JP2001243984A - Solid electrolyte battery and its manufacturing method - Google Patents

Solid electrolyte battery and its manufacturing method

Info

Publication number
JP2001243984A
JP2001243984A JP2000050981A JP2000050981A JP2001243984A JP 2001243984 A JP2001243984 A JP 2001243984A JP 2000050981 A JP2000050981 A JP 2000050981A JP 2000050981 A JP2000050981 A JP 2000050981A JP 2001243984 A JP2001243984 A JP 2001243984A
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
porous structure
electrolyte battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000050981A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000050981A priority Critical patent/JP2001243984A/en
Publication of JP2001243984A publication Critical patent/JP2001243984A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the problem in a solid electrolyte that the internal resistance is high and the charge and discharge current and charge and discharge capacity are small. SOLUTION: The solid electrolyte battery comprises one polarity electrode made of a porous structure of active material and particle bound material, a solid electrolyte layer made of ion conductive material that has been adhered to the gap portion surface of this porous structure, and the other polarity electrode made of the other active material and a filling that have been filled in the gap portion of this porous structure. A current collector is provided to the above one polarity electrode and the other polarity electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質電池とそ
の製造方法に関し、特に電極の内部抵抗の低減化を図っ
て充放電電流や充放電容量を向上させた固体電解質電池
とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery and a method of manufacturing the same, and more particularly, to a solid electrolyte battery having improved charge / discharge current and charge / discharge capacity by reducing the internal resistance of an electrode, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電極の電気化学反応を利用した素子に
は、従来、液系やゲル系のものがある。例えば非水電解
液リチウムイオン電池においては、正極集電体に正極活
物質を塗布した正極と、負極集電体に負極活物質を塗布
した負極とをセパレータを介して積層し、この積層体に
有機溶媒とリチウム塩からなる高いイオン伝導性の電解
液を含浸させて、電極と電解質の界面で良好なイオンの
移動を起こさせ、また正・負電極の活物質と電解液の界
面では酸化・還元反応と共に電子やイオンの良好な移動
を起こさせ、実使用レベルの電池特性が得られている。
これは液系電解質の濡れ性のよさと高いイオン伝導性に
よって可能となっており、ゲル系電解質についてもほぼ
同様の理由で実使用レベルの特性が得られている。液系
やゲル系の電解質電池をさらに改善する試みとして以下
の例がある。
2. Description of the Related Art Conventionally, devices utilizing an electrochemical reaction of electrodes include those of the liquid type and the gel type. For example, in a non-aqueous electrolyte lithium ion battery, a positive electrode in which a positive electrode active material is applied to a positive electrode current collector, and a negative electrode in which a negative electrode active material is applied to a negative electrode current collector are laminated with a separator interposed therebetween. Impregnation with an electrolyte with high ion conductivity composed of an organic solvent and a lithium salt causes good ion migration at the interface between the electrode and the electrolyte, and oxidation and oxidation at the interface between the active material of the positive and negative electrodes and the electrolyte. Good transfer of electrons and ions is caused along with the reduction reaction, and battery characteristics at a practical use level are obtained.
This is made possible by the good wettability of the liquid electrolyte and the high ionic conductivity, and the properties of the practical use level are obtained for the gel electrolyte for almost the same reason. There are the following examples as attempts to further improve a liquid or gel electrolyte battery.

【0003】特開平10−223207号()によれ
ば、上記と同様の非水電解液二次電池において、正極お
よび負極の少なくとも一方に凹凸部を形成して表面積を
拡大することにより、電池の電流容量を拡大すると共
に、電池の電流負荷特性を改善し、過充電されたり過大
な電流で放電しても、性能劣化を招く恐れが無くなった
としている。また、本公報によれば、負荷特性を改善す
る従来例として、低粘度溶媒系の採用と並んで、電極の
厚みを薄くすると同時に、長さを長くすることによって
電気化学的反応に寄与する表面積を増加させて、二次電
池の負荷特性を改善する例を上げている。しかし、電極
の長さの増加に伴って電気化学的反応に寄与しない集電
体などが占める体積の割合も増加することになり、単位
体積当たりの電池容量が減少する。
According to Japanese Patent Application Laid-Open No. Hei 10-223207, in a non-aqueous electrolyte secondary battery similar to the above, unevenness is formed on at least one of a positive electrode and a negative electrode to increase the surface area of the battery. According to the company, the current capacity has been increased and the current load characteristics of the battery have been improved, so that even if the battery is overcharged or discharged with an excessive current, there is no danger of performance degradation. According to this publication, as a conventional example of improving the load characteristics, along with the adoption of a low-viscosity solvent system, the surface area that contributes to the electrochemical reaction by reducing the thickness of the electrode and increasing the length at the same time as reducing the thickness of the electrode In this example, the load characteristics of the secondary battery are improved by increasing the load. However, as the length of the electrode increases, the proportion of the volume occupied by the current collector that does not contribute to the electrochemical reaction also increases, and the battery capacity per unit volume decreases.

【0004】特開平11−162519号()によれ
ば、従来のリチウムイオン二次電池では、ペレット状の
正極、負極の反応面がセパレータと接する部分に限られ
ているため、全体の活物質を反応に寄与させることがで
きず、正極活物質の重量から求められる理論容量が得ら
れず、また正極、負極とセパレータとの接触面積が十分
でなく、電池の内部抵抗が高くなるという問題があっ
た。そこで、正極および負極の表面に凹凸を形成し、こ
の凹凸が互いに噛み合うようにセパレータを介して正極
と負極を対向配置することで、接触面積を増加させて内
部抵抗の低減および容量の向上を図ることができたとし
ている。他方、安全性、小型化、広い使用温度範囲、あ
るいは使い勝手のよさなどに対する要望が近年高まり、
素子の全固体化を検討し、固体電解質の従来例をあげて
いる。
According to Japanese Patent Application Laid-Open No. H11-162519, in a conventional lithium ion secondary battery, since the reaction surfaces of a pellet-shaped positive electrode and a negative electrode are limited to a portion in contact with a separator, the entire active material is not used. This does not contribute to the reaction, the theoretical capacity required from the weight of the positive electrode active material cannot be obtained, and the contact area between the positive electrode, the negative electrode and the separator is not sufficient, and the internal resistance of the battery increases. Was. Therefore, by forming irregularities on the surfaces of the positive electrode and the negative electrode and arranging the positive electrode and the negative electrode via a separator so that the irregularities mesh with each other, the contact area is increased to reduce the internal resistance and improve the capacity. It is said that it was possible. On the other hand, demands for safety, miniaturization, a wide operating temperature range, or ease of use have increased in recent years,
The study of all solid-state devices has been studied, and a conventional example of a solid electrolyte has been given.

【0005】特開平5−109429号()によれ
ば、無機酸化物からなる電子伝導体層とイオン伝導体層
とを有する積層体において、両層の界面を凹凸状に接触
させることにより、その界面の表面積を拡大して反応効
率を向上させ、電極反応における電子やイオンの移動が
良好になったとしている。
According to Japanese Patent Application Laid-Open No. 5-109429 (5), in a laminate having an electron conductor layer and an ion conductor layer made of an inorganic oxide, the interface between the two layers is brought into irregular contact to form a laminate. It is said that the reaction efficiency is improved by increasing the surface area of the interface, and the movement of electrons and ions in the electrode reaction is improved.

【0006】特開平9−180705号()によれ
ば、活物質または活物質と導電剤との混合粉末が高分子
固体電解質やゲル電解質と直接に接触した固体状電極を
有するリチウム電池の正極および負極では、活物質粒子
と高分子固体電解質やゲル電解質との接触が悪く、界面
のインピーダンスが高いという欠点があったため、活物
質粒子の表面に濡れ性のよいポリビニルピリジンと電解
質の層を形成して、この粒子の空隙に電解質を充填する
ことにより、活物質粒子同士の密着性を向上させると共
に、電池の容量を向上させ、安定したサイクル性が得ら
れたとしている。
According to Japanese Patent Application Laid-Open No. Hei 9-180705, a positive electrode of a lithium battery having a solid electrode in which an active material or a mixed powder of an active material and a conductive agent is in direct contact with a polymer solid electrolyte or a gel electrolyte is disclosed. In the negative electrode, the contact between the active material particles and the solid polymer electrolyte or gel electrolyte was poor, and the impedance at the interface was high.Therefore, a layer of polyvinylpyridine and an electrolyte with good wettability was formed on the surface of the active material particles. By filling the voids of the particles with an electrolyte, the adhesion between the active material particles is improved, the capacity of the battery is improved, and a stable cycle property is obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、液系の従来
例の課題と固体系の従来例の課題をより効果的
に改善するとともに、例え電極マトリックスや電解質の
物性がイオン伝導度の小さい固体電解質であっても、こ
れを補う構造を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention improves the problems of the conventional liquid system and the conventional solid system more effectively, and at the same time, the physical properties of the electrode matrix and the electrolyte are low in ionic conductivity. It is an object of the present invention to propose a structure that compensates for a solid electrolyte.

【0008】従来例〜では、シート形状の電極およ
び電解質を積層した形で、これらの断面は、図3に示す
ように、矩形を維持したまま電極2、4と電解質3の界
面を凹凸にして接触面積の拡大を図ったものであり、接
触面積の拡大に比例した界面抵抗の減少効果があると思
われるが、その改善には限界がある。本発明の目的1は
この限界を超えることにある。
In the conventional examples 1 to 3, the sheet-shaped electrode and the electrolyte are laminated, and their cross sections are made rectangular by maintaining the interface between the electrodes 2 and 4 and the electrolyte 3 while maintaining a rectangular shape as shown in FIG. It is intended to increase the contact area, and it is thought that there is an effect of reducing the interface resistance in proportion to the increase in the contact area, but there is a limit to the improvement. Object 1 of the present invention is to overcome this limit.

【0009】図3の従来例は、正電極2、負電極4、そ
して固体電解質3の断面形状はいずれも矩形(シート
状、ペレット状)であり、一般的にはシート成形法など
で作って積層して固体電解質電池とする。図3におい
て、電極2と電極4は、それぞれ正極活物質粉体もしく
は負極活物質粉体のいずれかと電子伝導性付与物質と固
体電解質などから成る結着物質とで構成されている。図
3によれば、電極2、4と固体電解質3との界面の接触
面積は距離G−Hに比例する。上記した従来例〜で
はシート成形時に表面加工などして、電極2、4と固体
電解質3の境界を波線や鋸歯状としたもので、この線分
増に比例した界面抵抗の減少効果がある。
In the conventional example shown in FIG. 3, the positive electrode 2, the negative electrode 4, and the solid electrolyte 3 each have a rectangular (sheet-like or pellet-like) cross-sectional shape. Laminated to form a solid electrolyte battery. In FIG. 3, each of the electrode 2 and the electrode 4 is made of either a positive electrode active material powder or a negative electrode active material powder, and a binder made of an electron conductivity-imparting substance and a solid electrolyte. According to FIG. 3, the contact area of the interface between the electrodes 2, 4 and the solid electrolyte 3 is proportional to the distance GH. In the above-mentioned conventional examples, the boundary between the electrodes 2, 4 and the solid electrolyte 3 is formed into a wavy line or a sawtooth shape by surface processing or the like at the time of sheet forming, and there is an effect of reducing the interface resistance in proportion to the increase of the line segment.

【0010】また、図3によれば、イオンあるいは電子
が層間を移動する際、移動距離の違いによる移動抵抗の
違いがある。正極活物質と負極活物質間、すなわちA−
B間、C−D間とで比較した場合、この間をイオンが移
動する距離は(A−B間)<(C−D間)であり、この
間の移動抵抗は(A−B間)<(C−D間)であり、任
意の正極活物質と負極活物質間の距離に比例した内部抵
抗がある。図3の層厚は一般に電極が100μm前後で
電解質が10μm前後である。従って、移動距離は10
μmから200μmであり、平均的な移動距離は100
μm前後である。
Further, according to FIG. 3, when ions or electrons move between layers, there is a difference in movement resistance due to a difference in movement distance. Between the positive electrode active material and the negative electrode active material, that is, A-
When compared between B and CD, the distance that the ions move between them is (between AB) <(between CD) and the migration resistance during this period is (between AB) <( CD-D), and there is an internal resistance proportional to the distance between any positive electrode active material and negative electrode active material. The layer thickness in FIG. 3 is generally around 100 μm for the electrode and around 10 μm for the electrolyte. Therefore, the moving distance is 10
μm to 200 μm, and the average travel distance is 100
It is around μm.

【0011】また、イオンと電子とのキャリアの違いに
よる抵抗がある。また、液系と固体系との電解質の違い
による抵抗がある。イオンは、電子に比べ、サイズ・質
量とも大きく、一般に固体中を高速で動くことは難しい
が、非水電解液中では容易に高速で動くことができる。
In addition, there is resistance due to the difference in carriers between ions and electrons. In addition, there is resistance due to the difference in electrolyte between the liquid system and the solid system. Ions are larger in size and mass than electrons and are generally difficult to move at high speed in solids, but can easily move at high speed in non-aqueous electrolytes.

【0012】リチウム塩を含む有機溶剤からなる非水電
解液ではイオン伝導度が1×10-2〜10-3Ω-1cm-1
と大きく、このような移動距離の違いによる抵抗差は極
めて小さく無視できる。一方、固体電解質3ではイオン
伝導度が一般に1×10-4〜10-6Ω-1cm-1と小さ
く、このような移動距離による抵抗は大きく、移動距離
の違いによる抵抗差も極めて大きい。他方、電子は、電
子がそれぞれの電極から集電体に移動する距離も、C−
E、D−FとA−E、B−Fとで異なるが、電子本来の
移動速度はイオンの移動速度に比べて早く、この移動距
離による抵抗は小さく、移動距離の違いによる抵抗差も
小さい。
A non-aqueous electrolyte comprising an organic solvent containing a lithium salt has an ion conductivity of 1 × 10 -2 to 10 -3 Ω -1 cm -1.
The resistance difference due to the difference in the moving distance is extremely small and can be ignored. On the other hand, in the solid electrolyte 3, the ionic conductivity is generally as small as 1 × 10 −4 to 10 −6 Ω −1 cm −1, and the resistance due to such a moving distance is large, and the resistance difference due to the difference in the moving distance is extremely large. On the other hand, electrons also have a C-
Although E and DF are different from AE and BF, the original moving speed of electrons is faster than the moving speed of ions, the resistance due to this moving distance is small, and the resistance difference due to the difference in moving distance is small. .

【0013】しかし、例えば電極2、4における活物質
の分量を増やすために、電子伝導性付与物質の分量を減
らすと、電子伝導性付与物質が不十分になって、電極
2、4内のミクロ構造に乱れが発生し、電子伝導度が小
さくなり、電子の移動距離による抵抗は大きくなり、移
動距離の違いによる抵抗差も大きくなって、無視できな
くなる。
However, if the amount of the electron-conductivity-imparting material is reduced in order to increase the amount of the active material in the electrodes 2 and 4, for example, the electron-conductivity-imparting material becomes insufficient and the Disturbance occurs in the structure, the electron conductivity decreases, the resistance according to the moving distance of the electrons increases, and the resistance difference due to the difference in the moving distance increases, and cannot be ignored.

【0014】従来例では、電極活物質粉体とこれを囲
むマトリックス状の固体電解質との接触界面(いわゆる
粒界)抵抗の低減化を図っている。本発明ではこの粒界
抵抗を低減する他の例をあげている。
In the prior art, the contact interface (so-called grain boundary) resistance between the electrode active material powder and the matrix-like solid electrolyte surrounding the electrode active material powder is reduced. The present invention gives another example of reducing the grain boundary resistance.

【0015】従来例〜にはない重要な課題がある。
それは、固体電解質で構成された電極活物質粉体を囲む
電極マトリックスと固体電解質層のバルク抵抗が大きい
ことである。これは固体電解質が液系やゲル系の電解質
に比べ、イオン伝導度が小さいことに起因している。こ
のため、正極活物質粉体から負極活物質粉体までのイオ
ンの移動距離に比例した内部抵抗が大きく現れ、この抵
抗に起因して、充放電電流密度が小さくなったり、正電
極と負電極の反応面が固体電解質に接する領域に限られ
て活物質の利用率が低下し、充放電容量が小さくなると
いう問題があった。本発明の目的2はこの問題を解消す
ることにある。
There is an important problem which does not exist in the prior art.
That is, the bulk resistance of the electrode matrix surrounding the electrode active material powder composed of the solid electrolyte and the solid electrolyte layer is large. This is because the solid electrolyte has a lower ionic conductivity than liquid or gel electrolytes. For this reason, an internal resistance proportional to the movement distance of the ions from the positive electrode active material powder to the negative electrode active material powder appears, and due to this resistance, the charge / discharge current density decreases or the positive electrode and the negative electrode However, there has been a problem in that the reaction surface is limited to the region in contact with the solid electrolyte, the utilization factor of the active material decreases, and the charge / discharge capacity decreases. An object 2 of the present invention is to solve this problem.

【0016】目的1では、イオンの移動は電極と電解質
層との界面でも起こるため、この界面の表面積を従来例
以上にできるだけ大きくすればよい。目的2では、電気
化学素子の特性である化学反応(酸化還元反応)は活物
質粉体とこれを囲む電解質との界面で起こるため、反応
効率を挙げるにはこの粒界の表面積をできるだけ大きく
すればよく、また正極活物質粉体から負極活物質粉体ま
でのイオンの移動距離をできるだけ短くすればよい。
In the first object, since the movement of ions also occurs at the interface between the electrode and the electrolyte layer, the surface area of this interface may be made as large as possible in comparison with the conventional example. In the purpose 2, since the chemical reaction (oxidation-reduction reaction), which is a characteristic of the electrochemical element, occurs at the interface between the active material powder and the electrolyte surrounding the active material powder, the surface area of the grain boundary should be increased as much as possible to increase the reaction efficiency. What is necessary is just to make the movement distance of the ions from the positive electrode active material powder to the negative electrode active material powder as short as possible.

【0017】本発明は、電極の電気化学反応を利用した
電解質が固体のイオニクス素子、より具体的には固体電
解質電池の新しい構造を提示するもので、これにより目
的1、2、すなわち電極と固体電解質層の界面抵抗、そ
して電解質のバルク抵抗に起因する正極活物質粉体から
負極活物質粉体までのイオンの移動抵抗を低減すること
にある。そして付加的に、正極(もしくは負極)活物質
粉体から正極(もしくは負極)集電体までの電子の移動
抵抗も低減しようとするものである。本発明の最終的な
目的は、これらの内部抵抗の低減化を図ることにより、
固体電解質電池の充放電電流や充放電容量を向上させる
ことにある。
The present invention proposes a new structure of an ionics element in which an electrolyte utilizing an electrochemical reaction of an electrode is a solid, more specifically, a new structure of a solid electrolyte battery. It is to reduce the transfer resistance of ions from the positive electrode active material powder to the negative electrode active material powder caused by the interface resistance of the electrolyte layer and the bulk resistance of the electrolyte. In addition, the transfer resistance of electrons from the positive electrode (or negative electrode) active material powder to the positive electrode (or negative electrode) current collector is also reduced. The ultimate object of the present invention is to reduce these internal resistances,
It is to improve the charge / discharge current and charge / discharge capacity of a solid electrolyte battery.

【0018】[0018]

【課題を解決するための手段】請求項1に係る固体電解
質電池は、活物質と粒子結着物質との多孔質構造体から
成る一極性側電極と、この多孔質構造体の空隙部表面に
被着したイオン伝導性物質から成る固体電解質層と、こ
の多孔質構造体の空隙部に充填された他の活物質と充填
物質とから成る他の極性側電極とを有し、前記一極性側
電極と他の極性側電極に集電体を設けた。
According to a first aspect of the present invention, there is provided a solid electrolyte battery comprising: a monopolar electrode comprising a porous structure of an active material and a particle binding material; and a surface of a void portion of the porous structure. A solid electrolyte layer made of an adhered ion conductive material, and another polar electrode made of another active material and a filling material filled in a void portion of the porous structure; A current collector was provided on the electrode and the other polarity side electrode.

【0019】上記固体電解質電池では、前記多孔質構造
体の活物質に電子伝導性付与物質が添加されていること
が望ましい。
In the above solid electrolyte battery, it is preferable that an electron conductivity imparting substance is added to the active material of the porous structure.

【0020】上記固体電解質電池では、前記粒子結着物
質が前記イオン伝導性物質および/または誘電物質から
なることが望ましい。
In the above-mentioned solid electrolyte battery, it is preferable that the particle binder is composed of the ion-conductive substance and / or the dielectric substance.

【0021】上記固体電解質電池では、前記イオン伝導
性物質が結晶化ガラス、低融点ガラス、および高分子の
うちのいずれか一種または複数種からなることが望まし
い。
In the above-mentioned solid electrolyte battery, it is desirable that the ion-conductive substance is made of one or more of crystallized glass, low-melting glass, and polymer.

【0022】上記固体電解質電池では、前記固体電解質
層に前記粒子結着物質が添加されていることが望まし
い。
In the above-mentioned solid electrolyte battery, it is desirable that the above-mentioned particle binder is added to the above-mentioned solid electrolyte layer.

【0023】上記固体電解質電池では、前記他の極性側
電極の他の活物質に前記電子伝導性付与物質が添加され
ていることが望ましい。
In the above-mentioned solid electrolyte battery, it is preferable that the electron conductivity-imparting material is added to the other active material of the other polar electrode.

【0024】上記固体電解質電池では、前記充填物質が
イオン伝導性物質および/または誘電物質からなること
が望ましい。
In the above solid electrolyte battery, it is preferable that the filling material is made of an ion conductive material and / or a dielectric material.

【0025】また、請求項11に係る固体電解質電池の
製造方法では、粒子結着剤と有機バインダーを含有する
活物質粉体の生成形体を焼成して多孔質構造体を形成
し、粒子結着剤を含有する固体電解質粉体を溶媒で粘液
状にして前記多孔質構造体に含浸させて焼成して前記多
孔質構造体の空隙部表面に固体電解質層を被着し、さら
に充填物質を含有する他の活物質粉体を溶媒で粘液状に
して前記多孔質構造体の空隙部に充填して焼成すること
を特徴とする。
In the method of manufacturing a solid electrolyte battery according to the eleventh aspect, the formed form of the active material powder containing the particle binder and the organic binder is fired to form a porous structure, The solid electrolyte powder containing the agent is made viscous with a solvent, impregnated into the porous structure, fired, and a solid electrolyte layer is adhered to the surface of the void portion of the porous structure, further containing a filling material. The other active material powder to be converted into a viscous liquid with a solvent is filled in the voids of the porous structure and fired.

【0026】[0026]

【発明の実施の形態】図1は本発明に係る固体電解質電
池の断面を示す模式図である。図2は図1の断面の要部
を拡大した図である。
FIG. 1 is a schematic view showing a cross section of a solid electrolyte battery according to the present invention. FIG. 2 is an enlarged view of a main part of the cross section of FIG.

【0027】図1および図2において、1は一極性側
(正極もしくは負極)集電体、2は一極性側(正もしく
は負)電極、3は固体電解質層、4は他の極性側(負も
しくは正)電極、5は他の極性側(負極もしくは正極)
集電体である。以下、便宜上、一極性側を正、他の極性
側を負として説明する。図1および図2と図3の違い
は、正電極、負電極、そして固体電解質の断面形状であ
る。
1 and 2, reference numeral 1 denotes a collector on one polarity side (positive or negative electrode), 2 denotes an electrode on one polarity side (positive or negative), 3 denotes a solid electrolyte layer, and 4 denotes a collector on the other polarity side (negative or negative). Or positive) electrode, 5 is the other polarity side (negative electrode or positive electrode)
It is a current collector. Hereinafter, for convenience, one polarity side will be described as positive and the other polarity side will be described as negative. The difference between FIGS. 1 and 2 and FIG. 3 is the cross-sectional shape of the positive electrode, the negative electrode, and the solid electrolyte.

【0028】図1において、多孔質構造体を骨格とした
正電極2の断面形状は大きい粒子の集まりのぶどう房状
に模式的に図示しており、負電極4の断面形状は小さい
粒子の集まりで、上記ぶどう房状の隙間を埋めるように
模式的に図示しており、固体電解質3の断面形状はこれ
ら正電極2の断面と負電極4の断面の境界に一定の薄い
厚みを成しており、図1の要部拡大図である図2に模式
的に図示する薄層である。
In FIG. 1, the cross-sectional shape of the positive electrode 2 having a porous structure as a skeleton is schematically shown as a grape cluster of large particles, and the cross-sectional shape of the negative electrode 4 is small particles. The cross-sectional shape of the solid electrolyte 3 has a constant thin thickness at the boundary between the cross section of the positive electrode 2 and the cross section of the negative electrode 4. 2 is a thin layer schematically shown in FIG. 2, which is an enlarged view of a main part of FIG.

【0029】ぶどう房状の正電極2は、電子伝導性とイ
オン伝導性において導通状態である。電子的には集電体
1にも接続状態である。また、図1に孤立したぶどう房
状の断面部6が図示されているが、他の切り口ではぶど
う房状の正電極2に繋がっており、いずれも多孔質体電
極の一部である。
The grape cluster-shaped positive electrode 2 is in a conductive state in electron conductivity and ion conductivity. It is electronically connected to the current collector 1. In addition, FIG. 1 shows an isolated grape cluster-shaped cross-section 6, which is connected to the grape cluster-shaped positive electrode 2 at other cuts, and each is a part of the porous material electrode.

【0030】図1において、正電極2は正極活物質粉体
と粒子結着物質とで構成され、この他に電子伝導性物質
を含んでもよい。また、固体電解質3はイオン伝導性を
有し、粒子結着物質などで構成されている。また、負電
極4は負極活物質粉体と充填物質とで構成され、この他
に電子伝導性物質を含んでもよい。図1の集電体1、5
を除いた厚みは、図3とほぼ同等の活物質を保有する意
味で200μm前後とする。
In FIG. 1, the positive electrode 2 is composed of a positive electrode active material powder and a particle binder, and may further contain an electron conductive material. Further, the solid electrolyte 3 has ion conductivity and is made of a particle binding material or the like. Further, the negative electrode 4 is composed of a negative electrode active material powder and a filling material, and may further contain an electron conductive material. Current collectors 1, 5 of FIG.
The thickness excluding is set to about 200 μm in order to retain an active material substantially equivalent to that in FIG.

【0031】この図1を基に、イオンと電子のそれぞれ
について、正極2と負極4間の移動距離を考察すると、
電極2、4のどの箇所においても、それは多孔質構造体
である正電極2のぶどう房状の粉体粒の大きさ程度、あ
るいは多孔質体を埋めるように充填された負電極4の粉
体粒の大きさ程度、すなわち高々数μmであることが図
より明らかである。
Based on FIG. 1, the movement distance between the positive electrode 2 and the negative electrode 4 for each of ions and electrons is considered as follows.
At any point of the electrodes 2 and 4, it is about the size of a grape cluster-shaped powder particle of the positive electrode 2 which is a porous structure, or the powder of the negative electrode 4 filled so as to fill the porous body. It is clear from the figure that the size is about the size of a grain, that is, several μm at most.

【0032】この程度の小さな移動距離であれば、例え
電極2、4内のイオン伝導性や電子伝導性が小さくて
も、移動距離に起因するイオン抵抗や電子抵抗は非常に
小さい。また、固体電解質3の厚みも薄く、固体電解質
3内のイオン抵抗も小さい。さらに、電極2、4と集電
体1、5との移動距離に伴う電子伝導性についても、電
極2、4内で高い電子伝導性が確保されていれば、電子
抵抗は小さく無視できる。すなわち、固体系が液系に比
べてイオンや電子の抵抗率が例え2桁大きくても、本発
明によれば移動距離が2桁程度小さくできるため、イオ
ンや電子の移動抵抗はほぼ同じ抵抗にできる。また、電
極2、4と固体電解質3との界面の面積は、図1より容
易に推察できるように飛躍的に増大する。したがって、
電極2、4と固体電解質3との界面の抵抗も激減でき
る。
With such a small moving distance, the ionic resistance and the electronic resistance due to the moving distance are very small even if the ion conductivity and the electron conductivity in the electrodes 2 and 4 are small. Further, the thickness of the solid electrolyte 3 is small, and the ionic resistance in the solid electrolyte 3 is also small. Further, with respect to the electron conductivity accompanying the moving distance between the electrodes 2 and 4 and the current collectors 1 and 5, the electronic resistance is small and negligible if high electron conductivity is secured in the electrodes 2 and 4. That is, even if the resistivity of ions and electrons is two orders of magnitude higher than that of a liquid system, the moving distance can be reduced by about two orders of magnitude according to the present invention. it can. Also, the area of the interface between the electrodes 2 and 4 and the solid electrolyte 3 increases dramatically as can be easily inferred from FIG. Therefore,
The resistance at the interface between the electrodes 2, 4 and the solid electrolyte 3 can also be drastically reduced.

【0033】このように電極2、4と固体電解質3の層
厚がそれぞれ薄く、充放電電流密度が広い層面において
均一であり、例え電流密度が小さくても広い層面によ
り、全体の電流としての充放電電流密度(この密度は集
電体1、5に対する単位面積当りである)は大きくな
り、充放電容量も大きくなる。
As described above, the electrodes 2, 4 and the solid electrolyte 3 have a thin layer thickness, and are uniform on the layer surface having a wide charge / discharge current density. The discharge current density (this density is per unit area with respect to the current collectors 1 and 5) increases, and the charge / discharge capacity also increases.

【0034】図1および図2に示すような構造の固体電
解質電池を形成するには様々な方法がある。
There are various methods for forming a solid electrolyte battery having a structure as shown in FIGS.

【0035】まず、正極活物質から成る多孔質構造体の
電極2を作製する。正極活物質の粉体を粒子結着物質で
結着して、固体電解質電池の骨格となる多孔質体を作製
する。多孔質体の充填率は50%以下が充放電作用の利
用率から好ましいがこれに限定されるものではない。
First, an electrode 2 having a porous structure made of a positive electrode active material is prepared. The powder of the positive electrode active material is bound with a particle binding material to produce a porous body serving as a skeleton of a solid electrolyte battery. The filling rate of the porous body is preferably 50% or less from the utilization rate of the charge / discharge action, but is not limited thereto.

【0036】粒子結着物質としては、イオン伝導性物質
やリチウム含有物質や誘電物質などが好ましく、例えば
イオン伝導性を有する結晶化ガラス、非晶質ガラス、有
機高分子など、あるいはリチウムを含有する組成の低融
点ガラスなど、あるいはゾル−ゲル法による金属アルコ
キシドの酸化物などが挙げられ、これらを単独もしくは
混合して利用できる。例えば、イオン伝導性の結晶化ガ
ラスは融点が高く、高い結着温度で活物質粉体の温度が
上がると活物質の結晶構造を破壊して酸化還元反応に支
障をきたす恐れがあるので、より具体的には粒子結着物
質として低温結着ができる低融点ガラスなどを混合して
用いるのがよい。
As the particle binding substance, an ion conductive substance, a lithium-containing substance, a dielectric substance, and the like are preferable. For example, crystallized glass, amorphous glass, an organic polymer, or the like having ion conductivity, or lithium is contained. Examples thereof include a low melting point glass having a composition, an oxide of a metal alkoxide by a sol-gel method, and the like, and these can be used alone or in combination. For example, ion-conductive crystallized glass has a high melting point, and if the temperature of the active material powder rises at a high binding temperature, the crystal structure of the active material may be destroyed and hinder the oxidation-reduction reaction. Specifically, it is preferable to mix and use a low-melting glass or the like that can bind at a low temperature as the particle binder.

【0037】また、活物質粒子を粒子結着物質で結着し
て多孔質体としたとき、この多孔質体の電子伝導性が小
さくて不十分な場合、活物質粒子に電子伝導性付与物質
粒子を混合するなどして用いると電子伝導性が高くでき
て電子の移動抵抗が小さくできる。
When the active material particles are bound with a particle binder to form a porous material, and the electron conductivity of the porous material is small and insufficient, the active material particles may be provided with an electron conductivity imparting material. When the particles are used in a mixed state, the electron conductivity can be increased and the electron transfer resistance can be reduced.

【0038】この多孔質構造体は、活物質粉体と粒子結
着物質粉体などを溶媒や有機バインダーなどとともに粘
液状(スラリー状)とし、ドクターブレードでシート成
形など行い、乾燥し、焼結させて作成できる。成形に用
いた有機バインダーなどを焼成して飛ばし、多孔質構造
体の空隙を作ることができる。ドクターブレード法の他
に印刷法や浸漬法がある。また、この多孔質構造体は、
活物質粉体などを金属アルコキシドと混合して液状(ス
ラリー状)とし、シート成形など行って乾燥して作成で
きる。乾燥時に、アルコール成分が気化して、多孔質構
造体の空隙を作ることができる。
This porous structure is formed into a viscous liquid (slurry) together with a solvent, an organic binder, and the like, by powdering the active material powder and the particle binder material powder, forming the sheet with a doctor blade, drying, and sintering. Can be created. The organic binder or the like used for molding can be fired and blown off to form voids in the porous structure. In addition to the doctor blade method, there are a printing method and a dipping method. In addition, this porous structure
It can be prepared by mixing an active material powder or the like with a metal alkoxide to make a liquid (slurry), forming a sheet or the like, and drying. During drying, the alcohol component is vaporized, and voids in the porous structure can be created.

【0039】より具体的には、粒子結着物質として、P
VdF(ポリ弗化ビニリデン)、PEO(ポリエチレン
オキシド)、水酸化リチウム、炭酸リチウム、りん酸リ
チウム、また、Li2O−SiO2 Li2O−SiO2
25などのリチウム含有金属酸化物(金属は一種類以
上)、Lixy1-zzなどのリチウム含有金属窒化
物、TiS2、あるいはLi2S−SiS2−LiIなど
のリチウム含有金属硫化物、リチウムチタン酸化物など
のリチウム含有遷移金属酸化物などが挙げられる。これ
らを単独あるいは混合して用いる。
More specifically, as a particle binder, P
VdF (polyvinylidene fluoride), PEO (polyethylene oxide), lithium hydroxide, lithium carbonate, lithium phosphate, also, Li 2 O-SiO 2, Li 2 O-SiO 2 -
Lithium-containing metal oxide such as P 2 O 5 (metal one or more), Li x P y O 1 -z N z lithium-containing metal nitride such as, TiS 2, or Li 2 S-SiS 2 -LiI etc. And lithium-containing transition metal oxides such as lithium titanium oxide. These may be used alone or in combination.

【0040】正極活物質の材料としては、例えばリチウ
ムコバルト酸化物、リチウムニッケル酸化物、リチウム
マンガン酸化物、リチウムニッケルマンガン酸化物、リ
チウムチタン酸化物、リチウム鉄マンガン酸化物、ある
いはリチウムバナジウム酸化物などのリチウム含有遷移
金属酸化物(遷移金属は一種類以上)、また二酸化マン
ガン、五酸化ニオブ、リチウム遷移金属複合窒化物、T
iS2、あるいはV2 5-P25などが挙げられる。
As the material of the positive electrode active material, for example, lithium
Cobalt oxide, lithium nickel oxide, lithium
Manganese oxide, lithium nickel manganese oxide,
Titanium oxide, lithium iron manganese oxide,
Or lithium-containing transitions such as lithium vanadium oxide
Metal oxides (one or more transition metals) and man dioxide
Gun, niobium pentoxide, lithium transition metal composite nitride, T
iSTwoOr VTwoO Five-PTwoOFiveAnd the like.

【0041】また、電子伝導性付与物質としては、カ−
ボン、アセチレンブラック、ITO、SnO2などの金
属酸化物などが挙げられる。ここでは、多孔質構造体の
電極が正極2の場合を挙げたが、これが負極4の場合に
は後述の負極活物質に置きかえればよい。
Further, as the electron conductivity imparting substance, a car
And metal oxides such as acetylene black, ITO, and SnO 2 . Here, the case where the electrode of the porous structure is the positive electrode 2 is described, but when the electrode is the negative electrode 4, it may be replaced with a negative electrode active material described later.

【0042】次に、正極集電体1を正電極2の一面に形
成する。形成の方法としては様々な方法がある。例えば
多孔質構造体の電極2の少なくとも一面に電子導電性の
膜など(AuやAgやAlやCuなど)を蒸着法やスパ
ッタリング法で形成したり、導電ペースト(AuやAg
やAlやCu粒子を樹脂に混合したもの)を塗布して焼
成することにより形成する。その他の形成方法として
は、ニッケル、ステンレス、アルミニウム、銅、カーボ
ンなどからなるシート状の金属箔を電子伝導性の粒子を
混合した樹脂ペーストで電極に貼り合せて乾燥・焼成し
てもよい。
Next, the positive electrode current collector 1 is formed on one surface of the positive electrode 2. There are various methods for the formation. For example, an electron conductive film (Au, Ag, Al, Cu, or the like) is formed on at least one surface of the electrode 2 of the porous structure by a vapor deposition method or a sputtering method, or a conductive paste (Au or Ag) is formed.
Or a mixture of Al and Cu particles mixed with a resin) and sintering. As another forming method, a sheet-shaped metal foil made of nickel, stainless steel, aluminum, copper, carbon, or the like may be attached to an electrode with a resin paste containing a mixture of electron conductive particles, and then dried and fired.

【0043】次に、得られた多孔質構造体の空隙部表面
を電解質で被覆し、図2に示すような薄い固体電解質層
3を形成する。このような固体電解質層3を形成するに
は、上記粒子結着物質のようなイオン伝導性を有するも
のが好適であり、このような粉体などを溶媒とともに粘
液状(スラリー状)として、多孔質構造体に含浸させ
て、乾燥して作成する。また、この被膜には、上記粒子
結着物質を用いずにゾル−ゲル法による金属アルコキシ
ドの酸化物などを形成できる溶液に多孔質構造体を含浸
させて、加水分解して加熱して作成する。
Next, the surface of the void portion of the obtained porous structure is covered with an electrolyte to form a thin solid electrolyte layer 3 as shown in FIG. In order to form such a solid electrolyte layer 3, a material having ion conductivity such as the above-mentioned particle binding material is suitable. Impregnated into the porous structure and dried. Further, the coating is formed by impregnating the porous structure with a solution capable of forming an oxide of a metal alkoxide or the like by a sol-gel method without using the above-mentioned particle binder, hydrolyzing and heating. .

【0044】次に、固体電解質3を被着した多孔質構造
体の空隙に、負極活物質を充填して電極4を形成する。
負極活物質の粉体を充填物質とともに電極2の空隙に含
浸させ、固体電解質電池の他極となる充填体を作製す
る。充填体の充填により、これらの構造体は充填率が1
00%近くになるように形成できるのが充放電作用の体
積エネルギー密度の点から好ましいが、これに限定され
るものではない。
Next, the negative electrode active material is filled into the voids of the porous structure on which the solid electrolyte 3 is adhered to form the electrode 4.
The powder of the negative electrode active material is impregnated into the voids of the electrode 2 together with the filling material to prepare a filling body that will be the other electrode of the solid electrolyte battery. Due to the filling of the packing, these structures have a packing ratio of 1
It is preferable to be able to be formed to be close to 00% from the viewpoint of the volume energy density of the charge / discharge action, but it is not limited to this.

【0045】この負極の充填物質としては、イオン伝導
性物質やリチウム含有物質や誘電物質などが好ましく、
具体的にはイオン伝導性を有する結晶化ガラス、非晶質
ガラス、有機高分子、ゲル電解質、非水電解液など、あ
るいはリチウムを含有する組成の低融点ガラスなど、あ
るいはゾルーゲル法による金属アルコキシドの酸化物な
ど、あるいは有機溶媒などの誘電物質などが挙げられ、
これらを単独もしくは混合して利用できる。例えばイオ
ン伝導性の結晶化ガラスは融点が高く、高い結着温度で
活物質粉体の温度が上がると活物質の結晶構造を破壊
し、酸化還元反応に支障をきたす恐れがあるので、より
具体的には充填物質として低温結着ができる有機高分子
などを混合して用いるのがよい。
As the filling material of the negative electrode, an ion conductive material, a lithium-containing material, a dielectric material, or the like is preferable.
Specifically, crystallized glass having ion conductivity, amorphous glass, organic polymer, gel electrolyte, non-aqueous electrolyte, or the like, or low melting glass having a lithium-containing composition, or metal alkoxide by the sol-gel method Such as oxides or dielectric materials such as organic solvents,
These can be used alone or in combination. For example, ion-conductive crystallized glass has a high melting point, and if the temperature of the active material powder rises at a high binding temperature, the crystalline structure of the active material may be destroyed, which may hinder the oxidation-reduction reaction. More specifically, it is preferable to use a mixture of an organic polymer capable of binding at a low temperature as a filling substance.

【0046】また、活物質粒子を充填物質で結着して充
填体としたとき、この充填体の電子伝導性が小さくて不
十分な場合、活物質粒子に電子伝導性付与物質粒子を混
合して用いると、電子伝導性を改善でき、電子の移動抵
抗を小さくできる。
When the active material particles are bound with a filler material to form a filler, if the electron conductivity of the filler material is small and insufficient, the active material particles are mixed with electron conductivity imparting material particles. If used, the electron conductivity can be improved and the electron transfer resistance can be reduced.

【0047】この充填構造は、活物質粉体と充填物質な
どを溶媒などとともに液状(スラリー状)とし、多孔質
体に含浸させ、乾燥し、焼成して作成できる。電極4を
形成する含浸粒子のサイズは、電極2を形成する骨格粒
子のサイズより含浸量(充填率)を高めるという観点か
ら、より小さいほうがよい。また、より低温で形成で
き、焼成時に気化物質を生じない充填物質のほうが充填
率を高めることができる。
The filling structure can be prepared by making the active material powder and the filling material into a liquid (slurry) together with a solvent and the like, impregnating the porous body, drying and firing. The size of the impregnated particles forming the electrode 4 is preferably smaller from the viewpoint of increasing the impregnation amount (filling rate) than the size of the skeletal particles forming the electrode 2. In addition, a filling material that can be formed at a lower temperature and does not generate a vaporized material during firing can increase the filling rate.

【0048】ところで、負極活物質の材料としては、例
えば金属リチウム、リチウム合金、黒鉛やコークスなど
の炭素系材料、リチウムチタン酸化物、リチウムコバル
ト酸化物、リチウムニッケル酸化物、リチウムマンガン
酸化物、リチウムニッケルマンガン酸化物、リチウム鉄
マンガン酸化物、あるいはリチウムバナジウム酸化物な
どのリチウム含有遷移金属酸化物(遷移金属は一種類以
上)、二酸化マンガン、五酸化ニオブ、リチウム遷移金
属複合窒化物、あるいはTiS2などが挙げられる。
As the material of the negative electrode active material, for example, metal materials such as lithium metal, lithium alloy, graphite and coke, lithium titanium oxide, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium manganese oxide, lithium A transition metal oxide containing lithium such as nickel manganese oxide, lithium iron manganese oxide or lithium vanadium oxide (at least one type of transition metal), manganese dioxide, niobium pentoxide, lithium transition metal composite nitride, or TiS 2 And the like.

【0049】また、負極活物質とともに用いられる電子
伝導性付与物質としては、カ−ボン、アセチレンブラッ
ク、ITO、SnOなどの金属酸化物などが挙げられ
る。ここでは充填構造の電極が負極の場合を挙げたが、
正極の場合には負極活物質を前述の正極活物質に置きか
えればよい。
Examples of the electron conductivity-imparting material used together with the negative electrode active material include carbon, acetylene black, metal oxides such as ITO and SnO. Here, the case where the electrode of the filling structure is a negative electrode is described,
In the case of a positive electrode, the negative electrode active material may be replaced with the above-described positive electrode active material.

【0050】次に、負極(もしくは正極)集電体5を集
電体1の電池セル対面に形成する。形成方法としては、
様々な方法が考えられ、以下の形成法に限定されるもの
ではない。例えば充填電極4に電子導電性の膜などを蒸
着法やスパッタリング法や導電ペーストの塗布・焼成な
どにより形成する。
Next, a negative electrode (or positive electrode) current collector 5 is formed on the current collector 1 on the side facing the battery cell. As a formation method,
Various methods are conceivable, and are not limited to the following forming methods. For example, an electron conductive film or the like is formed on the filling electrode 4 by a vapor deposition method, a sputtering method, or application and firing of a conductive paste.

【0051】図2において、電極2と固体電解質3、お
よび電極4と固体電解質3との間に中間層を設けてもよ
く、このような中間層はプロセス温度による反応で自然
形成するのが好ましく、組成的には一般に中間組成とな
る。
In FIG. 2, an intermediate layer may be provided between the electrode 2 and the solid electrolyte 3 and between the electrode 4 and the solid electrolyte 3, and such an intermediate layer is preferably formed spontaneously by a reaction at a process temperature. The composition is generally an intermediate composition.

【0052】図2において、電極2と固体電解質3、お
よび電極4の全構成層に有機溶媒あるいは有機溶媒とリ
チウム塩などの非水電解液を含浸することにより、特に
電極4、固体電解質3、および電極2に含まれる僅かな
空隙(欠陥)を満たすことができて、さらによい電流密
度の結果が得られる。有機溶媒としては、PC(プロピ
レンカーボネート)、NMP(N−メチル−2−ピロリ
ドン)などがある。また含浸するリチウム塩としてはL
iBF4などがある。
In FIG. 2, the electrode 2, the solid electrolyte 3, and all the constituent layers of the electrode 4 are impregnated with an organic solvent or an organic solvent and a non-aqueous electrolyte such as a lithium salt. In addition, a small void (defect) included in the electrode 2 can be filled, and a better current density result can be obtained. Examples of the organic solvent include PC (propylene carbonate) and NMP (N-methyl-2-pyrrolidone). The lithium salt to be impregnated is L
iBF 4, and the like.

【0053】本発明の発電セルは、複数個積層すること
で、発電電圧を高めたり、発電電流を増すことができ
る。
By stacking a plurality of power generation cells of the present invention, it is possible to increase the generated voltage or the generated current.

【0054】図1では、固体電解質電池の正・負の電極
端子や保護膜あるいは外装体は図示しなかったが、これ
らの電極端子は集電体1、5に接続した金属リードなど
でよく、保護膜あるいは外装体は金属リードを被覆しな
いように固体電解質電池の外周面を覆うように形成すれ
ばよい。これにより固体電解質電池への水分の浸入など
を抑止することができる。保護皮膜体としては半導体チ
ップ用の保護樹脂や無機ガラスなど、耐湿および/また
は気密のための封止材が挙げられる。保護外装体として
は、外面部に電気的絶縁性や装飾性を持たせるため、絶
縁性のポリエチレンテレフタレート(PET)やポリエ
チレン(PE)などで金属シートをラミネートしたラミ
ネートフイルムなどが使用できる。
Although FIG. 1 does not show the positive / negative electrode terminals, the protective film, or the outer package of the solid electrolyte battery, these electrode terminals may be metal leads connected to the current collectors 1, 5, and the like. The protective film or the exterior may be formed so as to cover the outer peripheral surface of the solid electrolyte battery so as not to cover the metal leads. As a result, intrusion of moisture into the solid electrolyte battery can be suppressed. Examples of the protective film include a sealing material for moisture resistance and / or airtightness, such as a protective resin for a semiconductor chip and inorganic glass. As the protective exterior body, a laminated film in which a metal sheet is laminated with insulating polyethylene terephthalate (PET) or polyethylene (PE) or the like can be used in order to impart electrical insulation and decorative properties to the outer surface.

【0055】[0055]

【実施例】平面サイズが20mm×20mmでその断面
形状が図1に示すような固体電解質電池を作製した。
EXAMPLE A solid electrolyte battery having a plane size of 20 mm × 20 mm and a sectional shape as shown in FIG. 1 was produced.

【0056】負極活物質としてリチウムチタン酸化物
(Li[Li1/3Ti5/3]O4)を85重量%に粒子結
着物質としてリチウムイオン伝導性を有する低融点ガラ
ス(Li2O−B23−ZnO)を15重量%混合し
た。この混合物に対して、バインダー(ポリビニルブチ
ラール)を添加し、トルエンを溶剤にペーストの調整を
行った。調整したペーストをドクターブレードで厚さが
200μmとなるようにシート成形した。これを乾燥し
た後、650℃で焼結し、多孔質体電極を作成した。
Low-melting glass (Li 2 O—) having lithium ion conductivity as a particle binder is 85% by weight of lithium titanium oxide (Li [Li 1/3 Ti 5/3 ] O 4 ) as a negative electrode active material. B 2 O 3 -ZnO) were mixed 15% by weight. A binder (polyvinyl butyral) was added to this mixture, and the paste was adjusted using toluene as a solvent. The adjusted paste was formed into a sheet with a doctor blade so as to have a thickness of 200 μm. After drying, it was sintered at 650 ° C. to form a porous electrode.

【0057】この多孔質体電極の片面に、蒸着装置でA
uを0.5μmの厚さに蒸着して負極集電体を形成し
た。
On one side of this porous electrode, A
u was deposited to a thickness of 0.5 μm to form a negative electrode current collector.

【0058】次に、固体電解質としてリチウムイオン伝
導性を有する低融点ガラス(Li2O−B23−Zn
O)の微粉体をトルエンと粘度調整を行って溶液とし
た。この調整した溶液を多孔質体電極に含浸して乾燥し
た後、500℃で焼成した。溶液粘度を薄めて被膜形成
を数回繰り返すことで、ショート防止を行った。
Next, a low-melting glass (Li 2 O—B 2 O 3 —Zn) having lithium ion conductivity as a solid electrolyte
The fine powder of O) was adjusted in viscosity with toluene to form a solution. The prepared solution was impregnated into a porous electrode, dried, and fired at 500 ° C. Shortening was prevented by reducing the solution viscosity and repeating the film formation several times.

【0059】次に、正極活物質としてリチウムマンガン
酸化物(Li[Li0.1Mn1.9]O 4)を80重量%
に、電子導電性を付与させる添加物としてアセチレンブ
ラックを10重量%、および粒子結着物質としてPVd
F(ポリ弗化ビニリデン)を10重量%混合した。この
混合物に対して、NMP(N−メチル−2−ピロリド
ン)を添加混合して正極形成用ペーストを調整した。調
整した溶液を上記多孔質体電極に含浸して乾燥して充填
電極を作成した。
Next, lithium manganese was used as the positive electrode active material.
Oxide (Li [Li0.1Mn1.9] O Four) At 80% by weight
Acetylene butane as an additive to impart electronic conductivity
10% by weight of rack and PVd as particle binder
F (polyvinylidene fluoride) was mixed at 10% by weight. this
NMP (N-methyl-2-pyrrolide) was added to the mixture.
Was added and mixed to prepare a positive electrode forming paste. Key
The prepared solution is impregnated into the porous material electrode, dried and filled
Electrodes were made.

【0060】次に、この充填電極の面に、蒸着装置でA
uを0.5μmの厚さに蒸着して正極集電体を形成し
た。
Next, A was deposited on the surface of the filled electrode with a vapor deposition device.
u was deposited to a thickness of 0.5 μm to form a positive electrode current collector.

【0061】このセルについて、放電電流密度を求めた
ところ、11μA/cm2が得られた。また、充放電の
利用率は20%であった。 [比較用]次に、比較用として、平面サイズが20mm
×20mmでその断面が図3に示すように固体電解質電
池を作製した。
The discharge current density of this cell was 11 μA / cm 2 . The charge / discharge utilization rate was 20%. [Comparative] Next, for comparison, the plane size was 20 mm.
A solid electrolyte battery having a size of × 20 mm and a cross section as shown in FIG. 3 was produced.

【0062】負極活物質としてリチウムチタン酸化物
(Li[Li1/3Ti5/3]O4)を85重量%に粒子結
着物質としてリチウムイオン伝導性を有する低融点ガラ
ス(Li2O−B23−ZnO)を15重量%混合し
た。この混合物に対して、バインダー(ポリビニルブチ
ラール)を添加し、トルエンを溶剤にペーストの調整を
行った。調整したペーストをドクターブレードでシート
成形した。これを乾燥した後、700℃で焼結し、厚さ
が90μmのより緻密な負電極2を作成した。
Low-melting glass (Li 2 O—) having lithium ion conductivity as a particle binder is 85% by weight of lithium titanium oxide (Li [Li 1/3 Ti 5/3 ] O 4 ) as a negative electrode active material. B 2 O 3 -ZnO) were mixed 15% by weight. A binder (polyvinyl butyral) was added to this mixture, and the paste was adjusted using toluene as a solvent. The adjusted paste was formed into a sheet by a doctor blade. After drying, this was sintered at 700 ° C. to form a more dense negative electrode 2 having a thickness of 90 μm.

【0063】次に、固体電解質3として、リチウムイオ
ン伝導性の結晶化ガラス(Li2O−SiO2 Li2O−
SiO2−P25)の粉体とリチウムイオン伝導性を有
する低融点ガラス(Li2O−B23−ZnO)の粉体
をトルエンと調整を行ってペーストとした。この調整し
たペーストを上記負電極に印刷して乾燥した後、550
℃で焼成して厚み20μmの固体電解質3を得た。
Next, as the solid electrolyte 3, lithium ion conductive crystallized glass (Li 2 O—SiO 2 , Li 2 O—
A powder of SiO 2 —P 2 O 5 ) and a powder of low melting point glass (Li 2 O—B 2 O 3 —ZnO) having lithium ion conductivity were adjusted with toluene to obtain a paste. After printing the prepared paste on the negative electrode and drying it, 550
The solid electrolyte 3 having a thickness of 20 μm was obtained by firing at ℃.

【0064】次に、正極活物質としてリチウムマンガン
酸化物(Li[Li0.1Mn1.9]O 4)を80重量%
に、電子導電性を付与させる添加物としてアセチレンブ
ラックを11重量%、および充填物質としてPVdF
(ポリ弗化ビニリデン)を9重量%混合した後、この混
合物にNMP(N−メチル−2−ピロリドン)を添加混
合して正極形成用ペーストを調整した。調整したペース
トを上記積層体に印刷して乾燥した後、500℃で焼成
して厚み90μmの正電極を作成した。
Next, lithium manganese was used as the positive electrode active material.
Oxide (Li [Li0.1Mn1.9] O Four) At 80% by weight
Acetylene butane as an additive to impart electronic conductivity
11% by weight of rack and PVdF as filling material
(Polyvinylidene fluoride) at 9% by weight,
Add NMP (N-methyl-2-pyrrolidone) to the mixture
The paste for forming the positive electrode was adjusted in total. Adjusted pace
After printing on the laminate and drying, baking at 500 ° C
As a result, a positive electrode having a thickness of 90 μm was formed.

【0065】次に、この負電極と正電極の両面に、蒸着
装置でAuをそれぞれ0.5μmの厚さに蒸着して負極
および正極集電体を形成した。
Next, on both surfaces of the negative electrode and the positive electrode, Au was vapor-deposited to a thickness of 0.5 μm by a vapor deposition device to form a negative electrode and a positive electrode current collector.

【0066】このセルについて放電電流密度を求めたと
ころ、1μA/cm2が得られた。また、充放電の利用
率は2%であった。
When the discharge current density of this cell was determined, it was 1 μA / cm 2 . The charge / discharge utilization rate was 2%.

【0067】従来構造の比較例に対し、本発明品は放電
電流密度が1μA/cm2から11μA/cm2に向上
し、これに伴って充放電の利用率は2%から20%に向
上した。
[0067] For comparative example of the conventional structure, the product of the present invention the discharge current density is increased from 1 .mu.A / cm 2 to 11μA / cm 2, and improved utilization of the charging and discharging from 2% to 20% along with this .

【0068】[0068]

【発明の効果】以上のように、請求項1に係る固体電解
質電池によれば、活物質の多孔質構造体から成る一極性
側電極と、この多孔質構造体の空隙表面に被着したイオ
ン伝導性物質から成る固体電解質層と、この多孔質構造
体の空隙に充填された他の活物質から成る他の極性側電
極とを有することから、固体電解質の高い内部抵抗を著
しく軽減し、充放電電流や充放電容量を向上させること
ができる。
As described above, according to the solid electrolyte battery according to the first aspect, the unipolar electrode composed of the porous structure of the active material and the ion adhered to the void surface of the porous structure are provided. Since it has a solid electrolyte layer made of a conductive material and another polar side electrode made of another active material filled in the voids of the porous structure, the high internal resistance of the solid electrolyte is significantly reduced, and the solid electrolyte is filled. Discharge current and charge / discharge capacity can be improved.

【0069】また、請求項11に係る固体電解質電池の
製造方法によれば、粒子結着剤と有機バインダーを含有
する活物質粉体の生成形体を焼成して多孔質構造体を形
成し、粒子結着剤を含有する固体電解質粉体を溶媒とと
もに粘液状にして上記多孔質構造体に含浸させて焼成し
て多孔質構造体の空隙部表面に固体電解質層を被着し、
さらに充填物質を含有する他の活物質粉体を溶媒ととも
に粘液状にして上記多孔質構造体の空隙に充填して焼成
することから、固体電解質の高い内部抵抗を著しく軽減
し、充放電電流や充放電容量を向上させた固体電解質電
池を容易に製造できる。
Further, according to the method for manufacturing a solid electrolyte battery according to the eleventh aspect, a porous structure is formed by firing a formed form of active material powder containing a particle binder and an organic binder. The solid electrolyte powder containing the binder is made viscous with a solvent, impregnated into the porous structure, fired, and the solid electrolyte layer is adhered to the surface of the void portion of the porous structure,
Furthermore, since the other active material powder containing the filling material is made into a viscous state together with a solvent and filled into the voids of the porous structure and fired, the high internal resistance of the solid electrolyte is significantly reduced, and the charge / discharge current and A solid electrolyte battery with improved charge / discharge capacity can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる固体電解質電池を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a solid electrolyte battery according to the present invention.

【図2】本発明に係わる固体電解質電池を示す要部断面
図である。
FIG. 2 is a sectional view of a main part showing a solid electrolyte battery according to the present invention.

【図3】従来の固体電解質電池を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional solid electrolyte battery.

【符号の説明】[Explanation of symbols]

1:正極集電体、2:正電極、3:固体電解質、4:負
電極、5:負極集電体
1: positive electrode current collector, 2: positive electrode, 3: solid electrolyte, 4: negative electrode, 5: negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/18 H01M 6/18 Z Fターム(参考) 5H024 AA03 BB01 BB07 BB08 BB10 BB17 CC04 DD15 DD17 EE06 EE09 FF15 FF19 FF23 FF31 GG08 5H029 AJ06 AK03 AK05 AL03 AL04 AL06 AL12 AM03 AM07 AM12 AM16 BJ04 BJ12 CJ02 CJ08 CJ22 CJ23 CJ24 DJ04 DJ07 DJ08 DJ09 DJ13 EJ01 EJ06 EJ12 5H050 AA12 BA15 CA09 CB03 DA10 DA11 DA13 EA12 EA13 EA23 FA02 FA17 FA18 FA19 GA02 GA10 GA23 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 6/18 H01M 6/18 Z F term (Reference) 5H024 AA03 BB01 BB07 BB08 BB10 BB17 CC04 DD15 DD17 EE06 EE09 FF15 FF19 FF23 FF31 GG08 5H029 AJ06 AK03 AK05 AL03 AL04 AL06 AL12 AM03 AM07 AM12 AM16 BJ04 BJ12 CJ02 CJ08 CJ22 CJ23 CJ24 DJ04 DJ07 DJ08 DJ09 DJ13 EJ01 EJ06 EJ12 5H050 AA12 BA15 CA02 CB03 DA10 FA10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 活物質と粒子結着物質との多孔質構造体
から成る一極性側電極と、この多孔質構造体の空隙部表
面に被着したイオン伝導性物質から成る固体電解質層
と、この多孔質構造体の空隙部に充填された他の活物質
と充填物質とから成る他の極性側電極とを有し、前記一
極性側電極と他の極性側電極に集電体を設けた固体電解
質電池。
1. A unipolar electrode comprising a porous structure of an active material and a particle binder, a solid electrolyte layer comprising an ion-conductive substance adhered to the surface of a void of the porous structure, It has another active material and another polar electrode made of a filling material filled in the void portion of the porous structure, and a current collector is provided on the one polar electrode and the other polar electrode. Solid electrolyte battery.
【請求項2】 前記多孔質構造体の活物質に電子伝導性
付与物質が添加されていることを特徴とする請求項1に
記載の固体電解質電池。
2. The solid electrolyte battery according to claim 1, wherein an electron conductivity-imparting substance is added to the active material of the porous structure.
【請求項3】 前記粒子結着物質が前記イオン伝導性物
質および/または誘電物質からなることを特徴とする請
求項1に記載の固体電解質電池。
3. The solid electrolyte battery according to claim 1, wherein the particle binding material comprises the ion conductive material and / or a dielectric material.
【請求項4】 前記イオン伝導性物質が結晶化ガラス、
低融点ガラス、および高分子のうちのいずれか一種また
は複数種からなることを特徴とする請求項1または請求
項3に記載の固体電解質電池。
4. The method according to claim 1, wherein the ion conductive material is crystallized glass,
The solid electrolyte battery according to claim 1, comprising one or more of low-melting glass and a polymer.
【請求項5】 前記誘電物質が低融点ガラスおよびゾル
−ゲル法による金属アルコキシドの酸化物のうちのいず
れか一種または複数種から成ることを特徴とする請求項
3に記載の固体電解質電池。
5. The solid electrolyte battery according to claim 3, wherein the dielectric material is made of one or more of a low-melting glass and a metal alkoxide oxide obtained by a sol-gel method.
【請求項6】 前記固体電解質層に前記粒子結着物質が
添加されていることを特徴とする請求項1に記載の固体
電解質電池。
6. The solid electrolyte battery according to claim 1, wherein the particle binder is added to the solid electrolyte layer.
【請求項7】 前記他の極性側電極の他の活物質に前記
電子伝導性付与物質が添加されていることを特徴とする
請求項1に記載の固体電解質電池。
7. The solid electrolyte battery according to claim 1, wherein the electron conductivity-imparting substance is added to another active material of the other polarity side electrode.
【請求項8】 前記充填物質がイオン伝導性物質および
/または誘電物質からなることを特徴とする請求項1に
記載の固体電解質電池。
8. The solid electrolyte battery according to claim 1, wherein the filling material comprises an ion conductive material and / or a dielectric material.
【請求項9】 前記イオン伝導性物質が結晶化ガラス、
低融点ガラス、高分子、ゲル、および非水電解液のうち
のいずれか一種または複数種からなることを特徴とする
請求項8に記載の固体電解質電池。
9. The method according to claim 9, wherein the ion conductive material is crystallized glass,
9. The solid electrolyte battery according to claim 8, comprising one or more of low-melting glass, polymer, gel, and non-aqueous electrolyte.
【請求項10】 前記誘電物質が低融点ガラス、ゾル−
ゲル法による金属アルコキシドの酸化物、および有機溶
媒のうちのいずれか一種または複数種からなることを特
徴とする請求項8に記載の固体電解質電池。
10. The method according to claim 1, wherein the dielectric material is low-melting glass, sol-
9. The solid electrolyte battery according to claim 8, comprising one or more of a metal alkoxide oxide and an organic solvent by a gel method.
【請求項11】 粒子結着剤と有機バインダーを含有す
る活物質粉体の生成形体を焼成して多孔質構造体を形成
し、粒子結着剤を含有する固体電解質粉体を溶媒で粘液
状にして前記多孔質構造体に含浸させて焼成して前記多
孔質構造体の空隙部表面に固体電解質層を被着し、さら
に充填物質を含有する他の活物質粉体を溶媒で粘液状に
して前記多孔質構造体の空隙部に充填して焼成する固体
電解質電池の製造方法。
11. A porous structure is formed by firing a formed form of an active material powder containing a particle binder and an organic binder, and the solid electrolyte powder containing the particle binder is viscous with a solvent. Impregnated into the porous structure and fired to apply a solid electrolyte layer to the surface of the void portion of the porous structure, and further make another active material powder containing a filling material into a viscous liquid with a solvent. And filling the voids of the porous structure and firing the porous structure.
JP2000050981A 2000-02-28 2000-02-28 Solid electrolyte battery and its manufacturing method Pending JP2001243984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050981A JP2001243984A (en) 2000-02-28 2000-02-28 Solid electrolyte battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050981A JP2001243984A (en) 2000-02-28 2000-02-28 Solid electrolyte battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001243984A true JP2001243984A (en) 2001-09-07

Family

ID=18572699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050981A Pending JP2001243984A (en) 2000-02-28 2000-02-28 Solid electrolyte battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001243984A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185917A (en) * 2004-12-23 2006-07-13 Commiss Energ Atom Micro-battery having structured electrolyte
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2008243735A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method
WO2008143027A1 (en) * 2007-05-11 2008-11-27 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP2009104818A (en) * 2007-10-19 2009-05-14 Sumitomo Electric Ind Ltd All-solid battery and its manufacturing method
JP2009181879A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Positive electrode and method of manufacturing the same
JP2010080426A (en) * 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd Method of manufacturing cathode body and cathode body
JP2010218686A (en) * 2008-03-07 2010-09-30 Tokyo Metropolitan Univ Method for filling with electrode active material and method for manufacturing all-solid-state cell
US7998622B2 (en) 2004-12-02 2011-08-16 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
WO2013051478A1 (en) * 2011-10-06 2013-04-11 ソニー株式会社 Battery and method for manufacturing same
CN103579662A (en) * 2012-07-31 2014-02-12 丰田自动车株式会社 All-solid-state battery and production method thereof
WO2014132320A1 (en) * 2013-02-26 2014-09-04 株式会社 日立製作所 All-solid ion secondary cell
JP2015103451A (en) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery and method for manufacturing all-solid type secondary battery
WO2015170481A1 (en) * 2014-05-09 2015-11-12 Sony Corporation Electrode, method of producing the same, battery, and electronic device
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
CN105958116A (en) * 2015-03-09 2016-09-21 现代自动车株式会社 All-solid-state battery containing nano-solid electrolyte and method of manufacturing the same
CN106233515A (en) * 2014-05-09 2016-12-14 索尼公司 Electrode and manufacture method, battery and electronic installation
US9580320B2 (en) 2005-10-13 2017-02-28 Ohara Inc. Lithium ion conductive solid electrolyte and method for manufacturing the same
WO2017130818A1 (en) * 2016-01-28 2017-08-03 セイコーエプソン株式会社 Method for producing electrode composite body and method for manufacturing lithium ion battery
JP2018028970A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Lithium-ion battery and method of manufacturing lithium-ion battery
RU2648244C1 (en) * 2017-04-06 2018-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Chemical current source with an electrolyte forming as a result of a reaction
JP2018073573A (en) * 2016-10-27 2018-05-10 株式会社豊田中央研究所 Secondary battery
US10186731B2 (en) 2016-06-22 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998622B2 (en) 2004-12-02 2011-08-16 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
JP2006185917A (en) * 2004-12-23 2006-07-13 Commiss Energ Atom Micro-battery having structured electrolyte
JP4615339B2 (en) * 2005-03-16 2011-01-19 独立行政法人科学技術振興機構 Porous solid electrode and all-solid lithium secondary battery using the same
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
US9580320B2 (en) 2005-10-13 2017-02-28 Ohara Inc. Lithium ion conductive solid electrolyte and method for manufacturing the same
JP2008243735A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method
WO2008143027A1 (en) * 2007-05-11 2008-11-27 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP2009104818A (en) * 2007-10-19 2009-05-14 Sumitomo Electric Ind Ltd All-solid battery and its manufacturing method
JP2009181879A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Positive electrode and method of manufacturing the same
JP2010218686A (en) * 2008-03-07 2010-09-30 Tokyo Metropolitan Univ Method for filling with electrode active material and method for manufacturing all-solid-state cell
JP2010080426A (en) * 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd Method of manufacturing cathode body and cathode body
WO2013051478A1 (en) * 2011-10-06 2013-04-11 ソニー株式会社 Battery and method for manufacturing same
US9917326B2 (en) 2011-10-06 2018-03-13 Murata Manufacturing Co., Ltd. Battery and method of manufacturing the same
CN103579662A (en) * 2012-07-31 2014-02-12 丰田自动车株式会社 All-solid-state battery and production method thereof
JP2014029810A (en) * 2012-07-31 2014-02-13 Toyota Motor Corp All-solid-state battery and method for manufacturing the same
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
JPWO2014132320A1 (en) * 2013-02-26 2017-02-02 株式会社日立製作所 All solid ion secondary battery
WO2014132320A1 (en) * 2013-02-26 2014-09-04 株式会社 日立製作所 All-solid ion secondary cell
JP5987103B2 (en) * 2013-02-26 2016-09-06 株式会社日立製作所 All solid ion secondary battery
JP2015103451A (en) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery and method for manufacturing all-solid type secondary battery
CN106233515A (en) * 2014-05-09 2016-12-14 索尼公司 Electrode and manufacture method, battery and electronic installation
WO2015170481A1 (en) * 2014-05-09 2015-11-12 Sony Corporation Electrode, method of producing the same, battery, and electronic device
EP3067979A3 (en) * 2015-03-09 2016-11-09 Hyundai Motor Company All-solid-state battery containing nano-solid electrolyte and method of manufacturing the same
CN105958116A (en) * 2015-03-09 2016-09-21 现代自动车株式会社 All-solid-state battery containing nano-solid electrolyte and method of manufacturing the same
CN105958116B (en) * 2015-03-09 2019-09-24 现代自动车株式会社 All-solid-state battery and its manufacturing method comprising nano-solid electrolyte
WO2017130818A1 (en) * 2016-01-28 2017-08-03 セイコーエプソン株式会社 Method for producing electrode composite body and method for manufacturing lithium ion battery
US10186731B2 (en) 2016-06-22 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2018028970A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Lithium-ion battery and method of manufacturing lithium-ion battery
JP2018073573A (en) * 2016-10-27 2018-05-10 株式会社豊田中央研究所 Secondary battery
US10897043B2 (en) 2016-10-27 2021-01-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery
RU2648244C1 (en) * 2017-04-06 2018-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Chemical current source with an electrolyte forming as a result of a reaction

Similar Documents

Publication Publication Date Title
US11417873B2 (en) Solid-state batteries, separators, electrodes, and methods of fabrication
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
JP2001243984A (en) Solid electrolyte battery and its manufacturing method
JP5281896B2 (en) Solid electrolyte structure for all solid state battery, all solid state battery, and manufacturing method thereof
EP3043406B1 (en) Solid-state batteries and methods for fabrication
CN111566867B (en) All-solid lithium ion secondary battery
KR20160002988A (en) Electrochemical cell with solid and liquid electrolytes
JP2005078985A (en) Electrode for nonaqueous secondary battery and lithium secondary battery using the same
WO2014020654A1 (en) All-solid ion secondary cell
JP2001126756A (en) Lithium solid electrolyte battery and manufacturing method therefor
CN112397793A (en) Mixed electrode material for bipolar capacitor-assisted solid state batteries
JP2016139461A (en) Solid electrolyte for electrochemical element and all-solid battery
JP4145647B2 (en) Lithium secondary battery and manufacturing method thereof
JP2001126740A (en) Lithium cell
KR20200050628A (en) Composite Electrode Including Polymer Solid Electrolyte for All-Solid-State Battery, Method Of Manufacturing The Same, And All-Solid-State Lithium Battery Comprising The Same
JP4845245B2 (en) Lithium battery
US20200067134A1 (en) Member for power storage device, and power storage device
KR20200050627A (en) Composite Electrode Including Gel-Type Polymer Electrolyte for All-Solid-State Battery, Method Of Manufacturing The Same, And All-Solid-State Lithium Battery Comprising The Same
WO2021209687A1 (en) Method for the manufacture of an energy storage device utilizing lithium and solid inorganic electrolytes
JP5135649B2 (en) Solid polymer electrolyte battery and method for producing solid polymer electrolyte