JP6666641B2 - All-solid secondary battery and method for manufacturing all-solid secondary battery - Google Patents

All-solid secondary battery and method for manufacturing all-solid secondary battery Download PDF

Info

Publication number
JP6666641B2
JP6666641B2 JP2013258715A JP2013258715A JP6666641B2 JP 6666641 B2 JP6666641 B2 JP 6666641B2 JP 2013258715 A JP2013258715 A JP 2013258715A JP 2013258715 A JP2013258715 A JP 2013258715A JP 6666641 B2 JP6666641 B2 JP 6666641B2
Authority
JP
Japan
Prior art keywords
positive electrode
solid electrolyte
carbon dioxide
secondary battery
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013258715A
Other languages
Japanese (ja)
Other versions
JP2015115294A (en
Inventor
聡 藤木
聡 藤木
元 土屋
元 土屋
ビスバル ヘイディ
ビスバル ヘイディ
相原 雄一
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2013258715A priority Critical patent/JP6666641B2/en
Priority to KR1020140173236A priority patent/KR102452943B1/en
Priority to US14/567,389 priority patent/US9819019B2/en
Publication of JP2015115294A publication Critical patent/JP2015115294A/en
Application granted granted Critical
Publication of JP6666641B2 publication Critical patent/JP6666641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Description

本発明は、ニッケル含有遷移金属酸化物を正極活物質として用いる全固体二次電池に関する。   The present invention relates to an all-solid secondary battery using a nickel-containing transition metal oxide as a positive electrode active material.

従来、層状岩塩構造を備える化合物を正極活物質として用いる全固体二次電池においては、二酸化炭素や酸素の存在雰囲気下で電池反応を行うと、正極活物質と固体電解質との界面で抵抗成分が生成され、電池の抵抗が上昇することが問題となっている。   Conventionally, in an all-solid secondary battery using a compound having a layered rock salt structure as a positive electrode active material, when a battery reaction is performed in an atmosphere in which carbon dioxide or oxygen is present, a resistance component is generated at an interface between the positive electrode active material and the solid electrolyte. This causes a problem that the resistance of the battery is increased.

層状岩塩構造を備える正極活物質としてのニッケル酸リチウムは、その高い放電容量が注目される。しかしニッケル酸リチウムは化学的に不安定であるため、電池用途としては、多くの場合、ニッケルの一部を他の遷移金属に置換させて用いられる。かかる遷移金属酸化物は、一般に炭酸リチウムと水酸化リチウムと遷移金属源となる化合物とを反応させて合成できる。この合成方法では水酸化リチウムが過剰に添加されるため、生成物の表面に、未反応の水酸化リチウムが付着する。すなわち従来、正極活物質はその表面に水酸化リチウムが付着した状態で用いられる。   Lithium nickelate as a positive electrode active material having a layered rock salt structure is noted for its high discharge capacity. However, lithium nickelate is chemically unstable, and therefore, in many cases, a part of nickel is replaced with another transition metal for use in batteries. Such a transition metal oxide can be generally synthesized by reacting lithium carbonate, lithium hydroxide, and a compound serving as a transition metal source. In this synthesis method, unreacted lithium hydroxide adheres to the surface of the product because lithium hydroxide is excessively added. That is, conventionally, the positive electrode active material is used in a state where lithium hydroxide is attached to the surface.

全固体二次電池の電池構造内には二酸化炭素や酸素が存在する。そのため、正極活物質に付着する水酸化リチウムと二酸化炭素等とが反応することで、正極活物質表面に炭酸リチウムが生成される。炭酸リチウムは、正極活物質と固体電解質との間の界面の抵抗成分となり、二次電池の放電容量を抑制する。   Carbon dioxide and oxygen exist in the battery structure of the all-solid secondary battery. Therefore, lithium hydroxide adhering to the positive electrode active material reacts with carbon dioxide or the like, so that lithium carbonate is generated on the surface of the positive electrode active material. Lithium carbonate becomes a resistance component at the interface between the positive electrode active material and the solid electrolyte, and suppresses the discharge capacity of the secondary battery.

すなわち、ニッケル酸リチウムの一部を遷移金属で置換させた遷移金属酸化物は、安定かつ高容量を期待できる正極活物質材料であるが、固体電解質との間の界面で界面抵抗が生成されやすい。したがって、遷移金属酸化物を正極活物質として用いる場合、抵抗成分の生成量を抑制し、放電容量を向上させることが課題となる。   That is, a transition metal oxide in which a part of lithium nickelate is replaced with a transition metal is a positive electrode active material that can be expected to have a stable and high capacity, but an interface resistance is easily generated at an interface with a solid electrolyte. . Therefore, when a transition metal oxide is used as the positive electrode active material, it is an issue to suppress the generation amount of the resistance component and improve the discharge capacity.

上記の課題を解決するため、再生アルゴン雰囲気下で全固体二次電池を製造する方法が提案される(特許文献1)。しかし、再生アルゴン雰囲気下での製造は、設備投資費用が大きくなるため、大型のセルの製造や量産には適当でない。他に、ラミネートフィルムに真空密封させた固体電池素子が提案される(特許文献2)。しかし、高いエネルギーを得るためのコアとなる正極活物質の種類や表面状態は明らかにされておらず、工業的生産には困難が予想される。   In order to solve the above problems, a method for manufacturing an all-solid secondary battery in a regenerated argon atmosphere has been proposed (Patent Document 1). However, production in a regenerated argon atmosphere is not suitable for large-scale cell production or mass production because of the high capital investment costs. In addition, a solid-state battery element vacuum-sealed in a laminate film is proposed (Patent Document 2). However, the type and surface state of the positive electrode active material serving as a core for obtaining high energy have not been clarified, and it is expected that industrial production will be difficult.

特開平08−167425号公報JP 08-167425 A 特開2010−033937号公報JP 2010-033937 A

しかし、電池構造内部の炭酸リチウム生成を抑制して、正極活物質が本来備える放電容量を電池性能に反映させることが求められる。本発明の課題は、炭酸リチウム生成の原因を排除してニッケル酸リチウムの正極活物質としての機能を向上させ、これにより高エネルギー密度を備える全固体二次電池を提供することである。   However, it is required to suppress the generation of lithium carbonate inside the battery structure and reflect the discharge capacity inherently provided in the positive electrode active material in the battery performance. An object of the present invention is to improve the function of lithium nickelate as a positive electrode active material by eliminating the cause of lithium carbonate generation, thereby providing an all-solid secondary battery having a high energy density.

本発明は、正極活物質として下記式(1)で表わされる遷移金属酸化物を含有する正極と、負極と、正極と負極との間に存在する固体電解質層とを外装体内に備え、前記外装体内の二酸化炭素と酸素との分圧の合計が200 Pa以下である全固体二次電池である。式(1)において、MはCo、Mn、AlおよびMgからなる群から選ばれる1種以上の元素である。x、y、zは、0.5<x<1.2と、0.5<yと、0<zと、z=1−yとをすべて満たす値である。
The present invention provides, in a package, a positive electrode containing a transition metal oxide represented by the following formula (1) as a positive electrode active material, a negative electrode, and a solid electrolyte layer present between the positive electrode and the negative electrode. This is an all-solid-state secondary battery in which the total partial pressure of carbon dioxide and oxygen in the body is 200 Pa or less. In the formula (1), M is one or more elements selected from the group consisting of Co, Mn, Al and Mg. x, y, and z are values that satisfy all of 0.5 <x <1.2, 0.5 <y, 0 <z, and z = 1−y.

これにより本発明は、充放電時の正極活物質表面での炭酸リチウムの生成を抑制することができ、電気抵抗が抑制される。   Accordingly, in the present invention, the generation of lithium carbonate on the surface of the positive electrode active material during charge and discharge can be suppressed, and the electric resistance is suppressed.

本発明においては、外装体内の二酸化炭素および酸素を、不活性ガスで置換させて、二酸化炭素と酸素との分圧の合計を200Pa以下にすることができる。用いる不活性ガスとしては、不活性ガスが、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノンからなる群から選ばれる少なくとも1種以上の気体が好ましい。外装体内の二酸化炭素と酸素とを不活性ガスで置換する場合、二酸化炭素と酸素との分圧の合計の低下させるプロセスを簡略化する観点において有利である。   In the present invention, the total of the partial pressures of carbon dioxide and oxygen can be reduced to 200 Pa or less by replacing carbon dioxide and oxygen in the exterior body with an inert gas. The inert gas used is preferably at least one gas selected from the group consisting of helium, nitrogen, neon, argon, krypton, and xenon. In the case where carbon dioxide and oxygen in the exterior body are replaced with an inert gas, it is advantageous from the viewpoint of simplifying the process of reducing the total partial pressure of carbon dioxide and oxygen.

本発明の固体電解質層を構成する固体電解質は、第一元素として硫黄(S)を含有し、第二元素としてリチウム(Li)を含有し、第三元素としてケイ素(Si)、ホウ素(B)、リン(P)からなる群から選ばれる少なくとも1種以上の元素とを含有することが好ましい。上記の固体電解質はイオン伝導度が高いため、本発明のエネルギー密度の向上に寄与する。   The solid electrolyte constituting the solid electrolyte layer of the present invention contains sulfur (S) as the first element, lithium (Li) as the second element, and silicon (Si) and boron (B) as the third element. And at least one element selected from the group consisting of phosphorus (P). Since the above-mentioned solid electrolyte has high ionic conductivity, it contributes to the improvement of the energy density of the present invention.

本発明は、正極活物質として式(1)で表わされる遷移金属酸化物を含む正極と、負極と、正極と負極との間に配置される固体電解質層とを外装体内に設置させてなる全固体二次電池の、外装体内に存在する二酸化炭素および酸素の分圧を減少させる工程を含む全固体二次電池の製造方法を包含する。   The present invention relates to an entirety comprising a cathode including a transition metal oxide represented by the formula (1) as a cathode active material, an anode, and a solid electrolyte layer disposed between the cathode and the anode in an exterior body. The present invention also encompasses a method for manufacturing an all-solid secondary battery including a step of reducing the partial pressure of carbon dioxide and oxygen present in an outer package of the solid secondary battery.

二酸化炭素および酸素の分圧を減少させる工程は、全固体二次電池の外装体内の二酸化炭素と酸素との分圧の合計が200Pa以下になるまで行われる。これにより、全固体二次電池の電池構造内における二酸化炭素等の存在量を低減できる。その結果、抵抗成分となる炭酸リチウムの生成量を抑制できる。二酸化炭素および酸素の分圧を減少させる工程は、外装体内を真空排気してもよく、或いは外装体内の二酸化炭素および酸素の分圧を減少させる工程は、外装体内の二酸化炭素および酸素を不活性ガスで置換することにより行ってもよい。   The step of reducing the partial pressure of carbon dioxide and oxygen is performed until the total partial pressure of carbon dioxide and oxygen in the exterior body of the all solid state secondary battery becomes 200 Pa or less. Thereby, the abundance of carbon dioxide and the like in the battery structure of the all solid state secondary battery can be reduced. As a result, it is possible to suppress the amount of lithium carbonate that is a resistance component. In the step of reducing the partial pressure of carbon dioxide and oxygen, the outer casing may be evacuated, or the step of reducing the partial pressure of carbon dioxide and oxygen in the outer casing may be performed by inactivating the carbon dioxide and oxygen in the outer casing. It may be performed by replacing with a gas.

本発明は、ニッケル酸リチウムを正極活物質として用いる全固体二次電池のエネルギー密度を向上させることができる。   The present invention can improve the energy density of an all-solid secondary battery using lithium nickelate as a positive electrode active material.

本発明の全固体二次電池の例を示す平面概略図である。1 is a schematic plan view showing an example of an all solid state secondary battery of the present invention. 本発明の全固体二次電池の例を示す断面概略図である。FIG. 1 is a schematic sectional view showing an example of an all solid state secondary battery of the present invention. 本発明の全固体二次電池の電池反応後の外装体内の炭酸リチウムの存在量を測定した拡散反射法IRスペクトルの測定結果である。9 is a measurement result of an IR spectrum obtained by measuring the abundance of lithium carbonate in an outer package after a battery reaction of the all solid state secondary battery of the present invention.

[全固体二次電池]
本発明の全固体二次電池は、正極と、負極と、正極と負極との間に配置される固体電解質層とを外装体内に設置させた構造を備える。図1は、本発明の全固体二次電池の例の平面概略図であり、図2は本発明の全固体二次電池の例の断面概略図である。図1および図2において100は、全固体二次電池、201は正極、202は集電体、301は負極、302は集電体、400は固体電解質層、500は外装体である。
[All-solid secondary battery]
The all-solid-state secondary battery of the present invention has a structure in which a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode are provided in an outer package. FIG. 1 is a schematic plan view of an example of an all solid state secondary battery of the present invention, and FIG. 2 is a schematic sectional view of an example of an all solid state secondary battery of the present invention. 1 and 2, 100 is an all solid state secondary battery, 201 is a positive electrode, 202 is a current collector, 301 is a negative electrode, 302 is a current collector, 400 is a solid electrolyte layer, and 500 is an exterior body.

[正極]
本発明を構成する正極は、少なくとも正極活物質と固体電解質と導電剤と結着剤とを含有する。正極活物質としては、下記式(1)で表される遷移金属酸化物が用いられる。下記式(1)において、MはCo、Mn、AlおよびMgからなる群から選ばれる1種以上の元素である。また、x、y、zは、0.5<x<1.2と、0.5<yと、0<zと、z=1−yとをすべて満たす値である。
[Positive electrode]
The positive electrode constituting the present invention contains at least a positive electrode active material, a solid electrolyte, a conductive agent, and a binder. As the positive electrode active material, a transition metal oxide represented by the following formula (1) is used. In the following formula (1), M is one or more elements selected from the group consisting of Co, Mn, Al and Mg. Further, x, y, and z are values satisfying all of 0.5 <x <1.2, 0.5 <y, 0 <z, and z = 1−y.

上記の所定の遷移金属化合物は、層状岩塩型構造を有し、金属イオンの吸蔵および放出を可逆的に行うことができる。「層状」とは、シート状であることを意味する。「岩塩型構造」とは、結晶構造の一種である塩化ナトリウム型構造であって、陽イオンおよび陰イオンのそれぞれが形成する面心立方格子が、互いに単位格子の稜の1/2だけずれた構造をいう。式(1)に示される成分比を備える遷移金属化合物は、イオン伝導性が高い。そのため、本発明の全固体二次電池の放電容量を向上させることができる。また該遷移金属化合物は、化学的に安定である。   The above-mentioned predetermined transition metal compound has a layered rock salt type structure, and can reversibly store and release metal ions. “Layered” means a sheet. The “rock salt type structure” is a sodium chloride type structure, which is a kind of crystal structure, in which face-centered cubic lattices formed by cations and anions are shifted from each other by の of a unit cell edge. Refers to the structure. The transition metal compound having the component ratio represented by the formula (1) has high ionic conductivity. Therefore, the discharge capacity of the all solid state secondary battery of the present invention can be improved. The transition metal compound is chemically stable.

式(1)で表される遷移金属酸化物の具体例としては、リチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルト複合酸化物(LiNiCoO2)、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMnO2)、およびこれらの酸化物の金属の一部をマグネシウムあるいはアルミニウムで置換したものが挙げられる。好ましくは、LiNiCoAlO2、LiNiCoMnO2が用いられる。これらは、単独で用いてもよく併用してもよい。 Specific examples of the transition metal oxide represented by the formula (1) include lithium nickel composite oxide (LiNiO 2 ), lithium nickel cobalt composite oxide (LiNiCoO 2 ), and lithium nickel cobalt manganese composite oxide (LiNiCoMnO 2 ). And those obtained by substituting a part of the metal of these oxides with magnesium or aluminum. Preferably, LiNiCoAlO 2 or LiNiCoMnO 2 is used. These may be used alone or in combination.

本発明の正極活物質は市販のものを用いてもよく、公知の合成方法により製造してもよい。例として、LiNiCoAlO2を合成する場合、水酸化アルミニウムと、水酸化リチウムと炭酸リチウムと水酸化コバルトとを混合し、700〜800℃で焼成して合成することができる。水酸化リチウムは揮発性が高いため、出発原料の混合時に過剰に添加される。焼成後、得られた生成物は、正極活物質として適切な粒子径になるまで粉砕される。本発明において、固体電解質との界面を大きく確保する観点から、正極活物質の粒子径は小さい方が好ましい。具体的な粒子径の範囲としては、0.1〜20μmが好ましく、1〜10μmがより好ましい。 The positive electrode active material of the present invention may be a commercially available one, or may be manufactured by a known synthesis method. As an example, when synthesizing LiNiCoAlO 2 , aluminum hydroxide, lithium hydroxide, lithium carbonate, and cobalt hydroxide can be mixed and fired at 700 to 800 ° C. for synthesis. Since lithium hydroxide has high volatility, it is added in excess when mixing the starting materials. After calcination, the obtained product is pulverized until it has a particle diameter suitable as a positive electrode active material. In the present invention, from the viewpoint of securing a large interface with the solid electrolyte, it is preferable that the particle size of the positive electrode active material be small. A specific range of the particle diameter is preferably from 0.1 to 20 μm, more preferably from 1 to 10 μm.

上記に例示するように、本発明の正極活物質は、その合成時に炭酸リチウムが過剰に添加される結果、生成物に未反応の水酸化リチウムが付着しやすい。該水酸化リチウムは、充放電時に全固体二次電池の外装体内に存在する二酸化炭素や酸素と反応して抵抗成分を生成すると推察される。抵抗成分は、正極活物質と固体電解質との界面抵抗になって全固体二次電池の出力低下を招来する。そのため抵抗成分の生成量抑制が望まれる。本発明は、外装体内の二酸化炭素や酸素の量を所定の分圧になるまで低減させる。これにより上記抵抗成分の生成を抑制することができる。   As exemplified above, in the positive electrode active material of the present invention, as a result of excessive addition of lithium carbonate during its synthesis, unreacted lithium hydroxide tends to adhere to the product. It is presumed that the lithium hydroxide reacts with carbon dioxide and oxygen present in the exterior of the all-solid secondary battery during charge and discharge to generate a resistance component. The resistance component becomes an interface resistance between the positive electrode active material and the solid electrolyte, which causes a decrease in output of the all-solid secondary battery. Therefore, suppression of the generation amount of the resistance component is desired. The present invention reduces the amount of carbon dioxide and oxygen in the exterior body until a predetermined partial pressure is reached. Thereby, generation of the resistance component can be suppressed.

正極には正極活物質と固体電解質との界面の面積を大きく確保するため、正極に固体電解質を含有させることも好ましい。正極に含有させる固体電解質は、後に説明する固体電解質層を構成する固体電解質と同じものを用いてもよく、異なるものを用いてもよい。具体例については、固体電解質層の説明に記載する。   In order to ensure a large area at the interface between the positive electrode active material and the solid electrolyte in the positive electrode, it is also preferable to include the solid electrolyte in the positive electrode. The solid electrolyte contained in the positive electrode may be the same as or different from the solid electrolyte constituting the solid electrolyte layer described later. Specific examples will be described in the description of the solid electrolyte layer.

正極に含有される導電剤としては、導電性向上に寄与する公知の材料を制限なく用いることができる。具体例としては、ケッチェンブラック、アセチレンブラック、グラファイト、天然黒鉛、人造黒鉛等が挙げられる。   As the conductive agent contained in the positive electrode, a known material that contributes to improvement in conductivity can be used without limitation. Specific examples include Ketjen black, acetylene black, graphite, natural graphite, artificial graphite, and the like.

正極に含有される結着剤としては、分子量100〜100000の炭化水素系高分子化合物が好ましく用いられる。分子量が100未満の化合物は結着性が弱いため、本発明に用いられる結着剤として適当でない。分子量が100000を超える化合物は、集電体上に正極を形成するときに調製する正極合剤の粘度を高くするため、正極スラリーの塗工性を低下させる。   As the binder contained in the positive electrode, a hydrocarbon polymer compound having a molecular weight of 100,000 to 100,000 is preferably used. Compounds having a molecular weight of less than 100 have poor binding properties and are not suitable as binders used in the present invention. A compound having a molecular weight of more than 100,000 increases the viscosity of the positive electrode mixture prepared when forming the positive electrode on the current collector, and thus reduces the coatability of the positive electrode slurry.

結着剤の例としては、スチレンブタジエンブロック重合体(SBS)、スチレンエチレンブタジエンスチレンブロック重合体(SEBS)、スチレン−(スチレンブタジエン)−スチレンブロック重合体等のスチレン系熱可塑性エラストマー類、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、天然ゴム(NR)、イソプレンゴム(IR)、エチレン−プロピレン−ジエン三元共重合体(EPDM)および、これらの部分水素化物や完全水素化物等を挙げられる。その他ポリスチレン、ポリオレフィン、オレフィン系熱可塑性エラストマー、ポリシクロオレフィン、シリコーン樹脂等が挙げられる。結着剤は一種用いてもよく、二種以上を併用してもよい。   Examples of the binder include styrene-based thermoplastic elastomers such as styrene-butadiene block polymer (SBS), styrene-ethylene-butadiene-styrene block polymer (SEBS), styrene- (styrene-butadiene) -styrene block polymer, and styrene-butadiene. Rubber (SBR), butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR), ethylene-propylene-diene terpolymer (EPDM), and partially or completely hydrides thereof Can be Other examples include polystyrene, polyolefin, olefin-based thermoplastic elastomer, polycycloolefin, and silicone resin. A single binder may be used, or two or more binders may be used in combination.

本発明の正極の形成方法は限定されないが、好ましい方法として、スラリー状の正極合剤を集電体上に塗布後、乾燥させて溶媒を除去する方法がある。集電体は導電性材料であれば制限なく用いることができる。例としては、シート状またはフィルム状の銅、ニッケル、チタン、アルミニウム等が挙げられる。スラリー状の正極合剤の調製で用いられる溶媒としては、非極性溶媒が選択される。具体的にはトルエン、キシレン、エチルベンゼン等の芳香族炭化水素やペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素が挙げられる。これにより正極合剤の性状をスラリー状に維持できる。   The method for forming the positive electrode of the present invention is not limited, but a preferred method is to apply a slurry-type positive electrode mixture onto a current collector and then dry it to remove the solvent. The current collector can be used without limitation as long as it is a conductive material. Examples include sheet or film copper, nickel, titanium, aluminum and the like. A non-polar solvent is selected as a solvent used for preparing the slurry-like positive electrode mixture. Specific examples include aromatic hydrocarbons such as toluene, xylene and ethylbenzene, and aliphatic hydrocarbons such as pentane, hexane and heptane. Thereby, the properties of the positive electrode mixture can be maintained in a slurry state.

正極100質量部における上記の成分の含有量について、正極活物質は、60〜95質量部が好ましく、70〜90質量部がより好ましい。固体電解質は、5〜40質量部が好ましく、10〜30質量部がより好ましい。上記の好ましい範囲内で各成分を含有させることにより、イオン伝導性が良好な正極を形成することができる。   With respect to the content of the above components in 100 parts by mass of the positive electrode, the positive electrode active material is preferably 60 to 95 parts by mass, more preferably 70 to 90 parts by mass. The solid electrolyte is preferably from 5 to 40 parts by mass, more preferably from 10 to 30 parts by mass. By containing each component within the above preferred range, a positive electrode having good ion conductivity can be formed.

正極合剤の集電体への塗布は、ダイコーター、ドクターブレード等を用いることができる。集電体上に塗布された正極合剤は、熱処理し、溶媒を除去する。熱処理温度は、40〜100℃が好ましく、熱処理時間は10〜30分間が好ましい。   The positive electrode mixture can be applied to the current collector using a die coater, a doctor blade, or the like. The positive electrode mixture applied on the current collector is heat-treated to remove the solvent. The heat treatment temperature is preferably 40 to 100 ° C., and the heat treatment time is preferably 10 to 30 minutes.

[固体電解質層]
本発明の固体電解質層は、固体電解質に加え、結着剤や導電剤を含有させてもよい。結着剤や導電剤は、正極に含有させる結着剤や導電剤と同じものを用いることができる。
[Solid electrolyte layer]
The solid electrolyte layer of the present invention may contain a binder and a conductive agent in addition to the solid electrolyte. The same binder and conductive agent to be contained in the positive electrode can be used as the binder and the conductive agent.

本発明に用いられる固体電解質は、リン酸系固体電解質、硫化物系固体電解質等、従来公知の固体電解質を用いることができる。好ましくは、第一元素として硫黄(S)を含有し、第二元素としてリチウム(Li)を含有し、第三元素としてケイ素(Si)、ホウ素(B)、リン(P)からなる群から選ばれる少なくとも1種以上の元素とを含有する、硫化物系固体電解質が用いられる。イオン伝導度を向上させるため、上記の元素に加え、ゲルマニウム(Ge)等を含有させることも好ましい。   As the solid electrolyte used in the present invention, a conventionally known solid electrolyte such as a phosphoric acid-based solid electrolyte and a sulfide-based solid electrolyte can be used. Preferably, the first element contains sulfur (S), the second element contains lithium (Li), and the third element is selected from the group consisting of silicon (Si), boron (B), and phosphorus (P). A sulfide-based solid electrolyte containing at least one or more elements is used. In order to improve ionic conductivity, it is also preferable to include germanium (Ge) and the like in addition to the above elements.

硫化物系固体電解質の具体例としては、Li3PS4、Li4P2S7、Li4SiS4、50Li4SiO4・50Li3BO3等が挙げられる。硫化物系固体電解質は、非晶質、結晶体、ガラス、ガラスセラミックのいずれでもよいが、非晶質のものはイオン伝導度が高い傾向にあるため好ましく用いられる。本発明に用いられる硫化物系固体電解質のイオン伝導度は、好ましくは10-2〜10-5S/cmである。イオン伝導度が10-5S/cmより低い固体電解質を用いる場合は、電池の充放電容量が著しく低下する。 Specific examples of the sulfide-based solid electrolyte include Li 3 PS 4 , Li 4 P 2 S 7 , Li 4 SiS 4 , 50Li 4 SiO 4 , 50Li 3 BO 3 and the like. The sulfide-based solid electrolyte may be any of amorphous, crystalline, glass, and glass-ceramic, but amorphous is preferably used because it tends to have high ionic conductivity. The ionic conductivity of the sulfide-based solid electrolyte used in the present invention is preferably 10 -2 to 10 -5 S / cm. When a solid electrolyte having an ionic conductivity lower than 10 −5 S / cm is used, the charge / discharge capacity of the battery is significantly reduced.

硫化物系固体電解質層の形成方法は限定されないが、スラリー状の固体電解質合剤をポリエチレンテレフタレートからなる支持体上に塗布後、乾燥させて溶媒を除去する方法が挙げられる。溶媒除去時の熱処理温度は、40〜100℃が好ましく、熱処理時間は10〜30分間が好ましい。得られた固体電解質層は支持体から剥離させて二次電池構造内に組み込まれる。他法としては、固体電解質粉末と結着剤の粉末とをボールミル等を用いて撹拌後加圧成形する方法がある。   The method for forming the sulfide-based solid electrolyte layer is not limited, but includes a method in which a slurry-like solid electrolyte mixture is applied on a support made of polyethylene terephthalate and then dried to remove the solvent. The heat treatment temperature at the time of solvent removal is preferably 40 to 100 ° C., and the heat treatment time is preferably 10 to 30 minutes. The obtained solid electrolyte layer is separated from the support and incorporated into the secondary battery structure. As another method, there is a method in which the solid electrolyte powder and the binder powder are pressure-formed after stirring using a ball mill or the like.

上記合剤には、固体電解質の他、結着剤や無機化合物が添加される。結着剤や無機化合物は、正極合剤に添加可能なものを同様に用いることができる。溶媒100質量部に対する固体電解質の添加量は90〜99.9質量部が好ましく、95〜99.5質量部がより好ましい。固体電解質合剤の塗布方法や乾燥方法は、正極合剤と同様である。   A binder and an inorganic compound are added to the above mixture in addition to the solid electrolyte. As the binder and the inorganic compound, those which can be added to the positive electrode mixture can be similarly used. The amount of the solid electrolyte added to 100 parts by mass of the solvent is preferably 90 to 99.9 parts by mass, and more preferably 95 to 99.5 parts by mass. The method for applying and drying the solid electrolyte mixture is the same as that for the positive electrode mixture.

固体電解質の製造方法としてはメカニカルミリング法(MM法)を適用できる。MM法は、反応器内に上記の出発原料とボールミル等を入れ強撹拌し、出発原料を微粒子化して混合させる方法である。その場合、出発原料としてのLi2SとP2S5とを混合比として60:40〜80:20の範囲内で混合させることが好ましい。Li2Sの混合量が所定の範囲を超えて少ない場合は、全固体二次電池用途に適するイオン伝導度を得られない。 As a method for producing a solid electrolyte, a mechanical milling method (MM method) can be applied. The MM method is a method in which the above-mentioned starting material and a ball mill or the like are placed in a reactor, vigorously stirred, and the starting material is atomized and mixed. In this case, it is preferable to mix Li 2 S and P 2 S 5 as starting materials in a mixing ratio of 60:40 to 80:20. When the mixing amount of Li 2 S is less than a predetermined range, an ion conductivity suitable for use in an all-solid secondary battery cannot be obtained.

支持体に塗布された固体電解質混合液は、熱処理を行い、溶媒を除去する。熱処理後の固体電解質混合液を真空乾燥させることで、本発明に用いる固体電解質層を得ることができる。真空乾燥は、好ましくは30〜100℃、より好ましくは40〜80℃で行われる。上記の固体電解質層は、支持体から剥離させて用いられる。その膜厚は、50〜300μmが好ましい。   The solid electrolyte mixture applied to the support is subjected to a heat treatment to remove the solvent. By vacuum-drying the solid electrolyte mixed solution after the heat treatment, the solid electrolyte layer used in the present invention can be obtained. The vacuum drying is preferably performed at 30 to 100 ° C, more preferably at 40 to 80 ° C. The above-mentioned solid electrolyte layer is used after being separated from the support. The thickness is preferably 50 to 300 μm.

[負極]
本発明を構成する負極は、少なくとも負極活物質と結着剤とを含有し、固体電解質を含有させることも好ましい。固体電解質を含有させることにより、負極活物質と固体電解質との界面の面積を増大させることができ、イオンの伝導経路を多く確保できる。負極活物質としては、人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛の混合物、人造黒鉛を被覆させた天然黒鉛等が挙げられる。固体電解質は、公知の固体電解質を用いることができる。上記の固体電解質層に含有される固体電解質と同じものを用いてもよく、異なるものを用いてもよい。
[Negative electrode]
The negative electrode constituting the present invention preferably contains at least a negative electrode active material and a binder, and also contains a solid electrolyte. By including the solid electrolyte, the area of the interface between the negative electrode active material and the solid electrolyte can be increased, and a large number of ion conduction paths can be secured. Examples of the negative electrode active material include artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, and natural graphite coated with artificial graphite. As the solid electrolyte, a known solid electrolyte can be used. The same or different solid electrolytes may be used as the solid electrolytes contained in the solid electrolyte layer.

負極の形成方法は限定されないが、正極の形成方法と同様の方法を適用できる。すなわち負極活物質、結着剤、導電剤、固体電解質等を添加したスラリー状の合剤を調製し、該負極合剤を集電体上に塗布、乾燥させて形成することができる。負極100質量部における各成分の含有量について、負極活物質は、60〜95質量部が好ましく、75〜90質量部がより好ましい。固体電解質は、5〜40質量部が好ましく、10〜25質量部がより好ましい。上記の好ましい範囲内で各成分を含有させることにより、イオン伝導性が良好な負極を形成することができる。負極合剤の塗布方法や乾燥方法は正極合剤と同様である。   Although a method for forming the negative electrode is not limited, a method similar to the method for forming the positive electrode can be applied. That is, it can be formed by preparing a slurry mixture to which a negative electrode active material, a binder, a conductive agent, a solid electrolyte and the like are added, coating the negative electrode mixture on a current collector, and drying. With respect to the content of each component in 100 parts by mass of the negative electrode, the negative electrode active material is preferably 60 to 95 parts by mass, more preferably 75 to 90 parts by mass. The solid electrolyte is preferably 5 to 40 parts by mass, more preferably 10 to 25 parts by mass. By containing each component within the above preferred range, a negative electrode having good ion conductivity can be formed. The method for applying and drying the negative electrode mixture is the same as that for the positive electrode mixture.

[全固体二次電池の製造方法]
本発明の全固体二次電池の製造方法においては、まず、上記に説明した正極と負極との間に固体電解質層を配置させ、これを加圧成型してセルを組み立てる。該セルは外装体内に設置する。セル設置後、外装体内から二酸化炭素と酸素との分圧を減少させ、外装体を加熱圧着等により封止する。外装体としては、アルミニウム、ステンレス等のラミネートパック、円筒型や角型の金属製容器が好適である。
[Method of manufacturing all solid state secondary battery]
In the method for manufacturing an all-solid secondary battery according to the present invention, first, a solid electrolyte layer is disposed between the above-described positive electrode and negative electrode, and this is molded under pressure to assemble the cell. The cell is installed in an exterior body. After the cell is installed, the partial pressure of carbon dioxide and oxygen is reduced from the exterior body, and the exterior body is sealed by heat compression or the like. As the outer package, a laminate pack of aluminum, stainless steel, or the like, or a cylindrical or square metal container is preferable.

[二酸化炭素および酸素の分圧を減少させる工程]
本発明においては、本工程後の外装体内の二酸化炭素と酸素との分圧の合計が、200Pa以下になるまで二酸化炭素および酸素の分圧を減少させる。上記の分圧の合計値は、より好ましい分圧の合計値としては、20Pa以下であり、少ないほどよい。これにより全固体二次電池の充放電に際して外装体内で起こる水酸化リチウムと、二酸化炭素や酸素との反応による炭酸リチウムの生成を抑制できる。
[Step of reducing the partial pressure of carbon dioxide and oxygen]
In the present invention, the partial pressures of carbon dioxide and oxygen are reduced until the total partial pressure of carbon dioxide and oxygen in the exterior body after this step becomes 200 Pa or less. The total value of the above partial pressures is more preferably 20 Pa or less, and the smaller the better, the better. Thereby, the production of lithium carbonate due to the reaction between lithium hydroxide, carbon dioxide, and oxygen that occur in the outer package during charging and discharging of the all-solid secondary battery can be suppressed.

本発明は、正極活物質として所定の遷移金属酸化物を用いる。この遷移金属酸化物は、その出発原料である水酸化リチウムを付着させた状態で用いられる場合がある。しかし、本発明は、外装体内で二酸化炭素と酸素との分圧の合計が上記の所定の値に低減されるため、水酸化リチウムが付着する遷移金属酸化物を正極活物質として用いても、炭酸リチウムの生成量が少なくすみ、正極活物質と固体電解質との間の界面抵抗を低減できる。   In the present invention, a predetermined transition metal oxide is used as a positive electrode active material. This transition metal oxide may be used in a state where lithium hydroxide as its starting material is adhered. However, according to the present invention, since the total partial pressure of carbon dioxide and oxygen is reduced to the above-described predetermined value in the exterior body, even if a transition metal oxide to which lithium hydroxide is attached is used as the positive electrode active material, The amount of lithium carbonate generated can be reduced, and the interface resistance between the positive electrode active material and the solid electrolyte can be reduced.

二酸化炭素と酸素との分圧を減少させる好ましい方法としては、外装体内を真空排気する、あるいは不活性ガスによる二酸化炭素や酸素の置換が挙げられる。真空排気する場合は、真空機を用いて行うことができる。真空排気後の外装体内に不活性ガスを導入してもよい。また、不活性雰囲気下でセル作製および外装体内へのセル設置を行えば、真空排気のプロセスを省略でき、製造コストを低減できる。不活性ガスとしては、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノンからなる群から選ばれる少なくとも1種以上の気体が好ましく用いられる。   Preferred methods for reducing the partial pressure between carbon dioxide and oxygen include evacuating the exterior body or replacing carbon dioxide and oxygen with an inert gas. When evacuation is performed, a vacuum machine can be used. An inert gas may be introduced into the package after evacuation. In addition, if the cell is manufactured and the cell is placed in the outer package in an inert atmosphere, the evacuation process can be omitted, and the manufacturing cost can be reduced. As the inert gas, at least one gas selected from the group consisting of helium, nitrogen, neon, argon, krypton, and xenon is preferably used.

図3は、下記のセル構成を備えるセルをアルミニウムラミネートからなる外装体に封入した全固体二次電池の1サイクル後の外装体内の炭酸リチウムの拡散反射法IRスペクトルの測定結果である。図3において実線は、二酸化炭素および酸素の分圧を減少させる工程を真空排気により行った場合を示す。破線は、二酸化炭素および酸素の分圧を減少させる工程を、真空排気後アルゴンガスで置換させて行った場合を示す。一点鎖線は二酸化炭素および酸素の分圧を減少させる工程を行わなかった場合を示す。二酸化炭素および酸素の分圧を減少させる工程は、二酸化炭素と酸素との分圧の合計値が20Paになるまで行った。   FIG. 3 is a measurement result of an IR spectrum of lithium carbonate in a case after one cycle of an all-solid secondary battery in which a cell having the following cell configuration is sealed in a case made of an aluminum laminate. In FIG. 3, a solid line shows a case where the step of reducing the partial pressure of carbon dioxide and oxygen is performed by evacuation. The broken line shows the case where the step of reducing the partial pressure of carbon dioxide and oxygen is performed by evacuating and replacing with argon gas. The dashed line indicates the case where the step of reducing the partial pressure of carbon dioxide and oxygen was not performed. The step of reducing the partial pressure of carbon dioxide and oxygen was performed until the total partial pressure of carbon dioxide and oxygen reached 20 Pa.

[セル構成]
(集電体)Al/(正極)LiNi0.8Co0.15Al0.05/(固体電解質層)Li2S-P2S5/(負極)黒鉛/(集電体)Cu
[Cell configuration]
(Current collector) Al / (Positive electrode) LiNi 0.8 Co 0.15 Al 0.05 / (Solid electrolyte layer) Li 2 SP 2 S 5 / (Negative electrode) Graphite / (Current collector) Cu

[拡散反射法IRスペクトル測定方法]
全固体二次電池をアルゴンBOX内で解体し、削りだした正極活物質をサンプルホルダーに充填し、大気に触れないように真空引き用チャンバーを用いてJasco社製 FT/IR-6200に移し、拡散反射法IR測定を行った。
[Diffuse reflection method IR spectrum measurement method]
Disassemble the all-solid-state secondary battery in an argon box, fill the sample holder with the shaved cathode active material, and transfer it to Jasco FT / IR-6200 using a vacuum chamber so that it does not come into contact with the atmosphere. Diffuse reflection IR measurement was performed.

図3に示されるように、二酸化炭素および酸素の分圧を減少させる工程を行わない場合、1400〜1600cm−1の範囲内にピークが認められる。この測定結果から、外装体内に炭酸リチウムが顕著に存在することが読み取れる。一方、本発明所定の二酸化炭素および酸素の分圧を減少させる工程を行う場合、上記の範囲内にピークは認められない。すなわち外装体内の炭酸リチウムの存在量が極めて少なく、正極活物質に付着する水酸化リチウムと二酸化炭素等との反応により生成した炭酸リチウムの生成量が抑制されたことが読み取れる。すなわち本発明は、外装体内の二酸化炭素および酸素の分圧を減少させることにより、炭酸リチウム生成反応を抑制し、正極活物質と固体電解質との界面における抵抗を低減することができる。 As shown in FIG. 3, when the step of reducing the partial pressure of carbon dioxide and oxygen is not performed, a peak is observed in the range of 1400 to 1600 cm −1 . From this measurement result, it can be read that lithium carbonate is remarkably present in the exterior body. On the other hand, in the case where the predetermined step of reducing the partial pressure of carbon dioxide and oxygen according to the present invention is performed, no peak is observed within the above range. That is, it can be seen that the amount of lithium carbonate present in the exterior body was extremely small, and the amount of lithium carbonate generated by the reaction between lithium hydroxide and carbon dioxide or the like adhering to the positive electrode active material was suppressed. That is, according to the present invention, by reducing the partial pressure of carbon dioxide and oxygen in the outer package, the lithium carbonate generation reaction can be suppressed, and the resistance at the interface between the positive electrode active material and the solid electrolyte can be reduced.

本発明を実施例を用いて更に説明する。ただし、本発明は以下の実施例に限定されない。   The present invention will be further described with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
(正極構造体の作製)
正極活物質としての三元系粉末と、硫化物系固体電解質としてのLi2S-P2S5(80:20モル%)非晶質粉末と、正極導電性物質(導電助剤)としての気相成長炭素繊維粉末とを60:35:5の質量%比で秤量し、自転公転ミキサを用いて混合した。
[Example 1]
(Preparation of positive electrode structure)
Ternary powder as a positive electrode active material, Li 2 SP 2 S 5 (80:20 mol%) amorphous powder as a sulfide-based solid electrolyte, and gas phase as a positive electrode conductive material (conductive auxiliary) The growth carbon fiber powder was weighed at a mass ratio of 60: 35: 5, and mixed using a rotation and revolution mixer.

この混合粉に、結着剤としてのSBRが溶解した脱水キシレン溶液をSBRが混合粉の総質量に対して5.0質量%となるように添加して1次混合液を生成した。さらに、この1次混合液に、粘度調整のための脱水キシレンを適量添加することで、2次混合液を生成した。さらに、混合粉の分散性を向上させるために、直径5mmのジルコニアボールを、空間、混合粉、ジルコニアボールがそれぞれ混練容器の全容積に対して1/3ずつを占めるように2次混合液に投入した。生成された3次混合液を自転公転ミキサに投入し、3000rpmで3分撹拌することで、正極合剤を生成した。   To this mixed powder, a dehydrated xylene solution in which SBR as a binder was dissolved was added so that SBR was 5.0% by mass with respect to the total mass of the mixed powder, to produce a primary mixed solution. Further, an appropriate amount of dehydrated xylene for adjusting the viscosity was added to the primary mixed solution to form a secondary mixed solution. Further, in order to improve the dispersibility of the mixed powder, a zirconia ball having a diameter of 5 mm is added to the secondary mixed liquid so that the space, the mixed powder, and the zirconia ball each occupy 1/3 of the total volume of the kneading vessel. I put it in. The generated tertiary mixed solution was charged into a rotation and revolution mixer, and stirred at 3000 rpm for 3 minutes to produce a positive electrode mixture.

正極集電体として厚さ15μmのアルミ箔集電体を用意し、卓上スクリーン印刷機に正極集電体を載置し、150μmのメタルマスクを用いて正極合剤をシート上に塗工した。その後、正極合剤が塗工されたシートを60℃のホットプレートで30分乾燥させた後、80℃で12時間真空乾燥させた。これにより、正極集電体上に正極を形成した。乾燥後の正極集電体及び正極の総厚さは165μm前後であった。   An aluminum foil current collector having a thickness of 15 μm was prepared as a positive electrode current collector, the positive electrode current collector was placed on a desktop screen printer, and a positive electrode mixture was applied on a sheet using a 150 μm metal mask. Thereafter, the sheet coated with the positive electrode mixture was dried on a hot plate at 60 ° C. for 30 minutes, and then vacuum-dried at 80 ° C. for 12 hours. Thus, a positive electrode was formed on the positive electrode current collector. The total thickness of the dried positive electrode current collector and the positive electrode was about 165 μm.

正極集電体及び正極からなるシートをロールギャップ10μmのロールプレス機を用いて圧延することで、正極構造体を生成した。正極構造体の厚みは120μm前後であった。   A positive electrode structure was produced by rolling a sheet including the positive electrode current collector and the positive electrode using a roll press having a roll gap of 10 μm. The thickness of the positive electrode structure was around 120 μm.

[負極構造体の作製]
負極活物質としての黒鉛粉末(80℃で24時間真空乾燥したもの)と、結着剤としてのPVdFとを95.0:5.0の質量%比で秤量した。そして、これらの材料と適量のNMPとを自転公転ミキサに投入し、3000rpmで3分撹拌した後、1分脱泡処理することで、負極塗工液を生成した。
[Preparation of negative electrode structure]
Graphite powder (which was vacuum-dried at 80 ° C. for 24 hours) as a negative electrode active material and PVdF as a binder were weighed at a mass ratio of 95.0: 5.0. Then, these materials and an appropriate amount of NMP were put into a rotation and revolution mixer, stirred at 3000 rpm for 3 minutes, and then subjected to defoaming treatment for 1 minute to produce a negative electrode coating liquid.

負極集電部材として厚さ16μmの銅箔集電部材を用意し、ブレードを用いて銅箔集電部材上に負極塗工液を塗工した。銅箔集電部材上の負極塗工液の厚さ(ギャップ)は150μm前後であった。負極塗工液が塗工されたシートを、80℃に加熱された乾燥機内に収納し、15分乾燥した。さらに、乾燥後のシートを80℃で24時間真空乾燥を行った。これにより、負極構造体を生成した。正極構造体の厚みは140μm前後であった。   A copper foil current collector having a thickness of 16 μm was prepared as a negative electrode current collector, and a negative electrode coating solution was applied on the copper foil current collector using a blade. The thickness (gap) of the negative electrode coating solution on the copper foil current collecting member was about 150 μm. The sheet coated with the negative electrode coating liquid was stored in a dryer heated to 80 ° C., and dried for 15 minutes. Further, the dried sheet was vacuum dried at 80 ° C. for 24 hours. Thus, a negative electrode structure was produced. The thickness of the positive electrode structure was around 140 μm.

[電解質層の作製]
硫化物系固体電解質としてのLi2S-P2S5(80:20モル%)非晶質粉末に、SBRが溶解した脱水キシレン溶液をSBRが混合粉の総質量に対して2.0質量%となるように添加して1次混合液を生成した。さらに、この1次混合液に、粘度調整のための脱水キシレンを適量添加することで、2次混合液を生成した。さらに、混合粉の分散性を向上させるために、直径5mmのジルコニアボールを、空間、混合粉、ジルコニアボールがそれぞれ混練容器の全容積に対して1/3ずつを占めるように3次混合液に投入した。これにより生成された3次混合液を自転公転ミキサに投入し、3000rpmで3分撹拌することで、電解質層塗工液を生成した。
[Preparation of electrolyte layer]
Dehydrated xylene solution in which SBR is dissolved in Li 2 SP 2 S 5 (80:20 mol%) amorphous powder as a sulfide-based solid electrolyte so that SBR becomes 2.0 mass% with respect to the total mass of the mixed powder. To form a primary mixture. Further, an appropriate amount of dehydrated xylene for adjusting the viscosity was added to the primary mixed solution to form a secondary mixed solution. Further, in order to improve the dispersibility of the mixed powder, a zirconia ball having a diameter of 5 mm is added to the tertiary mixed liquid such that the space, the mixed powder, and the zirconia ball each occupy 1/3 of the total volume of the kneading vessel. I put it in. The tertiary mixed liquid thus generated was put into a rotation and revolution mixer, and stirred at 3000 rpm for 3 minutes to generate an electrolyte layer coating liquid.

卓上スクリーン印刷機に負極構造体を載置し、500μmのメタルマスクを用いて電解質層塗工液を負極構造体上に塗工した。その後、電解質層塗工液が塗工されたシートを40℃のホットプレートで10分乾燥させた後、40℃で12時間真空乾燥させた。これにより、負極構造体上に電解質層を形成した。乾燥後の電解質層の総厚さは300μm前後であった。   The negative electrode structure was placed on a desktop screen printer, and a coating liquid for an electrolyte layer was applied on the negative electrode structure using a 500 μm metal mask. Thereafter, the sheet coated with the electrolyte layer coating solution was dried on a hot plate at 40 ° C. for 10 minutes, and then vacuum dried at 40 ° C. for 12 hours. Thus, an electrolyte layer was formed on the negative electrode structure. The total thickness of the dried electrolyte layer was about 300 μm.

[全固体二次電池の組立て]
負極構造体及び固体電解質層シート及び正極構造体をそれぞれトムソン刃で打ちぬき、シートの電解質層と正極構造体の正極とをロールギャップ150μmのロールプレス機を用いたドライラミネーション法により貼り合わせることで、固体電池の単セルを組み立てた。
[Assembly of all solid state secondary battery]
The negative electrode structure, the solid electrolyte layer sheet, and the positive electrode structure are each punched out with a Thomson blade, and the electrolyte layer of the sheet and the positive electrode of the positive electrode structure are bonded by a dry lamination method using a roll press having a roll gap of 150 μm. Then, a single cell of a solid battery was assembled.

[全固体二次電池の封入]
組み立てた単セルを、端子を取り付けたアルミニウムラミネートフィルムに入れ、真空機で100Paまで真空排気してヒートシールを行いパックした。真空排気後の外装体内の酸素および二酸化炭素の分圧の合計値は、20Paであった。
[Enclosure of all solid state secondary batteries]
The assembled single cell was placed in an aluminum laminated film to which terminals were attached, evacuated to 100 Pa with a vacuum machine, and heat-sealed to pack. The total value of the partial pressures of oxygen and carbon dioxide in the outer package after evacuation was 20 Pa.

[固体電池内部の圧力測定]
固体電池をオイル中に浸し、アルミニウムラミネートフィルムを破断して、電池の中から出てくるガスの量を調べた。電池の内部体積と発生したガス量との比較から、電池内の圧力を求めた。
[Measurement of pressure inside solid state battery]
The solid battery was immersed in oil, the aluminum laminate film was broken, and the amount of gas coming out of the battery was examined. From the comparison between the internal volume of the battery and the amount of generated gas, the pressure inside the battery was determined.

[固体電池内部の雰囲気測定方法]
シリンジを用いて、アルミニウムラミネートフィルム内のガスを採取し、ガスクロマトグラフィーを用いてガスの成分を測定し、電池内の酸素および二酸化炭素の割合を調べた。
[Method for measuring atmosphere inside solid state battery]
The gas in the aluminum laminate film was sampled using a syringe, and the components of the gas were measured using gas chromatography to determine the proportions of oxygen and carbon dioxide in the battery.

[固体電池内部の分圧]
上記で求めた、電池内部の圧力と、電池内の酸素および二酸化炭素の割合から、酸素および二酸化炭素の分圧を計算した。
[Partial pressure inside solid state battery]
The partial pressures of oxygen and carbon dioxide were calculated from the pressure inside the battery and the ratios of oxygen and carbon dioxide in the battery determined above.

[実施例2−7、比較例1−11]
正極活物質を表1または表2に記載した物質とした他は、実施例1と同様にして正極構造体と負極構造体と固体電解質層とを作製し、アルミニウムラミネートフィルムの外装体に内包させた。その後、表1に記載した方法で二酸化炭素および酸素の分圧を減少させる工程を行いヒートシールを行いパックして、実施例2−7および比較例1−11とした。
[Example 2-7, Comparative example 1-11]
A positive electrode structure, a negative electrode structure, and a solid electrolyte layer were prepared in the same manner as in Example 1, except that the positive electrode active material was changed to a material described in Table 1 or Table 2, and was included in an aluminum laminate film package. Was. Thereafter, a step of reducing the partial pressure of carbon dioxide and oxygen was performed by the method described in Table 1, heat sealing was performed, and the resultant was packed to obtain Example 2-7 and Comparative Example 1-11.

実施例1−7および比較例1−11について外装体内の雰囲気と単セル容量と放電容量維持率とを測定した。測定結果を表1および表2に示す。   With respect to Example 1-7 and Comparative Example 1-11, the atmosphere, the single cell capacity, and the discharge capacity retention rate of the package were measured. Tables 1 and 2 show the measurement results.

[単セル容量の評価方法]
単セルの容量(Ah)を東洋システム製充放電評価装置 TOSCAT−3100により測定した。表1および表2においては、実施例1の容量値を100として実施例2−7および比較例1−11の容量値を指数化した。
[Evaluation method for single cell capacity]
The capacity (Ah) of the single cell was measured by a charge / discharge evaluation device TOSCAT-3100 manufactured by Toyo System. In Tables 1 and 2, the capacitance values of Example 2-7 and Comparative Example 1-11 were indexed by setting the capacitance value of Example 1 to 100.

[放電容量維持率の算出方法]
室温で0.05Cの定電流充放電サイクル試験を実施した。1サイクル目の放電容量を比較した。また、1サイクル目の放電容量に対する50サイクル目の放電容量の減少率を放電容量の維持率として算出した。
[Calculation method of discharge capacity retention rate]
A constant current charge / discharge cycle test of 0.05 C at room temperature was performed. The discharge capacity at the first cycle was compared. The rate of decrease in the discharge capacity at the 50th cycle with respect to the discharge capacity at the first cycle was calculated as the maintenance rate of the discharge capacity.

100 全固体二次電池
201 正極
202 集電体
301 負極
302 集電体
400 固体電解質層
500 外装体
100 All-solid secondary battery 201 Positive electrode 202 Current collector 301 Negative electrode 302 Current collector 400 Solid electrolyte layer 500 Outer body

Claims (3)

正極活物質として下記式(1)で表わされる遷移金属酸化物を含有する正極と、負極と、前記正極と前記負極との間に存在する固体電解質層とを外装体内に備え、前記外装体内の二酸化炭素と酸素との分圧の合計が200 Pa以下であり、
前記外装体内には、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノンからなる群から選ばれる少なくとも1種以上の不活性ガスが含まれ、
前記正極が、その表面に水酸化リチウムが付着した正極活物質を備えている
全固体二次電池。
(上記式(1)において、MはCo、Mn、AlおよびMgからなる群から選ばれる1種以上の元素である。x、y、zは、0.5<x<1.2と、0.5<yと、0<zと、z=1−yとをすべて満たす値である。)
A package containing a positive electrode containing a transition metal oxide represented by the following formula (1) as a positive electrode active material, a negative electrode, and a solid electrolyte layer existing between the positive electrode and the negative electrode; The sum of the partial pressures of carbon dioxide and oxygen is 200 Pa or less,
The outer body contains at least one or more inert gases selected from the group consisting of helium, nitrogen, neon, argon, krypton, and xenon,
An all-solid secondary battery in which the positive electrode includes a positive electrode active material having lithium hydroxide attached to its surface .
(In the above formula (1), M is one or more elements selected from the group consisting of Co, Mn, Al, and Mg. X, y, and z are 0.5 <x <1.2 and 0.5 <y; It is a value that satisfies all of 0 <z and z = 1−y.)
前記固体電解質層を形成する固体電解質が、第一元素、第二元素及び第三元素を含有するものであり、前記第一元素として硫黄(S)を含有し、前記第二元素としてリチウム(Li)を含有し、前記第三元素としてケイ素(Si)、ホウ素(B)、リン(P)からなる群から選ばれる少なくとも1種以上の元素とを含有する請求項1に記載の全固体二次電池。 Solid electrolyte forming the solid electrolyte layer, first element, which contains the second element and third element, a sulfur (S) as the first element, lithium (Li as the secondary element ) containing silicon (Si) as the third element, boron (B), all-solid secondary of claim 1 containing at least one or more elements selected from the group consisting of phosphorus (P) battery. 表面に水酸化リチウムが付着した正極活物質として式(1)で表わされる遷移金属酸化物を含む正極と、負極と、前記正極と前記負極との間に配置される固体電解質層とを外装体内に設置させてなる全固体二次電池の、前記外装体内に存在する二酸化炭素および酸素の分圧の合計を200Pa以下に減少させる工程を含み、
二酸化炭素および酸素の分圧の合計を200Pa以下になるまで減少させる工程は、前記外装体内の前記二酸化炭素および前記酸素を、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノンからなる群から選ばれる少なくとも1種以上の不活性ガスで置換する工程を含む、
全固体二次電池の製造方法。
(上記式(1)において、MはCo、Mn、AlおよびMgからなる群から選ばれる1種以上の元素である。x、y、zは、0.5<x<1.2と、0.5<yと、0<zと、z=1−yとをすべて満たす値である。)

A package comprising a positive electrode containing a transition metal oxide represented by the formula (1) as a positive electrode active material having lithium hydroxide attached to its surface , a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode The step of reducing the total partial pressure of carbon dioxide and oxygen present in the outer casing of the all solid state secondary battery to be set to 200 Pa or less,
The step of reducing the total partial pressure of carbon dioxide and oxygen to 200 Pa or less, the carbon dioxide and the oxygen in the outer casing, helium, nitrogen, neon, argon, krypton, at least selected from the group consisting of xenon Replacing with one or more inert gases.
A method for manufacturing an all-solid secondary battery.
(In the above formula (1), M is one or more elements selected from the group consisting of Co, Mn, Al, and Mg. X, y, and z are 0.5 <x <1.2 and 0.5 <y; It is a value that satisfies all of 0 <z and z = 1−y.)

JP2013258715A 2013-12-13 2013-12-13 All-solid secondary battery and method for manufacturing all-solid secondary battery Active JP6666641B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013258715A JP6666641B2 (en) 2013-12-13 2013-12-13 All-solid secondary battery and method for manufacturing all-solid secondary battery
KR1020140173236A KR102452943B1 (en) 2013-12-13 2014-12-04 All Solid secondary battery and method of preparing all solid secondary battery
US14/567,389 US9819019B2 (en) 2013-12-13 2014-12-11 All solid secondary battery and method of preparing all solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258715A JP6666641B2 (en) 2013-12-13 2013-12-13 All-solid secondary battery and method for manufacturing all-solid secondary battery

Publications (2)

Publication Number Publication Date
JP2015115294A JP2015115294A (en) 2015-06-22
JP6666641B2 true JP6666641B2 (en) 2020-03-18

Family

ID=53516626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258715A Active JP6666641B2 (en) 2013-12-13 2013-12-13 All-solid secondary battery and method for manufacturing all-solid secondary battery

Country Status (2)

Country Link
JP (1) JP6666641B2 (en)
KR (1) KR102452943B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3486981T3 (en) 2016-07-12 2023-06-12 Zeon Corporation Binder composition for solid electrolyte batteries
JP6686945B2 (en) * 2017-03-21 2020-04-22 トヨタ自動車株式会社 Method for manufacturing sintered electrode body
JP6996414B2 (en) * 2017-12-08 2022-01-17 トヨタ自動車株式会社 Manufacturing method of sulfide solid-state battery
EP3496188B1 (en) 2017-12-08 2021-03-31 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery
KR102626921B1 (en) 2018-08-10 2024-01-19 삼성전자주식회사 Sulfide solid electrolyte for lithium battery, a preparing method thereof, and lithium battery including the same
KR102581082B1 (en) 2021-11-26 2023-09-21 (주)하나기술 Pressurizing system of all solid state secondary battery
KR102622321B1 (en) 2022-01-12 2024-01-08 (주)하나기술 Pressurizing system of all solid state secondary battery with high temperature and method thereof
EP4213259A1 (en) 2022-01-12 2023-07-19 Hana Technology Co., Ltd. System and method for pressurizing all-solid-state secondary battery at high temperature
KR20240012798A (en) 2022-07-21 2024-01-30 (주)하나기술 Pressurizing system of all solid state secondary battery with high temperature and method thereof
KR20240012799A (en) 2022-07-21 2024-01-30 (주)하나기술 Pressurizing apparatus of all solid state secondary baterry with high temperature

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167425A (en) * 1994-12-13 1996-06-25 Matsushita Electric Ind Co Ltd Manufacture of total solid lithium battery
JP2001068149A (en) * 1999-08-30 2001-03-16 Kyocera Corp All solid lithium secondary battery
JP2003077529A (en) * 2001-09-03 2003-03-14 Sanyo Electric Co Ltd Lithium battery and lithium secondary battery
JP2005276684A (en) * 2004-03-25 2005-10-06 Mitsubishi Chemicals Corp Lithium transition metal composite oxide sealing body for nonaqueous electrolyte secondary battery active material
JP4656102B2 (en) * 2007-07-27 2011-03-23 トヨタ自動車株式会社 Solid battery
JP5679748B2 (en) * 2010-09-21 2015-03-04 日立造船株式会社 Manufacturing method of all solid state battery
JP5975459B2 (en) * 2011-11-17 2016-08-23 国立研究開発法人産業技術総合研究所 Method for producing positive electrode for all-solid lithium secondary battery and all-solid lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2015115294A (en) 2015-06-22
KR102452943B1 (en) 2022-10-11
KR20150069523A (en) 2015-06-23

Similar Documents

Publication Publication Date Title
JP6666641B2 (en) All-solid secondary battery and method for manufacturing all-solid secondary battery
CN107710466B (en) Negative electrode active material, secondary battery, and method for producing negative electrode material
JP5206758B2 (en) Negative electrode material, metal secondary battery, and negative electrode material manufacturing method
JP5660210B2 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
JP6353329B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015118846A1 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
JP6239476B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016012495A (en) Lithium solid type secondary battery, and method for manufacturing the same
KR20130130820A (en) Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
US20170250439A1 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
JP2015156328A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method of producing negative electrode active material particles
CN103456936A (en) Sodium ion secondary battery, and layered titanate active substance, electrode material, anode and cathode adopted by the sodium ion secondary battery, and preparation method of the layered titanate active substance
US9819019B2 (en) All solid secondary battery and method of preparing all solid secondary battery
CN111602272B (en) Solid electrolyte composition and method for producing same, sheet containing solid electrolyte, electrode sheet for all-solid secondary battery, and method for producing same
JP2016139461A (en) Solid electrolyte for electrochemical element and all-solid battery
CN111247673B (en) Composition for forming active material layer, battery, electrode sheet, and related manufacturing methods
JP6241996B2 (en) Positive electrode active material for magnesium ion secondary battery, method for producing the same, and magnesium ion secondary battery
WO2012090285A1 (en) Nonaqueous electrolyte solution and use thereof
JP6965860B2 (en) All solid state battery
JP6030960B2 (en) Manufacturing method of all solid state battery
WO2014069207A1 (en) Positive-electrode active substance, positive electrode, and non-aqueous electrolyte secondary cell
JP2021093330A (en) Electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof
CN112186174A (en) Conductive additive and preparation method and application thereof
JP2017107799A (en) Nonaqueous electrolyte secondary battery
WO2023041799A1 (en) Lithium sulfur cell

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6666641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250