass is calculated for each negative electrode active material, and the sum of these values is used as the capacity of the negative electrode active material layer 40 . Here, the charge capacity densities of the positive electrode and negative electrode active materials are capacities estimated using an all-solid-state half-cell using lithium metal as the counter electrode. In practice, the charge capacities of the positive electrode active material layer 20 and the negative electrode active material layer 40 are directly measured by measurement using an all-solid half-cell. By dividing this charge capacity by the mass of each active material, the charge capacity density is calculated.

さらに、負極活物質層40は、必要に応じてバインダを含んでもよい。このようなバインダとしては、例えば、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリエチレンオキシド(polyethylene oxide)等が挙げられる。バインダは、これらの1種で構成されていても、2種以上で構成されていても良い。このようにバインダを負極活物質層40に含めることにより、特に負極活物質が粒状の場合に負極活物質の離脱を防止することができる。負極活物質層40にバインダを含める場合、バインダの含有率は、負極活物質層40の総質量に対して例えば0.3~20質量%、好ましくは1.0~15質量%、より好ましくは3.0~15質量%である。 Furthermore, the negative electrode active material layer 40 may contain a binder as needed. Such binders include, for example, styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, polyethylene oxide, and the like. The binder may be composed of one of these, or may be composed of two or more. By including the binder in the negative electrode active material layer 40 in this way, separation of the negative electrode active material can be prevented, particularly when the negative electrode active material is granular. When the negative electrode active material layer 40 contains a binder, the content of the binder is, for example, 0.3 to 20% by mass, preferably 1.0 to 15% by mass, more preferably 1.0 to 15% by mass, based on the total mass of the negative electrode active material layer 40. 3.0 to 15% by mass.

また、負極活物質層40には、従来の全固体二次電池で使用される添加剤、例えばフィラー、分散剤、イオン導電剤等が適宜配合されていてもよい。 In addition, the negative electrode active material layer 40 may appropriately contain additives used in conventional all-solid secondary batteries, such as fillers, dispersants, and ion conductive agents.

負極活物質層40の厚さは、負極活物質が粒状の場合には、特に制限されないが、例えば1.0~20μm、好ましくは1.0~10μmである。これにより、負極活物質層40の上述した効果を十分に得つつ負極活物質層40の抵抗値を十分に低減でき、全固体二次電池1の特性を十分に改善できる。
一方で、負極活物質層40の厚さは、負極活物質が均一な層を形成する場合には、例えば、1.0~100nmである。この場合の負極活物質層40の厚さの上限値は、好ましくは95nm、より好ましくは90nm、さらに好ましくは50nmである。
The thickness of the negative electrode active material layer 40 is not particularly limited when the negative electrode active material is granular, but is, for example, 1.0 to 20 μm, preferably 1.0 to 10 μm. As a result, the resistance value of the negative electrode active material layer 40 can be sufficiently reduced while the above-described effects of the negative electrode active material layer 40 can be sufficiently obtained, and the characteristics of the all-solid secondary battery 1 can be sufficiently improved.
On the other hand, the thickness of the negative electrode active material layer 40 is, for example, 1.0 to 100 nm when the negative electrode active material forms a uniform layer. In this case, the upper limit of the thickness of the negative electrode active material layer 40 is preferably 95 nm, more preferably 90 nm, still more preferably 50 nm.

上述したような構成の負極活物質層40は、電池特性の向上に大きく寄与する一方で、比較的薄く、隣接する固体電解質層30、負極集電体50A、40Bの物理的な形状の影響を受けやすい。したがって、積層時においても、隣接する全固体二次電池1の外表面の形状、具体的には負極集電体50A、50Bの表面形状の影響を受けやすい。しかしながら、本実施形態に係る全固体二次電池1は、上述したような凹凸が抑制された負極集電体50A、50Bを採用することにより、積層時における隣接する全固体二次電池1による影響を防止することができる。 The negative electrode active material layer 40 having the structure described above greatly contributes to the improvement of battery characteristics. easy to receive. Therefore, even during stacking, the shapes of the outer surfaces of the adjacent all-solid secondary batteries 1, specifically, the surface shapes of the negative electrode current collectors 50A and 50B, are likely to affect. However, in the all-solid secondary battery 1 according to the present embodiment, by adopting the negative electrode current collectors 50A and 50B in which unevenness is suppressed as described above, the influence of the adjacent all-solid secondary battery 1 during stacking is reduced. can be prevented.

なお、本発明は上述した実施形態に限定されず、負極活物質層40は、全固体二次電池の負極活物質層として利用可能な任意の構成を採用することが可能である。
例えば、負極活物質層40は、負極活物質と、固体電解質と、負極層導電助剤とを含む層であることができる。
The present invention is not limited to the above-described embodiments, and the negative electrode active material layer 40 can employ any configuration that can be used as a negative electrode active material layer of an all-solid secondary battery.
For example, the negative electrode active material layer 40 can be a layer containing a negative electrode active material, a solid electrolyte, and a negative electrode layer conductive aid.

この場合、例えば、負極活物質として金属活物質またはカーボン(carbon)活物質等を用いることができる。金属活物質としては、例えば、リチウム(Li)、インジウム(In)、アルミニウム(Al)、スズ(Sn)、およびケイ素(Si)等の金属、ならびにこれらの合金等を用いることができる。また、カーボン活物質としては、例えば、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス(coke)、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール(furfuryl alcohol)樹脂焼成炭素、ポリアセン(polyacene)、ピッチ(pitch)系炭素繊維、気相成長炭素繊維、天然黒鉛、および難黒鉛化性炭素等を用いることができる。なお、これらの負極活物質は、単独で用いられてもよく、また2種以上を組み合わせて用いられてもよい。 In this case, for example, a metal active material, carbon active material, or the like can be used as the negative electrode active material. As the metal active material, for example, metals such as lithium (Li), indium (In), aluminum (Al), tin (Sn), and silicon (Si), alloys thereof, and the like can be used. Carbon active materials include, for example, artificial graphite, graphite carbon fiber, resin calcined carbon, pyrolytic vapor growth carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin calcined Carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, non-graphitizable carbon, and the like can be used. These negative electrode active materials may be used alone, or two or more of them may be used in combination.

負極層導電助剤および固体電解質は、正極活物質層20に含まれる導電剤および固体電解質と同様の化合物を用いることができる。そのため、これらの構成についてのここでの説明は省略する。 The same compound as the conductive agent and solid electrolyte contained in the positive electrode active material layer 20 can be used for the negative electrode layer conductive aid and the solid electrolyte. Therefore, description of these configurations is omitted here.

(負極集電体)
負極集電体50A、50Bは、それぞれ負極活物質層40上に配置される、全固体二次電池1の積層体の最外層である。そして、負極集電体50A、50Bは、上述したような表面形状を有している。
(Negative electrode current collector)
The negative electrode current collectors 50A and 50B are the outermost layers of the laminate of the all-solid secondary battery 1, which are arranged on the negative electrode active material layer 40, respectively. The negative electrode current collectors 50A and 50B have surface shapes as described above.

負極集電体50A、50Bとしては、例えば、銅(Cu)、ステンレス鋼、チタン(Ti)、ニッケル(Ni)またはこれらの合金からなる板状体または箔状体等が挙げられる。 The negative electrode current collectors 50A and 50B include, for example, plate-shaped bodies or foil-shaped bodies made of copper (Cu), stainless steel, titanium (Ti), nickel (Ni), or alloys thereof.

〔2.2. 積層全固体二次電池〕
次に、本実施形態に係る積層全固体二次電池100について説明する。積層全固体二次電池100は、1以上の絶縁層110と、絶縁層110を介して積層配置される複数の全固体二次電池1と、を有している。
[2.2. Laminated all-solid-state secondary battery]
Next, the laminated all-solid secondary battery 100 according to this embodiment will be described. The stacked all-solid secondary battery 100 has one or more insulating layers 110 and a plurality of all-solid secondary batteries 1 stacked with the insulating layers 110 interposed therebetween.

そして、積層全固体二次電池100は、ある全固体二次電池1の負極集電体50Aと、隣接する負極集電体50Bとが対向するようにして、複数の全固体二次電池1が積層されている。これにより、各全固体二次電池1の電池特性を損なうことなく、積層を行うことが可能となる。また、ある全固体二次電池1の負極集電体50Aと、隣接する負極集電体50Bとが対向するように全固体二次電池1を積層しても電池特性が損なわれないことから、3以上の全固体二次電池1を積層することが可能となる。 In the stacked all-solid secondary battery 100, a plurality of all-solid secondary batteries 1 are arranged such that the negative electrode current collector 50A of a certain all-solid secondary battery 1 faces the adjacent negative electrode current collector 50B. Laminated. Thereby, lamination can be performed without impairing the battery characteristics of each all-solid secondary battery 1 . In addition, even if the all-solid secondary battery 1 is stacked so that the negative electrode current collector 50A of a certain all-solid secondary battery 1 faces the adjacent negative electrode current collector 50B, the battery characteristics are not impaired. It becomes possible to stack three or more all-solid secondary batteries 1 .

なお、絶縁層110は、隣接する全固体二次電池1同士を絶縁可能であれば特に限定されず、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂といった熱可塑性樹脂シートや、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂といった熱硬化性樹脂シート、ポリエチレンテレフタラート、ポリアミド、ポリカーボネートといったエンジニアリング・プラスチック、シリコーンゴム、ウレタンゴムといった合成ゴムシート、また紙類等のシート、また樹脂を全固体電池1上にコーティングしたものであってもよい。 The insulating layer 110 is not particularly limited as long as it can insulate adjacent all-solid secondary batteries 1 from each other. Resin sheets, thermosetting resin sheets such as phenol resin, epoxy resin, melamine resin, and urethane resin; engineering plastics such as polyethylene terephthalate, polyamide, and polycarbonate; synthetic rubber sheets such as silicone rubber and urethane rubber; Alternatively, the all-solid-state battery 1 may be coated with a resin.

また、絶縁層110の厚さは、隣接する全固体二次電池1同士を絶縁可能であれば特に限定されず、例えば、0.1μm以上100μm以下であることができる。 Moreover, the thickness of the insulating layer 110 is not particularly limited as long as it can insulate adjacent all-solid secondary batteries 1, and can be, for example, 0.1 μm or more and 100 μm or less.

<3.全固体二次電池および積層全固体二次電池の製造方法>
続いて、本実施形態に係る全固体二次電池および積層全固体二次電池の製造方法の一例について説明する。
<3. Method for manufacturing all-solid secondary battery and stacked all-solid secondary battery>
Next, an example of a method for manufacturing the all-solid secondary battery and the stacked all-solid secondary battery according to the present embodiment will be described.

〔3.1. 全固体二次電池の製造〕
まず、本実施形態に係る全固体二次電池の製造方法の一例について説明する。図4~6は、本実施形態に係る全固体二次電池の製造方法を説明する模式図である。
本実施形態に係る全固体二次電池1の製造方法は、負極活物質層40上にスクリーン印刷により固体電解質層30を形成する工程と、
正極集電体10、一対の正極活物質層20、一対の固体電解質層30、一対の負極活物質層40および一対の負極集電体50を積層した積層体について、当該積層体の少なくとも一方の面側に支持材(支持板)140を配置し、等方圧プレスを行う工程と、を有する。
[3.1. Production of all-solid secondary battery]
First, an example of a method for manufacturing an all-solid secondary battery according to this embodiment will be described. 4 to 6 are schematic diagrams for explaining the manufacturing method of the all-solid secondary battery according to this embodiment.
The method for manufacturing the all-solid secondary battery 1 according to the present embodiment includes a step of forming the solid electrolyte layer 30 on the negative electrode active material layer 40 by screen printing;
For a laminate obtained by laminating the positive electrode current collector 10, the pair of positive electrode active material layers 20, the pair of solid electrolyte layers 30, the pair of negative electrode active material layers 40, and the pair of negative electrode current collectors 50, at least one of the laminate and a step of placing a support member (support plate) 140 on the surface side and performing isostatic pressing.

また、本実施形態においては、具体的には、正極集電体10と正極活物質層20との正極構造体120、負極集電体50と負極活物質層40と固体電解質層30との固体電解質負極複合体130とを別個に作製し、これらを積層して形成するものとして以下に説明を行う。 Further, in the present embodiment, specifically, the positive electrode structure 120 including the positive electrode current collector 10 and the positive electrode active material layer 20 and the solid state structure including the negative electrode current collector 50, the negative electrode active material layer 40, and the solid electrolyte layer 30 are described. The following description will be given assuming that the electrolyte-negative electrode composite 130 is prepared separately and laminated.

(正極構造体の作製)
正極構造体120は、まず、正極集電体10を用意し(S-510)、正極集電体10の両面に正極活物質層20を形成すること(S-520)により製造することができる。
(Preparation of positive electrode structure)
The positive electrode structure 120 can be manufactured by first preparing the positive electrode current collector 10 (S-510) and forming the positive electrode active material layers 20 on both sides of the positive electrode current collector 10 (S-520). .

正極活物質層20の形成は、正極活物質層20の材料を含むスラリー(slurry)またはペースト(paste)を作製し、塗布、乾燥することにより行うことができる。具体的には正極活物質層20の材料、例えば正極活物質と、後述する方法で作製した固体電解質と、各種添加材とを混合し非極性溶媒に添加してスラリーまたはペーストを作製する。さらに、得られたスラリーまたはペーストを正極集電体10上に塗布し、乾燥した後に、圧延することで、正極構造体120を得ることができる。または、正極集電体10に塗布せず、得られたペーストを圧延するのみで、正極構造体を得ることもでき、その後、正極集電体10と一体化させることもできる。なお、正極活物質層20の密度を高めるために、必要に応じてロールプレス等のプレス工程を行うこともできる。 The positive electrode active material layer 20 can be formed by preparing a slurry or paste containing the material of the positive electrode active material layer 20, applying it, and drying it. Specifically, a material for the positive electrode active material layer 20, such as a positive electrode active material, a solid electrolyte prepared by a method described later, and various additives are mixed and added to a nonpolar solvent to prepare a slurry or paste. Furthermore, the positive electrode structure 120 can be obtained by applying the obtained slurry or paste onto the positive electrode current collector 10, drying it, and rolling it. Alternatively, the positive electrode structure can be obtained only by rolling the obtained paste without coating it on the positive electrode current collector 10 , and then integrated with the positive electrode current collector 10 . In addition, in order to increase the density of the positive electrode active material layer 20, a pressing process such as roll pressing can be performed as necessary.

(固体電解質負極複合体の作製)
固体電解質負極複合体130は、まず、負極集電体50を用意し(S-610)、負極集電体50の片面に負極活物質層40および固体電解質層30を順次形成すること(S-620、S-630)により製造することができる。
(Preparation of Solid Electrolyte Negative Electrode Composite)
Solid electrolyte/negative electrode composite 130 first prepares negative electrode current collector 50 (S-610), and sequentially forms negative electrode active material layer 40 and solid electrolyte layer 30 on one side of negative electrode current collector 50 (S-610). 620, S-630).

負極集電体50としては、上述した負極集電体50A、50Bと同様の材料を使用できる。 As the negative electrode current collector 50, the same material as the negative electrode current collectors 50A and 50B described above can be used.

負極活物質層40の形成は、負極活物質層40の材料を含むスラリーまたはペーストを作製し、塗布、乾燥することにより行うことができる(S-620)。具体的には負極活物質層40の材料、例えば負極活物質と、バインダと、各種添加材とを混合し非極性溶媒に添加してスラリーまたはペーストを作製する。さらに、得られたスラリーまたはペーストを負極集電体50上に塗布し、乾燥し、負極活物質層40を形成する。
あるいは、負極集電体50上にスッパッタリング等により負極活物質を付与し、負極活物質層40を形成してもよい。さらには、負極集電体50上に負極活物質層40を構成するための金属箔を配置してもよい。
The negative electrode active material layer 40 can be formed by preparing a slurry or paste containing the material of the negative electrode active material layer 40, applying it, and drying it (S-620). Specifically, materials for the negative electrode active material layer 40, such as a negative electrode active material, a binder, and various additives, are mixed and added to a nonpolar solvent to prepare slurry or paste. Furthermore, the resulting slurry or paste is applied onto the negative electrode current collector 50 and dried to form the negative electrode active material layer 40 .
Alternatively, the negative electrode active material layer 40 may be formed by applying a negative electrode active material onto the negative electrode current collector 50 by sputtering or the like. Furthermore, a metal foil for forming the negative electrode active material layer 40 may be arranged on the negative electrode current collector 50 .

次いで、負極活物質層40上にスクリーン印刷により固体電解質層30を形成する(S-620)。これにより、粗大な固体電解質の粒子を除去することができ、形成される固体電解質層30の表面を平滑にすることができる。このため、後述する等方圧プレスにおいて形成される負極集電体50A、50Bに大きな凹凸が生じることが防止される。 Next, the solid electrolyte layer 30 is formed on the negative electrode active material layer 40 by screen printing (S-620). Thereby, coarse particles of the solid electrolyte can be removed, and the surface of the formed solid electrolyte layer 30 can be smoothed. Therefore, it is possible to prevent large irregularities from occurring in the negative electrode current collectors 50A and 50B formed by isostatic pressing, which will be described later.

詳しく説明すると、本発明者らは、負極集電体50A、50Bに生じる凸部の抑制を検討する中で、等方圧プレスにおいて固体電解質層30の形状が負極集電体50A、50Bの表面形状、特に後述する支持板140と接していない負極集電体50Bの表面形状に大きな影響を与えることを見出した。さらに、固体電解質層30の形状を平坦にすべく更なる検討を行ったところ、固体電解質層を単独で不織布シート状に形成する方法では固体電解質層の凹凸が大きくなることを見出した。そして、本発明者らは、負極活物質層40上に直接固体電解質層30をスクリーン印刷により形成することにより、固体電解質層30を平坦にすることができ、負極集電体50A、50Bの表面形状への固体電解質層30の影響を抑制できることを見出した。 More specifically, the inventors of the present invention have studied how to suppress the formation of protrusions on the negative electrode current collectors 50A and 50B. It was found that the shape, particularly the surface shape of the negative electrode current collector 50B that is not in contact with the support plate 140 described later, is greatly affected. Furthermore, as a result of further investigation to flatten the shape of the solid electrolyte layer 30, it was found that the method of forming the solid electrolyte layer alone in the form of a non-woven fabric sheet causes the unevenness of the solid electrolyte layer to increase. The present inventors have found that by forming the solid electrolyte layer 30 directly on the negative electrode active material layer 40 by screen printing, the solid electrolyte layer 30 can be flattened, and the surfaces of the negative electrode current collectors 50A and 50B can be flattened. It was found that the influence of the solid electrolyte layer 30 on the shape can be suppressed.

固体電解質層30の形成においては、まず、固体電解質を用意する。このために、例えば、溶融急冷法やメカニカルミリング(mechanical milling)法により固体電解質の出発原料を処理することにより固体電解質を得る。 In forming the solid electrolyte layer 30, first, a solid electrolyte is prepared. For this purpose, a solid electrolyte is obtained by processing the starting material of the solid electrolyte, for example, by a melt quenching method or a mechanical milling method.

例えば、溶融急冷法を用いる場合、出発原料(例えば、LiS、P等)を所定量混合し、ペレット状にしたものを真空中で所定の反応温度で反応させた後、急冷することによって硫化物系固体電解質材料を作製することができる。なお、LiSおよびPの混合物の反応温度は、好ましくは400℃~1000℃であり、より好ましくは800℃~900℃である。また、反応時間は、好ましくは0.1時間~12時間であり、より好ましくは1時間~12時間である。さらに、反応物の急冷温度は、通常10℃以下であり、好ましくは0℃以下であり、急冷速度は、通常1℃/sec~10000℃/sec程度であり、好ましくは1℃/sec~1000℃/sec程度である。 For example, when a melt quenching method is used, a predetermined amount of starting materials (e.g., Li 2 S, P 2 S 5 , etc.) are mixed, pelletized, reacted at a predetermined reaction temperature in vacuum, and then quenched. By doing so, a sulfide-based solid electrolyte material can be produced. The reaction temperature of the mixture of Li 2 S and P 2 S 5 is preferably 400°C to 1000°C, more preferably 800°C to 900°C. The reaction time is preferably 0.1 hour to 12 hours, more preferably 1 hour to 12 hours. Furthermore, the quenching temperature of the reactant is usually 10° C. or less, preferably 0° C. or less, and the quenching rate is usually about 1° C./sec to 10000° C./sec, preferably 1° C./sec to 1000° C. C./sec.

また、メカニカルミリング法を用いる場合、ボールミルなどを用いて出発原料(例えば、LiS、P等)を撹拌させて反応させることで、硫化物系固体電解質材料を作製することができる。なお、メカニカルミリング法における撹拌速度および撹拌時間は特に限定されないが、撹拌速度が速いほど硫化物系固体電解質材料の生成速度を速くすることができ、撹拌時間が長いほど硫化物系固体電解質材料への原料の転化率を高くすることができる。 Further, when using a mechanical milling method, a sulfide-based solid electrolyte material can be produced by stirring and reacting starting materials (for example, Li 2 S, P 2 S 5 , etc.) using a ball mill or the like. . The stirring speed and stirring time in the mechanical milling method are not particularly limited, but the faster the stirring speed, the faster the sulfide-based solid electrolyte material can be generated. can increase the conversion rate of the raw material.

その後、溶融急冷法またはメカニカルミリング法により得られた混合原料を所定温度で熱処理した後、粉砕することにより粒子状の固体電解質を作製することができる。固体電解質がガラス転移点を持つ場合は、熱処理によって非晶質から結晶質に変わる場合がある。 After that, the mixed raw material obtained by the melt quenching method or the mechanical milling method is heat-treated at a predetermined temperature, and then pulverized to produce a particulate solid electrolyte. If the solid electrolyte has a glass transition point, it may change from amorphous to crystalline by heat treatment.

続いて、上記の方法で得られた固体電解質と、他の添加物、例えばバインダ等と分散媒とを含むスラリーまたはペースト状の液状組成物を作製する。分散媒としては、キシレン、ジエチルベンゼン等の汎用の非極性溶媒を用いることができる。固体電解質および他の添加物の濃度は、形成する固体電解質層30の組成および液状組成物の粘度等に応じて、適宜調節することができる。 Subsequently, a slurry or paste liquid composition containing the solid electrolyte obtained by the above method, other additives such as a binder, and a dispersion medium is prepared. General-purpose nonpolar solvents such as xylene and diethylbenzene can be used as the dispersion medium. The concentrations of the solid electrolyte and other additives can be appropriately adjusted according to the composition of the solid electrolyte layer 30 to be formed, the viscosity of the liquid composition, and the like.

次いで、固体電解質を含む液状組成物を用いて、スクリーン印刷により負極活物質層40上に組成物を付与し、乾燥させることにより固体電解質層30を形成することができる。スクリーン印刷において、スクリーンのメッシュ数は、60~300とすることができる。メッシュが荒い場合は、粗大な粒子を除去できず、一方、使用する固体電解質の粒径や液上訴組成物の粘度にもよるがメッシュが細かすぎる場合では、良好な固体電解質層の塗布ができない。 Next, using a liquid composition containing a solid electrolyte, the composition is applied onto the negative electrode active material layer 40 by screen printing, and dried to form the solid electrolyte layer 30 . In screen printing, the mesh number of the screen can be 60-300. If the mesh is coarse, coarse particles cannot be removed. On the other hand, depending on the particle size of the solid electrolyte used and the viscosity of the liquid composition, if the mesh is too fine, a good solid electrolyte layer cannot be coated. .

以上により、固体電解質負極複合体130を作製することができる。なお、必要に応じて、固体電解質負極複合体130は、ロールプレス等のプレス工程を行うこともできる。 As described above, the solid electrolyte negative electrode composite 130 can be produced. In addition, the solid electrolyte negative electrode composite 130 can also be subjected to a pressing process such as roll pressing, if necessary.

(積層)
次いで、得られた正極構造体120と、固体電解質負極複合体130とを積層する(S-710)。積層は図6に示すように、正極構造体120の両面の正極活物質層20に固体電解質層30が対向するように、固体電解質負極複合体130を配置することにより行うことができる。なお、この際に等方圧プレスのための支持板140を一方の負極集電体50A側に配置する。
(Lamination)
Next, the obtained positive electrode structure 120 and the solid electrolyte negative electrode composite 130 are laminated (S-710). As shown in FIG. 6, the stacking can be performed by arranging the solid electrolyte/negative composite 130 such that the solid electrolyte layers 30 face the positive electrode active material layers 20 on both sides of the positive electrode structure 120 . At this time, a support plate 140 for isotropic pressing is placed on one side of the negative electrode current collector 50A.

(等方圧プレス)
次いで、得られた積層体について、当該積層体の少なくとも一方の面側に支持板140を配置し、等方圧プレスを行う(S-710)。これにより、全固体二次電池1が得られる。なお、等法圧プレスにおいて、負極集電体50は、それぞれ各層の表面形状が反映され、負極集電体50Aおよび50Bとなる。
(Isostatic press)
Next, the support plate 140 is placed on at least one side of the obtained laminate, and isostatic pressing is performed (S-710). Thereby, the all-solid secondary battery 1 is obtained. In the isostatic pressing, the negative electrode current collector 50 becomes negative electrode current collectors 50A and 50B reflecting the surface shape of each layer.

等方圧プレスは、ロールプレス等の他のプレス法と比較し、全固体二次電池1内の各層の割れの抑制や、全固体二次電池1の反り防止の観点から有利である。このため、全固体二次電池1の電池性能が向上する。一方で、支持板140を配置していない面においては、負極集電体50(50B)に対し、負極活物質層40および固体電解質層30、特に固体電解質層30の表面形状が反映されやすい。しかしながら、本実施形態においては、固体電解質層30をスクリーン印刷により負極活物質層40上に直接形成することにより、固体電解質層30の表面形状が平坦化している。したがって、形成される負極集電体50Bにおいて、大きな凹凸が生じることが防止される。 Isostatic pressing is advantageous from the viewpoint of suppressing cracking of each layer in the all-solid secondary battery 1 and preventing the all-solid secondary battery 1 from warping, as compared with other pressing methods such as roll pressing. Therefore, the battery performance of the all-solid secondary battery 1 is improved. On the other hand, on the surface where the support plate 140 is not arranged, the surface shapes of the negative electrode active material layer 40 and the solid electrolyte layer 30, particularly the solid electrolyte layer 30, are likely to be reflected on the negative electrode current collector 50 (50B). However, in the present embodiment, the surface shape of the solid electrolyte layer 30 is flattened by forming the solid electrolyte layer 30 directly on the negative electrode active material layer 40 by screen printing. Therefore, the negative electrode current collector 50B to be formed is prevented from having large unevenness.

等方圧プレスの圧力媒体としては、水やオイル等の液体や、粉体等を挙げることができる。圧力媒体としては液体を用いることがより好ましい。 Examples of the pressure medium for isostatic pressing include liquids such as water and oil, powders, and the like. It is more preferable to use a liquid as the pressure medium.

等方圧プレスにおける圧力は、特に限定されないが、例えば10~1000MPa、好ましくは100~500MPaとすることができる。また、加圧時間は、特に限定されず、例えば1~120分、好ましくは5~30分とすることができる。さらに、加圧時における圧力媒体の温度も特に限定されず、例えば20~200℃、好ましくは50~100℃とすることができる。 The pressure in the isostatic press is not particularly limited, but can be, for example, 10 to 1000 MPa, preferably 100 to 500 MPa. Also, the pressurization time is not particularly limited, and can be, for example, 1 to 120 minutes, preferably 5 to 30 minutes. Furthermore, the temperature of the pressure medium during pressurization is not particularly limited, and can be, for example, 20 to 200.degree. C., preferably 50 to 100.degree.

なお、等方圧プレス時には、全固体二次電池1を構成する積層体は、支持板140と共に、樹脂フィルム等によりラミネートされ、外部雰囲気から遮断された状態とすることが好ましい。 During isostatic pressing, it is preferable that the laminate constituting the all-solid-state secondary battery 1 is laminated together with the support plate 140 with a resin film or the like so as to be isolated from the external atmosphere.

〔3.2. 積層全固体二次電池の製造〕
次に、複数の全固体二次電池1を積層して、積層全固体二次電池100を得る。積層時には、絶縁層110を介し、負極集電体50Aと、他の全固体二次電池1の負極集電体50Bとが対向するように配置する。これにより、比較的多数、例えば3以上の全固体二次電池1を積層することが可能となる。
[3.2. Production of laminated all-solid-state secondary battery]
Next, a plurality of all-solid secondary batteries 1 are stacked to obtain a stacked all-solid secondary battery 100 . At the time of stacking, the negative electrode current collector 50A and the negative electrode current collector 50B of the other all-solid secondary battery 1 are arranged to face each other with the insulating layer 110 interposed therebetween. This makes it possible to stack a relatively large number of, for example, three or more, all-solid secondary batteries 1 .

以上、本実施形態に係る全固体二次電池1および積層全固体二次電池100ならびにこれらの製造方法について詳細に説明した。しかしながら、本発明は、上記の実施形態に限定されるものではない。 The all-solid secondary battery 1 and the stacked all-solid secondary battery 100 according to the present embodiment and the manufacturing methods thereof have been described above in detail. However, the invention is not limited to the embodiments described above.

例えば、上述した実施形態においては、第1の活物質層、第1の集電体、第2の活物質層および第2の集電体をそれぞれ、正極活物質層、正極集電体、負極活物質層および負極集電体として説明したが、本発明はこれに限定されない。例えば、第1の活物質層が負極活物質層であり、第2の活物質層が正極活物質層であってもよい。この場合、第1の集電体は、負極集電体であり、第2の集電体は、正極集電体である。 For example, in the above-described embodiments, the first active material layer, the first current collector, the second active material layer, and the second current collector are respectively the positive electrode active material layer, the positive electrode current collector, and the negative electrode. Although the active material layer and the negative electrode current collector have been described, the present invention is not limited to this. For example, the first active material layer may be the negative electrode active material layer, and the second active material layer may be the positive electrode active material layer. In this case, the first current collector is the negative electrode current collector, and the second current collector is the positive electrode current collector.

また、上述した実施形態においては、正極構造体と固体電解質負極複合体とを別個に作製し、これらを積層することにより全固体二次電池を製造したが、本発明これに限定されない。例えば、正極集電体(第1の集電体)を中心として、正極活物質層(第1の活物質層)、固体電解質層、負極活物質層(第2の活物質層)および負極集電体(第2の集電体)をこの順で両面に積層することにより全固体二次電池を製造してもよい。 In the above-described embodiment, the positive electrode structure and the solid electrolyte/negative composite are separately produced and laminated to produce an all-solid secondary battery, but the present invention is not limited to this. For example, centering on a positive electrode current collector (first current collector), a positive electrode active material layer (first active material layer), a solid electrolyte layer, a negative electrode active material layer (second active material layer) and a negative electrode collector An all-solid secondary battery may be manufactured by laminating current bodies (second current collectors) on both sides in this order.

以下、実施例により本発明をさらに詳細に説明する。なお、実施例は、あくまでも一例であって、本発明を限定するものではない。 The present invention will be described in more detail below with reference to examples. In addition, an Example is an example to the last, and does not limit this invention.

[1.全固体二次電池および積層全固体二次電池の製造]
<実施例1>
(正極構造体の作製)
正極活物質としてのLiNi0.8Co0.15Al0.05(NCA)三元系粉末と、硫化物系固体電解質としてのLiS-P(80:20モル%)非晶質粉末と、正極層導電性物質(導電助剤)としての気相成長炭素繊維粉末とを60:35:5の質量%比で秤量し、自転公転ミキサを用いて混合した。
[1. Production of all-solid secondary battery and laminated all-solid secondary battery]
<Example 1>
(Preparation of positive electrode structure)
LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) ternary powder as a positive electrode active material and Li 2 SP 2 S 5 (80:20 mol %) as a sulfide-based solid electrolyte Amorphous powder and vapor-grown carbon fiber powder as a positive electrode layer conductive material (conductive aid) were weighed at a mass ratio of 60:35:5 and mixed using a rotation-revolution mixer.

次いで、この混合粉に、結着剤としてのスチレン・ブタジエンゴム(SBR)が溶解した脱水キシレン溶液をSBRが混合粉の総質量に対して5.0質量%となるように添加して1次混合液を調製した。さらに、この1次混合液に、粘度調整のための脱水キシレンを適量添加することで、2次混合液を調製した。さらに、混合粉の分散性を向上させるために、直径5mmのジルコニアボールを、空間、混合粉、ジルコニアボールがそれぞれ混練容器の全容積に対して1/3ずつを占めるように2次混合液に投入した。これにより生成された3次混合液を自転公転ミキサに投入し、3000rpmで3分撹拌することで、正極活物質層塗工液を調製した。 Next, a dehydrated xylene solution in which styrene-butadiene rubber (SBR) as a binder is dissolved is added to the mixed powder so that the SBR is 5.0% by mass with respect to the total mass of the mixed powder. A mixture was prepared. Furthermore, a secondary liquid mixture was prepared by adding an appropriate amount of dehydrated xylene to the primary liquid mixture for viscosity adjustment. Furthermore, in order to improve the dispersibility of the mixed powder, zirconia balls with a diameter of 5 mm were added to the secondary mixed liquid so that the space, the mixed powder, and the zirconia balls each accounted for 1/3 of the total volume of the kneading container. put in. The tertiary mixed solution thus produced was put into a rotation-revolution mixer and stirred at 3000 rpm for 3 minutes to prepare a positive electrode active material layer coating solution.

次いで、正極集電体として厚さ20μmのアルミ箔集電体を用意し、卓上スクリーン印刷機に正極集電体を載置し、孔径が2.0cm×2.0cmで厚みが150μmのメタルマスクを用いて正極活物質層塗工液をアルミ箔集電体上に塗工し、その後、正極活物質層塗工液が塗工されたアルミ箔集電体を60℃のホットプレートで30分乾燥させた。次いで、アルミ箔集電体の裏面についても正極活物質層塗工液を塗工し、さらに60℃のホットプレートで30分乾燥させた。次いで、塗工されたアルミ箔集電体をさらに80℃で12時間真空乾燥させた。これにより、正極集電体の両面に正極活物質層を形成し、正極構造体を得た。乾燥後の正極構造体の総厚さは330μm前後であった。 Next, an aluminum foil current collector having a thickness of 20 μm was prepared as a positive electrode current collector, the positive electrode current collector was placed on a desktop screen printer, and a metal mask having a hole diameter of 2.0 cm × 2.0 cm and a thickness of 150 µm was used. The positive electrode active material layer coating solution is applied onto the aluminum foil current collector using a hot plate at 60 ° C. for 30 minutes. dried. Next, the positive electrode active material layer coating liquid was applied to the back surface of the aluminum foil current collector, and dried on a hot plate at 60° C. for 30 minutes. Then, the coated aluminum foil current collector was further vacuum-dried at 80° C. for 12 hours. As a result, positive electrode active material layers were formed on both surfaces of the positive electrode current collector to obtain a positive electrode structure. The total thickness of the positive electrode structure after drying was around 330 μm.

(負極構造体の作製)
負極集電体として厚さ10μmのニッケル箔集電体を用意した。また、負極活物質として、旭カーボン社製CB1(無定形炭素、窒素吸着比表面積は約339m/g、DBP給油量は約193ml/100g)、旭カーボン社製CB2(無定形炭素、窒素吸着比表面積は約52m/g、DBP給油量は約193ml/100g)、および粒径3μm(粒径は上述した方法で測定した)の銀粒子を準備した。
(Preparation of negative electrode structure)
A nickel foil current collector having a thickness of 10 μm was prepared as a negative electrode current collector. In addition, as the negative electrode active material, CB1 manufactured by Asahi Carbon Co., Ltd. (amorphous carbon, nitrogen adsorption specific surface area is about 339 m 2 /g, DBP oil supply amount is about 193 ml / 100 g), CB2 manufactured by Asahi Carbon Co., Ltd. (amorphous carbon, nitrogen adsorption Silver particles having a specific surface area of about 52 m 2 /g, a DBP oil supply amount of about 193 ml/100 g), and a particle size of 3 μm (the particle size was measured by the method described above) were prepared.

次いで、1.5gのCB1、1.5gのCB2、1gの銀粒子を容器に入れ、そこへバインダ(クレハ社製#9300)5質量%を含むN-メチルピロリドン(NMP)溶液を4g加え、混合溶液を得た。次いで、この混合溶液に総量30gのNMPを少しずつ加えながら混合溶液を撹拌することで、スラリーを作製した。このスラリーをニッケル箔集電体にブレードコーターを用いて塗布し、空気中で80℃で約20分間乾燥させた。これにより得られた積層体を100℃で約12時間真空乾燥した。以上の工程により、負極集電体上に負極活物質層が積層された負極構造体を作製した。 Next, 1.5 g of CB1, 1.5 g of CB2, and 1 g of silver particles were placed in a container, and 4 g of an N-methylpyrrolidone (NMP) solution containing 5% by mass of a binder (#9300 manufactured by Kureha Co., Ltd.) was added. A mixed solution was obtained. Next, a slurry was prepared by stirring the mixed solution while adding a total of 30 g of NMP little by little to the mixed solution. This slurry was applied to a nickel foil current collector using a blade coater and dried in the air at 80° C. for about 20 minutes. The laminate thus obtained was vacuum-dried at 100° C. for about 12 hours. Through the steps described above, a negative electrode structure in which a negative electrode active material layer was laminated on a negative electrode current collector was produced.

(固体電解質負極複合体の作製)
硫化物系固体電解質としてのLiS-P(80:20モル%)非晶質粉末に、固体電解質に対して1質量%となるように、脱水キシレンに溶解したSBRバインダを添加して1次混合スラリーを生成した。さらに、この1次混合スラリーに、粘度調整のための脱水キシレンおよび脱水ジエチルベンゼンを適量添加することで、2次混合スラリーを生成した。さらに、混合粉の分散性を向上させるために、直径5mmのジルコニアボールを、空間、混合粉、ジルコニアボールがそれぞれ混練容器の全容積に対して1/3ずつを占めるように3次混合スラリーに投入した。これにより作製した3次混合液を自転公転ミキサに投入し、3000rpmで3分撹拌することで、電解質層塗工スラリーを作製した。
(Preparation of Solid Electrolyte Negative Electrode Composite)
An SBR binder dissolved in dehydrated xylene was added to Li 2 SP 2 S 5 (80:20 mol %) amorphous powder as a sulfide-based solid electrolyte so as to be 1% by mass with respect to the solid electrolyte. to produce a primary mixed slurry. Furthermore, a secondary mixed slurry was produced by adding appropriate amounts of dehydrated xylene and dehydrated diethylbenzene for viscosity adjustment to this primary mixed slurry. Furthermore, in order to improve the dispersibility of the mixed powder, zirconia balls with a diameter of 5 mm were added to the tertiary mixed slurry so that the space, the mixed powder, and the zirconia balls each accounted for 1/3 of the total volume of the kneading vessel. put in. The tertiary mixed liquid thus prepared was put into a rotation-revolution mixer and stirred at 3000 rpm for 3 minutes to prepare an electrolyte layer coating slurry.

卓上スクリーン印刷機に負極構造体を載置し、メタルスクリーン(80mesh、線径50μm、厚さ約100μm)を用い固体電解質スラリーを負極構造体上に塗工した。その後、50℃のホットプレートで10分乾燥させた後、40℃で12時間真空乾燥させ、固体電解質層を形成した。乾燥後の電解質層の総厚は90μm前後であった。以上により、負極構造体の上に固体電解質層が形成された固体電解質負極複合体を得た。 The negative electrode structure was placed on a desktop screen printer, and the solid electrolyte slurry was applied onto the negative electrode structure using a metal screen (80 mesh, wire diameter of 50 μm, thickness of about 100 μm). After that, it was dried on a hot plate at 50° C. for 10 minutes, and then vacuum-dried at 40° C. for 12 hours to form a solid electrolyte layer. The total thickness of the electrolyte layer after drying was around 90 μm. As described above, a solid electrolyte negative electrode composite having a solid electrolyte layer formed on the negative electrode structure was obtained.

(全固体二次電池の作製)
シート状の固体電解質負極複合体と、両面に正極活物質層が形成されたシート状の正極構造体とをそれぞれトムソン刃で打ち抜いた後、固体電解質層が正極構造体両面にそれぞれ接するように、固体電解質負極複合体、正極構造体、固体電解質負極構造体の順で重ねた。この状態でアルミニウムラミネートフィルムに入れ、真空機で100Paまで真空排気しラミネートパックを行った。
(Fabrication of all-solid secondary battery)
After the sheet-like solid electrolyte negative electrode composite and the sheet-like positive electrode structure having the positive electrode active material layers formed on both sides thereof were punched out with a Thomson blade, the solid electrolyte layers were in contact with both sides of the positive electrode structure. The solid electrolyte negative electrode composite, the positive electrode structure, and the solid electrolyte negative electrode structure were stacked in this order. In this state, it was placed in an aluminum laminate film, evacuated to 100 Pa by a vacuum machine, and laminated-packed.

次いで、厚さ3mmのアルミ板(支持板)上に載せて、支持板を含めて真空ラミネートパックを行った。これを加圧媒体中に沈め、490MPaにて等方圧処理(圧密化工程)を行った。等方圧処理中における加圧媒体の温度は、80℃であり、処理時間は、30分であった。これにより、単セルとしての全固体二次電池を作製した。この際、アルミ板側に接した側の固体電解質負極複合体の負極集電箔をA面、反対の負極集電箔をB面と呼ぶこととする。 Then, it was placed on an aluminum plate (supporting plate) having a thickness of 3 mm, and vacuum lamination packing was carried out including the supporting plate. This was submerged in a pressurized medium and subjected to isotropic pressure treatment (consolidation step) at 490 MPa. The temperature of the pressurized medium during the isostatic treatment was 80° C. and the treatment time was 30 minutes. Thus, an all-solid secondary battery was produced as a single cell. At this time, the negative electrode current collector foil of the solid electrolyte negative electrode composite on the side in contact with the aluminum plate side is called the A side, and the opposite negative electrode current collector foil is called the B side.

なお、得られた全固体二次電池において、正極活物質層の初期充電容量は、778mAhであり、負極活物質層の初期充電容量は99mAhであった。したがって、式(1)中のb/aは0.13であった。 In the obtained all-solid secondary battery, the initial charge capacity of the positive electrode active material layer was 778 mAh, and the initial charge capacity of the negative electrode active material layer was 99 mAh. Therefore, b/a in formula (1) was 0.13.

(積層全固体二次電池の作製)
作製した全固体二次電池の単セル2個の間を絶縁し、一方の全固体二次電池のA面と他方の全固体二次電池のB面が向い合わせとなるように重ね、端子を取り付けたアルミニウムラミネートフィルムに入れ、真空機で100Paまで真空排気した後、ヒートシールを行いパックすることで実施例1に係る積層全固体二次電池を作製した。
(Production of laminated all-solid secondary battery)
Insulate between the two single cells of the produced all-solid-state secondary battery, overlap so that the A-side of one all-solid-state secondary battery and the B-side of the other all-solid-state secondary battery face each other, and connect the terminals. The laminated all-solid-state secondary battery according to Example 1 was produced by putting it in the attached aluminum laminate film, evacuating it to 100 Pa with a vacuum machine, heat-sealing it, and packing it.

<比較例1>
固体電解質層の形成時において、負極構造体上へ固体電解質スラリー塗布を、スクリーン印刷ではなく、スキージおよびメタルマスク(厚さ60μm)を用いて行った以外は、実施例1と同様にして、比較例1に係る積層全固体二次電池を作製した。
<Comparative Example 1>
In the same manner as in Example 1, except that the solid electrolyte slurry was applied onto the negative electrode structure using a squeegee and a metal mask (thickness: 60 μm) instead of screen printing during the formation of the solid electrolyte layer, comparison was performed. A laminated all-solid secondary battery according to Example 1 was produced.

<比較例2>
まず、実施例1と同様にして正極構造体および負極構造体を作製した。
次に、実施例1と同様にして得た固体電解質スラリーを75μmのポリエチレン基板上に固定した10μmのポリエチレンテレフタラート不織布の上に塗布し、50℃のホットプレートで10分乾燥させた後、40℃で12時間真空乾燥し、固体電解質層を得た。
<Comparative Example 2>
First, in the same manner as in Example 1, a positive electrode structure and a negative electrode structure were produced.
Next, the solid electrolyte slurry obtained in the same manner as in Example 1 was applied onto a 10 μm polyethylene terephthalate nonwoven fabric fixed on a 75 μm polyethylene substrate, dried on a hot plate at 50° C. for 10 minutes, and dried for 40 minutes. C. for 12 hours to obtain a solid electrolyte layer.

次に、固体電解質層と、負極複合体と、正極構造体とをそれぞれトムソン刃で打ち抜いた。その後、正極構造体を中心として、両面に固体電解質層および負極構造体とをこの順で重ねた。なお、負極構造体は、固体電解質層に負極活物質層が接するように積層した。 Next, the solid electrolyte layer, the negative electrode composite, and the positive electrode structure were each punched out with a Thomson blade. After that, the solid electrolyte layer and the negative electrode structure were laminated in this order on both sides of the positive electrode structure. The negative electrode structure was laminated so that the negative electrode active material layer was in contact with the solid electrolyte layer.

その後、実施例1と同様にして、ラミネートパック、等方圧処理および積層全固体二次電池の作製を行い、比較例2に係る積層全固体二次電池を得た。 After that, in the same manner as in Example 1, a laminate pack, an isotropic pressure treatment, and a laminated all-solid secondary battery were produced, and a laminated all-solid secondary battery according to Comparative Example 2 was obtained.

<参考例1>
全固体二次電池の単セル2個の間を絶縁し、一方の全固体二次電池のA面と他方の全固体二次電池のA面が向い合わせた以外は、比較例2と同様にして、参考例1に係る積層全固体二次電池を作製した。
<Reference example 1>
The procedure was the same as in Comparative Example 2 except that the two single cells of the all-solid secondary battery were insulated and the A-side of one all-solid-state secondary battery and the A-side of the other all-solid-state secondary battery faced each other. Thus, a laminated all-solid secondary battery according to Reference Example 1 was produced.

[2.評価]
(負極集電体の表面性状)
実施例1、比較例1、2および参考例1に係る積層全固体二次電池を構成する全固体二次電池の負極集電体の表面性状を、KEYENCE社製の曲面微細形状測定システムVR-3200を用い、以下のようにして評価した。
[2. evaluation]
(Surface properties of negative electrode current collector)
The surface properties of the negative electrode current collectors of the all-solid-state secondary batteries constituting the laminated all-solid-state secondary batteries according to Example 1, Comparative Examples 1 and 2, and Reference Example 1 were measured using a curved surface fine shape measurement system VR-manufactured by KEYENCE. 3200 was used and evaluated as follows.

25倍のレンズを使用し、12mm×9mm(1.08cm)の視野で全固体二次電池の負極集電体の任意の5か所の観察を行った後、三次元形状の計測データから得られた三次元形状情報で基準面の設定を行った。設定を行う際の領域は測定した全領域を選択して行い、領域指定された高さ画像の形状から、平面を最小二乗法で推定して基準面を設定した。基準面を補正した後、断面方向で凹凸を確認し、A面については5μm以上8μm以下、8μm超の高さを有する凸部の数を、B面については8μm以上10μm以下、10μm超の高さを有する凸部の数を、それぞれ検出した。また、凸部の高さについては、凸部の頂部の位置から高さの単調減少が負となる点のうち最も低い点までにおける高さの差を、凸部の高さとした。 Using a 25x lens, after observing arbitrary five points of the negative electrode current collector of the all-solid secondary battery in a field of view of 12 mm × 9 mm (1.08 cm 2 ), from the measurement data of the three-dimensional shape A reference plane was set using the obtained three-dimensional shape information. A reference plane was set by estimating a plane by the least-squares method from the shape of the height image for which the area was specified. After correcting the reference surface, confirm the unevenness in the cross-sectional direction. The number of protrusions with height was detected respectively. As for the height of the convex portion, the difference in height from the top of the convex portion to the lowest point among the points where the monotonically decreasing height is negative was taken as the height of the convex portion.

(電池性能評価)
実施例1、比較例1、2および参考例1に係る積層全固体二次電池について、以下のようにして短絡評価およびサイクル特性の評価を行った。まず、積層全固体二次電池を上下2枚の金属板で挟み、あらかじめ金属板に開けた穴に皿バネを入れたネジを通し、電池への印加圧力が3.0MPaとなるようネジを締め付けた。
次に、60℃で、0.1Cの定電流で、上限電圧4.25Vまで充電した後、電流値が定電流時の33%になるまで定電圧充電(0.1C CCCV充電)を行い、放電終止電圧2.0Vまで0.1C放電した。次に0.1C CCCVで充電し、0.33Cで放電、さらに、0.1C CCCVで充電し、1C放電を行った。続いて、0.5Cの定電流で、上限電圧4.25Vまで充電(0.5C CC充電)し、放電終止電圧2.0Vまで0.5C放電する充放電サイクルを繰り返し行い、充放電評価装置 TOSCAT-3100(東洋システム株式会社)により測定した。
(Battery performance evaluation)
The laminated all-solid secondary batteries according to Example 1, Comparative Examples 1 and 2, and Reference Example 1 were evaluated for short circuits and cycle characteristics as follows. First, the laminated all-solid-state secondary battery is sandwiched between two upper and lower metal plates, a screw with a disk spring inserted is passed through a hole drilled in advance in the metal plate, and the screw is tightened so that the pressure applied to the battery is 3.0 MPa. rice field.
Next, after charging to the upper limit voltage of 4.25 V at a constant current of 0.1 C at 60° C., constant voltage charging (0.1 C CCCV charging) is performed until the current value reaches 33% of the constant current value, The battery was discharged at 0.1C to a final discharge voltage of 2.0V. Next, it was charged at 0.1C CCCV, discharged at 0.33C, further charged at 0.1C CCCV, and discharged at 1C. Subsequently, at a constant current of 0.5 C, charging to an upper limit voltage of 4.25 V (0.5 C CC charging) and discharging by 0.5 C to a discharge end voltage of 2.0 V were repeated. It was measured by TOSCAT-3100 (Toyo System Co., Ltd.).

短絡は、0.1C CCCV充電時にカットオフ電圧に到達し、充放電効率が0.90以上を示す場合には、「A」と、0.1C CCCV充電時にカットオフ電圧まで到達せず、充放電効率が0.90未満の場合には「B」と評価した。
また、サイクル特性は、0.5C充放電となってからの10サイクル後の放電容量維持率が95%以上の場合には、「A」と、10サイクル後の放電容量維持率が95%未満の場合には「B」と評価した。
以上の結果を表1に示す。
A short circuit is defined as “A” when the cutoff voltage is reached during 0.1C CCCV charging and the charge/discharge efficiency is 0.90 or higher, and when the cutoff voltage is not reached during 0.1C CCCV charging and charging When the discharge efficiency was less than 0.90, it was evaluated as "B".
In addition, the cycle characteristics are "A" when the discharge capacity retention rate after 10 cycles after 0.5C charging and discharging is 95% or more, and the discharge capacity retention rate after 10 cycles is less than 95%. In the case of , it was evaluated as "B".
Table 1 shows the above results.

Figure 0007128624000001
Figure 0007128624000001

表1から明らかなように、実施例1に係る積層全固体二次電池は、参考例1と同様にサイクル特性に優れ、短絡が防止されていた。一方で、参考例1とは異なり、等方圧プレス時に支持板に面していたA面と、面していなかったB面とを対向させて積層が可能であることから、3層以上の全固体二次電池の積層が可能であることが示唆された。なお、実施例1に係る全固体二次電池のA面において、5.0μm超の高さを有する凸部は観察されなかった。 As is clear from Table 1, the laminated all-solid-state secondary battery according to Example 1 was excellent in cycle characteristics as in Reference Example 1, and short-circuiting was prevented. On the other hand, unlike Reference Example 1, since it is possible to laminate with the A side facing the support plate and the B side not facing the support plate during isotropic pressing, it is possible to laminate three or more layers. It was suggested that stacking all-solid secondary batteries is possible. In addition, on the A side of the all-solid secondary battery according to Example 1, no protrusion having a height of more than 5.0 μm was observed.

これに対し、比較例1に係る全固体二次電池は、短絡が生じるとともに、サイクル特性に劣っており、比較例2に係る全固体二次電池は、短絡が生じていた。 On the other hand, the all-solid secondary battery according to Comparative Example 1 had a short circuit and was inferior in cycle characteristics, and the all-solid secondary battery according to Comparative Example 2 had a short circuit.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

1 全固体二次電池
10 正極集電体
20 正極活物質層
30 固体電解質層
40 負極活物質層
50、50A、50B 負極集電体
100 積層全固体二次電池
110 絶縁層
120 正極構造体
130 固体電解質負極複合体
140 支持板
200 全固体二次電池
210 正極集電体
220 正極活物質層
230 固体電解質層
240 負極活物質層
250A、250B 負極集電体
300A、300B 積層全固体二次電池
310 絶縁層

1 All-solid secondary battery 10 Positive electrode current collector 20 Positive electrode active material layer 30 Solid electrolyte layer 40 Negative electrode active material layers 50, 50A, 50B Negative electrode current collector 100 Laminated all-solid secondary battery 110 Insulating layer 120 Positive electrode structure 130 Solid Electrolyte-negative composite 140 Support plate 200 All-solid secondary battery 210 Positive electrode current collector 220 Positive electrode active material layer 230 Solid electrolyte layer 240 Negative electrode active material layers 250A and 250B Negative electrode current collectors 300A and 300B Laminated all-solid secondary battery 310 Insulation layer

Claims (9)

第1の集電体と、
前記第1の集電体の両面に配置された一対の第1の活物質層と、
前記一対の第1の活物質層の前記第1の集電体と反対側の面に配置された一対の固体電解質層と、
前記一対の固体電解質層の前記第1の活物質層と反対側の面に配置された一対の第2の活物質層と、
前記一対の第2の活物質層の前記固体電解質層と反対側の面に配置された一対の第2の集電体と、を備え、
前記一対の第2の集電体のうち、一方の第2の集電体の前記第2の活物質層と反対側の面において8.0μm超の高さを有する凸部が存在せず、他方の第2の集電体の前記第2の活物質層と反対側の面において8.0μm超の高さを有する凸部が1cm2あたり0個以上1.0個以下存在する、全固体二次電池。
a first current collector;
a pair of first active material layers arranged on both sides of the first current collector;
a pair of solid electrolyte layers disposed on the surface of the pair of first active material layers opposite to the first current collector;
a pair of second active material layers disposed on the surface of the pair of solid electrolyte layers opposite to the first active material layer;
a pair of second current collectors disposed on the surface of the pair of second active material layers opposite to the solid electrolyte layer;
There is no protrusion having a height of more than 8.0 μm on the surface of one of the pair of second current collectors opposite to the second active material layer, 0 or more and 1.0 or less protrusions having a height of more than 8.0 μm are present per 1 cm on the surface opposite to the second active material layer of the other second current collector, next battery.
前記一方の第2の集電体の前記第2の活物質層と反対側の面において5.0μm超の高さを有する凸部が存在しない、請求項1に記載の全固体二次電池。 2. The all-solid secondary battery according to claim 1, wherein no convex portion having a height of more than 5.0 [mu]m is present on the surface of said one second current collector opposite said second active material layer. 前記他方の第2の集電体の前記第2の活物質層と反対側の面において10.0μm超の高さを有する凸部が存在しない、請求項1または2に記載の全固体二次電池。 3. The all-solid secondary according to claim 1 or 2, wherein no protrusions having a height of more than 10.0 μm are present on the surface of the other second current collector opposite to the second active material layer. battery. 前記第1の活物質層は、正極活物質層であり、
前記第2の活物質層は、負極活物質層である、請求項1~3のいずれか一項に記載の全固体二次電池。
The first active material layer is a positive electrode active material layer,
The all-solid secondary battery according to any one of claims 1 to 3, wherein the second active material layer is a negative electrode active material layer.
前記第2の活物質層は、リチウムと合金を形成する負極活物質およびリチウムと化合物を形成する負極活物質の少なくとも一方を含み、
充電時に前記第2の活物質層において前記負極活物質を介して金属リチウムが析出可能である、請求項4に記載の全固体二次電池。
The second active material layer includes at least one of a negative electrode active material that forms an alloy with lithium and a negative electrode active material that forms a compound with lithium,
5. The all-solid secondary battery according to claim 4, wherein metallic lithium can be deposited in said second active material layer through said negative electrode active material during charging.
前記第1の活物質層の充電容量と前記第2の活物質層の充電容量との比は、以下の式(1)
0.002<b/a<0.5 (1)
式中、aは、第1の活物質層の充電容量(mAh)であり、bは、第2の活物質層の充電容量(mAh)である、
を満たす、請求項5に記載の全固体二次電池。
The ratio between the charge capacity of the first active material layer and the charge capacity of the second active material layer is expressed by the following formula (1)
0.002<b/a<0.5 (1)
where a is the charge capacity (mAh) of the first active material layer, and b is the charge capacity (mAh) of the second active material layer.
The all-solid secondary battery according to claim 5, which satisfies:
前記第2の活物質層は、無定形炭素、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、および亜鉛からなる群から選択される何れか1種以上を含む、請求項4~6のいずれか一項に記載の全固体二次電池。 wherein the second active material layer contains at least one selected from the group consisting of amorphous carbon, gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, and zinc; 7. The all-solid secondary battery according to any one of 6. 1以上の絶縁層と、
前記絶縁層を介して積層配置される複数の請求項1~7のいずれか一項に記載の全固体二次電池と、を有し、
前記全固体二次電池の前記一方の第2の集電体は、隣接する他の前記全固体二次電池の前記他方の第2の集電体と対向するように配置される、積層全固体二次電池。
one or more insulating layers;
and a plurality of all-solid secondary batteries according to any one of claims 1 to 7 stacked in layers via the insulating layer,
The one second current collector of the all-solid-state secondary battery is arranged to face the other second current collector of the other adjacent all-solid-state secondary battery, and the stacked all-solid-state secondary battery.
第1の集電体と、前記第1の集電体の両面に配置された一対の第1の活物質層と、前記一対の第1の活物質層の前記第1の集電体と反対側の面に配置された一対の固体電解質層と、前記一対の固体電解質層の前記第1の活物質層と反対側の面に配置された一対の第2の活物質層と、前記一対の第2の活物質層の前記固体電解質層と反対側の面に配置された一対の第2の集電体と、を備える全固体二次電池の製造方法であって、
前記第1の活物質層または前記第2の活物質層上にスクリーン印刷により前記固体電解質層を形成する工程と、
前記第1の集電体、前記一対の第1の活物質層、前記一対の固体電解質層、前記一対の第2の活物質層および前記一対の第2の集電体を積層した積層体について、当該積層体の一方の面側に支持材を配置し、等方圧プレスを行う工程と、を有し、
前記スクリーン印刷に使用されるスクリーンが60メッシュ~300メッシュのものである、全固体二次電池の製造方法。
A first current collector, a pair of first active material layers disposed on both sides of the first current collector, and the pair of first active material layers opposite the first current collector a pair of solid electrolyte layers arranged on the side surface, a pair of second active material layers arranged on the surface of the pair of solid electrolyte layers opposite to the first active material layer, and the pair of A method for manufacturing an all-solid secondary battery, comprising: a pair of second current collectors arranged on a surface of a second active material layer opposite to the solid electrolyte layer,
forming the solid electrolyte layer on the first active material layer or the second active material layer by screen printing;
Regarding the laminate obtained by laminating the first current collector, the pair of first active material layers, the pair of solid electrolyte layers, the pair of second active material layers, and the pair of second current collectors , placing a support material on one side of the laminate and isostatically pressing it,
A method for producing an all-solid secondary battery, wherein the screen used for the screen printing has a mesh size of 60 to 300 mesh .
JP2018002161A 2018-01-10 2018-01-10 All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery Active JP7128624B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018002161A JP7128624B2 (en) 2018-01-10 2018-01-10 All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery
KR1020180053930A KR102532604B1 (en) 2018-01-10 2018-05-10 All soild state secondary battery, multilayer all solid state secondary battery and method for preparing the all soild state secondary battery
US16/244,273 US11264641B2 (en) 2018-01-10 2019-01-10 All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002161A JP7128624B2 (en) 2018-01-10 2018-01-10 All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery

Publications (2)

Publication Number Publication Date
JP2019121558A JP2019121558A (en) 2019-07-22
JP7128624B2 true JP7128624B2 (en) 2022-08-31

Family

ID=67307318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002161A Active JP7128624B2 (en) 2018-01-10 2018-01-10 All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery

Country Status (2)

Country Link
JP (1) JP7128624B2 (en)
KR (1) KR102532604B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264077B2 (en) 2020-01-31 2023-04-25 トヨタ自動車株式会社 All-solid battery
KR20210117002A (en) * 2020-03-18 2021-09-28 삼성에스디아이 주식회사 Positive active material for all solid secondary battery, and all solid secondary battery including the same
JP7318598B2 (en) * 2020-07-03 2023-08-01 トヨタ自動車株式会社 solid state battery
JP2022044461A (en) 2020-09-07 2022-03-17 三星エスディアイ株式会社 All-solid secondary battery, laminate all-solid secondary battery, and manufacturing method for these
KR20220052032A (en) * 2020-10-20 2022-04-27 삼성에스디아이 주식회사 Bi-polar stack unit cell structure and all-solid secondary battery including the same
US20230404034A1 (en) * 2020-11-11 2023-12-21 Necone Inc. Cat claw polishing and filing tool
CN117157797A (en) * 2021-06-17 2023-12-01 日本汽车能源株式会社 Solid electrolyte battery, method for manufacturing solid electrolyte battery, and transportation device
US20220416308A1 (en) 2021-06-28 2022-12-29 Samsung Sdi Co., Ltd. All-solid-state rechargeable battery and stacked all-solid-state rechargeable battery
WO2023223582A1 (en) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 Battery and production method for battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251225A (en) 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2015125872A (en) 2013-12-26 2015-07-06 トヨタ自動車株式会社 Manufacturing method for all solid battery and all solid battery
JP2016152204A (en) 2015-02-19 2016-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. Solid-state battery and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067519A (en) * 2012-09-25 2014-04-17 Jsr Corp Power storage cell and method for manufacturing the same
JP6647077B2 (en) 2016-02-29 2020-02-14 日立造船株式会社 All-solid secondary battery and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251225A (en) 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2015125872A (en) 2013-12-26 2015-07-06 トヨタ自動車株式会社 Manufacturing method for all solid battery and all solid battery
JP2016152204A (en) 2015-02-19 2016-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. Solid-state battery and method of manufacturing the same

Also Published As

Publication number Publication date
KR20190085458A (en) 2019-07-18
JP2019121558A (en) 2019-07-22
KR102532604B1 (en) 2023-05-15

Similar Documents

Publication Publication Date Title
JP7128624B2 (en) All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP6438281B2 (en) Lithium ion secondary battery
KR20200078479A (en) All-solid secondary battery and charging method
US11387485B2 (en) All-solid-state lithium ion secondary battery
WO2019113534A1 (en) A prelithiated and methods for prelithiating an energy storage device
EP3392934B1 (en) Anode mixture, anode comprising the anode mixture, and all-solid-state lithium ion secondary battery comprising the anode
US11264641B2 (en) All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
US11923502B2 (en) All-solid secondary battery and method of preparing same
KR102420008B1 (en) Lithium secondary battery and preparation method thereof
JP6776994B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
US11329315B2 (en) All-solid-state lithium ion secondary battery
JP7321769B2 (en) All-solid lithium secondary battery
KR20190073243A (en) All soild state secondary battery
JP2009152077A (en) Lithium battery
JP2021177448A (en) All-solid-state secondary battery
KR20210027023A (en) All solid battery
KR20210133085A (en) All-solid-state secondary battery
JP2019117768A (en) All-solid secondary battery
JP6776995B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
KR102566410B1 (en) all solid secondary battery and manufacturing thereof
WO2021215086A1 (en) Battery
WO2021241001A1 (en) Battery
US10637094B2 (en) Anode mixture for all-solid-state lithium ion secondary battery, anode comprising the anode mixture, and all-solid-state lithium ion secondary battery comprising the anode
WO2023223582A1 (en) Battery and production method for battery
WO2023007939A1 (en) Negative electrode material, negative electrode, battery, and method for producing same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220819

R150 Certificate of patent or registration of utility model

Ref document number: 7128624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150