JP2009104818A - All-solid battery and its manufacturing method - Google Patents
All-solid battery and its manufacturing method Download PDFInfo
- Publication number
- JP2009104818A JP2009104818A JP2007273118A JP2007273118A JP2009104818A JP 2009104818 A JP2009104818 A JP 2009104818A JP 2007273118 A JP2007273118 A JP 2007273118A JP 2007273118 A JP2007273118 A JP 2007273118A JP 2009104818 A JP2009104818 A JP 2009104818A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- electrode layer
- negative electrode
- positive electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、全固体電池およびその製造方法に関し、より具体的には、携帯電話、ノートパソコン等に用いられる全固体電池およびその製造方法に関するものである。 The present invention relates to an all-solid battery and a method for manufacturing the same, and more specifically to an all-solid battery used for a mobile phone, a notebook computer, and the like, and a method for manufacturing the same.
携帯用の電子機器が多様になり、それに適合する各種の電池が要求される時代にあって、各種の電池の軽量化、小型化または高放電容量化などの改善が精力的になされている。そのなかで全固体電池は、正極層、固体電解質層、負極層の各々が、固体からなり、電解液に付随する安全性についての問題を解消できるため、携帯機器用に実用化が始まっている。とくにリチウム系全固体電池は、高エネルギー密度を実現できるため、関心が高い。しかし、電解液を用いる場合はともかく、全固体電池の場合は、実用化にあたって克服すべき課題が多い。 In an era when portable electronic devices are diversified and various types of batteries are required, various types of batteries have been energetically improved in terms of weight reduction, size reduction, and high discharge capacity. Among them, the all-solid-state battery has a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, each of which is made of a solid, which can solve the safety problems associated with the electrolytic solution, and has been put to practical use for portable devices. . In particular, lithium-based all-solid-state batteries are of great interest because they can achieve a high energy density. However, there are many problems to be overcome in practical use in the case of an all-solid battery, regardless of the use of an electrolytic solution.
その1つの課題が、イオン導電率の向上である。たとえば、塗布法で固体電解質層を作製する際に、バインダー用の高分子樹脂と固体電解質粒子とを混合する必要があるが、高分子樹脂はリチウムイオン導電性がないため、リチウムイオン導電性が阻害される。すなわちバインダー用の高分子樹脂によって、固体電解質層での内部抵抗が増大し、さらに全固体リチウム電池における出力特性が低下する。これらの問題を解決するために、塗布法または湿式法を用い、バインダー用の高分子樹脂にシリコーン樹脂を用いた固体電解質層の製造方法が提案された(特許文献1)。この特許文献1では、バインダー用樹脂にシリコーン樹脂を用い、一軸プレスやローラー加圧処理を採用することにより、バインダー用樹脂の分布を、イオン導電性の大きな障害となりにくい分布形態とできることを開示している。
One of the problems is improvement of ionic conductivity. For example, when a solid electrolyte layer is produced by a coating method, it is necessary to mix a polymer resin for binder and solid electrolyte particles. However, since the polymer resin does not have lithium ion conductivity, lithium ion conductivity is low. Be inhibited. That is, the polymer resin for the binder increases the internal resistance in the solid electrolyte layer, and further decreases the output characteristics in the all-solid lithium battery. In order to solve these problems, a method of manufacturing a solid electrolyte layer using a silicone resin as a polymer resin for a binder has been proposed using a coating method or a wet method (Patent Document 1). This
しかしながら、イオン導電性の大きな障害になりにくいように、バインダー用シリコーン樹脂の分布を制御できたとしても、シリコーン樹脂が無い場合よりもイオン導電性は低くなることは避けられない。また、シリコーン樹脂は弾性変形能が大きいので、一軸プレスやローラー加圧処理を行っても、イオン導電性がない空隙が残りやすい。したがって、イオン導電性の向上という課題に限っても、電池性能改善の余地がある。 However, even if the distribution of the silicone resin for the binder can be controlled so as not to be a major obstacle to ionic conductivity, it is inevitable that the ionic conductivity will be lower than when there is no silicone resin. Moreover, since the silicone resin has a large elastic deformability, even if a uniaxial press or a roller pressurizing process is performed, voids having no ionic conductivity are likely to remain. Therefore, even if it is limited to the problem of improving ion conductivity, there is room for improvement in battery performance.
本発明は、バインダー用の高分子樹脂を用いないことによって電池特性の改善をはかった全固体電池およびその製造方法を提供することを目的とする。 An object of the present invention is to provide an all-solid-state battery in which battery characteristics are improved by not using a polymer resin for a binder and a method for producing the same.
本発明の全固体電池の製造方法は、正極層、固体電解質層および負極層を備える全固体電池の製造方法である。この製造方法では、正極層、固体電解質層および負極層のうちの少なくとも一つの層の作製において、金属アルコキシドを溶解したアルコール溶媒を用いる。正極層の作製の場合には、金属アルコキシドを溶解したアルコール溶媒に正極活物質粒子を分散させたスラリーを、負極層の作製の場合には、金属アルコキシドを溶解したアルコール溶媒に負極活物質粒子を分散させたスラリーを、また固体電解質層の作製の場合には、金属アルコキシドを溶解したアルコール溶媒であるスラリーを、下地に塗布し、その後で焼結することを特徴とする。 The manufacturing method of the all-solid-state battery of this invention is a manufacturing method of the all-solid-state battery provided with a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. In this production method, an alcohol solvent in which a metal alkoxide is dissolved is used in the production of at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. For the production of the positive electrode layer, a slurry in which the positive electrode active material particles are dispersed in an alcohol solvent in which the metal alkoxide is dissolved. In the case of the production of the negative electrode layer, the negative electrode active material particles in the alcohol solvent in which the metal alkoxide is dissolved. In the case of producing a dispersed slurry or a solid electrolyte layer, a slurry which is an alcohol solvent in which a metal alkoxide is dissolved is applied to a base, and then sintered.
上記の構成によれば、上記の少なくとも一つの層は、イオン導電性を持たせた金属アルコキシドで形成されるので、イオン導電率を高め、全固体電池での出力特性を向上させることができる。正極層、負極層および固体電解質層のすべての層を、上記方法で製造してもよいし、任意の1つの層を上記の該当する方法で製造してもよい。なお、複数の層を上記方法で製造する場合であっても、通常、焼結するのは、1回である。また、上記の全固体電池は、一次電池でも二次電池でもよい。 According to said structure, said at least 1 layer is formed with the metal alkoxide which gave ion conductivity, Therefore Ion conductivity can be improved and the output characteristic in an all-solid-state battery can be improved. All of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer may be manufactured by the above-described method, or any one layer may be manufactured by the above-described corresponding method. In addition, even if it is a case where a several layer is manufactured by the said method, it is usually sintered once. The all solid state battery may be a primary battery or a secondary battery.
上記塗布後であって、焼結前または焼結中に、各下地に塗布された塗布層に対して、加圧処理を加えることができる。これにより、上記の少なくとも一つの層は塑性変形しやすいため、空隙を減少させ、イオン導電率を高めることができる。ホットプレス工程(加圧工程)と焼結工程とを異なる工程で行ってもよいが、焼結中に加圧処理することにより、たとえばホットプレス工程と焼結工程とを1つの工程で行うことができる。 After the application and before or during sintering, a pressure treatment can be applied to the coating layer applied to each substrate. Thereby, since the at least one layer is easily plastically deformed, voids can be reduced and ionic conductivity can be increased. The hot pressing step (pressing step) and the sintering step may be performed in different steps, but for example, the hot pressing step and the sintering step are performed in one step by performing pressure treatment during the sintering. Can do.
上記スラリーに、さらに水を加えることができる。これにより、スラリー中の固体粒子の分散性を向上させ、また塗布層を形成しやすいようにスラリーの粘度調整ができ、高品質の層を作製することができる。 Water can be further added to the slurry. Thereby, the dispersibility of the solid particles in the slurry can be improved, and the viscosity of the slurry can be adjusted so that a coating layer can be easily formed, and a high-quality layer can be produced.
上記正極層または負極層の作製のためのスラリーに、さらにカーボン粒子を加えることができる。これにより、正極層または負極層の導電率を高めることができる。 Carbon particles can be further added to the slurry for producing the positive electrode layer or the negative electrode layer. Thereby, the electrical conductivity of a positive electrode layer or a negative electrode layer can be raised.
上記正極層、固体電解質層および負極層のすべての層の作製において、金属アルコキシドを溶解したアルコール溶媒を用い、該金属アルコキシドを溶解したアルコール溶媒が、La,Ti,Nb,Si,V,Taの各アルコキシドのうちの少なくとも1つと、Liアルコキシドとを含み、正極活物質粒子が、Co,Mn,Niのうちの少なくとも1つと、Liとを含む酸化物粒子であり、また負極活物質粒子が、C,Si,Snのうちの少なくとも1つを含む粒子である構成をとることができる。これによって、リチウム系全固体電池において、バインダー用樹脂を用いることなく、焼結により上記の金属アルコキシド由来の酸化物凝集体と、各電極層での各活物質粒子の焼結体が形成される。このため、リチウム系全固体電池のリチウムイオン導電率を確保でき、また、塑性変形のし易さで空隙を除きやすくできる。空隙の減少は、またイオン導電率の向上をもたらす。 In the production of all of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer, an alcohol solvent in which a metal alkoxide is dissolved is used, and the alcohol solvent in which the metal alkoxide is dissolved is La, Ti, Nb, Si, V, or Ta. At least one of each alkoxide and Li alkoxide, the positive electrode active material particles are oxide particles containing at least one of Co, Mn, and Ni and Li, and the negative electrode active material particles are The structure which is a particle | grain containing at least 1 of C, Si, and Sn can be taken. As a result, in the lithium-based all-solid-state battery, the above-mentioned metal alkoxide-derived oxide aggregates and sintered bodies of the respective active material particles in the respective electrode layers are formed by sintering without using a binder resin. . For this reason, the lithium ion conductivity of the lithium-based all-solid-state battery can be ensured, and voids can be easily removed with ease of plastic deformation. The reduction in voids also results in improved ionic conductivity.
上記固体電解質層の作製の場合において、スラリーに、さらにセラミック粒子を加え、該セラミック粒子を、Al,Siのうちの少なくとも1つを含む酸化物粒子とすることができる。これにより、リチウム系全固体電池におけるリチウムイオン導電率を高めることができる。 In the production of the solid electrolyte layer, ceramic particles may be further added to the slurry, and the ceramic particles may be oxide particles containing at least one of Al and Si. Thereby, the lithium ion conductivity in a lithium-type all-solid-state battery can be raised.
本発明の全固体電池は、上記のいずれかの全固体電池の製造方法を用いて製造された電池であることを特徴とする。これによって、上記の各製造方法における作用効果を持つ全固体電池を得ることができる。 The all-solid-state battery of the present invention is a battery manufactured using any one of the above-described all-solid battery manufacturing methods. Thereby, it is possible to obtain an all-solid-state battery having the operational effects in each of the above manufacturing methods.
本発明の別の全固体電池は、正極層、固体電解質層および負極層を備える全固体電池であって、正極層、固体電解質層および負極層のいずれもが、金属酸化物凝集体を含み、樹脂を含まず、そして正極層が正極活物質粒子の焼結体を含み、負極層が負極活物質粒子の焼結体を含むことを特徴とする。 Another all-solid battery of the present invention is an all-solid battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer, and each of the positive electrode layer, the solid electrolyte layer and the negative electrode layer contains a metal oxide aggregate, It does not contain resin, and the positive electrode layer includes a sintered body of positive electrode active material particles, and the negative electrode layer includes a sintered body of negative electrode active material particles.
上記の全固体電池は、バインダー用の樹脂を含まず金属アルコキシドを焼結して得られる金属酸化物凝集体を含むため、イオン導電率を確保することができる。 Since the all-solid battery includes a metal oxide aggregate obtained by sintering a metal alkoxide without containing a binder resin, ionic conductivity can be ensured.
上記固体電解質層が、絶縁体セラミック粒子の焼結体を含むことができる。これによって、リチウム系全固体電池の場合、リチウムイオン導電率を向上することができる。 The solid electrolyte layer may include a sintered body of insulating ceramic particles. Thereby, in the case of a lithium-type all-solid-state battery, lithium ion conductivity can be improved.
上記正極層および/または負極層が、カーボン粒子を含むことができる。これにより、正極層または負極層の導電率を高めることができる。 The positive electrode layer and / or the negative electrode layer may contain carbon particles. Thereby, the electrical conductivity of a positive electrode layer or a negative electrode layer can be raised.
本発明の全固体電池およびその製造方法によれば、バインダーに高分子樹脂を用いないため、高イオン導電率の全固体電池を得ることができる。 According to the all solid state battery and the method for producing the same of the present invention, since no polymer resin is used for the binder, an all solid state battery having high ionic conductivity can be obtained.
図1は、本発明の実施の形態における全固体リチウム電池を示す断面図である。図1において、全固体リチウム電池本体10は、(集電体基材(正極集電体)1/正極層2/固体電解質層3/負極層4/負極集電体5)の積層構造をとる。これらの層のうち(正極層2/固体電解質層3/負極層4)は、すべての層が金属アルコキシドを溶解したアルコール溶媒を用いて形成されている。このうち、正負極層2,4では、上記溶媒に、それぞれ正負極活物質を分散させたスラリーが用いられる。また固体電解質層3では、上記金属アルコキシドを溶解したアルコール溶媒がそのまま用いられる場合が多いが、リチウムイオン導電率を向上させるため、絶縁性セラミック粒子を加える場合もある。次に、各層について順次説明してゆく。
FIG. 1 is a cross-sectional view showing an all solid lithium battery according to an embodiment of the present invention. In FIG. 1, an all solid lithium battery
1.正極層および正極集電体
(1)正極層2を塗布する集電体基材(正極層の下地また正極集電体)1は、厚み3μm〜100μm、特に5μm〜25μmとするのがよい。
(2)正極層2の厚みは、厚み10μm〜150μm、特に50μm〜100μmとするのがよい。
(3)正極集電体(集電体基材)1の材料は、Al、ステンレススティール、V、Niなどの金属箔を用いるのがよい。
(4)正極層用の塗布スラリー
(A)正極活物質粒子には、LiMn2O4、LiCoO2、MnO2、FeS、FeS2、V2O3、TiS2などの正極活物質粒子を用いるのがよい。
(B)導電材または導電助剤には、アセチレンブラック、ケッチェンブラック、人造黒鉛などのカーボン粒子を含んでいてもよい。
(C)アルコール溶媒は、エタノール、メタノール、プロパノールなどのアルコール溶媒とするのがよい。
(D)金属アルコキシドには、上記溶媒に溶解するもので、塗布、乾燥、焼結した後に、リチウムイオン導電性酸化物となるような濃度の単一のアルコキシドまたは、リチウムイオン導電性酸化物となる濃度比の複数のアルコキシドを溶解することが好ましい。たとえば下記(D1)または(D2)が好ましい例である。
(D1)たとえば、(Liエトキシド):(ペンタエトキシNb)=1:1(モル比)で溶解すると、焼結後に、LiNbO3のリチウムイオン導電性酸化物となる。
(D2)別の例として、(Laイソプロポキシド):(Liエトキシド):(Tiイソプロポキシド)=1:1:2(モル比)で溶解すると、焼結後に、La0.5Li0.5TiO2のリチウムイオン導電性酸化物となる。
(E)混合比
(E1)(金属アルコキシド総モル量):(活物質モル量)の値を、2:8から6:4の範囲内とするのが好ましい。
(E2)導電助剤は活物質量に対し、2〜10重量%が好ましい。
(E3)溶媒の量は、スラリー粘度0.1〜5Pa・sとなるように調整することが好ましい。
(F)その他:エタノール溶媒に対し1〜10wt%水を添加することでスラリー中の固体粒子の分散性が向上するので添加することが好ましい。上記水の添加により粘度調整も可能である。
1. Positive electrode layer and positive electrode current collector (1) The current collector base material (primary layer base or positive electrode current collector) 1 on which the
(2) The thickness of the
(3) The material of the positive electrode current collector (current collector base material) 1 is preferably a metal foil such as Al, stainless steel, V, or Ni.
(4) Coating slurry for positive electrode layer (A) As positive electrode active material particles, positive electrode active material particles such as LiMn 2 O 4 , LiCoO 2 , MnO 2 , FeS, FeS 2 , V 2 O 3 , and TiS 2 are used. It is good.
(B) The conductive material or conductive aid may contain carbon particles such as acetylene black, ketjen black, and artificial graphite.
(C) The alcohol solvent is preferably an alcohol solvent such as ethanol, methanol, or propanol.
(D) The metal alkoxide is dissolved in the above solvent, and after coating, drying and sintering, a single alkoxide or a lithium ion conductive oxide having a concentration such that the lithium ion conductive oxide is obtained. It is preferable to dissolve a plurality of alkoxides having a concentration ratio of For example, the following (D1) or (D2) is a preferred example.
(D1) For example, when dissolved in (Li ethoxide) :( pentaethoxy Nb) = 1: 1 (molar ratio), it becomes a lithium ion conductive oxide of LiNbO 3 after sintering.
(D2) As another example, when dissolved in (La isopropoxide) :( Li ethoxide) :( Ti isopropoxide) = 1: 1: 2 (molar ratio), La 0.5 Li 0.5 TiO 2 after sintering Lithium ion conductive oxide.
(E) Mixing ratio The value of (E1) (total molar amount of metal alkoxide) :( active material molar amount) is preferably in the range of 2: 8 to 6: 4.
(E2) The conductive auxiliary is preferably 2 to 10% by weight based on the amount of active material.
(E3) The amount of the solvent is preferably adjusted so that the slurry viscosity is 0.1 to 5 Pa · s.
(F) Others: It is preferable to add 1 to 10 wt% water to the ethanol solvent because the dispersibility of the solid particles in the slurry is improved. Viscosity can be adjusted by adding water.
2.負極層および負極集電体
(1)負極層4の厚みは、10μm〜150μm、特に50μm〜100μmとするのがよい。
(2)負極集電体5の厚みは、1μm〜100μm、特に3μm〜25μmとするのがよい。
(3)負極集電体5の材料は、Cu、ステンレススティール、Ni、Vなど金属箔を用いるのがよい。
(4)負極層用の塗布スラリー
(A)負極活物質粒子には、C、Sn、SiOx、Siなどの活物質粒子を用いるのがよい。
上記正極層用の塗布スラリーについての項目(B)〜(F)を、負極層用の塗布スラリーにも適用するのがよい。
2. Negative electrode layer and negative electrode current collector (1) The thickness of the negative electrode layer 4 is preferably 10 μm to 150 μm, particularly 50 μm to 100 μm.
(2) The thickness of the negative electrode current collector 5 is preferably 1 μm to 100 μm, particularly 3 μm to 25 μm.
(3) The material of the negative electrode current collector 5 is preferably a metal foil such as Cu, stainless steel, Ni, or V.
(4) Coating slurry for negative electrode layer (A) For the negative electrode active material particles, active material particles such as C, Sn, SiO x , and Si may be used.
The items (B) to (F) regarding the coating slurry for the positive electrode layer may be applied to the coating slurry for the negative electrode layer.
3.固体電解質層
(1)固体電解質層3の厚みは、3μm〜100μm、特に5μm〜50μmとするのがよい。
(2)固体電解質層3用の塗布スラリーの成分は、(C)溶媒、および(D)金属アルコキシドのみでよい。そして、(C)溶媒および(D)金属アルコキシドについては、上記正極層および負極層の場合と同じとすることができる。ただし、アルミナ、シリカなど絶縁セラミック粒子を含有することで、金属アルコキシドだけよりも焼結後のリチウムイオン導電度が向上する。この絶縁セラミック粒子は、金属アルコキシドのモル数に対し10%〜50%のモル比とすることができる。
(F)固体電解質層用のスラリーの場合、水分添加で粘度を0.1Pa・s〜5Pa・sとなるように調整するのがよい。
3. Solid Electrolyte Layer (1) The thickness of the
(2) The components of the coating slurry for the
(F) In the case of a slurry for a solid electrolyte layer, it is preferable to adjust the viscosity to 0.1 Pa · s to 5 Pa · s by adding water.
正極層2または負極層4では、正極活物質粒子または負極活物質粒子の焼結体が形成され、この焼結体に金属アルコキシド由来の金属酸化物凝集体が配置される。加圧処理を加えても、焼結時に生成する微細な空隙は完全には排除できずに残存する。また、導電材として、カーボン粒子を含む場合は、上記の焼結体中にカーボン粒子が配置される。固体電解質層3は、金属アルコキシドから焼結により生成した金属酸化物凝集体で形成される。焼結時に生成する微細な空隙は完全には排除されずに残存する。リチウムイオン導電率を向上させるために絶縁セラミックス粒子を用いる場合には、当該絶縁セラミックス粒子が金属酸化物凝集体中に配置される。
In the
次に本発明の全固体電池の製造方法のポイントについて説明する。
1.上記スラリーを塗布する方法としては、ナイフロール方式、ダイコート方式、ディップコート方式、スピンコート方式のどれでも良い。
2.アルコール溶媒を大気中で乾燥する。乾燥条件は溶媒の沸点以下で実施する。
3.焼結温度は200℃〜450℃が好ましい。焼結時間は5〜60分以内が好ましい。
4.塗布後、焼結前に、ロールプレスや上記焼結温度以下の温度でホットプレスするなどの、加圧処理を行うことが好ましい。
Next, the point of the manufacturing method of the all-solid-state battery of this invention is demonstrated.
1. As a method for applying the slurry, any of a knife roll method, a die coating method, a dip coating method, and a spin coating method may be used.
2. The alcohol solvent is dried in the atmosphere. Drying conditions are carried out below the boiling point of the solvent.
3. The sintering temperature is preferably 200 ° C to 450 ° C. The sintering time is preferably within 5 to 60 minutes.
4). It is preferable to perform a pressure treatment such as hot pressing at a temperature equal to or lower than the sintering temperature after application and before sintering.
上記の製造方法および材料で製造された全固体電池は、バインダー用に高分子樹脂を用いず、イオン導電性、とくにリチウムイオン導電性のある金属アルコキシド由来の金属酸化物凝集体がバインダーの役割を果たす。このため、イオン導電率の高く、しがって放電容量の高い全固体電池を得ることができる。 The all-solid-state battery manufactured by the above manufacturing method and material does not use a polymer resin for the binder, and the metal oxide aggregate derived from metal alkoxide having ion conductivity, particularly lithium ion conductivity, plays the role of the binder. Fulfill. For this reason, it is possible to obtain an all solid state battery having high ionic conductivity and thus high discharge capacity.
次に実施例により、本発明の作用効果を説明する。用いた試験体は、本発明例Aおよび比較例であり、いずれも全固体電池とした。これら全固体電池の評価のために、全固体電池の放電容量を測定した。 Next, the effects of the present invention will be described with reference to examples. The specimens used were Invention Example A and Comparative Example, all of which were all solid state batteries. For the evaluation of these all solid state batteries, the discharge capacity of all the solid state batteries was measured.
1.本発明例A
(正極層:図2参照)Liエトキシド10gとペンタエトキシNb67gを脱水エタノール100gに溶解し、粒径10μmのLiCoO2活物質粉末60gを添加した。良く攪拌しながら水をスポイトで添加し、スラリー粘度を1Pa・sに調整した。このスラリーをステンレススティール(JISのSUS相当)箔1にナイフロール法で塗布し、乾燥して正極層2を作製した。正極層2について、マイクロメータで厚み測定したところ塗布厚100μmであった。
1. Invention Example A
(Positive electrode layer: see FIG. 2) 10 g of Li ethoxide and 67 g of pentaethoxy Nb were dissolved in 100 g of dehydrated ethanol, and 60 g of LiCoO 2 active material powder having a particle size of 10 μm was added. While stirring well, water was added with a dropper to adjust the slurry viscosity to 1 Pa · s. This slurry was applied to stainless steel (corresponding to JIS SUS)
(固体電解質層:図3参照)Liエトキシド10gとペンタエトキシNb67gを脱水エタノール50gに溶解し、粒径0.5μmのアルミナ粉末20gを添加した。良く攪拌しながら水をスポイトで添加し、スラリー粘度を1Pa・sに調整した。このスラリーを上記正極層2上にナイフロール法で塗布し、乾燥して固体電解質層3を作製した。固体電解質層3について、マイクロメータで厚み測定したところ塗布厚30μmであった。
(Solid electrolyte layer: see FIG. 3) 10 g of Li ethoxide and 67 g of pentaethoxy Nb were dissolved in 50 g of dehydrated ethanol, and 20 g of alumina powder having a particle size of 0.5 μm was added. While stirring well, water was added with a dropper to adjust the slurry viscosity to 1 Pa · s. This slurry was applied onto the
(負極層:図4参照)Liエトキシド10gとペンタエトキシNb67gを脱水エタノール50gに溶解し、粒径3μmのカーボン粉末40gを添加した。良く攪拌しながら水をスポイトで添加し、スラリー粘度を1Pa・sに調整した。このスラリーを上記固体電解質層3上にナイフロール法で塗布し、乾燥して負極層4を作製した。負極層4について、マイクロメータで厚み測定したところ塗布厚100μmであった。
(Negative electrode layer: see FIG. 4) 10 g of Li ethoxide and 67 g of pentaethoxy Nb were dissolved in 50 g of dehydrated ethanol, and 40 g of carbon powder having a particle size of 3 μm was added. While stirring well, water was added with a dropper to adjust the slurry viscosity to 1 Pa · s. This slurry was applied onto the
(負極集電体:図5参照)これらの層上に負極集電体としてステンレススティール(JISのSUS相当)箔5を積層し、全体を150℃で50Pa×1分の条件でホットプレスした。その後、大気中400℃で1時間焼結処理を実施した。その後、露点−70℃のアルゴン雰囲気中でアルミラミネート袋中に封止し、発電部面積10cm2のリチウム2次電池とした。
(放電容量の測定)電流10mAで充放電を実施したところ、放電容量40mAhが得られた。
(Negative electrode current collector: see FIG. 5) Stainless steel (corresponding to JIS SUS) foil 5 was laminated as a negative electrode current collector on these layers, and the whole was hot pressed at 150 ° C. under the condition of 50 Pa × 1 minute. Thereafter, sintering was performed at 400 ° C. for 1 hour in the atmosphere. Thereafter, the battery was sealed in an aluminum laminate bag in an argon atmosphere with a dew point of -70 ° C. to obtain a lithium secondary battery having a power generation area of 10 cm 2 .
(Measurement of discharge capacity) When charge / discharge was carried out at a current of 10 mA, a discharge capacity of 40 mAh was obtained.
2.比較例
(正極層)脱水ヘキサン中に2液型シリコーン樹脂を所定量比で計20g溶解し、粒径10μmのLiCoO2の活物質粉末60gを添加し、スラリー粘度を1Pa・sとした。また導電助剤としてアセチレンブラック5gを添加した。このスラリーをステンレススティール(SUS相当)箔にナイフロール法で塗布後、アルゴン中で150℃×30分硬化し、乾燥して、マイクロメータで厚み測定したところ塗布厚100μmであった。
2. Comparative Example (Positive Electrode Layer) A total of 20 g of a two-part silicone resin was dissolved in dehydrated hexane at a predetermined ratio, 60 g of LiCoO 2 active material powder having a particle size of 10 μm was added, and the slurry viscosity was 1 Pa · s. Further, 5 g of acetylene black was added as a conductive assistant. This slurry was applied to a stainless steel (SUS equivalent) foil by a knife roll method, then cured in argon at 150 ° C. for 30 minutes, dried and measured for thickness with a micrometer, resulting in a coating thickness of 100 μm.
(固体電解質層)脱水ヘキサン中に2液型シリコーン樹脂を所定量比で計20g溶解し、粒径1μmのLi4P2S7の硫化物固体電解質粉末60gを添加し、スラリー粘度を1Pa・sとした。このスラリーを上記正極上にナイフロール法で塗布後、アルゴン中で150℃×30分硬化し、乾燥して、マイクロメータで厚み測定したところ塗布厚30μmであった。 (Solid electrolyte layer) A total of 20 g of a two-component silicone resin is dissolved in dehydrated hexane at a predetermined ratio, 60 g of a Li 4 P 2 S 7 sulfide solid electrolyte powder having a particle size of 1 μm is added, and the slurry viscosity is 1 Pa · s. This slurry was applied on the positive electrode by a knife roll method, cured in argon at 150 ° C. for 30 minutes, dried, and measured for thickness with a micrometer, resulting in a coating thickness of 30 μm.
(負極層)脱水ヘキサン中に2液型シリコーン樹脂を所定量比で計20g溶解し、粒径3μmのカーボン活物質粉末40gを添加し、スラリー粘度を1Pa・sとした。このスラリーを上記固体電解質上にナイフロール法で塗布後、150℃×30分で硬化し、乾燥して、マイクロメータで厚み測定したところ塗布厚100μmであった。
(Negative electrode layer) A total of 20 g of a two-component silicone resin was dissolved in dehydrated hexane at a predetermined ratio, and 40 g of a carbon active material powder having a particle size of 3 μm was added to make the
(負極集電体)これらの層上に負極集電体としてステンレススティール(SUS相当)箔を積層し、全体を150℃で50Pa×1分の条件でホットプレスした。その後、露点−70℃のアルゴン雰囲気中でアルミラミネート袋中に封止し、発電部面積10cm2のリチウム2次電池とした。
(放電容量の測定)電流10mAで充放電したところ、放電容量12mAhが得られた。
(Negative Electrode Current Collector) A stainless steel (SUS equivalent) foil was laminated as a negative electrode current collector on these layers, and the whole was hot pressed at 150 ° C. for 50 Pa × 1 minute. Thereafter, the battery was sealed in an aluminum laminate bag in an argon atmosphere with a dew point of -70 ° C. to obtain a lithium secondary battery having a power generation area of 10 cm 2 .
(Measurement of discharge capacity) When the battery was charged / discharged at a current of 10 mA, a discharge capacity of 12 mAh was obtained.
上記の放電容量の測定結果によれば、本発明例Aの放電容量は、比較例のそれの3.3倍であり、飛躍的に向上しており、本発明の全固体電池の性能が優れていることが確認された。 According to the measurement results of the above discharge capacity, the discharge capacity of Example A of the present invention is 3.3 times that of the comparative example, which is dramatically improved, and the performance of the all solid state battery of the present invention is excellent. It was confirmed that
上記の実施の形態および実施例では、全固体電池の正極層、負極層、固体電解質層のすべての層を、金属アルコキシドを溶解したアルコール溶媒を用いて製造する方法を示したが、任意の1つの層または2つの層を、上記の方法(湿式法)で製造して、他の層を他の製造方法、たとえばレーザーアブレーション法などの気相法で製造してもよい。電池性能、作業能率(経済性)などを考慮して、適切な方法を組み合わせた製造方法とするのがよい。 In the above embodiments and examples, a method for producing all the positive electrode layer, negative electrode layer, and solid electrolyte layer of an all-solid battery using an alcohol solvent in which a metal alkoxide is dissolved has been described. One layer or two layers may be manufactured by the above method (wet method), and the other layer may be manufactured by another manufacturing method, for example, a gas phase method such as a laser ablation method. In consideration of battery performance, work efficiency (economic efficiency), etc., it is preferable to use a manufacturing method in which appropriate methods are combined.
また、上記の実施の形態および実施例では、リチウム系全固体電池についてのみ説明したが、本発明の全固体電池およびその製造方法は、リチウム系全固体電池に限定されず、金属アルコキシドを溶解したアルコール溶媒を用いて、塗布法により製造される全固体電池であれば、どのような全固体電池も含まれる。また、一次電池または二次電池を問わず、含まれる。 In the above embodiments and examples, only the lithium-based all-solid battery has been described. However, the all-solid-state battery of the present invention and the manufacturing method thereof are not limited to the lithium-based all-solid battery, and a metal alkoxide is dissolved. Any all solid state battery is included as long as it is an all solid state battery manufactured by a coating method using an alcohol solvent. Moreover, it is contained regardless of a primary battery or a secondary battery.
上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
本発明の全固体電池およびその製造方法によれば、リチウムイオン導電性の高い金属アルコキシドをバインダーに用い、高分子樹脂を用いないので、イオン導電率および放電容量の高い全固体電池を得ることができる。 According to the all solid state battery and the method of manufacturing the same of the present invention, a metal alkoxide having high lithium ion conductivity is used as a binder and no polymer resin is used, so that an all solid state battery having high ion conductivity and discharge capacity can be obtained. it can.
1 集電体基材(正極集電体)、2 正極層、3 固体電解質層、4 負極層、5 負極集電体、10 全固体電池本体。
DESCRIPTION OF
Claims (10)
前記正極層、固体電解質層および負極層のうちの少なくとも一つの層の作製において、金属アルコキシドを溶解したアルコール溶媒を用い、
前記正極層の作製の場合には、前記金属アルコキシドを溶解したアルコール溶媒に正極活物質粒子を分散させたスラリーを、前記負極層の作製の場合には、前記金属アルコキシドを溶解したアルコール溶媒に負極活物質粒子を分散させたスラリーを、また前記固体電解質層の作製の場合には、前記金属アルコキシドを溶解したアルコール溶媒であるスラリーを、下地に塗布し、その後で焼結することを特徴とする、全固体電池の製造方法。 A method for producing an all-solid battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer,
In the production of at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer, an alcohol solvent in which a metal alkoxide is dissolved is used.
In the case of preparing the positive electrode layer, a slurry in which positive electrode active material particles are dispersed in an alcohol solvent in which the metal alkoxide is dissolved is used. In the case of preparing the negative electrode layer, a negative electrode is used in an alcohol solvent in which the metal alkoxide is dissolved. A slurry in which active material particles are dispersed, or in the case of producing the solid electrolyte layer, a slurry that is an alcohol solvent in which the metal alkoxide is dissolved is applied to a base, and then sintered. The manufacturing method of an all-solid-state battery.
前記正極層、固体電解質層および負極層のいずれもが、金属酸化物凝集体を含み、樹脂を含まず、
前記正極層が正極活物質粒子の焼結体を含み、前記負極層が負極活物質粒子の焼結体を含むことを特徴とする、全固体電池。 An all-solid battery comprising a positive electrode layer, a solid electrolyte layer and a negative electrode layer,
Any of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a metal oxide aggregate, does not include a resin,
The all-solid-state battery, wherein the positive electrode layer includes a sintered body of positive electrode active material particles, and the negative electrode layer includes a sintered body of negative electrode active material particles.
The all-solid-state battery according to claim 8 or 9, wherein the positive electrode layer and / or the negative electrode layer contains carbon particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007273118A JP5194709B2 (en) | 2007-10-19 | 2007-10-19 | All-solid battery and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007273118A JP5194709B2 (en) | 2007-10-19 | 2007-10-19 | All-solid battery and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009104818A true JP2009104818A (en) | 2009-05-14 |
JP5194709B2 JP5194709B2 (en) | 2013-05-08 |
Family
ID=40706304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007273118A Expired - Fee Related JP5194709B2 (en) | 2007-10-19 | 2007-10-19 | All-solid battery and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5194709B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009181879A (en) * | 2008-01-31 | 2009-08-13 | Toyota Motor Corp | Positive electrode and method of manufacturing the same |
JP2009218124A (en) * | 2008-03-11 | 2009-09-24 | Sumitomo Electric Ind Ltd | Li ion-conductive solid electrolyte |
WO2010122974A1 (en) * | 2009-04-24 | 2010-10-28 | 大日本印刷株式会社 | Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
WO2010122975A1 (en) * | 2009-04-24 | 2010-10-28 | 大日本印刷株式会社 | Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
JP2011051800A (en) * | 2008-08-21 | 2011-03-17 | Ngk Insulators Ltd | Ceramic material and process for producing the same |
JP2012094378A (en) * | 2010-10-27 | 2012-05-17 | Toyota Motor Corp | Solid-electrolyte sintered body, and all-solid lithium battery |
US8394538B2 (en) | 2009-04-24 | 2013-03-12 | Dai Nippon Printing Co., Ltd. | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
US8394537B2 (en) | 2009-04-24 | 2013-03-12 | Dai Nippon Printing Co., Ltd. | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
JPWO2011064842A1 (en) * | 2009-11-25 | 2013-04-11 | トヨタ自動車株式会社 | Method for manufacturing electrode laminate and electrode laminate |
JP2013065397A (en) * | 2011-09-15 | 2013-04-11 | Honda Motor Co Ltd | Electrode active material, and method of manufacturing the same |
US8673492B2 (en) | 2009-04-24 | 2014-03-18 | Dai Nippon Printing Co., Ltd. | Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
JP2018037341A (en) * | 2016-09-01 | 2018-03-08 | Fdk株式会社 | Method for manufacturing all-solid battery |
JP2019046722A (en) * | 2017-09-05 | 2019-03-22 | 国立研究開発法人物質・材料研究機構 | Method for manufacturing all-solid battery |
CN111092265A (en) * | 2019-12-04 | 2020-05-01 | 昆明理工大学 | Preparation method of positive electrode support type all-solid-state lithium ion battery |
WO2024080493A1 (en) * | 2022-10-14 | 2024-04-18 | 삼성에스디아이 주식회사 | Solid electrolyte, method for preparing same, positive electrode, and all-solid rechargeable battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05174814A (en) * | 1991-12-25 | 1993-07-13 | Shin Kobe Electric Mach Co Ltd | Manufacture of sintered substrate for alkaline storage battery |
JPH06310135A (en) * | 1991-03-05 | 1994-11-04 | Furukawa Battery Co Ltd:The | Sealed alkaline storage battery |
JPH1139939A (en) * | 1997-07-15 | 1999-02-12 | Kinya Adachi | Preparing ion conductive nano-composite solid electrolyte caused by decomposition of sold solution for precursor of insulating material with solid elecrolyte |
JP2001143697A (en) * | 1999-11-12 | 2001-05-25 | Canon Inc | Electrode for secondary cell, secondary cell using the electrode and method for manufacturing the same |
JP2001243984A (en) * | 2000-02-28 | 2001-09-07 | Kyocera Corp | Solid electrolyte battery and its manufacturing method |
-
2007
- 2007-10-19 JP JP2007273118A patent/JP5194709B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06310135A (en) * | 1991-03-05 | 1994-11-04 | Furukawa Battery Co Ltd:The | Sealed alkaline storage battery |
JPH05174814A (en) * | 1991-12-25 | 1993-07-13 | Shin Kobe Electric Mach Co Ltd | Manufacture of sintered substrate for alkaline storage battery |
JPH1139939A (en) * | 1997-07-15 | 1999-02-12 | Kinya Adachi | Preparing ion conductive nano-composite solid electrolyte caused by decomposition of sold solution for precursor of insulating material with solid elecrolyte |
JP2001143697A (en) * | 1999-11-12 | 2001-05-25 | Canon Inc | Electrode for secondary cell, secondary cell using the electrode and method for manufacturing the same |
JP2001243984A (en) * | 2000-02-28 | 2001-09-07 | Kyocera Corp | Solid electrolyte battery and its manufacturing method |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009181879A (en) * | 2008-01-31 | 2009-08-13 | Toyota Motor Corp | Positive electrode and method of manufacturing the same |
JP2009218124A (en) * | 2008-03-11 | 2009-09-24 | Sumitomo Electric Ind Ltd | Li ion-conductive solid electrolyte |
JP2011051800A (en) * | 2008-08-21 | 2011-03-17 | Ngk Insulators Ltd | Ceramic material and process for producing the same |
US9350047B2 (en) | 2008-08-21 | 2016-05-24 | Ngk Insulators, Ltd. | Ceramic material and process for producing the same |
US8883357B2 (en) | 2008-08-21 | 2014-11-11 | Ngk Insulators, Ltd. | Ceramic material and process for producing the same |
US8673492B2 (en) | 2009-04-24 | 2014-03-18 | Dai Nippon Printing Co., Ltd. | Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
WO2010122974A1 (en) * | 2009-04-24 | 2010-10-28 | 大日本印刷株式会社 | Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
WO2010122975A1 (en) * | 2009-04-24 | 2010-10-28 | 大日本印刷株式会社 | Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
US8394535B2 (en) | 2009-04-24 | 2013-03-12 | Dai Nippon Printing Co., Ltd. | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
US8394538B2 (en) | 2009-04-24 | 2013-03-12 | Dai Nippon Printing Co., Ltd. | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
US8394536B2 (en) | 2009-04-24 | 2013-03-12 | Dai Nippon Printing Co., Ltd. | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
US8394537B2 (en) | 2009-04-24 | 2013-03-12 | Dai Nippon Printing Co., Ltd. | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
JPWO2011064842A1 (en) * | 2009-11-25 | 2013-04-11 | トヨタ自動車株式会社 | Method for manufacturing electrode laminate and electrode laminate |
JP5747506B2 (en) * | 2009-11-25 | 2015-07-15 | トヨタ自動車株式会社 | Method for manufacturing electrode laminate and electrode laminate |
JP2012094378A (en) * | 2010-10-27 | 2012-05-17 | Toyota Motor Corp | Solid-electrolyte sintered body, and all-solid lithium battery |
JP2013065397A (en) * | 2011-09-15 | 2013-04-11 | Honda Motor Co Ltd | Electrode active material, and method of manufacturing the same |
JP2018037341A (en) * | 2016-09-01 | 2018-03-08 | Fdk株式会社 | Method for manufacturing all-solid battery |
JP2019046722A (en) * | 2017-09-05 | 2019-03-22 | 国立研究開発法人物質・材料研究機構 | Method for manufacturing all-solid battery |
CN111092265A (en) * | 2019-12-04 | 2020-05-01 | 昆明理工大学 | Preparation method of positive electrode support type all-solid-state lithium ion battery |
WO2024080493A1 (en) * | 2022-10-14 | 2024-04-18 | 삼성에스디아이 주식회사 | Solid electrolyte, method for preparing same, positive electrode, and all-solid rechargeable battery |
Also Published As
Publication number | Publication date |
---|---|
JP5194709B2 (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5194709B2 (en) | All-solid battery and method for manufacturing the same | |
JP6941808B2 (en) | All solid state battery | |
CN111864207B (en) | All-solid battery | |
US9368828B2 (en) | All-solid battery and manufacturing method therefor | |
US20130273437A1 (en) | All solid state battery | |
JP6222142B2 (en) | Method for manufacturing electrode body | |
JP5755400B2 (en) | Negative electrode mixture, negative electrode mixture mixture, negative electrode, all solid lithium battery and apparatus | |
KR102198115B1 (en) | Electrode, method of producing the same, battery, and electronic device | |
JP6183783B2 (en) | All solid battery | |
JP7269571B2 (en) | Method for manufacturing all-solid-state battery | |
JP6575109B2 (en) | Lithium ion conductor, electrode, battery, manufacturing method thereof, and electronic device | |
JP2010015782A (en) | All-solid battery | |
CN110165300B (en) | Method for manufacturing all-solid-state battery | |
JP2013051171A (en) | Electrode body for all solid-state battery and all solid-state battery | |
US20120003547A1 (en) | Electrode Material, Lithium-Ion Battery And Related Methods | |
JP6840946B2 (en) | Solid electrolytes, all-solid-state batteries, and how to make them | |
WO2020241691A1 (en) | All-solid-state battery and method for producing same | |
JP2015185237A (en) | Positive electrode for all-solid type lithium secondary batteries, and all-solid type lithium secondary battery arranged by use thereof | |
Ye et al. | Aqueous Processing of LiCoO2–Li6. 6La3Zr1. 6Ta0. 4O12 Composite Cathode for High-Capacity Solid-State Lithium Batteries | |
KR20150042350A (en) | Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector | |
CN113544875B (en) | Method for manufacturing all-solid-state battery | |
JP6201569B2 (en) | Solid electrolyte material and all solid state battery | |
CN113039673B (en) | Battery material, battery, and method for producing battery material | |
JP7122139B2 (en) | Method for manufacturing all-solid-state battery and all-solid-state battery | |
JPWO2007135790A1 (en) | All solid state secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |