JP2016152204A - Solid-state battery and method of manufacturing the same - Google Patents

Solid-state battery and method of manufacturing the same Download PDF

Info

Publication number
JP2016152204A
JP2016152204A JP2015030760A JP2015030760A JP2016152204A JP 2016152204 A JP2016152204 A JP 2016152204A JP 2015030760 A JP2015030760 A JP 2015030760A JP 2015030760 A JP2015030760 A JP 2015030760A JP 2016152204 A JP2016152204 A JP 2016152204A
Authority
JP
Japan
Prior art keywords
electrode layer
negative electrode
positive electrode
solid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015030760A
Other languages
Japanese (ja)
Inventor
好伸 山田
Yoshinobu Yamada
好伸 山田
相原 雄一
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2015030760A priority Critical patent/JP2016152204A/en
Priority to KR1020150084349A priority patent/KR102444283B1/en
Priority to US15/041,201 priority patent/US9837684B2/en
Publication of JP2016152204A publication Critical patent/JP2016152204A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state battery of high stability, capable of exhibiting excellent battery characteristics.SOLUTION: A solid-state battery 1 includes a negative electrode layer 9 containing a negative electrode active material, a positive electrode layer 5 containing a positive electrode active material, and a solid electrolyte layer 7 provided between the negative electrode layer 9 and positive electrode layer 5 so as to come into contact therewith. Following relation is satisfied ((Vp-V)/Vp×100)≤3%, where Vp is the total volume of the negative electrode layer 9, positive electrode layer 5 and solid electrolyte layer 7, and Vis the total volume of the negative electrode layer 9, positive electrode layer 5 and solid electrolyte layer 7 when compressed with a static pressure of 980 MPa.SELECTED DRAWING: Figure 1

Description

本明細書に開示された技術は、固体電池及びその製造方法に関する。   The technology disclosed in this specification relates to a solid state battery and a method for manufacturing the same.

近年、産業上の要望により、エネルギー密度と安全性の高い電池の開発が盛んに行われている。例えば、リチウムイオン二次電池は、情報関連機器、通信機器の分野だけでなく、自動車分野でも実用化されている。自動車分野においては、人命にかかわるため、特に安全性が重要視される。   In recent years, due to industrial demands, development of batteries with high energy density and high safety has been actively conducted. For example, lithium ion secondary batteries are put into practical use not only in the fields of information-related equipment and communication equipment, but also in the automobile field. In the automobile field, safety is particularly important because it is related to human life.

現在市販されているリチウムイオン二次電池には、可燃性の有機溶媒を含む電解液が用いられているので、短絡が発生した場合に過熱や発火する可能性がある。これに対し、電解液に代えて固体電解質を用いた固体電池が提案されている(特許文献1〜3参照)。   Since the electrolyte solution containing a flammable organic solvent is used for the lithium ion secondary battery currently marketed, when a short circuit occurs, it may overheat or ignite. On the other hand, a solid battery using a solid electrolyte instead of the electrolytic solution has been proposed (see Patent Documents 1 to 3).

特許文献1〜3に記載された固体電池によれば、可燃性の有機溶媒を用いないことにより、仮に短絡が発生しても発火や破裂が生じる可能性を大きく低減することができる。そのため、これらの固体電池では、電解液を用いるリチウムイオン二次電池に比べて大幅に安全性を高められる可能性がある。   According to the solid state batteries described in Patent Documents 1 to 3, by not using a flammable organic solvent, it is possible to greatly reduce the possibility of ignition or rupture even if a short circuit occurs. Therefore, in these solid batteries, there is a possibility that safety can be significantly improved as compared with a lithium ion secondary battery using an electrolytic solution.

特開2012−104270号公報JP 2012-104270 A 国際公開WO2012/164723号公報International Publication WO2012 / 164723 特開2014−120199号公報JP 2014-120199 A

しかしながら、上述の従来の固体電池では、電解質が固体であることにより、正極層と固体電解質との間及び負極層と固体電解質との間の接触がそれぞれ十分に維持されない場合、電池内の抵抗が大きくなり、優れた電池特性を発揮することが難しくなる。   However, in the above-described conventional solid battery, when the contact between the positive electrode layer and the solid electrolyte and the contact between the negative electrode layer and the solid electrolyte is not sufficiently maintained because the electrolyte is solid, the resistance in the battery is reduced. It becomes large and it becomes difficult to exhibit excellent battery characteristics.

ここで、電池内の抵抗を下げるために、固体電池に外圧を付与しながら充放電を行うことも考えられる。しかし、その場合には外圧を付与するための構造体が別途必要になり、製品コストが増大する上、固体電池のエネルギー密度も低下してしまう。   Here, in order to lower the resistance in the battery, it is conceivable to charge and discharge while applying an external pressure to the solid state battery. However, in that case, a structure for applying an external pressure is required separately, which increases the product cost and decreases the energy density of the solid state battery.

本発明の目的は、安全性が高く、且つ優れた電池特性を発揮できる固体電池を提供することにある。   An object of the present invention is to provide a solid battery that has high safety and can exhibit excellent battery characteristics.

本明細書に開示された固体電池は、負極活物質を含む負極層と、正極活物質を含む正極層と、前記負極層と前記正極層との間に、前記負極層及び前記正極層とそれぞれ接触するように設けられた固体電解質層とを備え、前記負極層、前記正極層及び前記固体電解質層の合計体積をVpとし、前記負極層、前記正極層及び前記固体電解質層の全体を980MPaの静水圧で加圧した際の体積をV980とする場合、{(Vp−V980)/Vp×100}≦3%が成り立つ。 The solid battery disclosed in this specification includes a negative electrode layer including a negative electrode active material, a positive electrode layer including a positive electrode active material, and the negative electrode layer and the positive electrode layer between the negative electrode layer and the positive electrode layer, respectively. A total volume of the negative electrode layer, the positive electrode layer and the solid electrolyte layer is Vp, and the total of the negative electrode layer, the positive electrode layer and the solid electrolyte layer is 980 MPa. When the volume when pressurized by hydrostatic pressure is V 980 , {(Vp−V 980 ) / Vp × 100} ≦ 3% holds.

本明細書に開示された固体電池によれば、安全性が高く、且つ優れた電池特性を発揮することが可能である。   According to the solid state battery disclosed in this specification, it is possible to exhibit high safety and excellent battery characteristics.

図1は、明細書に開示された実施形態に係る固体電池を示す断面図である。FIG. 1 is a cross-sectional view illustrating a solid state battery according to an embodiment disclosed in the specification. 図2は、静水圧を用いて電池材料の圧密化を行う工程を示す断面図である。FIG. 2 is a cross-sectional view showing a process of consolidating battery materials using hydrostatic pressure. 図3は、積層体の圧密化工程において、一軸プレス加工を行う例を示す断面図である。FIG. 3 is a cross-sectional view showing an example in which uniaxial pressing is performed in the consolidation process of the laminated body. 図4は、固体電池において、980MPaの静水圧で加圧した際の初回放電容量を100%とした場合の初回放電容量値の割合と980MPaの静水圧で加圧した際のV980を基準とした空隙率との関係を示す図である。FIG. 4 is based on the ratio of the initial discharge capacity value when the initial discharge capacity is 100% when pressed at a hydrostatic pressure of 980 MPa and the V 980 when pressed at a hydrostatic pressure of 980 MPa in a solid battery. It is a figure which shows the relationship with the done porosity. 図5は、固体電池において、セル抵抗と980MPaの静水圧で加圧した際のV980を基準とした空隙率との関係を示す図である。FIG. 5 is a diagram showing the relationship between the cell resistance and the porosity based on V980 when pressurized with a hydrostatic pressure of 980 MPa in a solid state battery. 図6は、固体電池において、サイクル維持率と980MPaの静水圧で加圧した際のV980を基準とした空隙率との関係を示す図である。FIG. 6 is a diagram showing the relationship between the cycle retention ratio and the porosity based on V980 when pressurized with a hydrostatic pressure of 980 MPa in a solid state battery.

(実施形態)
−固体電池の構成−
図1は、本明細書に開示された実施形態に係る固体電池を示す断面図である。同図は固体電池1の構成を、理解しやすいように概略的に示したものであり、各層の厚みの比は図1に示す例と異なっていてもよい。
(Embodiment)
−Structure of solid state battery−
FIG. 1 is a cross-sectional view illustrating a solid state battery according to an embodiment disclosed in the present specification. The figure schematically shows the configuration of the solid state battery 1 for easy understanding, and the ratio of the thicknesses of the respective layers may be different from the example shown in FIG.

図1に示すように、本実施形態の固体電池1は、下から順に設けられた、負極集電体層11と、負極層9と、固体電解質層7と、正極層5と、正極集電体層3とを備えている。負極層9と正極層5との間に設けられた固体電解質層7は、負極層9及び正極層5とそれぞれ直接接している。負極層9、固体電解質層7及び正極層5はそれぞれ粉体で構成されており、加圧成形されている。また、固体電池1の平面形状は特に限定はなく、円形や四辺形等であってもよい。   As shown in FIG. 1, the solid battery 1 of the present embodiment includes a negative electrode current collector layer 11, a negative electrode layer 9, a solid electrolyte layer 7, a positive electrode layer 5, and a positive electrode current collector provided in order from the bottom. And a body layer 3. The solid electrolyte layer 7 provided between the negative electrode layer 9 and the positive electrode layer 5 is in direct contact with the negative electrode layer 9 and the positive electrode layer 5, respectively. The negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer 5 are each composed of powder and are pressure-molded. The planar shape of the solid battery 1 is not particularly limited, and may be a circle, a quadrilateral, or the like.

負極集電体層11は、導電体で構成されており、例えば銅(Cu)、ニッケル(Ni)、ステンレス鋼、ニッケルメッキ鋼等の金属で構成されている。負極集電体層11の厚みは例えば10μm〜20μm程度である。   The negative electrode current collector layer 11 is made of a conductor, and is made of a metal such as copper (Cu), nickel (Ni), stainless steel, or nickel-plated steel. The thickness of the negative electrode current collector layer 11 is, for example, about 10 μm to 20 μm.

負極層9は、粉体状の負極活物質を含んでいる。負極活物質の平均粒径は例えば5μm〜20μmの範囲内とする。負極層9における負極活物質の含有率は、例えば60重量%〜95重量%の範囲内とする。負極層9は、固体電解質層7と化学反応を起こさない結着剤や、粉体状の固体電解質材料、導電性材料等をさらに含んでいてもよい。   The negative electrode layer 9 contains a powdered negative electrode active material. The average particle diameter of the negative electrode active material is, for example, in the range of 5 μm to 20 μm. The content rate of the negative electrode active material in the negative electrode layer 9 is, for example, in the range of 60 wt% to 95 wt%. The negative electrode layer 9 may further include a binder that does not cause a chemical reaction with the solid electrolyte layer 7, a powdered solid electrolyte material, a conductive material, and the like.

負極活物質としては公知の種々の物質を用いることができるが、カーボン活物質、金属活物質、酸化物活物質等を用いることができる。カーボン活物質としては、例えば人造黒鉛、天然黒鉛等の黒鉛、ハードカーボンやソフトカーボン等の非晶質炭素等を挙げることができる。金属活物質としては、例えばリチウム(Li)、インジウム(In)、アルミニウム(Al)、シリコン(Si)及びスズ(Sn)等を挙げることができる。酸化物活物質としては、例えばNb、LiTi12、SiO等を挙げることができる。これらの負極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。負極層9の厚みは特に限定されないが、例えば50μm〜300μm程度である。 Various known materials can be used as the negative electrode active material, and a carbon active material, a metal active material, an oxide active material, or the like can be used. Examples of the carbon active material include graphite such as artificial graphite and natural graphite, and amorphous carbon such as hard carbon and soft carbon. Examples of the metal active material include lithium (Li), indium (In), aluminum (Al), silicon (Si), and tin (Sn). Examples of the oxide active material include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO. These negative electrode active materials may be used independently and 2 or more types may be used together. Although the thickness of the negative electrode layer 9 is not specifically limited, For example, it is about 50 micrometers-300 micrometers.

固体電解質層7は、粉体状の固体電解質で構成されている。固体電解質の平均粒径は例えば1μm〜10μmの範囲内とする。固体電解質としては、例えばリチウム(Li)、リン(P)及び硫黄(S)を少なくとも含む硫化物系固体電解質を用いることができる。硫化物系固体電解質の例としては、LiS−Pが挙げられる。この硫化物系固体電解質は、良好なリチウムイオン伝導性を示し、LiS−Pの他に、SiS、GeS、B等の硫化物を含んでいてもよい。固体電解質層7の厚みは特に限定されないが、例えば10μm〜200μm程度である。 The solid electrolyte layer 7 is composed of a powdery solid electrolyte. The average particle diameter of the solid electrolyte is, for example, in the range of 1 μm to 10 μm. As the solid electrolyte, for example, a sulfide-based solid electrolyte containing at least lithium (Li), phosphorus (P), and sulfur (S) can be used. An example of the sulfide-based solid electrolyte is Li 2 S—P 2 S 5 . This sulfide-based solid electrolyte exhibits good lithium ion conductivity, and may contain sulfides such as SiS 2 , GeS 2 , B 2 S 3 in addition to Li 2 S—P 2 S 5 . Although the thickness of the solid electrolyte layer 7 is not specifically limited, For example, it is about 10 micrometers-200 micrometers.

また、固体電解質として、LiPOやハロゲン、ハロゲン化合物等を添加した無機固体電解質を用いてもよい。 Further, an inorganic solid electrolyte to which Li 3 PO 4 , halogen, a halogen compound or the like is added may be used as the solid electrolyte.

上述のLiS−Pは、LiSとPとを溶融温度以上に加熱して所定の比率で両者を溶融・混合し、所定時間保持した後、急冷することにより得られる。このLiS−Pは、LiS及びPの粉体をメカニカルミリング法により処理することによっても得ることができる。LiSとPの混合比は、モル比で通常50:50〜80:20、好ましくは60:40〜75:25である。 The above-mentioned Li 2 S—P 2 S 5 is obtained by heating Li 2 S and P 2 S 5 to a melting temperature or higher, melting and mixing them at a predetermined ratio, holding them for a predetermined time, and then rapidly cooling them. can get. The Li 2 S-P 2 S 5, the powder of Li 2 S and P 2 S 5 can be obtained by treating the mechanical milling method. The mixing ratio of Li 2 S and P 2 S 5 is usually 50:50 to 80:20, preferably 60:40 to 75:25 in terms of molar ratio.

正極層5は、粉体状の正極活物質を含んでいる。正極活物質の平均粒径は例えば2μm〜10μmの範囲内とする。正極層5中の正極活物質の含有率は例えば65重量%〜95重量%の範囲内とする。正極層5は、固体電解質層7と化学反応を起こさない結着剤や、粉体状の固体電解質材料、導電性材料等をさらに含んでいてもよい。リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば正極活物質として用いることができる。例えば、正極活物質としてコバルト酸リチウム(LCO)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(NCA)、ニッケルコバルトマンガン酸リチウム(NCM)、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。   The positive electrode layer 5 contains a powdered positive electrode active material. The average particle diameter of the positive electrode active material is, for example, in the range of 2 μm to 10 μm. The content rate of the positive electrode active material in the positive electrode layer 5 is, for example, in the range of 65 wt% to 95 wt%. The positive electrode layer 5 may further include a binder that does not cause a chemical reaction with the solid electrolyte layer 7, a powdered solid electrolyte material, a conductive material, and the like. Any material capable of reversibly occluding and releasing lithium ions can be used as the positive electrode active material. For example, lithium cobalt oxide (LCO), lithium nickelate, lithium nickel cobaltate, nickel cobalt lithium aluminumate (NCA), nickel cobalt lithium manganate (NCM), lithium manganate, lithium iron phosphate, sulfide Examples thereof include nickel, copper sulfide, sulfur, iron oxide, vanadium oxide and the like. These positive electrode active materials may be used independently and 2 or more types may be used together.

上述した正極活物質のうち、層状岩塩型構造を有する遷移金属酸化物のリチウム塩が好ましく用いられる。ここで、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことであり、陽イオン及び陰イオンのそれぞれが形成する面心立方格子が、互いに
単位格子の稜の1/2だけずれた構造を指す。例えば、Li1−x−y−zNixCoAl(NCA)又はLi1−x−y−zNixCoMn(NCM)(0<x<1、0<y<1、0<z<1、且つx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩が正極活物質として挙げられる。
Of the positive electrode active materials described above, lithium salts of transition metal oxides having a layered rock salt structure are preferably used. Here, the “rock salt type structure” is a sodium chloride type structure that is one kind of crystal structure, and the face-centered cubic lattice formed by each of the cation and the anion is one of the edges of the unit cell. A structure shifted by / 2. For example, Li 1-x-yz NixCo y Al z O 2 (NCA) or Li 1-x-yz NixCo y Mn z O 2 (NCM) (0 <x <1, 0 <y <1, As a positive electrode active material, a lithium salt of a ternary transition metal oxide represented by 0 <z <1 and x + y + z <1) can be given.

結着剤として例えば、極性官能基を有しない非極性樹脂が用いられる。したがって、正極層結着剤は、反応性の高い固体電解質、特に硫化物系固体電解質に対して不活性である。正極層結着剤としては、例えば、SBS(スチレンブタジエンブロック重合体)、SEBS(スチレンエチレンブタジエンスチレンブロック重合体)、スチレン−(スチレンブタジエン)−スチレンブロック重合体などのスチレン系熱可塑性エラストマー類、SBR(スチレンブタジエンゴム)、BR(ブタジエンゴム)、NR(天然ゴム)、IR(イソプレンゴム)、EPDM(エチレン−プロピレン−ジエン三元共重合体)および、これらの部分水素化物、あるいは完全水素化物等が挙げられる。その他、ポリスチレン、ポリオレフィン、オレフィン系熱可塑性エラストマー、ポリシクロオレフィン、シリコーン樹脂等が結着剤として挙げられる。正極層5の厚みは特に限定されないが、例えば50μm〜350μm程度である。   For example, a nonpolar resin having no polar functional group is used as the binder. Therefore, the positive electrode layer binder is inactive to highly reactive solid electrolytes, particularly sulfide-based solid electrolytes. As the positive electrode layer binder, for example, SBS (styrene butadiene block polymer), SEBS (styrene ethylene butadiene styrene block polymer), styrene-based thermoplastic elastomers such as styrene- (styrene butadiene) -styrene block polymer, SBR (styrene butadiene rubber), BR (butadiene rubber), NR (natural rubber), IR (isoprene rubber), EPDM (ethylene-propylene-diene terpolymer) and partial hydrides or complete hydrides thereof Etc. In addition, polystyrene, polyolefin, olefinic thermoplastic elastomer, polycycloolefin, silicone resin, and the like can be used as the binder. Although the thickness of the positive electrode layer 5 is not specifically limited, For example, it is about 50 micrometers-350 micrometers.

正極集電体層3は、導電体で構成されており、例えばアルミニウム(Al)、ステンレス鋼等の金属で構成されている。正極集電体層3の厚みは特に限定されないが、例えば10μm〜20μm程度である。   The positive electrode current collector layer 3 is made of a conductor, for example, a metal such as aluminum (Al) or stainless steel. The thickness of the positive electrode current collector layer 3 is not particularly limited, but is, for example, about 10 μm to 20 μm.

負極集電体層11、負極層9、固体電解質層7、正極層5及び正極集電体層3の平面面積は図1に示すように互いに等しくてもよいし、正極層5及び正極集電体層3の平面面積が負極集電体層11、負極層9及び固体電解質層7の平面面積よりも小さく、且つ正極層5及び正極集電体層3の平面外形が負極集電体層11、負極層9及び固体電解質層7の平面外形の内側にくるように設けられていてもよい(図3参照)。正極層5及び正極集電体層3の平面面積が負極集電体層11、負極層9及び固体電解質層7の平面面積よりも小さくすることで、負極層9、固体電解質層7及び正極層5に加圧した場合に、正極層5の外方へのはみ出しを防ぐことができるので、短絡を生じにくくすることができる。   The planar areas of the negative electrode current collector layer 11, the negative electrode layer 9, the solid electrolyte layer 7, the positive electrode layer 5, and the positive electrode current collector layer 3 may be equal to each other as shown in FIG. The planar area of the body layer 3 is smaller than the planar areas of the negative electrode current collector layer 11, the negative electrode layer 9 and the solid electrolyte layer 7, and the planar outer shapes of the positive electrode layer 5 and the positive electrode current collector layer 3 are the negative electrode current collector layer 11. The negative electrode layer 9 and the solid electrolyte layer 7 may be provided so as to be inside the planar outer shape (see FIG. 3). By making the planar areas of the positive electrode layer 5 and the positive electrode current collector layer 3 smaller than the planar areas of the negative electrode current collector layer 11, the negative electrode layer 9, and the solid electrolyte layer 7, the negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer When the pressure is applied to 5, the protrusion of the positive electrode layer 5 to the outside can be prevented, so that it is difficult to cause a short circuit.

本実施形態の固体電池1において、負極層9、正極層5及び固体電解質層7の合計体積をVpとし、負極層9、正極層5及び固体電解質層7の全体を980MPaの静水圧で加圧した際の体積をV980とする場合、{(Vp−V980)/Vp×100}≦3%が成り立っていることが好ましい。なお、本明細書では、{(Vp−V980)/Vp×100}のことを「V980を基準とした空隙率」と称し、物質のうち実際の空隙が占める割合を示す一般的な空隙率(以下、「真の空隙率」と称する)と区別する場合がある。 In the solid battery 1 of the present embodiment, the total volume of the negative electrode layer 9, the positive electrode layer 5 and the solid electrolyte layer 7 is Vp, and the negative electrode layer 9, the positive electrode layer 5 and the solid electrolyte layer 7 are entirely pressurized with a hydrostatic pressure of 980 MPa. When the volume at this time is V 980 , it is preferable that {(Vp−V 980 ) / Vp × 100} ≦ 3% is satisfied. In the present specification, {(Vp−V 980 ) / Vp × 100} is referred to as “a porosity based on V 980 ”, and a general void indicating a ratio of an actual void in a substance. It may be distinguished from the rate (hereinafter referred to as “true porosity”).

既知のリチウムイオン二次電池を製造するための一般的な方法を用いて負極層9、正極層5及び固体電解質層7を形成した場合、通常{(Vp−V980)/Vp×100}は3%よりも大きくなる。これに対し、本実施形態の固体電池1では、{(Vp−V980)/Vp×100}≦3%になるよう負極層9、固体電解質層7及び正極層5が圧密化されているので、負極活物質と固体電解質との接触及び正極活物質と固体電解質との接触を十分に確保することができる。このため、動作時に外圧を付与しなくても負極層9と固体電解質層7との間の電気抵抗、及び正極層5と固体電解質層7との間の電気抵抗をそれぞれ小さく保つことができる。その結果として、本実施形態の固体電池1は優れた電池特性を発揮することが可能となっている。 When the negative electrode layer 9, the positive electrode layer 5, and the solid electrolyte layer 7 are formed using a general method for manufacturing a known lithium ion secondary battery, usually {(Vp−V 980 ) / Vp × 100} is Greater than 3%. On the other hand, in the solid battery 1 of the present embodiment, the negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer 5 are consolidated so that {(Vp−V 980 ) / Vp × 100} ≦ 3%. The contact between the negative electrode active material and the solid electrolyte and the contact between the positive electrode active material and the solid electrolyte can be sufficiently ensured. For this reason, the electrical resistance between the negative electrode layer 9 and the solid electrolyte layer 7 and the electrical resistance between the positive electrode layer 5 and the solid electrolyte layer 7 can be kept small without applying external pressure during operation. As a result, the solid battery 1 of the present embodiment can exhibit excellent battery characteristics.

また、本実施形態の固体電池1は外圧を付与するための構造体を必要としないので、製品コストの低減を図ることもできる。また、高いエネルギー密度を得ることができる。さらに、本実施形態の固体電池1は全固体型電池であるので、可燃性の有機電解液を使用する電池に比べて発火などの危険性が極めて低くなっている。   Moreover, since the solid battery 1 of the present embodiment does not require a structure for applying an external pressure, the product cost can be reduced. Moreover, a high energy density can be obtained. Furthermore, since the solid battery 1 of the present embodiment is an all-solid battery, the risk of ignition and the like is extremely low as compared with a battery using a flammable organic electrolyte.

ここで、塗工等によって形成された負極層9、正極層5及び固体電解質層7の全体を980MPa以上の静水圧で加圧することで負極層9、正極層5及び固体電解質層7を圧密化した場合には、固体電池1の製造後に再度980MPaの静水圧を印加しても体積が減少しないので、{(Vp−V980)/Vp×100}=0%になる。 Here, the negative electrode layer 9, the positive electrode layer 5, and the solid electrolyte layer 7 are consolidated by pressurizing the whole of the negative electrode layer 9, the positive electrode layer 5, and the solid electrolyte layer 7 by hydrostatic pressure of 980 MPa or more. In this case, the volume does not decrease even when a hydrostatic pressure of 980 MPa is applied again after the solid battery 1 is manufactured, so {(Vp−V 980 ) / Vp × 100} = 0%.

なお、負極層9、正極層5及び固体電解質層7の空隙率を適切な範囲にすることで電池特性を向上できるのは固体電解質層7の構成材料が異なっても同様であると考えられる。これは、固体粒子間の接触が固体電池の特性を左右するファクターであるのは固体電解質の構成材料によらず共通であるからである。従って、固体電解質が硫化物系以外(例えば酸化物系やリン酸系等)であっても、{(Vp−V980)/Vp×100}≦3%が成り立っていれば、本実施形態の固体電池1と同様の優れた電池特性を発揮することが可能であると考えられる。 The battery characteristics can be improved by setting the porosity of the negative electrode layer 9, the positive electrode layer 5, and the solid electrolyte layer 7 to an appropriate range even if the constituent materials of the solid electrolyte layer 7 are different. This is because the contact between the solid particles is a factor that determines the characteristics of the solid battery, regardless of the constituent material of the solid electrolyte. Accordingly, even if the solid electrolyte is other than sulfide type (for example, oxide type or phosphoric acid type), if {(Vp−V 980 ) / Vp × 100} ≦ 3% holds, It is considered that excellent battery characteristics similar to those of the solid battery 1 can be exhibited.

なお、図1にはモノポーラ型の固体電池1を示しているが、固体電池1はバイポーラ型であってもよい。また、図1に示すモノポーラ型の電池構造は複数回積層されていてもよい。   Although FIG. 1 shows a monopolar solid battery 1, the solid battery 1 may be a bipolar battery. Further, the monopolar battery structure shown in FIG. 1 may be stacked a plurality of times.

また、固体電池1は必ずしも全固体型リチウムイオン二次電池である必要はなく、全固体型アルカリイオン二次電池(例えば全固体型ナトリウムイオン二次電池)であってもよい。   The solid battery 1 is not necessarily an all solid lithium ion secondary battery, and may be an all solid alkaline ion secondary battery (for example, an all solid sodium ion secondary battery).

また、本実施形態の固体電池1は金属箔や樹脂フィルム等により真空ラミネートパックされた状態であってもよい。この場合でも、本実施形態の固体電池1は外部からの圧力を受けなくても優れた電池特性を発揮できる。本実施形態の固体電池1において、大気中で外部から負極層9、正極層5及び固体電解質層7に印加される圧力は、大気圧以下となっている。   Further, the solid battery 1 of the present embodiment may be in a state of being vacuum laminated packed with a metal foil, a resin film, or the like. Even in this case, the solid battery 1 of the present embodiment can exhibit excellent battery characteristics without receiving external pressure. In the solid battery 1 of this embodiment, the pressure applied to the negative electrode layer 9, the positive electrode layer 5, and the solid electrolyte layer 7 from the outside in the atmosphere is equal to or lower than atmospheric pressure.

−固体電池の製造方法−
固体電池1の製造方法の一例として、塗工を用いる方法が挙げられる。まず、適切な溶媒に粉状の正極活物質、固体電解質、導電助剤、結着剤等を加えて混合し、正極層5用の塗工液を作製する。次いで、正極集電体層3の一方の面に、当該塗工液を塗布し、乾燥させる。本工程では硫化物系固体電解質との反応性が低い非極性溶媒が用いられる。例えば、キシレン、トルエン、エチルベンゼン等の芳香族炭化水素、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類等を溶媒として用いることができる。
-Manufacturing method of solid state battery-
As an example of the manufacturing method of the solid battery 1, there is a method using coating. First, a powdery positive electrode active material, a solid electrolyte, a conductive additive, a binder, and the like are added to an appropriate solvent and mixed to prepare a coating solution for the positive electrode layer 5. Next, the coating liquid is applied to one surface of the positive electrode current collector layer 3 and dried. In this step, a nonpolar solvent having low reactivity with the sulfide-based solid electrolyte is used. For example, aromatic hydrocarbons such as xylene, toluene, and ethylbenzene, and aliphatic hydrocarbons such as pentane, hexane, and heptane can be used as the solvent.

一方で、上述の溶媒に粉状の負極活物質、固体電解質、導電助剤、結着剤を加えて混合し、負極層9用の塗工液を作製する。次いで、負極集電体層11の一方の面に当該塗工液を塗布し、乾燥させる。   On the other hand, a powdery negative electrode active material, a solid electrolyte, a conductive additive, and a binder are added to and mixed with the above-described solvent to prepare a coating solution for the negative electrode layer 9. Next, the coating liquid is applied to one surface of the negative electrode current collector layer 11 and dried.

次に、例えば硫化物系の粉状の固体電解質と、結着剤とを溶媒に加えて混合し、電解質層用の塗工液を作製する。次いで、負極集電体層11の面のうち、負極層材料を塗布した面に当該塗工液を塗布し、乾燥させる。   Next, for example, a sulfide-based powdery solid electrolyte and a binder are added to a solvent and mixed to prepare a coating solution for the electrolyte layer. Next, the coating liquid is applied to the surface of the negative electrode current collector layer 11 on which the negative electrode layer material is applied, and dried.

次に、正極集電体層3及び負極集電体層11をそれぞれ適当な大きさに切り出す。次いで、負極集電体層11の面のうち電解質材料が塗布された面と、正極集電体層3の面のうち正極層材料が塗布された面とが接合するように、負極集電体層11と正極集電体層3とを重ね合わせた後、以下のように圧密化工程を行う。ここで、負極集電体層11と正極集電体層とを重ねたものを「電池用積層体」と呼ぶ。   Next, the positive electrode current collector layer 3 and the negative electrode current collector layer 11 are each cut into appropriate sizes. Next, the negative electrode current collector is bonded so that the surface of the negative electrode current collector layer 11 coated with the electrolyte material and the surface of the positive electrode current collector layer 3 coated with the positive electrode layer material are joined. After the layer 11 and the positive electrode current collector layer 3 are overlaid, a consolidation process is performed as follows. Here, a laminate of the negative electrode current collector layer 11 and the positive electrode current collector layer is referred to as a “battery laminate”.

図2は、静水圧を用いて電池材料の圧密化を行う工程を示す断面図である。同図に示すように、剛性板からなる支持材13上に電池用積層体を配置した後、金属箔等からなる外装体14により電池用積層体(積層体)24を封止する。   FIG. 2 is a cross-sectional view showing a process of consolidating battery materials using hydrostatic pressure. As shown in the figure, after the battery laminate is disposed on the support member 13 made of a rigid plate, the battery laminate (laminate) 24 is sealed with an exterior body 14 made of metal foil or the like.

続いて、電池用積層体24及び支持材13を樹脂フィルム等からなる保護体15により封止し、高圧容器(図示せず)内に満たした加圧媒体17の中に沈める。この状態で容器内の加圧媒体17に上方から圧力19を加えることにより、負極層9、固体電解質層7及び正極層5を圧密化する。この方法によれば、側方及び上方から負極層9、固体電解質層7及び正極層5に所望の値の静水圧21を印加することができる。   Subsequently, the battery laminate 24 and the support member 13 are sealed with a protective body 15 made of a resin film or the like, and submerged in a pressurized medium 17 filled in a high-pressure container (not shown). In this state, the negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer 5 are consolidated by applying a pressure 19 from above to the pressurized medium 17 in the container. According to this method, a hydrostatic pressure 21 having a desired value can be applied to the negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer 5 from the side and from above.

この工程により、負極層9と固体電解質層7との接合、及び正極層5と固体電解質層7との接合が十分に確保されるので、電池内の電気抵抗を低減することができる。また、負極層9、固体電解質層7及び正極層5の密度を増加させることができるので、固体電池1の電流密度の向上を図ることができる。   By this step, since the bonding between the negative electrode layer 9 and the solid electrolyte layer 7 and the bonding between the positive electrode layer 5 and the solid electrolyte layer 7 are sufficiently ensured, the electric resistance in the battery can be reduced. Moreover, since the density of the negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer 5 can be increased, the current density of the solid battery 1 can be improved.

圧密化工程において、電池用積層体24に対して側方及び上方から印加する静水圧の値は特に限定されないが、450MPa以上であれば負極層9、固体電解質層7及び正極層5におけるV980を基準とした空隙率を3%以下にすることができるので、好ましい。この方法により、優れたサイクル維持率及び初回放電容量を示す固体電池1を作製することができる。 In the consolidation step, the value of the hydrostatic pressure applied from the side and the upper side to the battery laminate 24 is not particularly limited, but if it is 450 MPa or more, V 980 in the negative electrode layer 9, the solid electrolyte layer 7, and the positive electrode layer 5. Since the porosity based on the reference can be 3% or less, it is preferable. By this method, the solid battery 1 which shows the outstanding cycle maintenance factor and initial discharge capacity is producible.

なお、電池用積層体に印加する静水圧を過度に上げても真の空隙率を0に近づけるのは難しい上、静水圧を印加する設備が大規模になってしまう。このため、電池用積層体に印加する静水圧が980MPa以下であればより好ましい。   Note that it is difficult to bring the true porosity close to 0 even if the hydrostatic pressure applied to the battery laminate is excessively increased, and the facility for applying the hydrostatic pressure becomes large. For this reason, it is more preferable that the hydrostatic pressure applied to the battery laminate is 980 MPa or less.

本工程において、負極集電体層11の下に支持材13を設けた状態で静水圧を印加しているので、支持材13を設けない場合や、負極集電体層11の下に弾性体を設ける場合に比べて作製された固体電池1の反りを大きく低減することができる。なお、圧密化工程においては、積層体24のうち支持材13に接する部分と支持材13に接していない部分とに相異なる静水圧を印加することができる。   In this step, since the hydrostatic pressure is applied with the support material 13 provided under the negative electrode current collector layer 11, the elastic material is provided under the negative electrode current collector layer 11 when the support material 13 is not provided. The warpage of the solid battery 1 produced can be greatly reduced as compared with the case where the battery is provided. In the consolidation step, different hydrostatic pressures can be applied to the portion of the laminate 24 that is in contact with the support member 13 and the portion that is not in contact with the support member 13.

本工程で用いられる支持材13は十分な剛性が得られる厚みを有していればよく、例えば3mm〜5mm程度の厚みを有している。支持材13は例えば金属で構成されていればよく、一例としてはアルミニウムで構成されていてもよい。   The support material 13 used in this step only needs to have a thickness with which sufficient rigidity can be obtained. For example, the support material 13 has a thickness of about 3 mm to 5 mm. The support material 13 should just be comprised, for example with the metal, and may be comprised with the aluminum as an example.

本工程の後、加圧媒体中から固体電池1を取り出し、保護体15を除去してから支持材13を固体電池1から取り外すことで、本実施形態の固体電池1を作製することができる。   After this process, the solid battery 1 of this embodiment can be produced by taking out the solid battery 1 from the pressurized medium, removing the protective body 15 and then removing the support material 13 from the solid battery 1.

なお、本実施形態では積層体24に静水圧を印加する場合について説明したが、図3に示すように、ロールプレスや両面プレス等の一軸プレス加工により積層体24の圧密化を行ってもよい。一軸プレス加工を行う場合、正極層5及び正極集電体3の平面面積を固体電解質層7、負極層9及び負極集電体層11の平面面積より小さくし、正極層5及び正極集電体3の平面外形が固体電解質層7、負極層9及び負極集電体層11の平面外形の内側に入るように正極層5及び正極集電体3を配置することが好ましい。   In addition, although this embodiment demonstrated the case where a hydrostatic pressure was applied to the laminated body 24, as shown in FIG. 3, you may compress the laminated body 24 by uniaxial press processing, such as a roll press and a double-sided press. . When uniaxial pressing is performed, the planar areas of the positive electrode layer 5 and the positive electrode current collector 3 are made smaller than the planar areas of the solid electrolyte layer 7, the negative electrode layer 9, and the negative electrode current collector layer 11, and the positive electrode layer 5 and the positive electrode current collector are obtained. It is preferable that the positive electrode layer 5 and the positive electrode current collector 3 are disposed so that the three-dimensional outer shape of the third electrode falls within the flat outer shapes of the solid electrolyte layer 7, the negative electrode layer 9, and the negative electrode current collector layer 11.

この方法によれば、プレス機25に積層体24が挟み込まれて正極層5が外方に向かって広がった場合でも正極層5が負極層9及び負極集電体層11に接触するのを効果的に防ぐことができる。   According to this method, even when the laminate 24 is sandwiched in the press machine 25 and the positive electrode layer 5 spreads outward, it is effective that the positive electrode layer 5 contacts the negative electrode layer 9 and the negative electrode current collector layer 11. Can be prevented.

なお、以上で説明した固体電池1の構成及び作製方法は実施形態の一例であって、構成部材や作製手順等を適宜変更してもよい。   In addition, the structure and manufacturing method of the solid battery 1 demonstrated above are examples of embodiment, Comprising: A structural member, a manufacturing procedure, etc. may be changed suitably.

<実施例>
次に、本実施形態に係る固体電池1の実施例について説明する。なお、以下の各実施例及び比較例での作業は、全て露点温度−55℃以下のドライルーム内で行われた。
〔実施例1〕
−正極層の形成−
粉状のLiNi1/3Co1/3Mn1/3(正極活物質)及び粉状のLiS−P(硫化物系固体電解質)と、気相成長炭素繊維粉末(導電助剤)とを質量比60:35:5で秤量し、次いで、この混合粉体に結着剤であるブタジエンゴムを溶解させたキシレン溶液(溶媒)を、混合粉体の総重量に対して結着剤が2質量%となるように添加して自転公転ミキサーを用いて混合することで、正極層用の塗工液を作製した。
<Example>
Next, examples of the solid state battery 1 according to the present embodiment will be described. In addition, all the operations in the following Examples and Comparative Examples were performed in a dry room having a dew point temperature of −55 ° C. or lower.
[Example 1]
-Formation of positive electrode layer-
Powdered LiNi 1/3 Co 1/3 Mn 1/3 O 2 (positive electrode active material) and powdered Li 2 S—P 2 S 5 (sulfide-based solid electrolyte), and vapor-grown carbon fiber powder ( Conductive aid) was weighed at a mass ratio of 60: 35: 5, and then a xylene solution (solvent) in which butadiene rubber as a binder was dissolved in the mixed powder was added to the total weight of the mixed powder. Then, the binder was added so as to be 2% by mass and mixed using an auto-revolution mixer to prepare a coating solution for the positive electrode layer.

次いで、卓上スクリーン印刷機を用いて厚さ12μmのアルミ箔(正極集電体)上に上述の塗工液を塗布した。その後、塗工液が塗布されたアルミ箔をホットプレートを用いて40℃、10分間の条件で乾燥させた後、40℃で12時間真空乾燥させた。これにより、アルミ箔上に正極層を形成した。正極層の厚みは300μmであった。   Subsequently, the above-mentioned coating liquid was apply | coated on the 12-micrometer-thick aluminum foil (positive electrode electrical power collector) using the desktop screen printer. Thereafter, the aluminum foil coated with the coating solution was dried at 40 ° C. for 10 minutes using a hot plate, and then vacuum dried at 40 ° C. for 12 hours. This formed the positive electrode layer on the aluminum foil. The thickness of the positive electrode layer was 300 μm.

−負極層の形成−
次に、粉状の黒鉛粉末(負極活物質)とLiS−P(硫化物系固体電解質)と気相成長炭素繊維粉末(導電助剤)とを質量比60:35:5の割合で秤量し、次いで、この混合粉体に結着剤であるブタジエンゴムを溶解させたキシレン溶液(溶媒)を、混合粉体の総重量に対して結着剤が3質量%となるように添加して自転公転ミキサーを用いて混合することで、負極層用の塗工液を作製した。次いで、厚さ10μmの銅箔(負極集電体)上に卓上スクリーン印刷機を用いて負極層用の塗工液を塗布した。
-Formation of negative electrode layer-
Next, a powdery graphite powder (negative electrode active material), Li 2 S—P 2 S 5 (sulfide-based solid electrolyte), and vapor-grown carbon fiber powder (conductive aid) are in a mass ratio of 60: 35: 5. Next, a xylene solution (solvent) in which butadiene rubber as a binder was dissolved in this mixed powder was so adjusted that the binder was 3% by mass with respect to the total weight of the mixed powder. The coating liquid for negative electrode layers was produced by adding to and mixing using a rotation and revolution mixer. Subsequently, the coating liquid for negative electrode layers was apply | coated on the 10-micrometer-thick copper foil (negative electrode collector) using the desktop screen printer.

塗工液が塗布された銅箔をホットプレートを用いて40℃、10分間の条件で乾燥させた後、40℃で12時間真空乾燥させた。これにより、銅箔上に負極層を形成した。次いで、ロールギャップが50μmのロールプレス機を用いて負極層が形成された銅箔(すなわち、負極構造体)を圧延した。負極層と銅箔との合計厚みは120μm程度であった。   The copper foil coated with the coating solution was dried at 40 ° C. for 10 minutes using a hot plate and then vacuum dried at 40 ° C. for 12 hours. Thereby, the negative electrode layer was formed on the copper foil. Subsequently, the copper foil (namely, negative electrode structure) in which the negative electrode layer was formed was rolled using the roll press machine whose roll gap is 50 micrometers. The total thickness of the negative electrode layer and the copper foil was about 120 μm.

−電解質層の形成−
粉状のLiS−P(硫化物系固体電解質)に、結着剤を溶解させたキシレン溶液(溶媒)を加え、自転公転ミキサーを用いて混合した。これにより、電解質層用の塗工液を作製した。
-Formation of electrolyte layer-
A xylene solution (solvent) in which a binder was dissolved was added to powdered Li 2 S—P 2 S 5 (sulfide-based solid electrolyte), and mixed using a rotation and revolution mixer. Thereby, the coating liquid for electrolyte layers was produced.

次いで、卓上スクリーン印刷機を用いて負極構造体上に電解質層用の塗工液を塗布した。その後、負極構造体をホットプレートを用いて40℃、10分間の条件で乾燥させた後、40℃で12時間真空乾燥させた。これにより、負極構造体上に固体電解質層を形成した。乾燥後の固体電解質層の厚みは70μmであった。   Subsequently, the coating liquid for electrolyte layers was apply | coated on the negative electrode structure using the desktop screen printer. Thereafter, the negative electrode structure was dried at 40 ° C. for 10 minutes using a hot plate, and then vacuum dried at 40 ° C. for 12 hours. Thereby, a solid electrolyte layer was formed on the negative electrode structure. The thickness of the solid electrolyte layer after drying was 70 μm.

−固体電池の作製−
負極構造体固体電解質層 が形成されたシート状の負極構造体と、正極層が形成されたシート状の正極集電体層とをそれぞれトムソン刃で打ち抜いた後、負極構造体と正極集電体層とを、固体電解質層と正極層とが接するように積層した。この状態で積層体の真空ラミネートパックを行った。ここで、負極構造体固体電解質層が正極層よりも上下左右がそれぞれ0.7mm大きくなるようにした。
-Fabrication of solid state battery-
The negative electrode structure and the positive electrode current collector are each punched out with a Thomson blade after the sheet-like negative electrode structure on which the negative electrode structure solid electrolyte layer is formed and the sheet-like positive electrode current collector layer on which the positive electrode layer is formed. The layers were laminated so that the solid electrolyte layer and the positive electrode layer were in contact with each other. In this state, the laminate was vacuum laminated. Here, the negative electrode structure solid electrolyte layer was made to be 0.7 mm larger in the vertical and horizontal directions than the positive electrode layer.

次に、積層体を厚さ3mmのアルミ板(支持材)上に載せて、支持材を含めて積層体の真空ラミネートパックを行った。この積層体を、図2に示すように加圧媒体中に沈め、455MPaにて静水圧処理(圧密化工程)を行った。これにより、固体電池1の単セル(単電池)を作製した。
〔実施例2〜5〕
圧密化工程を除き実施例1と同じ方法で実施例2〜5に係る固体電池を作製した。圧密化工程において、静水圧を490MPaとした例を実施例2とし、静水圧を525MPaとした例を実施例3とし、静水圧を675MPaとした例を実施例4とし、静水圧を980MPaとした例を実施例5とした。
〔比較例1〜6〕
圧密化工程を除き実施例1と同じ方法で比較例1〜6に係る固体電池を作製した。圧密化工程を行わない例を比較例1とした。また、静水圧を75MPaとした例を比較例2とし、静水圧を150MPaとした例を比較例3とし、静水圧を225MPaとした例を比較例4とし、静水圧を375MPaとした例を比較例5とした。
Next, the laminate was placed on an aluminum plate (support material) having a thickness of 3 mm, and the laminate was vacuum laminated pack including the support material. The laminate was submerged in a pressurized medium as shown in FIG. 2 and subjected to a hydrostatic pressure treatment (consolidation step) at 455 MPa. Thereby, the single cell (single cell) of the solid battery 1 was produced.
[Examples 2 to 5]
Solid batteries according to Examples 2 to 5 were produced in the same manner as in Example 1 except for the consolidation step. In the consolidation step, the example in which the hydrostatic pressure was set to 490 MPa was set as Example 2, the example in which the hydrostatic pressure was set to 525 MPa was set as Example 3, the example in which the hydrostatic pressure was set to 675 MPa was set as Example 4, and the hydrostatic pressure was set to 980 MPa. An example is referred to as Example 5.
[Comparative Examples 1-6]
Solid batteries according to Comparative Examples 1 to 6 were produced in the same manner as in Example 1 except for the consolidation step. The example which does not perform a compaction process was made into the comparative example 1. Further, an example in which the hydrostatic pressure is 75 MPa is set as Comparative Example 2, an example in which the hydrostatic pressure is set to 150 MPa is set as Comparative Example 3, an example in which the hydrostatic pressure is set to 225 MPa is set as Comparative Example 4, and an example in which the hydrostatic pressure is set to 375 MPa is compared. Example 5 was adopted.

−V980を基準とした空隙率の測定−
まず、固体電池のうち負極層、固体電解質層、正極層の体積の合計Vpを、φ13mmの大きさでこれらの層を打ち抜いて膜厚と重量をそれぞれ膜厚計と天秤を用いて測定することにより、算出した。
-V 980 Measurement of porosity relative to the -
First, the total volume Vp of the negative electrode layer, the solid electrolyte layer, and the positive electrode layer in the solid battery is punched out in a size of φ13 mm, and the film thickness and weight are measured using a film thickness meter and a balance, respectively. Based on the above calculation.

次いで、負極集電体層、負極層、固体電解質層、正極層及び正極集電体層により構成された積層体を負極集電体層を下にして厚さ3mmのアルミ板(支持材)上に載せた。この積層体をアルミ板ごと真空ラミネートパックした状態で、図2に示すように加圧媒体中に沈めた。次に、上方から加圧媒体に圧力を加えることにより、980MPaの静水圧を積層体に印加した。その後、真空ラミネートパックから積層体を取り出し、負極層、固体電解質層、正極層の体積の合計(V980)を、φ13mmの大きさでこれらの層を打ち抜いて膜厚と重量をそれぞれ膜厚計と天秤を用いて測定することにより、算出した。 Next, a laminate composed of the negative electrode current collector layer, the negative electrode layer, the solid electrolyte layer, the positive electrode layer, and the positive electrode current collector layer is placed on an aluminum plate (support material) having a thickness of 3 mm with the negative electrode current collector layer facing down. It was put on. This laminated body was submerged in a pressurized medium as shown in FIG. Next, a hydrostatic pressure of 980 MPa was applied to the laminate by applying pressure to the pressurized medium from above. Thereafter, the laminate is taken out from the vacuum laminate pack, and the total volume (V 980 ) of the negative electrode layer, the solid electrolyte layer, and the positive electrode layer is punched out in a size of φ13 mm, and the film thickness and weight are measured respectively. And calculating using a balance.

以上で得られた測定値から、{(Vp−V980)/Vp×100}の値を算出することで、V980を基準とした空隙率を得た。 By calculating a value of {(Vp−V 980 ) / Vp × 100} from the measured values obtained above, a porosity based on V 980 was obtained.

−サイクル維持率の測定−
25℃の恒温槽に固体電池を配置し、0.5mA/cmの電流密度、4V−2.5V間で充放電を行った。1サイクル目の放電容量を100%として50サイクル目の放電容量の割合をサイクル維持率として算出した。
-Measurement of cycle maintenance rate-
A solid battery was placed in a 25 ° C. thermostat, and charge / discharge was performed at a current density of 0.5 mA / cm 2 and between 4 V and 2.5 V. The discharge capacity at the first cycle was taken as 100%, and the ratio of the discharge capacity at the 50th cycle was calculated as the cycle retention rate.

−セル抵抗−
25℃の恒温槽に固体電池を配置し、0.5mA/cmの電流密度、4V−2.5V間で充放電を行った。5サイクル目の充電状態において、インピーダンス(セル抵抗)の測定を行った。
-Cell resistance-
A solid battery was placed in a 25 ° C. thermostat, and charge / discharge was performed at a current density of 0.5 mA / cm 2 and between 4 V and 2.5 V. In the charge state at the fifth cycle, impedance (cell resistance) was measured.

−初回放電容量−
25℃の恒温槽に固体電池を配置し、0.5mA/cmの電流密度、4V−2.5V間で充放電を行った。980MPaの静水圧を用いて圧密化を行った場合(実施例5)の固体電池の初回放電容量を100%とした場合の初回放電容量の割合を算出した。
-Initial discharge capacity-
A solid battery was placed in a 25 ° C. thermostat, and charge / discharge was performed at a current density of 0.5 mA / cm 2 and between 4 V and 2.5 V. The ratio of the initial discharge capacity was calculated when the initial discharge capacity of the solid state battery when the consolidation was performed using a hydrostatic pressure of 980 MPa (Example 5) was 100%.

−測定結果−
実施例1〜5及び比較例1〜6に係る固体電池での測定結果を表1に示す。
-Measurement results-
Table 1 shows the measurement results of the solid batteries according to Examples 1 to 5 and Comparative Examples 1 to 6.

Figure 2016152204
Figure 2016152204

また、初回放電容量とV980を基準とした空隙率との関係を図4に示し、セル抵抗とV980を基準とした空隙率との関係を図5に示し、サイクル維持率とV980を基準とした空隙率との関係を図6に示した。 Also shows the relationship between the reference and the porosity of the initial discharge capacity and V 980 in FIG. 4 shows the relationship between the reference and the porosity of the cell resistance and V 980 in FIG. 5, the cycle retention ratio and V 980 The relationship with the standard porosity is shown in FIG.

表1に示す実施例1〜5の結果から、455MPa以上の静水圧で圧密化を行った場合には、V980を基準とした空隙率が3%以下になっていることが確認できた。 Table The results of Examples 1 to 5 shown in 1, when performing compaction in the above hydrostatic pressure 455MPa, it was confirmed that the porosity relative to the V 980 is in 3%.

また、図5に示すように、V980を基準とした空隙率が3%以下である場合には、当該空隙率が3%を越える場合に比べてセル抵抗が著しく低い値になることが確認できた。さらに、図4、6に示すように、V980を基準とした空隙率が3%以下である実施例1〜5では、比較例1〜6に比べて初回放電容量が大きく、且つ50サイクルの充放電を行った後でも放電容量がよく維持されていることも確認できた。 Further, as shown in FIG. 5, when the porosity based on V 980 is 3% or less, it is confirmed that the cell resistance is significantly lower than that when the porosity exceeds 3%. did it. Further, as shown in FIGS. 4 and 6, in Examples 1 to 5 where the porosity based on V 980 is 3% or less, the initial discharge capacity is larger than that of Comparative Examples 1 to 6 and 50 cycles. It was also confirmed that the discharge capacity was well maintained even after charging / discharging.

なお、比較例1〜6についての結果から、圧密化処理における静水圧が小さくなるに従って、セル抵抗は大きくなり、初回放電容量は小さくなり、サイクル維持率は低くなることが確認できた。   From the results of Comparative Examples 1 to 6, it was confirmed that as the hydrostatic pressure in the consolidation treatment was decreased, the cell resistance was increased, the initial discharge capacity was decreased, and the cycle maintenance ratio was decreased.

以上説明したように、本開示の一例に係る固体電池は、種々の携帯機器や車両等に適用されうる。   As described above, the solid state battery according to an example of the present disclosure can be applied to various portable devices, vehicles, and the like.

1 固体電池
3 正極集電体層
5 正極層
7 固体電解質層
9 負極層
11 負極集電体層
13 支持材
14 外装体
15 保護体
17 加圧媒体
19 圧力
21 静水圧
24 積層体
25 プレス機
DESCRIPTION OF SYMBOLS 1 Solid battery 3 Positive electrode collector layer 5 Positive electrode layer 7 Solid electrolyte layer 9 Negative electrode layer 11 Negative electrode collector layer 13 Support material 14 Exterior body 15 Protective body 17 Pressurizing medium 19 Pressure 21 Hydrostatic pressure 24 Laminate 25 Press

Claims (7)

負極活物質を含む負極層と、
正極活物質を含む正極層と、
前記負極層と前記正極層との間に、前記負極層及び前記正極層とそれぞれ接触するように設けられた固体電解質層とを備え、
前記負極層、前記正極層及び前記固体電解質層の合計体積をVpとし、前記負極層、前記正極層及び前記固体電解質層の全体を980MPaの静水圧で加圧した際の体積をV980とする場合、{(Vp−V980)/Vp×100}≦3%が成り立つ固体電池。
A negative electrode layer containing a negative electrode active material;
A positive electrode layer containing a positive electrode active material;
A solid electrolyte layer provided between the negative electrode layer and the positive electrode layer so as to be in contact with the negative electrode layer and the positive electrode layer,
The total volume of the negative electrode layer, the positive electrode layer and the solid electrolyte layer is Vp, and the volume when the whole of the negative electrode layer, the positive electrode layer and the solid electrolyte layer is pressurized at a hydrostatic pressure of 980 MPa is V 980 . In this case, a solid battery that satisfies {(Vp−V 980 ) / Vp × 100} ≦ 3%.
請求項1に記載の固体電池において、
前記負極層、前記正極層及び前記固体電解質層は、それぞれ粉体で構成されており、圧密化されていることを特徴とする固体電池。
The solid state battery according to claim 1,
The said negative electrode layer, the said positive electrode layer, and the said solid electrolyte layer are each comprised with the powder, and are solidified, The solid battery characterized by the above-mentioned.
請求項1又は2に記載の固体電池において、
前記固体電解質層は、リチウム、リン及び硫黄を少なくとも含む硫化物系固体電解質により構成されていることを特徴とする固体電池。
The solid state battery according to claim 1 or 2,
The solid electrolyte layer is constituted by a sulfide solid electrolyte containing at least lithium, phosphorus and sulfur.
請求項1〜3のうちいずれか1つに記載の固体電池において、
大気中では、外部から前記負極層、前記正極層及び前記固体電解質層に印加される圧力は、大気圧以下であることを特徴とする固体電池。
In the solid battery according to any one of claims 1 to 3,
A solid battery characterized in that, in the air, a pressure applied from the outside to the negative electrode layer, the positive electrode layer, and the solid electrolyte layer is equal to or lower than atmospheric pressure.
負極層と、正極層と、前記負極層と前記正極層との間に設けられた固体電解質層とを有する積層体に圧力を印加して前記積層体を圧密化する工程を備えた固体電池の製造方法であって、
圧密化後の前記負極層、前記正極層及び前記固体電解質層の合計体積をVpとし、圧密化後の前記負極層、前記正極層及び前記固体電解質層の全体を980MPaの静水圧で加圧した際の体積をV980とする場合、{(Vp−V980)/Vp×100}≦3%が成り立つ、固体電池の製造方法。
A solid battery comprising a step of applying pressure to a laminate having a negative electrode layer, a positive electrode layer, and a solid electrolyte layer provided between the negative electrode layer and the positive electrode layer to consolidate the laminate. A manufacturing method comprising:
The total volume of the negative electrode layer, the positive electrode layer, and the solid electrolyte layer after consolidation is set to Vp, and the whole of the negative electrode layer, the positive electrode layer, and the solid electrolyte layer after consolidation is pressurized at a hydrostatic pressure of 980 MPa. A solid battery manufacturing method in which {(Vp−V 980 ) / Vp × 100} ≦ 3% holds when the volume at the time is V 980 .
請求項5に記載の固体電池の製造方法において、
前記積層体を圧密化する工程では、剛性板からなる支持材上に形成した前記積層体に静水圧を印加することにより、前記積層体のうち前記支持材に接する部分と前記支持材に接していない部分とに相異なる静水圧を印加することを特徴とする固体電池の製造方法。
In the manufacturing method of the solid battery according to claim 5,
In the step of consolidating the laminate, by applying a hydrostatic pressure to the laminate formed on a support member made of a rigid plate, the portion of the laminate that is in contact with the support member and the support member are in contact with each other. A method for producing a solid state battery, wherein different hydrostatic pressures are applied to an unexposed portion.
請求項6に記載の固体電池の製造方法において、
前記積層体を圧密化する工程では、前記積層体のうち前記支持材に接していない部分に印加する静水圧を450MPa以上とすることを特徴とする固体電池の製造方法。
In the manufacturing method of the solid battery according to claim 6,
In the step of compacting the laminate, a hydrostatic pressure applied to a portion of the laminate that is not in contact with the support material is 450 MPa or more.
JP2015030760A 2015-02-19 2015-02-19 Solid-state battery and method of manufacturing the same Pending JP2016152204A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015030760A JP2016152204A (en) 2015-02-19 2015-02-19 Solid-state battery and method of manufacturing the same
KR1020150084349A KR102444283B1 (en) 2015-02-19 2015-06-15 All Solid secondary battery, and method for preparing all solid secondary battery
US15/041,201 US9837684B2 (en) 2015-02-19 2016-02-11 All solid secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030760A JP2016152204A (en) 2015-02-19 2015-02-19 Solid-state battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016152204A true JP2016152204A (en) 2016-08-22

Family

ID=56696644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030760A Pending JP2016152204A (en) 2015-02-19 2015-02-19 Solid-state battery and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2016152204A (en)
KR (1) KR102444283B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186074A (en) * 2017-04-24 2018-11-22 コリア インスティチュート オブ インダストリアル テクノロジー Bipolar all-solid battery
JP2019121558A (en) * 2018-01-10 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid secondary battery, lamination all-solid secondary battery and manufacturing method of all-solid secondary battery
WO2019155940A1 (en) * 2018-02-08 2019-08-15 日立造船株式会社 All-solid state secondary cell and production method for same
JP2020053115A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Production method of all-solid battery and all-solid battery
WO2021001970A1 (en) * 2019-07-03 2021-01-07 昭和電工マテリアルズ株式会社 Electrolyte sheet and secondary battery
US11264641B2 (en) 2018-01-10 2022-03-01 Samsung Electronics Co., Ltd. All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
WO2024048614A1 (en) * 2022-08-31 2024-03-07 三井金属鉱業株式会社 Battery and multilayer structure for batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184881B1 (en) * 2018-11-28 2020-12-01 서울대학교산학협력단 Electrode binder for solid electrolyte-based all solid-state lithium secondary battery, cathode in all solid-state lithium secondary battery comprising the same, and solid electrolyte-based all solid-state lithium secondary battery comprising the same
KR20220140420A (en) * 2021-04-09 2022-10-18 서울대학교산학협력단 Binder for solid electrolyte-based all solid-state lithium secondary battery, cathode in all solid-state lithium secondary battery comprising the same, separator in all solid-state lithium secondary battery comprising the same, solid electrolyte-based all solid-state lithium secondary battery comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164723A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Method for manufacturing all-solid cell
JP2014120199A (en) * 2012-12-12 2014-06-30 Samsung R&D Institute Japan Co Ltd Solid-state battery
JP2014135272A (en) * 2012-12-10 2014-07-24 Samsung R&D Institute Japan Co Ltd All-solid-state battery
JP2014216131A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 All solid battery and manufacturing method therefor
JP2015504478A (en) * 2011-11-02 2015-02-12 アイ テン Method for producing high-density thin film by electrophoresis
JP2015125872A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Manufacturing method for all solid battery and all solid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164723A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Method for manufacturing all-solid cell
JP2015504478A (en) * 2011-11-02 2015-02-12 アイ テン Method for producing high-density thin film by electrophoresis
JP2014135272A (en) * 2012-12-10 2014-07-24 Samsung R&D Institute Japan Co Ltd All-solid-state battery
JP2014120199A (en) * 2012-12-12 2014-06-30 Samsung R&D Institute Japan Co Ltd Solid-state battery
JP2014216131A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 All solid battery and manufacturing method therefor
JP2015125872A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Manufacturing method for all solid battery and all solid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186074A (en) * 2017-04-24 2018-11-22 コリア インスティチュート オブ インダストリアル テクノロジー Bipolar all-solid battery
JP2019121558A (en) * 2018-01-10 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid secondary battery, lamination all-solid secondary battery and manufacturing method of all-solid secondary battery
US11264641B2 (en) 2018-01-10 2022-03-01 Samsung Electronics Co., Ltd. All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
JP7128624B2 (en) 2018-01-10 2022-08-31 三星電子株式会社 All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery
WO2019155940A1 (en) * 2018-02-08 2019-08-15 日立造船株式会社 All-solid state secondary cell and production method for same
JP2019139892A (en) * 2018-02-08 2019-08-22 日立造船株式会社 All-solid-state secondary battery and method of manufacturing the same
JP7133316B2 (en) 2018-02-08 2022-09-08 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
JP2020053115A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Production method of all-solid battery and all-solid battery
JP7293595B2 (en) 2018-09-21 2023-06-20 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
WO2021001970A1 (en) * 2019-07-03 2021-01-07 昭和電工マテリアルズ株式会社 Electrolyte sheet and secondary battery
WO2024048614A1 (en) * 2022-08-31 2024-03-07 三井金属鉱業株式会社 Battery and multilayer structure for batteries

Also Published As

Publication number Publication date
KR102444283B1 (en) 2022-09-16
KR20160102104A (en) 2016-08-29

Similar Documents

Publication Publication Date Title
JP2016152204A (en) Solid-state battery and method of manufacturing the same
Chen et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach
Ju et al. Integrated interface strategy toward room temperature solid-state lithium batteries
CN106299443B (en) The manufacturing method of all-solid-state battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
US9837684B2 (en) All solid secondary battery and method of manufacturing the same
CN110249467B (en) All-solid-state battery and method for manufacturing same
JP5686191B2 (en) Solid battery manufacturing method
CN111194493B (en) Electrode sheet for all-solid-state secondary battery, and method for producing both
WO2019188487A1 (en) Fully solid-state secondary battery and method of manufacturing same
JP2012099315A (en) Positive electrode for all-solid lithium battery and method for manufacturing the same, and all-solid lithium battery
JP6666641B2 (en) All-solid secondary battery and method for manufacturing all-solid secondary battery
JPWO2012077197A1 (en) Method for manufacturing electrode body
JP2019106286A (en) Positive electrode mixture, positive electrode active material layer, all-solid battery and method for manufacturing positive electrode active material layer
JP2014120199A (en) Solid-state battery
JP2017208250A (en) All-solid type lithium secondary battery and method for manufacturing the same
CN111213213B (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
KR102501561B1 (en) All-solid lithium ion secondary battery, manufacturing method thereof, and laminated sheet for negative electrode
JP6748909B2 (en) All solid state battery
JPWO2018168550A1 (en) All-solid secondary battery, method for producing the same, solid electrolyte sheet for all-solid secondary battery, and positive electrode active material sheet for all-solid secondary battery
JPWO2018164050A1 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material film for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN111742427B (en) Electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
JP2015088330A (en) Sulfur-including all-solid battery
JP2014116136A (en) All-solid-state secondary battery
JP2014135272A (en) All-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730