JP2000011994A - Positive electrode for nonaqueous secondary battery - Google Patents

Positive electrode for nonaqueous secondary battery

Info

Publication number
JP2000011994A
JP2000011994A JP10173061A JP17306198A JP2000011994A JP 2000011994 A JP2000011994 A JP 2000011994A JP 10173061 A JP10173061 A JP 10173061A JP 17306198 A JP17306198 A JP 17306198A JP 2000011994 A JP2000011994 A JP 2000011994A
Authority
JP
Japan
Prior art keywords
sintered body
positive electrode
lithium
secondary battery
lithium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173061A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
淳 鈴木
Yoshio Kajiura
嘉夫 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10173061A priority Critical patent/JP2000011994A/en
Publication of JP2000011994A publication Critical patent/JP2000011994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the conductivity of a positive pole for obtaining a large- capacity battery improved in charge and discharge cycle characteristic by adhering a conductive high polymer to the surface of a porous sintered body which is formed of lithium transition metal oxide. SOLUTION: The vacancy rate of a porous sintered body is set to 15-60% of the total volume, a mixed powder formed of lithium compound and transition metal compound which are made into an oxide by heat treatment is temporarily burnt, then formed into a designated shape and sintered to form a porous sintered body, and conductive high polymer is adhered to the surface of the sintered body. The conductive high polymer is preferably polyacethylene, polyparaphenylene, polyphenylene vinylene or the like. A nonaqueous secondary battery is preferably formed by the positive electrode, a negative electrode containing negative active material, and an electrolyte obtained by dissolving a lithium compound in an organic solvent, or a solid electrolyte containing lithium ion conductive nonaqueous electrolyte retaining an organic solvent obtained by dissolving a lithium compound in high polymer or dissolving a lithium compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム遷移金属
酸化物からなる多孔質焼結体を用いる非水系二次電池用
正極及びそれを用いる非水系二次電池に関する。
The present invention relates to a positive electrode for a non-aqueous secondary battery using a porous sintered body made of a lithium transition metal oxide and a non-aqueous secondary battery using the same.

【0002】[0002]

【従来の技術】携帯電話やノートパソコン等の普及に伴
って、高容量なリチウム二次電池が注目されているが、
その中でも特に薄型で省スペースな角型電池の需要が高
まっている。現在の角型電池では、電極面積を大きくす
ることにより電池反応の効率を上げる目的から、電極活
物質とバインダ、導電材等を混合した塗料を帯状の金属
箔上に塗布した正負両極が用いられ、これらがセパレー
タと共に巻回された後、押し潰されて電池缶に収納され
ている。
2. Description of the Related Art With the spread of mobile phones and notebook computers, high-capacity lithium secondary batteries have attracted attention.
Among them, a demand for a thin and space-saving prismatic battery is increasing. Current prismatic batteries use positive and negative electrodes in which a paint mixture of an electrode active material, a binder, and a conductive material is applied on a strip-shaped metal foil to increase the efficiency of the battery reaction by increasing the electrode area. After these are wound together with the separator, they are crushed and stored in the battery can.

【0003】この電極中に占める活物質の割合は約40
体積%、残りはバインダ、導電材、金属箔等20〜30
体積%及び空孔30〜40体積%から構成されている。
従って、バインダ、導電材、金属箔といった本来電極の
容量に寄与しないものが、体積当たりの電池容量を制限
するという問題が有る。また、上記の卷回した電極を角
型の電池缶に収納すると、電池缶の隅角の部分には充填
できず、無駄なスペ−スができるため、単位体積当たり
の容量はさらに低下する。
The ratio of the active material in this electrode is about 40%.
% By volume, the remainder being binder, conductive material, metal foil, etc.
% By volume and 30 to 40% by volume of pores.
Therefore, there is a problem that a material that does not originally contribute to the capacity of the electrode, such as a binder, a conductive material, or a metal foil, limits the battery capacity per volume. Further, when the wound electrode is housed in a rectangular battery can, the corners of the battery can cannot be filled and wasteful space is created, so that the capacity per unit volume is further reduced.

【0004】そこで、単位体積当たりの容量を増大させ
る一つの手段として、電極を実質的に活物質からなる燒
結体で構成する試みがなされている。電極を燒結体で構
成すると、バインダを含まず、さらに導電材を不用又は
少量に減らすことができるため、活物質の充填密度を高
くすることができ、単位体積当たりの容量を増大させる
ことができるとともに、電極の導電性の向上も期待でき
る。例えば、特開平5−299090号公報には石油ピ
ッチあるいは炭素質材料の燒結体に銅箔を圧着した負極
や、特開平8−180904号公報にはリチウム複合酸
化物の燒結体からなる正極が開示されている。
Therefore, as one means for increasing the capacity per unit volume, attempts have been made to form an electrode from a sintered body substantially made of an active material. When the electrode is formed of a sintered body, the binder is not included, and the conductive material can be unnecessary or reduced to a small amount. Therefore, the packing density of the active material can be increased, and the capacity per unit volume can be increased. At the same time, an improvement in the conductivity of the electrode can be expected. For example, JP-A-5-299090 discloses a negative electrode in which a copper foil is pressed on a sintered body of petroleum pitch or a carbonaceous material, and JP-A-8-180904 discloses a positive electrode made of a sintered body of a lithium composite oxide. Have been.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、高電流
密度(例えば、10mA/cm2)では十分な容量が引
き出せているとは言えず、その原因として電池の内部抵
抗の低減が不十分であるという問題がある。特に、正極
の活物質であるリチウム遷移金属酸化物は電気抵抗が大
きく、焼結体としても、その電気抵抗の低減は十分では
ない。
However, at a high current density (for example, 10 mA / cm 2 ), it cannot be said that sufficient capacity can be obtained, and the cause is that the internal resistance of the battery is not sufficiently reduced. There's a problem. In particular, the lithium transition metal oxide, which is the active material of the positive electrode, has a large electric resistance, and the reduction of the electric resistance is not sufficient even as a sintered body.

【0006】そこで、本発明は、導電性が向上し、高容
量を与える非水系二次電池用正極を提供することを目的
とした。
Accordingly, an object of the present invention is to provide a positive electrode for a non-aqueous secondary battery which has improved conductivity and provides high capacity.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、表面に導電性高分子層を有するリチウム
遷移金属酸化物からなる多孔質焼結体を正極とすれば上
記課題を解決できることを見出して完成されたものであ
る。すなわち、本発明の非水系二次電池用正極は、リチ
ウム遷移金属酸化物からなる多孔質焼結体で、該焼結体
表面に被着してなる導電性高分子層を有することを特徴
とするものである。多孔質焼結体表面に導電性高分子層
を有しているため、従来の塗膜を用いる場合に比べ、正
極の導電性が大きく向上し、電池の内部抵抗も大きく低
減できる。
In order to achieve the above-mentioned object, the present invention solves the above-mentioned problems by using a porous sintered body made of a lithium transition metal oxide having a conductive polymer layer on its surface as a positive electrode. It was completed after finding that it could be solved. That is, the positive electrode for a non-aqueous secondary battery of the present invention is a porous sintered body made of a lithium transition metal oxide, having a conductive polymer layer adhered to the surface of the sintered body. Is what you do. Since the conductive polymer layer is provided on the surface of the porous sintered body, the conductivity of the positive electrode is greatly improved and the internal resistance of the battery can be greatly reduced as compared with the case where a conventional coating film is used.

【0008】また、上記焼結体が多孔質であって、空孔
率が全体積の15〜60%であることが好ましい。正極
内のデッドスペースを減少させることができるととも
に、活物質と電解液が十分に接触することができるた
め、単位体積当りの容量を大きくすることができる。
Preferably, the sintered body is porous and has a porosity of 15 to 60% of the total volume. The dead space in the positive electrode can be reduced, and the active material and the electrolyte can be sufficiently contacted, so that the capacity per unit volume can be increased.

【0009】そして、本発明の非水系二次電池用正極の
製造方法は、熱処理により酸化物となるリチウム化合物
及び遷移金属化合物からなる混合粉末を大気雰囲気下で
仮焼後、所定形状に成形し、大気雰囲気下で熱処理し焼
結体とするとともに、該焼結体表面に導電性高分子を被
着せしめることを特徴とするものである。
In the method of manufacturing a positive electrode for a non-aqueous secondary battery according to the present invention, a mixed powder comprising a lithium compound and a transition metal compound which becomes an oxide by heat treatment is calcined in an air atmosphere and then formed into a predetermined shape. A heat treatment is performed in an air atmosphere to form a sintered body, and a conductive polymer is applied to the surface of the sintered body.

【0010】本発明の非水系二次電池は、表面に導電性
高分子層を有するリチウム遷移金属酸化物からなる多孔
質焼結体を正極とすることを特徴とするものである。負
極活物質を含む負極と、有機溶媒にリチウム化合物を溶
解させた電解液、又は高分子にリチウム化合物を固溶或
いはリチウム化合物を溶解させた有機溶媒を保持させた
リチウムイオン導電性の非水電解質を含む固体電解質を
用いることが好ましい。さらに、負極にも多孔質焼結体
を用いることが好ましく、それにより一層の容量の増大
が達成できる。
The nonaqueous secondary battery of the present invention is characterized in that a porous sintered body made of a lithium transition metal oxide having a conductive polymer layer on the surface is used as a positive electrode. A negative electrode containing a negative electrode active material and an electrolyte solution in which a lithium compound is dissolved in an organic solvent, or a lithium ion conductive nonaqueous electrolyte in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held It is preferable to use a solid electrolyte containing Further, it is preferable to use a porous sintered body also for the negative electrode, whereby a further increase in capacity can be achieved.

【0011】[0011]

【発明の実施の形態】本発明の正極に用いる正極材料
は、リチウム遷移金属酸化物であれば、何れの公知のも
のも用いることができるが、LiCoO2、LiNi
2、スピネル構造のLiMn24及びMgをドープし
たLiCoO2のいずれかを用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As the positive electrode material used for the positive electrode of the present invention, any known lithium transition metal oxide can be used, but LiCoO 2 , LiNi
It is preferable to use any of O 2 , LiMn 2 O 4 having a spinel structure, and LiCoO 2 doped with Mg.

【0012】また、本発明の正極は、熱処理により酸化
物となるLi化合物と遷移金属化合物を含む混合粉末
を、大気雰囲気下500〜900℃で0.1〜10時間
程度仮焼後、所定形状に成形し、大気雰囲気下700〜
1100℃で0.5〜24時間程度焼成することによ
り、焼結体を得ることができる。ここで、熱処理により
酸化物となるものとは、Li及び遷移金属の水酸化物、
酸化物、硝酸塩及び炭酸塩等が挙げられる。
The positive electrode of the present invention is obtained by calcining a mixed powder containing a Li compound and a transition metal compound which becomes an oxide by heat treatment at 500 to 900 ° C. for about 0.1 to 10 hours in an air atmosphere, and And 700 ~
By sintering at 1100 ° C. for about 0.5 to 24 hours, a sintered body can be obtained. Here, what becomes an oxide by heat treatment is a hydroxide of Li and a transition metal,
Oxides, nitrates and carbonates.

【0013】さらに、上記焼結体の表面に導電性高分子
を被着させる。本発明に用いる被着方法には、焼結体を
アノードとし、モノマーを含む電解液に浸漬して行う電
解酸化重合、又はモノマー溶液及び酸化剤溶液に焼結体
を交互あるいはモノマー及び酸化剤を含む溶液に一度に
浸漬する液相化学酸化重合、又は焼結体を酸化剤溶液に
浸漬後、気体状モノマーに接触させる気相化学酸化重合
等の方法が挙げられる。また、導電性高分子が溶解した
溶液に焼結体を浸漬後、溶媒を除去する方法を用いても
良い。
Further, a conductive polymer is applied to the surface of the sintered body. In the deposition method used in the present invention, the sintered body is used as an anode, and electrolytic oxidative polymerization is performed by immersing the sintered body in an electrolytic solution containing a monomer, or a sintered body is alternately used in a monomer solution and an oxidant solution, or a monomer and an oxidant are used. Examples of the method include liquid-phase chemical oxidative polymerization in which a sintered body is immersed in a solution containing the oxidizing agent at once, or gas-phase chemical oxidative polymerization in which a sintered body is immersed in an oxidizing agent solution and then brought into contact with a gaseous monomer. Alternatively, a method of immersing the sintered body in a solution in which the conductive polymer is dissolved and then removing the solvent may be used.

【0014】電解酸化重合は、モノマーと支持電解質を
含む有機溶媒に、焼結体をアノード、白金等をカソード
として、所定時間定電圧又は定電流で酸化重合を行い、
燒結体表面に導電性高分子を被着させる。支持電解質に
は、アニオンとしてClO4 -,BF4 -,PF6 -,AsF
6 -,SbF6 -,AlCl4 -,CF3SO3 -及びp−トル
エンスルホネート等を含む炭素数1から4のアルキル基
置換の4級アンモニウム塩を用いることができる。
In the electrolytic oxidation polymerization, oxidation polymerization is performed at a constant voltage or a constant current for a predetermined time in an organic solvent containing a monomer and a supporting electrolyte, using a sintered body as an anode and platinum or the like as a cathode.
A conductive polymer is applied to the surface of the sintered body. The supporting electrolyte includes ClO 4 , BF 4 , PF 6 , and AsF as anions.
6 -, SbF 6 -, AlCl 4 -, CF 3 SO 3 - and p- toluenesulfonate and the like can be used quaternary ammonium salts of the alkyl group substituted from 1 to 4 carbon atoms including.

【0015】また、化学酸化重合は、焼結体をモノマー
溶液に浸漬後、酸化剤としてFe(III)の塩化物や
硫酸塩、また過酸化水素等を含む酸化剤溶液に浸漬し、
溶液から引き上げ、所定の時間及び温度で放置して重合
させる。気体状モノマーを用いる場合は、焼結体を酸化
剤溶液に浸漬後、溶液から引き上げ、密閉容器内に焼結
体を固定し、所定時間気体状モノマーを容器内に導入す
ることにより、重合させる。
In the chemical oxidative polymerization, a sintered body is immersed in a monomer solution and then immersed in an oxidizing agent solution containing Fe (III) chloride, sulfate, hydrogen peroxide or the like as an oxidizing agent.
The polymer is removed from the solution and left for a predetermined time and temperature to polymerize. When using a gaseous monomer, after immersing the sintered body in the oxidizing agent solution, withdrawing from the solution, fixing the sintered body in a closed container, and introducing the gaseous monomer into the container for a predetermined time to polymerize .

【0016】そして、本発明に用いる導電性高分子とし
ては、ポリアセチレン、ポリパラフェニレン、ポリフェ
ニレンビニレン、ポリフェニレンサルファイド、ポリピ
ロール、ポリチオフェン、ポリ(3−メチルチオフェ
ン)、ポリアニリン、ポリペリナフタレンなどが挙げら
れる。
The conductive polymer used in the present invention includes polyacetylene, polyparaphenylene, polyphenylenevinylene, polyphenylene sulfide, polypyrrole, polythiophene, poly (3-methylthiophene), polyaniline, polyperinaphthalene, and the like.

【0017】また、本発明の正極は、空孔率が15〜6
0%の多孔質体であることが好ましい。空孔の開け方に
は単に粉末を成形、熱処理するだけの方法もあるが、電
解液が十分に浸透し、イオンの流れを阻害されないよう
にするには、以下に述べる方法を用いることが望まし
い。すなわち、原料粉末にナイロン、アクリル、アセテ
ート、ポリエステルなどの有機繊維(直径0.1〜10
0μm)又は直径0.1〜100μmの有機ポリマー粒
子を混入し、本焼成して繊維等を酸化、分解させ、イオ
ンの通る道を効果的に開けると、イオンの拡散が阻害さ
れないため、イオンの濃度分極が生じにくくなり、大き
な電流に対してより電圧降下を小さくできる。この際用
いる有機繊維又は粒子は大気雰囲気下、高温で完全に酸
化され、分解するものが好ましい。
The positive electrode of the present invention has a porosity of 15 to 6
It is preferably a 0% porous body. Although there is a method of simply forming powder and heat-treating the way of opening the holes, it is desirable to use the method described below in order to prevent the electrolyte solution from sufficiently penetrating and obstructing the flow of ions. . That is, organic fibers such as nylon, acrylic, acetate, and polyester (having a diameter of 0.1 to 10) are used as the raw material powder.
0 μm) or organic polymer particles having a diameter of 0.1 to 100 μm are mixed and baked to oxidize and decompose the fibers and the like. Concentration polarization hardly occurs, and the voltage drop can be reduced for a large current. The organic fibers or particles used at this time are preferably completely oxidized and decomposed at a high temperature in an air atmosphere.

【0018】ここで言う空孔率は開気孔率であり、以下
に述べるアルキメデス法により測定した。 アルキメデス法:もとのサンプル重量をW1、水中で減
圧又は煮沸し、気孔中の空気を追い出し、冷却し水中で
測定した重量をW2、水中から取り出し、表面だけ拭っ
て水滴を取って測定した重量をW3とすると、 空孔率=見かけ気孔率(開気孔率)=(W3-W1)/(W
3-W2) ×100 で求められる。
The porosity referred to here is an open porosity, and was measured by the Archimedes method described below. Archimedes method: W 1 , the original sample weight is decompressed or boiled in water, the air in the pores is expelled, cooled and the weight measured in water W 2 , taken out of the water, wiped only on the surface to remove the water droplet When was the weight and W 3, porosity = apparent porosity (open porosity) = (W 3 -W 1) / (W
3 −W 2 ) × 100.

【0019】また、本発明に用いる負極活物質として
は、リチウムイオン二次電池の負極活物質として公知の
何れの材料も使用でき、例えば、天然黒鉛、コークスや
ガラス状炭素等の炭素材料、ケイ素、金属リチウム、及
びアルミニウム等の金属リチウムと合金を形成可能な金
属等を挙げることができる。
As the negative electrode active material used in the present invention, any material known as a negative electrode active material of a lithium ion secondary battery can be used. For example, carbon materials such as natural graphite, coke and glassy carbon, silicon , Metal lithium, and a metal capable of forming an alloy with metal lithium such as aluminum.

【0020】本発明に使用される非水電解質は、有機溶
媒にリチウム化合物を溶解させた非水電解液、又は高分
子にリチウム化合物を固溶或いはリチウム化合物を溶解
させた有機溶媒を保持させた高分子固体電解質を用いる
ことができる。非水電解液は、有機溶媒と電解質とを適
宜組み合わせて調製されるが、これら有機溶媒や電解質
はこの種の電池に用いられるものであればいずれも使用
可能である。有機溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ビニレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、1,2−ジメトキシエタン、
1,2−ジエトキシエタンメチルフォルメイト、ブチロ
ラクトン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、1,3−ジオキソフラン、4−メチル−1,
3−ジオキソフラン、ジエチルエーテル、スルホラン、
メチルスルホラン、アセトニトリル、プロピオニトリ
ル、ブチロニトリル、バレロニトリル、ベンゾニトリ
ル、1,2−ジクロロエタン、4−メチル−2−ペンタ
ノン、1,4−ジオキサン、アニソール、ジグライム、
ジメチルホルムアミド、ジメチルスルホキシド等であ
る。これらの溶媒を2種以上併用することもできる。
The non-aqueous electrolyte used in the present invention is a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a polymer in which a lithium compound is dissolved or an organic solvent in which a lithium compound is dissolved is held. A polymer solid electrolyte can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. Examples of the organic solvent include propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane,
1,2-diethoxyethanemethylformate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxofuran, 4-methyl-1,
3-dioxofuran, diethyl ether, sulfolane,
Methylsulfolane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, 4-methyl-2-pentanone, 1,4-dioxane, anisole, diglyme,
Dimethylformamide, dimethylsulfoxide and the like. Two or more of these solvents can be used in combination.

【0021】電解質としては、例えばLiClO4,L
iAsF6,LiPF6,LiBF4,LiB(C
654,LiCl,LiBr,LiI,LiCH3SO
3,LiCF3SO3,LiAlCl4等が挙げられ、これ
らを単独でも、2種以上を併用することもできる。
As the electrolyte, for example, LiClO 4 , L
iAsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, LiCl, LiBr, LiI, LiCH 3 SO
3 , LiCF 3 SO 3 , LiAlCl 4, etc., and these can be used alone or in combination of two or more.

【0022】本発明に使用される高分子固体電解質は、
上記の電解質から選ばれる電解質を以下に示す高分子に
固溶させたものを用いることができる。例えば、ポリエ
チレンオキサイドやポリプロピレンオキサイドのような
ポリエーテル鎖を有する高分子、ポリエチレンサクシネ
ート、ポリカプロラクタムのようなポリエステル鎖を有
する高分子、ポリエチレンイミンのようなポリアミン鎖
を有する高分子、ポリアルキレンスルフィドのようなポ
リスルフィド鎖を有する高分子が挙げられる。
The solid polymer electrolyte used in the present invention comprises:
A solution obtained by dissolving an electrolyte selected from the above electrolytes in the following polymer can be used. For example, a polymer having a polyether chain such as polyethylene oxide or polypropylene oxide, a polymer having a polyester chain such as polyethylene succinate and polycaprolactam, a polymer having a polyamine chain such as polyethyleneimine, and a polyalkylene sulfide. Such a polymer having a polysulfide chain is exemplified.

【0023】また、本発明に使用される高分子固体電解
質として、ポリフッ化ビニリデン、フッ化ビニリデン-
テトラフルオロエチレン共重合体、ポリエチレンオキサ
イド、ポリプロピレンオキサイド、ポリアクリロニトリ
ル、ポリメタクリル酸メチル等の高分子に上記非水電解
液を保持させ上記高分子を可塑化させたものを用いるこ
ともできる。
Further, as the polymer solid electrolyte used in the present invention, polyvinylidene fluoride, vinylidene fluoride-
It is also possible to use a polymer such as a tetrafluoroethylene copolymer, polyethylene oxide, polypropylene oxide, polyacrylonitrile, or polymethyl methacrylate in which the above non-aqueous electrolyte is retained and plasticized to polymerize the above polymer.

【0024】[0024]

【実施例】【Example】

【実施例1】炭酸リチウム粉末と炭酸コバルト粉末をモ
ル比でLi/Co=1/1となるように混合し、大気雰
囲気下で800℃、1時間仮焼する。次いでこれを粉砕
し、押し固め、大気雰囲気下で800℃、10時間焼成
して直径19mm、厚さ0.5mmの正極を得た。この
正極を電極として対極にはSUS板を用いてテトラエチ
ルアンモニウムp−トルエンスルホネートのアセトニト
リル溶液中(0.05mol/l)でピロールを正極上
に2時間電解酸化重合した。この正極の抵抗は1kΩで
あった。
Embodiment 1 Lithium carbonate powder and cobalt carbonate powder are mixed in a molar ratio of Li / Co = 1/1 and calcined at 800 ° C. for 1 hour in an air atmosphere. Next, this was pulverized, compacted, and fired at 800 ° C. for 10 hours in an air atmosphere to obtain a positive electrode having a diameter of 19 mm and a thickness of 0.5 mm. Pyrrole was electrolytically oxidized and polymerized on the positive electrode for 2 hours in a solution of tetraethylammonium p-toluenesulfonate in acetonitrile (0.05 mol / l) using a SUS plate as a counter electrode and the positive electrode as an electrode. The resistance of this positive electrode was 1 kΩ.

【0025】高純度化学(株)製の純度99.9%、平
均粒子径1μmの結晶質ケイ素粉末を80部とピッチ系
炭素(残炭率50%)20部とを振動ミルを用いて混合
分散し、この混合粉末を押し固め、昇温100℃/時、
1100℃で3時間、窒素雰囲気中で焼成した成形体を
負極とした。焼成後の成形体は直径20mm、厚さ0.
5mm、比重1.1g/cm3であった。
Using a vibration mill, 80 parts of crystalline silicon powder having a purity of 99.9% and an average particle diameter of 1 μm manufactured by Kojundo Chemical Co., Ltd. and 20 parts of pitch-based carbon (residual carbon ratio: 50%) are mixed. Disperse, press-harden this mixed powder, and raise the temperature to 100 ° C./hour;
A molded body fired at 1100 ° C. for 3 hours in a nitrogen atmosphere was used as a negative electrode. The molded body after firing has a diameter of 20 mm and a thickness of 0.1 mm.
5 mm, specific gravity 1.1 g / cm 3 .

【0026】こうして得られた正極と負極の間にセパレ
ータとして、ポリエチレン多孔膜を挟み、電解液にエチ
レンカーボネートとジメチルカーボネートの体積比1:
1の混合溶媒に六フッ化リン酸リチウムを加えたものを
用いて、電池を構成した。この電池のサイクル特性は良
好であった。
A porous polyethylene film is sandwiched between the positive electrode and the negative electrode thus obtained as a separator, and the volume ratio of ethylene carbonate and dimethyl carbonate is 1: 1:
A battery was formed using the mixed solvent of No. 1 and lithium hexafluorophosphate. The cycle characteristics of this battery were good.

【0027】[0027]

【比較例1】電解酸化重合を行わなかった以外は、実施
例1と同様の方法により行い、正極を作製した。正極の
抵抗は1000kΩであった。
Comparative Example 1 A positive electrode was produced in the same manner as in Example 1 except that electrolytic oxidation polymerization was not performed. The resistance of the positive electrode was 1000 kΩ.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
の非水系二次電池用正極は、表面に被着した導電性高分
子層を有するリチウム遷移金属酸化物からなる多孔質焼
結体を正極とすることにより、正極の導電性を大きく向
上させることができるとともに、充放電のサイクル特性
が向上し、容量の大きな非水系二次電池を提供できる。
As is apparent from the above description, the positive electrode for a non-aqueous secondary battery of the present invention is a porous sintered body made of a lithium transition metal oxide having a conductive polymer layer adhered to the surface. By using as a positive electrode, the conductivity of the positive electrode can be greatly improved, and the charge / discharge cycle characteristics are improved, so that a nonaqueous secondary battery having a large capacity can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 BA00 BA01 BB05 BB14 BD03 5H014 AA02 BB01 BB05 BB08 CC01 EE01 EE02 EE10 HH02 5H029 AJ03 AK03 AL06 AM03 AM05 AM06 CJ02 CJ06 CJ22 DJ08 DJ13 EJ13 HJ09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA02 BA00 BA01 BB05 BB14 BD03 5H014 AA02 BB01 BB05 BB08 CC01 EE01 EE02 EE10 HH02 5H029 AJ03 AK03 AL06 AM03 AM05 AM06 CJ02 CJ06 CJ22 DJ08 DJ13 EJ13 HJ09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属酸化物からなる多孔質
焼結体で、該焼結体表面に被着してなる導電性高分子層
を有する非水系二次電池用正極。
1. A positive electrode for a non-aqueous secondary battery having a porous sintered body made of a lithium transition metal oxide and having a conductive polymer layer adhered to the surface of the sintered body.
【請求項2】 上記焼結体の空孔率が全体積の15〜6
0%である請求項1記載の非水系二次電池用正極。
2. The porosity of the sintered body is 15 to 6 of the total volume.
The positive electrode for a non-aqueous secondary battery according to claim 1, which is 0%.
【請求項3】 熱処理により酸化物となるリチウム化合
物及び遷移金属化合物からなる混合粉末を仮焼後、所定
形状に成形し、焼成して多孔質焼結体とするとともに、
該焼結体表面に導電性高分子を被着せしめる非水系二次
電池用正極の製造方法。
3. A calcined mixed powder composed of a lithium compound and a transition metal compound that becomes an oxide by heat treatment, molded into a predetermined shape, and calcined to form a porous sintered body.
A method for producing a positive electrode for a non-aqueous secondary battery, comprising applying a conductive polymer to the surface of the sintered body.
【請求項4】 表面に導電性高分子層を有するリチウム
遷移金属酸化物の多孔質焼結体からなる正極と、負極活
物質を含む負極と、有機溶媒にリチウム化合物を溶解さ
せた電解液、又は高分子にリチウム化合物を固溶或いは
リチウム化合物を溶解させた有機溶媒を保持させたリチ
ウムイオン導電性の非水電解質を含む固体電解質とから
なる非水系二次電池。
4. A positive electrode made of a porous sintered body of a lithium transition metal oxide having a conductive polymer layer on the surface, a negative electrode containing a negative electrode active material, an electrolytic solution obtained by dissolving a lithium compound in an organic solvent, Alternatively, a non-aqueous secondary battery comprising a solid electrolyte containing a lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved in a polymer or an organic solvent in which the lithium compound is dissolved is held.
JP10173061A 1998-06-19 1998-06-19 Positive electrode for nonaqueous secondary battery Pending JP2000011994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173061A JP2000011994A (en) 1998-06-19 1998-06-19 Positive electrode for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173061A JP2000011994A (en) 1998-06-19 1998-06-19 Positive electrode for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2000011994A true JP2000011994A (en) 2000-01-14

Family

ID=15953499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173061A Pending JP2000011994A (en) 1998-06-19 1998-06-19 Positive electrode for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2000011994A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077866A1 (en) * 1999-06-11 2000-12-21 Kao Corporation Lithium secondary cell and its producing method
JP2007505444A (en) * 2003-06-25 2007-03-08 イドロ−ケベック Method for producing electrode from porous material, electrode obtained by the method and corresponding electrochemical system
JP2010080426A (en) * 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd Method of manufacturing cathode body and cathode body
JP2011108505A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077866A1 (en) * 1999-06-11 2000-12-21 Kao Corporation Lithium secondary cell and its producing method
US6679926B1 (en) 1999-06-11 2004-01-20 Kao Corporation Lithium secondary cell and its producing method
JP2007505444A (en) * 2003-06-25 2007-03-08 イドロ−ケベック Method for producing electrode from porous material, electrode obtained by the method and corresponding electrochemical system
JP2010080426A (en) * 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd Method of manufacturing cathode body and cathode body
JP2011108505A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN1126185C (en) Electrode for nonaqueous electrolyte battery
TWI506838B (en) Nonaqueous electrolyte storage battery and manufacturing method thereof
JP5032773B2 (en) Lithium secondary battery using ionic liquid
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
WO2002054524A1 (en) Nonaqueous electrolytic secondary battery
KR20010088839A (en) Lithium secondary cell
KR20100007974A (en) Lithium secondary battery
KR101488244B1 (en) Method for manufacturing positive electrode for lithium-sulfur battery and lithium-sulfur battery
KR101501267B1 (en) Positive electrode material for lithium-sulfur battery, method of manufacturing the same and lithium-sulfur battery
JP2003229172A (en) Nonaqueous electrolyte battery
JP4797577B2 (en) battery
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
JP2547992B2 (en) Non-aqueous secondary battery
KR100951698B1 (en) Separator material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2004303642A (en) Nonaqueous electrolyte battery
JP2000011993A (en) Positive electrode for nonaqueous secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JP2000011994A (en) Positive electrode for nonaqueous secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP4224681B2 (en) Nonaqueous electrolyte secondary battery
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2002117850A (en) Negative electrode active material for nonaqueous electrolytic solution secondary battery