JP2005078985A - Electrode for nonaqueous secondary battery and lithium secondary battery using the same - Google Patents

Electrode for nonaqueous secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP2005078985A
JP2005078985A JP2003309506A JP2003309506A JP2005078985A JP 2005078985 A JP2005078985 A JP 2005078985A JP 2003309506 A JP2003309506 A JP 2003309506A JP 2003309506 A JP2003309506 A JP 2003309506A JP 2005078985 A JP2005078985 A JP 2005078985A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309506A
Other languages
Japanese (ja)
Inventor
Koichiro Ikeda
晃一郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2003309506A priority Critical patent/JP2005078985A/en
Publication of JP2005078985A publication Critical patent/JP2005078985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a nonaqueous secondary battery wherein battery energy density is not reduced, and the impedance in the electrode is not reduced so that a large capacity and excellent cycle characteristics are provided. <P>SOLUTION: A deposition body of ingredient powder consisting of lithium transition metal oxide and inorganic solid electrolyte battery has a positive electrode of which vacancy ratio is under 15%, and conductivity is over 1mS/cm. In a lithium secondary battery formed by interposing iorganic solid electrolyte between a positive electrode active substance and a cathode active substance, the anode active material and/or the cathode active substance are formed with a deposition layer of iorganic solid electrolyte in which metal oxide particles having conductivity are dispersed, and of metal oxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高容量で優れたサイクル特性を与える非水系二次電池用正極、及びこれを用いたリチウム二次電池に関する。
The present invention relates to a positive electrode for a non-aqueous secondary battery that provides high capacity and excellent cycle characteristics, and a lithium secondary battery using the same.

携帯電話やノートパソコン等の普及に伴って、高エネルギー密度の期待できるリチウムイオンの挿入脱離を利用したリチウム二次電池が注目され、その中でも特に省スペースな薄型の角型電池の需要が高まっている。   Along with the popularization of mobile phones and laptop computers, lithium secondary batteries using insertion and desorption of lithium ions, which can be expected to have high energy density, have attracted attention, and in particular, the demand for space-saving thin rectangular batteries has increased. ing.

しかし、この電池において、活物質を含む電極は、活物質、バインダ、及び導電剤などからなっており、これらの成分の内、バインダ及び導電剤は本来電極の容量に寄与しないものであるため、体積当たりの電池容量が制限されるという問題が有る。   However, in this battery, the electrode containing the active material is composed of an active material, a binder, and a conductive agent, and among these components, the binder and the conductive agent originally do not contribute to the capacity of the electrode. There is a problem that the battery capacity per volume is limited.

そこで、単位体積当たりの容量を増大させる一つの手段として、電極を実質的に活物質からなる焼結体で構成する試みがなされている。すなわち活物質を含む成分の焼結体で電極を構成すると、バインダを含まず、さらに導電剤を不使用もしくは減量することができるため、活物質の充填密度を高くすることができ、単位体積当たりの容量を増大させることができる。このような焼結体として、リチウム遷移金属酸化物の焼結体からなる正極が知られている(例えば特許文献1、及び特許文献2参照)。この焼結体は、リチウム遷移金属酸化物の粉末あるいはその原料粉末を、金型を用いてプレス成形もしくはシート成形し、その成型体を酸素存在下で、所定温度で焼成することにより得られている。しかし、この焼結体は、導電性が不十分であり、正極としての性能は満足できるものではない。   Therefore, as one means for increasing the capacity per unit volume, an attempt has been made to configure the electrode with a sintered body substantially made of an active material. In other words, when the electrode is composed of a sintered body of a component containing an active material, it does not contain a binder, and the conductive agent can be used or reduced in weight. Capacity can be increased. As such a sintered body, a positive electrode made of a sintered body of a lithium transition metal oxide is known (see, for example, Patent Document 1 and Patent Document 2). This sintered body is obtained by press-molding or sheet-molding a lithium transition metal oxide powder or its raw material powder using a mold, and firing the molded body at a predetermined temperature in the presence of oxygen. Yes. However, this sintered body has insufficient conductivity, and performance as a positive electrode is not satisfactory.

すなわち、焼結体を正極とする場合、正極中でのイオン伝導のための電解液を焼結体に浸透させるため、通常多くの気孔を内在させている。そのため焼結温度が極めて低く、正極を構成するリチウム遷移金属酸化物粒子間の接合が十分行われず、粒子接触部での焼結体の結晶成長が不十分なため十分な導電性が得られず、改善が求められていた。   That is, when the sintered body is used as a positive electrode, many pores are usually included in order to allow the electrolyte for ion conduction in the positive electrode to permeate into the sintered body. Therefore, the sintering temperature is extremely low, the lithium transition metal oxide particles constituting the positive electrode are not sufficiently bonded, and the crystal growth of the sintered body at the particle contact portion is insufficient, so that sufficient conductivity cannot be obtained. There was a need for improvement.

また、従来のリチウム二次電池においては、電解質として非水系の溶媒に溶解させた非水電解質あるいはゲル状のポリマーが多用されている。このような液状の電解質を用いる場合には、電解液もしくはゲルの漏れ、あるいは発煙といった問題を有しており、電池外部への漏液や腐食の完全防止のための施策が必要であった。また、電解液の注液において、内部短絡の発生により歩留まり低下などの問題があった。   Further, in a conventional lithium secondary battery, a non-aqueous electrolyte or gel polymer dissolved in a non-aqueous solvent is frequently used as an electrolyte. When such a liquid electrolyte is used, there is a problem of leakage of the electrolyte or gel, or smoke generation, and it is necessary to take measures to completely prevent leakage and corrosion outside the battery. In addition, there has been a problem in yield reduction due to the occurrence of an internal short circuit in the electrolyte injection.

近年このような問題を解決するために、このような液体もしくはゲル状の電解質に代えて、金属酸化物などの無機固体電解質を用いた耐熱性に優れた電池寿命の長い固体電解質電池の開発が検討されている。例えば、固体電解質を用いた電池であって、電池内部抵抗の減少を目的として電極活物質と固体電解質を混合し、導電性粒子に炭素材料や金属を用いた電池が知られている(特許文献3参照)。しかしながら、この電池は容量保持率に優れず固体電解質電池としての性能は満足できるものではない。
本発明者は、検討の結果、この原因として電極中に含まれるグラファイトによる焼結中もしくは充放電中の活物質もしくは固体電解質の還元に起因することを見出した。すなわち、この電池においては、活物質もしくは固体電解質の結晶構造に含まれる元素の一部が還元されることにより結晶構造や電極構造の崩壊が容易となり数度の充放電を繰り返すことにより容量保持率が低下するものでことが判明した。
In recent years, in order to solve such problems, the development of a solid electrolyte battery with excellent heat resistance and long battery life using an inorganic solid electrolyte such as a metal oxide instead of such a liquid or gel electrolyte has been developed. It is being considered. For example, a battery using a solid electrolyte, in which an electrode active material and a solid electrolyte are mixed for the purpose of reducing battery internal resistance, and a carbon material or a metal is used for conductive particles is known (Patent Literature). 3). However, this battery is not excellent in capacity retention and performance as a solid electrolyte battery is not satisfactory.
As a result of the study, the present inventor has found that this is caused by the reduction of the active material or solid electrolyte during sintering or charging / discharging by graphite contained in the electrode. In other words, in this battery, a part of the elements contained in the crystal structure of the active material or solid electrolyte is reduced, so that the crystal structure and the electrode structure can be easily collapsed, and the capacity retention rate can be increased by repeating charge and discharge several times. Turned out to be a decline.

このように、固体電解質を用いた電池においては、容量保持率の高いリチウム二次電池の実現が求められていた。

特開平8−180904号公報 特開2001−143687号公報 特開2000−285910号公報
Thus, in a battery using a solid electrolyte, realization of a lithium secondary battery having a high capacity retention has been demanded.

JP-A-8-180904 JP 2001-143687 A JP 2000-285910 A

本発明は、上記従来技術の問題点を解決するためになされたもので、十分な導電性が得られ、高容量と優れたサイクル特性を与える非水系二次電池用正極もしくは負極を提供することを目的とするものである。   The present invention has been made to solve the above-described problems of the prior art, and provides a positive electrode or a negative electrode for a non-aqueous secondary battery that provides sufficient conductivity, provides high capacity, and excellent cycle characteristics. It is intended.

また、本発明は、正極、負極、及び固体電解質を備えるリチウム二次電池であって、電池内部抵抗を滅少させて、電極中に含まれる活物質および固体電解質の焼結中もしくは充放電中における還元を抑制し、容量保持率に優れたリチウム二次電池を提供することを目的とするものである。
Further, the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte, wherein the internal resistance of the battery is reduced, and the active material contained in the electrode and the solid electrolyte are being sintered or charged / discharged An object of the present invention is to provide a lithium secondary battery that suppresses the reduction in and has an excellent capacity retention rate.

第1の本発明は、リチウムイオンの挿入脱離が可能な金属酸化物と無機固体電解質もしくはこれらの前駆体からなる原料粉末の堆積体からなることを特徴とする非水系二次電池用電極である。   A first aspect of the present invention is an electrode for a non-aqueous secondary battery, characterized by comprising a deposit of a raw material powder comprising a metal oxide capable of inserting and releasing lithium ions and an inorganic solid electrolyte or a precursor thereof. is there.

前記第1の本発明において、前記堆積体が、空孔率15%以下、導電率1mS/cm以上、及び正極もしくは負極中に含まれる金属酸化物と固体電解質の割合の体積比1:1〜9:1からなるものであることが好ましい。   In the first aspect of the invention, the deposited body has a porosity of 15% or less, an electrical conductivity of 1 mS / cm or more, and a volume ratio of 1: 1 to 1 of the ratio of the metal oxide and the solid electrolyte contained in the positive electrode or the negative electrode. It is preferable that it consists of 9: 1.

第2の本発明は、正極活物質を含有する正極及び負極活物質を含有する負極の少なくとも一方を、リチウムイオンの挿入脱離が可能な金属酸化物と無機固体電解質もしくはこれらの前駆体からなる原料粉末の超微粒子を、気流で搬送し、基体上に吹き付けて堆積させることによって形成したことを特徴とする非水系二次電池用電極の製造方法である。   According to a second aspect of the present invention, at least one of a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material is composed of a metal oxide capable of inserting and releasing lithium ions and an inorganic solid electrolyte or a precursor thereof. It is a method for producing an electrode for a non-aqueous secondary battery, characterized in that it is formed by conveying ultrafine particles of raw material powder by an air stream and spraying and depositing on a substrate.

第3の本発明は、正極活物質層と負極活物質層との間に電解質を介在させて成るリチウム二次電池において、
前記正極活物質層および/または負極活物質層を、導電性を有する粒子を分散させた無機固体電解質と金属酸化物との堆積層で形成したことを特徴とするリチウム二次電池である。
A third aspect of the present invention is a lithium secondary battery in which an electrolyte is interposed between a positive electrode active material layer and a negative electrode active material layer.
In the lithium secondary battery, the positive electrode active material layer and / or the negative electrode active material layer is formed of a deposited layer of an inorganic solid electrolyte in which conductive particles are dispersed and a metal oxide.

前記第3の本発明において、前記正極活物質層および/または負極活物質層中に含まれる導電性を有する粒子の室温における導電率が10S/cm以上の金属酸化物であることが好ましい。
また、前記第3の本発明において、前記正極活物質層および/または負極活物質層中に含まれる導電性を有する金属酸化物粒子が非還元性であることが好ましい。
さらに、前記第3の本発明において、前記金属酸化物粒子が、ナトリウムコバルト酸化物、リチウムドープ酸化ニッケル、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化錫、錫ドープ酸化インジウムまたはそれらの誘導体のいずれか一種または複数種から成ることが好ましい。
In the third aspect of the present invention, the conductive particles contained in the positive electrode active material layer and / or the negative electrode active material layer are preferably metal oxides having a conductivity at room temperature of 10 S / cm or more.
In the third aspect of the present invention, the conductive metal oxide particles contained in the positive electrode active material layer and / or the negative electrode active material layer are preferably non-reducing.
Furthermore, in the third aspect of the present invention, the metal oxide particles may be any one of sodium cobalt oxide, lithium-doped nickel oxide, aluminum-doped zinc oxide, antimony-doped tin oxide, tin-doped indium oxide, or a derivative thereof. It is preferable to consist of a plurality of species.

第4の本発明は、正極活物質を含有する正極及び負極活物質を含有する負極の少なくとも一方を、リチウムイオンの挿入脱離が可能な金属酸化物と無機固体電解質もしくはこれらの前駆体からなる原料粉末の超微粒子を、気流で搬送し、基体上に吹き付けて堆積させることによって形成した正極もしくは負極を用いたことを特徴とするリチウム二次電池の製造方法である。
According to a fourth aspect of the present invention, at least one of a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material is composed of a metal oxide capable of inserting and releasing lithium ions and an inorganic solid electrolyte or a precursor thereof. A method for producing a lithium secondary battery, comprising using a positive electrode or a negative electrode formed by transporting ultrafine particles of raw material powder in an air stream and spraying and depositing on a substrate.

本発明の非水系二次電池用電極は、金属酸化物を含む多孔質の堆積体であって、空孔率が15%以下で、かつ、導電率が1mS/cm以上で、さらには正極もしくは負極中に含まれる金属酸化物と固体電解質の割合の体積比が1:1〜9:1としたことによって、電池の内部抵抗を低減でき、高容量でサイクル特性に優れた非水系二次電池を提供できる。   An electrode for a non-aqueous secondary battery according to the present invention is a porous deposit containing a metal oxide, having a porosity of 15% or less, an electrical conductivity of 1 mS / cm or more, and a positive electrode or By setting the volume ratio of the metal oxide and solid electrolyte contained in the negative electrode to 1: 1 to 9: 1, the internal resistance of the battery can be reduced, the non-aqueous secondary battery having high capacity and excellent cycle characteristics Can provide.

さらに、本発明に係わるリチウム二次電池によれば、正極活物質層および/または負極活物質層を、導電性を有する粒子を分散させた固体電解質と金属酸化物との堆積層で形成し、電極活物質層に還元性を示さない導電性金属酸化物粒子が分散して、さらに使用する原料粉末を限定することにより、電極内のインピーダンスを低くするとともに、容量保持率を向上させることができるものである。
Furthermore, according to the lithium secondary battery according to the present invention, the positive electrode active material layer and / or the negative electrode active material layer is formed of a deposited layer of a solid electrolyte in which conductive particles are dispersed and a metal oxide, Conductive metal oxide particles that do not exhibit reducibility are dispersed in the electrode active material layer, and by further limiting the raw material powder to be used, the impedance in the electrode can be lowered and the capacity retention rate can be improved. Is.

[第1の実施の形態]
本発明によれば、正極もしくは負極中のイオン伝導を固体電解質に担わせることにより、活物質間の強い接合を実現し、導電率の高い十分な機械強度を有した正極活物質もしくは負極活物質を含む電極を実現することができる。また、気孔率と導電率は堆積体を構成する一次粒子間の結着力を示す指標となるものであって、上記発明の範囲の気孔率及び導電率を有する電極材料を用いることによって、十分な機械強度を有する電極が得られる。さらに、正極もしくは負極に内在させる固体電解質の量を最適化させることにより、正極もしくは負極中のイオン伝導を容易にする。
[First Embodiment]
According to the present invention, a positive electrode active material or a negative electrode active material having sufficient mechanical strength with high electrical conductivity can be realized by providing the solid electrolyte with ion conduction in the positive electrode or the negative electrode, thereby realizing strong bonding between the active materials. Can be realized. In addition, the porosity and the conductivity are indices indicating the binding force between the primary particles constituting the deposit, and it is sufficient to use an electrode material having a porosity and a conductivity within the range of the above invention. An electrode having mechanical strength is obtained. Further, by optimizing the amount of the solid electrolyte contained in the positive electrode or the negative electrode, ion conduction in the positive electrode or the negative electrode is facilitated.

すなわち、本発明の電極は、リチウムイオンの挿入脱離可能な金属酸化物と固体電解質あるいはこれらの前駆体からなる原料粉末の堆積体である非水系二次電池用正極もしくは負極とすることを特徴とする。   That is, the electrode of the present invention is a positive electrode or negative electrode for a non-aqueous secondary battery, which is a deposit of a raw material powder composed of a metal oxide capable of inserting and releasing lithium ions and a solid electrolyte or a precursor thereof. And

また、前記非水二次電池用の正極もしくは負極電極は、空孔率が15%以下、かつ、導電率が1mS/cm以上で正極もしくは負極において、該正極もしくは負極中に含まれる金属酸化物と固体電解質の割合の体積比が1:1〜9:1であることを特徴とする。   Further, the positive electrode or the negative electrode for the non-aqueous secondary battery has a porosity of 15% or less and a conductivity of 1 mS / cm or more, and the metal oxide contained in the positive electrode or the negative electrode in the positive electrode or the negative electrode. The volume ratio of the ratio of the solid electrolyte is 1: 1 to 9: 1.

本発明によれば、リチウムイオンの挿入脱離可能な金属酸化物と固体電解質もしくはこれらの前駆体からなる原料粉末の堆積体である非水系二次電池用正極もしくは負極とすることにより活物質間の強い接合を実現し、導電率の高い十分な機械強度の正極もしくは負極を提供できる。   According to the present invention, a positive electrode or a negative electrode for a non-aqueous secondary battery, which is a deposit of a raw material powder composed of a metal oxide capable of inserting and desorbing lithium ions and a solid electrolyte or a precursor thereof, is formed between active materials. A strong positive electrode or negative electrode with high electrical conductivity and sufficient mechanical strength can be provided.

また、実質的に固形物のみからなるため、正極もしくは負極を構成する一次粒子間の結着力が気孔率と導電性に反映される。そのため、気孔率が15%以下、かつ導電率が1mS/cm以上の堆積体は一次粒子間の結着力が強く、充放電により体積が膨張・収縮しても、一次粒子の脱落や電極の崩壊を起こすことがない。気孔率及び導電率が上記範囲外の堆積体は、電極の機械的強度が低下して取り扱いが困難であると同時に、電極の内部抵抗が増加して電池の特性の悪化をもたらす。   Moreover, since it consists only of solid substance substantially, the binding force between the primary particles which comprise a positive electrode or a negative electrode is reflected in a porosity and electroconductivity. Therefore, a deposit with a porosity of 15% or less and an electrical conductivity of 1 mS / cm or more has a strong binding force between primary particles, and even if the volume expands or contracts due to charge / discharge, the primary particles fall off or the electrodes collapse. Will not cause. Deposits having porosity and conductivity outside the above ranges are difficult to handle due to a decrease in the mechanical strength of the electrode, and at the same time, the internal resistance of the electrode is increased, resulting in deterioration of battery characteristics.

さらに正極もしくは負極中に含まれる金属酸化物と固体電解質の割合の体積比が1:1〜9:1とすることで正極もしくは負極中のイオン伝導を容易にし、電池中で起こる電気化学反応を容易にする。   Furthermore, by making the volume ratio of the metal oxide and solid electrolyte contained in the positive electrode or negative electrode 1: 1 to 9: 1, the ionic conduction in the positive electrode or negative electrode is facilitated, and the electrochemical reaction that occurs in the battery is prevented. make it easier.

以下、このような本発明の正極もしくは負極である電極材料の実施の形態について説明する。本発明の正極もしくは負極はリチウム二次電池に好適に用いることができる。以下、リチウム二次電池に適用した場合についての実施の形態について説明する。   Hereinafter, embodiments of the electrode material which is the positive electrode or the negative electrode of the present invention will be described. The positive electrode or negative electrode of the present invention can be suitably used for a lithium secondary battery. Hereinafter, an embodiment in which the present invention is applied to a lithium secondary battery will be described.

本発明の正極に用いるリチウムイオンの挿入脱離可能な金属酸化物は、公知のリチウム遷移金属酸化物の何れの材料も用いることができるが、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、またはそれらの誘導体のいずれか一種または複数種から成るものを用いることが好ましい。   As the metal oxide capable of inserting and removing lithium ions used for the positive electrode of the present invention, any material of known lithium transition metal oxides can be used, but lithium cobaltate, lithium nickelate, lithium manganate, or It is preferable to use one or more of these derivatives.

本発明の負極に用いるリチウムイオンの挿入脱離可能な金属酸化物は、公知の何れの材料も用いることができるが、チタン酸リチウム、酸化チタン、マンガン酸リチウム、酸化錫、酸化珪素、リチウムチタン複合酸化物、酸化鉄、酸化ニオブ、酸化バナジウム、酸化タングステンまたはそれらの誘導体のいずれか一種または複数種から成るものを用いることが好ましい。   As the metal oxide capable of inserting and removing lithium ions used in the negative electrode of the present invention, any known material can be used, but lithium titanate, titanium oxide, lithium manganate, tin oxide, silicon oxide, lithium titanium It is preferable to use a composite oxide, iron oxide, niobium oxide, vanadium oxide, tungsten oxide, or a derivative thereof.

本発明の正極もしくは負極中に内在させる無機固体電解質としては、公知の何れの材料も用いることができるが、Li1+x+yTi2−xSi3−y12(A=AまたはGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=SrまたはBa、0≦z≦0.5)、などの高いイオン伝導率を有する酸化物を用いることが好ましい。 As the inorganic solid electrolyte contained in the positive electrode or the negative electrode of the present invention, any known material can be used, but Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A = A or Ga , 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1−z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = It is preferable to use an oxide having high ionic conductivity such as Sr or Ba, 0 ≦ z ≦ 0.5).

また、上記物質の前駆体とは、酸化等の手段によって上記物質の転換する物質であり、具体的には、上記物質の組成元素のアルコキシドやハロゲン化物などがあげられる。   The precursor of the substance is a substance that converts the substance by means of oxidation or the like, and specific examples include alkoxides and halides of the constituent elements of the substance.

本実施の形態の電極材料には、導電性を有する金属酸化物をさらに添加して用いることもできる。このような導電性を有する金属酸化物粒子は、還元性を有しないことを特徴とし、特にはナトリウムコバルト酸化物、リチウムドープ酸化ニッケル、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化錫、錫ドープ酸化インジウム、またはそれらの誘導体のいずれか一種または複数種から成ることを特徴とする。これらの金属酸化物を添加することにより、電池として優れた容量保持特性を実現できる。   The electrode material of this embodiment can be used by further adding a conductive metal oxide. Such conductive metal oxide particles are characterized by not having reducibility, in particular sodium cobalt oxide, lithium-doped nickel oxide, aluminum-doped zinc oxide, antimony-doped tin oxide, tin-doped indium oxide, Or it consists of any 1 type or multiple types of those derivatives. By adding these metal oxides, excellent capacity retention characteristics as a battery can be realized.

上記酸化物や無機物を緻密化させ成膜する手段としては、一般的には焼結法が挙げられるが、リチウムイオンの挿入脱離可能な金属酸化物粉末と無機固体電解質粉末間の反応や熱応力の発生が避けられず、活物質間の強い接合を実現し、導電率の高い十分な機械強度の正極もしくは負極を提供することが不可能となる。そこで、本発明においては正極もしくは負極は原料粉末を堆積させて作製することが好ましい。原料粉末を堆積させる作製方法としては、原料粉末を直接強固な結着構造堆積体とする溶射法やガスデポジション法が挙げられる。また、構成元素を堆積させる手法としてスパッタリングや真空蒸着といった方法が挙げられる。   As a means for forming a film by densifying the oxide or inorganic material, a sintering method is generally used. However, a reaction between a metal oxide powder capable of inserting and releasing lithium ions and an inorganic solid electrolyte powder or heat The generation of stress is inevitable, and it becomes impossible to provide a positive electrode or a negative electrode with high electrical conductivity and sufficient mechanical strength, which achieves strong bonding between the active materials. Therefore, in the present invention, the positive electrode or the negative electrode is preferably produced by depositing raw material powder. Examples of the production method for depositing the raw material powder include a thermal spraying method and a gas deposition method in which the raw material powder is directly used as a solid bonded structure deposit. Further, as a method for depositing the constituent elements, there are methods such as sputtering and vacuum evaporation.

より好ましくは、リチウムイオンの挿入脱離可能な金属酸化物粉末と無機固体電解質粉末を、粒径1μm程度以下の微粒子を加速された気流により吹き付けて基材上に所定の形状に固着させる、いわゆるエアロゾルデポジション法が製造効率や省エネルギーの観点から望ましい。この手法の詳細については、後述する。   More preferably, the metal oxide powder capable of inserting and removing lithium ions and the inorganic solid electrolyte powder are sprayed with fine particles having a particle size of about 1 μm or less by an accelerated air current to fix the lithium oxide powder onto the substrate in a predetermined shape. The aerosol deposition method is desirable from the viewpoint of manufacturing efficiency and energy saving. Details of this method will be described later.

得られる正極もしくは負極に用いる堆積体の気孔率は、好ましくは15%以下であり、より好ましくは10%以下である。1mS/cm以上の導電率及び正極材料の充填密度を確保しながら、正極および負極中のリチウムイオンの移動を一層向上させ、電気化学反応を促進できる。
また、正極もしくは負極に用いる堆積体の導電率は、好ましくは1mS/cm以上、より好ましくは10mS/cm以上である。焼結体を構成する一次粒子間の結着力がより強固になり、電極の機械強度がより向上する。
The porosity of the deposit used for the obtained positive electrode or negative electrode is preferably 15% or less, more preferably 10% or less. While ensuring the conductivity of 1 mS / cm or more and the packing density of the positive electrode material, the movement of lithium ions in the positive electrode and the negative electrode can be further improved and the electrochemical reaction can be promoted.
The conductivity of the deposit used for the positive electrode or the negative electrode is preferably 1 mS / cm or more, more preferably 10 mS / cm or more. The binding force between the primary particles constituting the sintered body becomes stronger, and the mechanical strength of the electrode is further improved.

また、本発明の正極もしくは負極は、これらと対をなす負極もしくは正極と非水電解質を用いて二次電池を構成することができる。
非水電解質としては、エチレンカーボネート、ジメチルカーボネート等の有機溶媒に電解質としてLiPF等のリチウム化合物を溶解させた非水電解液、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させた高分子固体電解質や無機固体電解質を用いることができる。
Moreover, the positive electrode or negative electrode of the present invention can constitute a secondary battery using a negative electrode or positive electrode paired therewith and a non-aqueous electrolyte.
As a non-aqueous electrolyte, a non-aqueous electrolyte solution in which a lithium compound such as LiPF 6 is dissolved as an electrolyte in an organic solvent such as ethylene carbonate or dimethyl carbonate, or an organic solution in which a lithium compound is dissolved in a polymer or a lithium compound is dissolved in a polymer A solid polymer electrolyte or an inorganic solid electrolyte in which a solvent is held can be used.

(エアロゾルデポジション法による堆積層形成装置及び方法)
以下本発明において用いられる無機物質の堆積層を形成する装置及びこれを用いた堆積層形成方法について図面を用いて説明する。
(Deposition layer forming apparatus and method by aerosol deposition method)
Hereinafter, an apparatus for forming a deposited layer of an inorganic substance used in the present invention and a deposited layer forming method using the same will be described with reference to the drawings.

図1は、リチウム二次電池を作製するのに用いる無機物質堆積層形成装置の1例を示す概略図である。図1において、11はノズル、12は無機物質の堆積層を形成する基材、13は堆積室、14は堆積層、15は真空ポンプ、16は原料容器、17は原料粉末である。   FIG. 1 is a schematic view showing an example of an inorganic material deposition layer forming apparatus used for producing a lithium secondary battery. In FIG. 1, 11 is a nozzle, 12 is a substrate for forming a deposit layer of an inorganic substance, 13 is a deposition chamber, 14 is a deposit layer, 15 is a vacuum pump, 16 is a raw material container, and 17 is a raw material powder.

この装置を用いて正極、固体電解質層、あるいは負極などの発電要素を、無機物質の超微粒子を用いた堆積層として形成するには、堆積室13中に、基材12を配置し、原料粉末17を原料容器に充填する。次いで、原料容器16に、図示しないポンプなどの手段により圧縮空気のような気体を圧入して、原料容器16中の原料粉末17を気体に分散させて搬送し、堆積室13中のノズル11から基材14に向けて噴出させ、基材14上に原料粉末17の堆積層14を形成することによって前記正極、固体電解質、あるいは負極を形成することができる。   In order to form a power generation element such as a positive electrode, a solid electrolyte layer, or a negative electrode as a deposition layer using ultrafine particles of an inorganic substance using this apparatus, a base material 12 is disposed in a deposition chamber 13, and a raw material powder 17 is filled in the raw material container. Next, a gas such as compressed air is press-fitted into the raw material container 16 by means such as a pump (not shown), and the raw material powder 17 in the raw material container 16 is dispersed in the gas and conveyed. From the nozzle 11 in the deposition chamber 13. The positive electrode, the solid electrolyte, or the negative electrode can be formed by ejecting toward the base material 14 and forming the deposited layer 14 of the raw material powder 17 on the base material 14.

この装置によって堆積層を形成する場合、ノズル11は、図示しない制御装置によって移動可能とし、基材12表面を走査しながら噴射することにより、広い面積の堆積層14を形成することができる。また、この堆積層14は、1回の噴射によって層形成しても良いが、複数回の噴射によって超微粒子を堆積して層形成しても良い。   When forming a deposited layer by this apparatus, the nozzle 11 can be moved by a control device (not shown), and the deposited layer 14 having a large area can be formed by spraying while scanning the surface of the substrate 12. Further, the deposited layer 14 may be formed by a single injection, or may be formed by depositing ultrafine particles by a plurality of injections.

上記方法によって形成される堆積層は、相対密度90%以上の密度を有する緻密な層であり、この堆積層は、電池組み立てのハンドリングにおいても破壊されない程度の機械的強度を有している。   The deposited layer formed by the above method is a dense layer having a relative density of 90% or more, and this deposited layer has a mechanical strength that is not broken even in handling of battery assembly.

1回の噴射によって、形成される堆積層の膜厚は、搬送気体中の超微粒子の濃度、搬送気体の風量、及び搬送気体の走査速度によって、変動するが、通常0.1〜10μmの範囲に設定することが望ましい。膜厚が、この範囲を下回った場合、所要の厚さを有する電池を製造するのに時間がかかり実用的ではない。一方、膜厚が上記範囲を上回った場合、形成した膜が均一となりにくく、電池組み立て工程において、歩留まり低下の原因となる。   The film thickness of the deposited layer formed by one injection varies depending on the concentration of ultrafine particles in the carrier gas, the air volume of the carrier gas, and the scanning speed of the carrier gas, but is usually in the range of 0.1 to 10 μm. It is desirable to set to. If the film thickness falls below this range, it takes time to produce a battery having the required thickness, which is not practical. On the other hand, when the film thickness exceeds the above range, the formed film is difficult to be uniform, which causes a decrease in yield in the battery assembly process.

堆積層の成膜にあたっては、原料容器16と堆積室13との気圧の差が大きいほど、すなわち、気体の速度が大きいほど、成膜された無機化合物膜である堆積層14は、緻密にかつ強固に形成される。従って、原料容器16と、堆積室13との気圧差は、0.5atm程度が好ましい。この気圧差がこれより小さいと、微粒子搬送速度が低下し、緻密で強度の大きな成膜が困難となる。一方、気圧差をこれより大きくしても、成膜効率向上にとって無用である。この気圧差は、圧入する気体の加圧と、堆積室13に接続した真空ポンプによる減圧によって調整可能である。   In forming the deposited layer, the larger the difference in atmospheric pressure between the raw material container 16 and the deposition chamber 13, that is, the greater the gas velocity, the denser the deposited layer 14, which is an inorganic compound film, is formed. Strongly formed. Therefore, the pressure difference between the raw material container 16 and the deposition chamber 13 is preferably about 0.5 atm. If this atmospheric pressure difference is smaller than this, the fine particle conveyance speed is lowered, and it becomes difficult to form a dense and strong film. On the other hand, even if the pressure difference is larger than this, it is not necessary for improving the film forming efficiency. This pressure difference can be adjusted by pressurizing the gas to be injected and reducing the pressure by a vacuum pump connected to the deposition chamber 13.

搬送気体の風量は、特に制限されるわけではないが、搬送することができる原料粉末微粒子の量に影響する。すなわち、風量が大きいほど多量の原料粉末を同時に搬送することができ、無機化合物堆積速度を向上させることができる。   The air volume of the carrier gas is not particularly limited, but affects the amount of raw material powder fine particles that can be carried. That is, as the air volume is larger, a larger amount of raw material powder can be conveyed simultaneously, and the inorganic compound deposition rate can be improved.

堆積時の基材12、堆積室13、原料容器16の温度は室温ないし500℃の範囲とすることが好ましい。この温度を室温以下に冷却しても成膜にとって有利とはならず、冷却のエネルギーロスになる好ましくない。一方、この温度が500℃を超えると、成膜後の熱応力を解消する手段を採用しないと、残留応力が発生し、膜破壊につながる。   The temperature of the substrate 12, the deposition chamber 13, and the raw material container 16 during deposition is preferably in the range of room temperature to 500 ° C. Even if this temperature is cooled to room temperature or lower, it is not advantageous for film formation, and it is not preferable because it causes a loss of cooling energy. On the other hand, if this temperature exceeds 500 ° C., unless a means for eliminating the thermal stress after film formation is employed, residual stress is generated, leading to film destruction.

前記方法によって堆積層を形成する原料粉末としては、粒径が3μm以下、好ましくは1μm以下の超微粒子を用いることが必要である。この粒径が3μmを超えると、堆積した原料粉末の膜は、緻密とならず、破壊強度が低下して電池製造に適しない。
また、原料粉末の材料としては、特に制限されず、無機物質の超微粒子であれば適用可能である。粒子形状としては、破砕粒子形状、球形状など、いずれの形状のものも適用できる。
It is necessary to use ultrafine particles having a particle size of 3 μm or less, preferably 1 μm or less as a raw material powder for forming a deposited layer by the above method. When this particle size exceeds 3 μm, the deposited raw material powder film is not dense and the fracture strength is lowered, which is not suitable for battery production.
In addition, the material of the raw material powder is not particularly limited, and any inorganic fine particles can be used. As the particle shape, any shape such as a crushed particle shape and a spherical shape can be applied.

また、堆積層を形成する基材の材料については、特に制限されず無機材料であれば適用可能である。
また、基材表面は、基材材料そのものの表面であっても良いし、表面処理を行っても良い。この表面処理は表面の電気伝導性を損なわない程度に、接着性を改善する処理が適しており、例えばプラズマイオンビーム照射などの処理が挙げられる。
Further, the material of the base material for forming the deposited layer is not particularly limited, and any inorganic material can be applied.
Further, the substrate surface may be the surface of the substrate material itself or may be subjected to a surface treatment. This surface treatment is suitable for improving the adhesiveness to such an extent that the electrical conductivity of the surface is not impaired, and examples thereof include treatment such as plasma ion beam irradiation.

[第2の実施の形態]
第2の本発明は、正極活物質層と負極活物質層との間に電解質を介在させて成るリチウム二次電池において、前記正極活物質層および/または負極活物質層を、導電性を有する導電性粒子を分散させた無機固体電解質と金属酸化物との堆積層で形成したことを特徴とするリチウム二次電池である。
[Second Embodiment]
According to a second aspect of the present invention, in the lithium secondary battery in which an electrolyte is interposed between the positive electrode active material layer and the negative electrode active material layer, the positive electrode active material layer and / or the negative electrode active material layer have conductivity. It is a lithium secondary battery characterized in that it is formed of a deposited layer of an inorganic solid electrolyte in which conductive particles are dispersed and a metal oxide.

本発明により、正極活物質層および/または負極活物質層の形成をPVDやCVDあるいはエアロゾルデポジション法による堆積法とすることで焼結による活物質および固体電解質の還元を低減し優れた容量保持特性を実現できる。   According to the present invention, the formation of the positive electrode active material layer and / or the negative electrode active material layer is a deposition method by PVD, CVD, or aerosol deposition method, thereby reducing the reduction of the active material and the solid electrolyte by sintering and maintaining excellent capacity. The characteristics can be realized.

上記本発明は前記正極活物質層および/または負極活物質層中に含まれる導電性を有する粒子の導電率が10S/cm以上の金属酸化物であることを特徴とする。   The present invention is characterized in that the conductivity of particles having conductivity contained in the positive electrode active material layer and / or the negative electrode active material layer is a metal oxide of 10 S / cm or more.

本発明により電池内部抵抗が滅少して、優れた容量特性を実現できる。   According to the present invention, battery internal resistance is reduced, and excellent capacity characteristics can be realized.

本発明は前記正極活物質層および/または負極活物質層中に含まれる導電性を有する金属酸化物粒子は、還元性を有しないことを特徴とし、特にはナトリウムコバルト酸化物、リチウムドープ酸化ニッケル、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化錫、錫ドープ酸化インジウム、またはそれらの誘導体のいずれか一種または複数種から成ることを特徴とする。これらの無機物質に限定することにより優れた容量保持特性を実現できる。   The present invention is characterized in that the conductive metal oxide particles contained in the positive electrode active material layer and / or the negative electrode active material layer are not reducible, particularly sodium cobalt oxide, lithium doped nickel oxide. It is characterized by comprising any one or more of aluminum-doped zinc oxide, antimony-doped tin oxide, tin-doped indium oxide, or derivatives thereof. By limiting to these inorganic substances, excellent capacity retention characteristics can be realized.

以下、本発明のリチウム二次電池の実施形態について説明する。図2は、本発明に係わるリチウム二次電池の構成例を示す断面図である。図2において、21は正極集電体、22は正極活物質層、23は電解質、24は負極活物質層、25は負極集電体である。これらの発電要素は、容器26によって被包されている。この二次電池において、液状電解質を採用する場合には、正極活物質層及び負極活物質層を、セパレータを介して対峙させ、液状電解質を含浸させて電池を構成することもできる。   Hereinafter, embodiments of the lithium secondary battery of the present invention will be described. FIG. 2 is a cross-sectional view showing a configuration example of a lithium secondary battery according to the present invention. In FIG. 2, 21 is a positive electrode current collector, 22 is a positive electrode active material layer, 23 is an electrolyte, 24 is a negative electrode active material layer, and 25 is a negative electrode current collector. These power generation elements are encapsulated by a container 26. In the secondary battery, when a liquid electrolyte is used, the positive electrode active material layer and the negative electrode active material layer can be opposed to each other through a separator and impregnated with the liquid electrolyte.

正極活物質層22は、正極活物質となる金属酸化物と固体電解質を混在するよう堆積させたものであり、堆積層中に導電性の粒子が分散したものから成る。負極活物質層24は、負極活物質として正極活物質層22中の正極活物質の充放電電位よりも卑な充放電電位を有する金属酸化物と固体電解質を混在するよう堆積させたものであり、堆積層中に導電性の粒子が分散したものから成る。   The positive electrode active material layer 22 is deposited so that a metal oxide serving as a positive electrode active material and a solid electrolyte are mixed, and is composed of conductive particles dispersed in the deposited layer. The negative electrode active material layer 24 is deposited such that a metal oxide having a lower charge / discharge potential than the charge / discharge potential of the positive electrode active material in the positive electrode active material layer 22 and a solid electrolyte are mixed as a negative electrode active material. The conductive layer is dispersed in the deposited layer.

この正極活物質層22および負極活物質層24に用いる金属酸化物としては、例えばリチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物、リチウムチタン複合酸化物、酸化チタン、酸化ニオブ、酸化バナジウム、酸化タングステンなどとそれらの誘導体が挙げられる。ここで、正極活物質と負極活物質には明確な区別はなく、2種類の化合物の充放電電位を比較して貴な電位を示すものを正極に、卑な電位を示すものを負極に用いて任意の電圧の電池を構成することができる。   Examples of the metal oxide used for the positive electrode active material layer 22 and the negative electrode active material layer 24 include lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, and lithium. Examples thereof include vanadium composite oxide, lithium titanium composite oxide, titanium oxide, niobium oxide, vanadium oxide, tungsten oxide, and derivatives thereof. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the charge / discharge potentials of two kinds of compounds are compared with each other and a positive potential is used as a positive electrode, and a negative potential is used as a negative electrode. Thus, a battery having an arbitrary voltage can be configured.

正極活物質層22および負極活物質層24に用いる固体電解質としては、例えばLiO−B−P系、LiO−B−ZnO系の酸化物系非晶質固体電解質、LiI−LiS−PやLiPO−LiS−SiSなどの硫化物系非晶質固体電解質、あるいは、LiPO−LiS−SiSなどのような金属酸化物と硫化物が混合された非晶質電解質や、Li1+x+yTi2−xSi3−y12(A=AまたはGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=SrまたはBa、0≦z≦0.5)、LiPO(4−3/2w)N(w<1)などの結晶質酸化物・酸窒化物が挙げられる。 Examples of the solid electrolyte used for the positive electrode active material layer 22 and the negative electrode active material layer 24 include Li 2 O—B 2 O 3 —P 2 O 5 -based and Li 2 O—B 2 O 3 —ZnO-based oxide-based non-oxides. amorphous solid electrolyte, LiI-Li 2 S-P 2 S 5 and Li 3 PO 4 -Li 2 S- Si 2 S sulfide-based amorphous solid electrolytes such as, or like LiPO 4 -Li 2 S-SiS An amorphous electrolyte in which a metal oxide and sulfide are mixed, such as Li 1 + x + y A x Ti 2−x Si y P 3−y O 12 (A = A or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1−z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = Sr or Ba, 0 ≦ z ≦ 0) .5), Li 3 PO (4-3 / 2w) N w (w <1) crystalline oxide-San窒such as Thing, and the like.

金属酸化物と固体電解質は、体積比で50:50から95:5程度で混合される。金属酸化物の量が多くなりすぎると、活物質と固体電解質の接触面積が小さくなり、電極内のインピーダンスが小さくなる。また、固体電解質の量が多すぎると活物質充填率が低くなり、電池エネルギー密度が小さくなるという問題がある。   The metal oxide and the solid electrolyte are mixed in a volume ratio of about 50:50 to 95: 5. When the amount of the metal oxide is too large, the contact area between the active material and the solid electrolyte becomes small, and the impedance in the electrode becomes small. Moreover, when there is too much quantity of solid electrolyte, there exists a problem that an active material filling rate will become low and a battery energy density will become small.

正極活物質層22および負極活物質層24に用いる固体電解質に分散させる導電性を有する粒子としては、導電率が10S/cm以上で金属酸化物の1種もしくは2種以上が用いられ、具体的にはナトリウムコバルト酸化物、リチウムドープ酸化ニッケル、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化錫、錫ドープ酸化インジウムまたはそれらの誘導体のいずれか一種または複数種から成る金属酸化物に限定される。
これはSnOやTiOのような金属元素の酸化数の小さい強い還元性を有する金属酸化物や卑金属あるいは高分子導電体では、活物質もしくは固体電解質の結晶構造に含まれる元素の一部が還元されることにより結晶構造や電極構造の崩壊が容易となり数度の充放電を繰り返すことにより容量保持率が低下する。
As the conductive particles dispersed in the solid electrolyte used for the positive electrode active material layer 22 and the negative electrode active material layer 24, one or two or more metal oxides having a conductivity of 10 S / cm or more are used. Are limited to metal oxides composed of one or more of sodium cobalt oxide, lithium-doped nickel oxide, aluminum-doped zinc oxide, antimony-doped tin oxide, tin-doped indium oxide and derivatives thereof.
This is because metal oxides such as SnO and TiO, which have a strong reducibility with a low oxidation number, base metals, or polymer conductors, some of the elements contained in the crystal structure of the active material or solid electrolyte are reduced. As a result, the crystal structure and the electrode structure can be easily collapsed, and the capacity retention rate is lowered by repeated charge and discharge several times.

導電性を有する粒子は、電子導電性を付与するために、固体電解質中で連続したネットワークを形成することが必要である。正極活物質層42および負極活物質層44中における導電性粒子は体積比で10%以上を占めることが望ましい。   The conductive particles need to form a continuous network in the solid electrolyte in order to impart electronic conductivity. It is desirable that the conductive particles in the positive electrode active material layer 42 and the negative electrode active material layer 44 occupy 10% or more by volume ratio.

電解質23は、イオン伝導性を有する材料であれば液体でも固体でもよい。この電解質23には、有機溶媒に所用の電解質塩を溶解させた有機電解液やイオン伝導性高分子材料に電解質塩を溶解させた高分子固体電解質、さらにはそれらを複合させたゲル電解質、無機材料からなる無機固体電解質を用いることができる。電解質23に有機電解液を用いる場合、正極活物質体22と負極活物質体24を隔離するためのセパレータ(不図示)が必要である。   The electrolyte 23 may be liquid or solid as long as it is a material having ion conductivity. The electrolyte 23 includes an organic electrolytic solution in which a desired electrolyte salt is dissolved in an organic solvent, a polymer solid electrolyte in which the electrolyte salt is dissolved in an ion conductive polymer material, a gel electrolyte in which these are combined, an inorganic electrolyte An inorganic solid electrolyte made of a material can be used. When an organic electrolyte is used for the electrolyte 23, a separator (not shown) for separating the positive electrode active material body 22 and the negative electrode active material body 24 is required.

有機電解液に用いる有機溶媒には、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ガンマーブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチルおよびメチルエチルカーボネートから選ばれる1種もしくは2種以上の混合系の溶媒が挙げられる。   Examples of the organic solvent used in the organic electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, gamma-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran. , One or a mixture of two or more solvents selected from dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.

電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO、LiN(CFSO、LiN(CSOなどのリチウム塩を挙げることができる。 Examples of the electrolyte salt include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .

セパレータには、例えばポリオレフィン繊維製の不織布やポリオレフィン繊維製の微多孔膜を用いることができる。ここでポリオレフィン繊維としては、例えばポリプロピレン繊維、ポリエチレン繊維などを挙げることができる。   As the separator, for example, a nonwoven fabric made of polyolefin fibers or a microporous membrane made of polyolefin fibers can be used. Here, examples of the polyolefin fiber include polypropylene fiber and polyethylene fiber.

イオン伝導性高分子材料としては、例えばポリエチレンオキシドに代表されるエチレンオキシド骨格を有する高分子やプロピレンオキシドに代表されるプロピレンオキシド骨格を有する高分子、またはそれらの混合物や共重合体などが挙げられる。この場合の電解質塩としては、上述の有機電解液と同じものが使用可能である。   Examples of the ion conductive polymer material include a polymer having an ethylene oxide skeleton typified by polyethylene oxide, a polymer having a propylene oxide skeleton typified by propylene oxide, a mixture or a copolymer thereof, and the like. In this case, the same electrolyte salt as the above-described organic electrolyte can be used.

無機固体電解質としては、例えば例えばLiO−B−P系、LiO−B−ZnO系の酸化物系非晶質固体電解質、LiI−LiS−PやLiPO−LiS−SiSなどの硫化物系非晶質固体電解質、あるいは、LiPO−LiS−SiSなどのような金属酸化物と硫化物が混合された非晶質電解質や、Li1+x+yTi2−xSi3−y12(A=AまたはGa、0≦x≦0.4、0<y≦0.6),[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=SrまたはBa、0≦z≦0.5),LiPO(4−3/2w)N(w<1)などの結晶質酸化物、酸窒化物が挙げられる。 Examples of the inorganic solid electrolyte include Li 2 O—B 2 O 3 —P 2 O 5 -based, Li 2 O—B 2 O 3 —ZnO-based oxide-based amorphous solid electrolyte, and LiI—Li 2 S—, for example. Sulfide-based amorphous solid electrolytes such as P 2 S 5 and Li 3 PO 4 —Li 2 S—Si 2 S, or metal oxides and sulfides such as Li 3 PO 4 —Li 2 S—SiS There amorphous electrolytes and mixed, Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A = A or Ga, 0 ≦ x ≦ 0.4,0 < y ≦ 0.6), [(B 1/2 Li 1/2 ) 1-z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = Sr or Ba, 0 ≦ z ≦ 0.5), Li 3 PO (4 −3 / 2w ) N w (w <1) and other crystalline oxides and oxynitrides.

正極集電体21および負極集電体25は、正極活物質層22および負極活物質層24から集電のために設置され、例えば銀を含んだ熱固化ガラスペーストからなる。   The positive electrode current collector 21 and the negative electrode current collector 25 are installed for collecting current from the positive electrode active material layer 22 and the negative electrode active material layer 24, and are made of, for example, a heat-solidified glass paste containing silver.

上述の電解質が液体もしくはゲル状の場合には、絶縁パッキングを介してかしめ合わされて封口し密閉容器26内に収納される。   When the above-described electrolyte is liquid or gel, it is caulked through an insulating packing, sealed, and stored in the sealed container 26.

本発明が適用されるリチウム二次電池は、正極活物質体および/または負極活物質体が固体電解質粉末との混合物で構成されているものであれば、一次電池であっても二次電池であってもよい。電池形状は円筒型、角型、ボタン型、コイン型および扁平型などに限定されるものではない。
The lithium secondary battery to which the present invention is applied is a secondary battery, even if it is a primary battery, as long as the positive electrode active material body and / or the negative electrode active material body is composed of a mixture with a solid electrolyte powder. There may be. The battery shape is not limited to a cylindrical shape, a square shape, a button shape, a coin shape, a flat shape, or the like.

正極の形成は、エアロゾルデポジション法により行なった。粒度分布がD50=0.8μm、Dtop=2.3μmのLiCoO60体積部に対し、固体電解質として粒度分布がD50=0.7μm、Dtop=2.8μmのLi1.3Al0.3Ti1.712を、40体積部を混合した。
この混合原料粉末を、図1に示すエアロゾルデポジション装置の原料容器16に充填する。ついで、互いに経絡している原料容器16および堆積室13を真空ポンプ15により1torrまで減圧した。この際堆積室13内部の温度は室温とした。さらに圧縮空気を4リットル/minの送気量を原料容器16より圧入して、原料粉末を気体に分散させて搬送し、堆積室13内の開口径5mm×0.5mmを有するノズル11より噴出させ・厚み0.5mmのアルミニウム集電体である基体12に原料粉末の堆積体14を形成した。このとき基体12を0.1mm/secの速度で移動させることにより厚さ30μm、空孔率12%のLiCoOおよびLi1.3AlO.3Ti1.712の体積体からなる正極を得た。この正極の導電率を、以下に述べる方法で測定したところ、1.2mS/cmであった。
The positive electrode was formed by an aerosol deposition method. Li 1.3 Al 0.3 Ti having a particle size distribution of D50 = 0.7 μm and Dtop = 2.8 μm as a solid electrolyte with respect to 60 parts by volume of LiCoO 2 having a particle size distribution of D50 = 0.8 μm and Dtop = 2.3 μm. 40 parts by volume of 1.7 P 3 O 12 were mixed.
This mixed raw material powder is filled into the raw material container 16 of the aerosol deposition apparatus shown in FIG. Next, the raw material container 16 and the deposition chamber 13 that are in the middle of each other were depressurized to 1 torr by the vacuum pump 15. At this time, the temperature inside the deposition chamber 13 was set to room temperature. Further, compressed air is injected at a rate of 4 liters / min from the raw material container 16, and the raw material powder is dispersed and transported in the gas, and ejected from the nozzle 11 having an opening diameter of 5 mm × 0.5 mm in the deposition chamber 13. A raw material powder deposit 14 was formed on a substrate 12 which is an aluminum current collector having a thickness of 0.5 mm. At this time, by moving the substrate 12 at a speed of 0.1 mm / sec, LiCoO 2 having a thickness of 30 μm and a porosity of 12% and Li 1.3 AlO . 3 was obtained Ti 1.7 P 3 O 12 cathode consisting of a volume of. The conductivity of this positive electrode was measured by the method described below and found to be 1.2 mS / cm.

焼結体の導電率は、堆積体上に堆積部分をほぼ覆うようにかつ対面の集電体と短絡することなく銀ペーストにより電極を焼きつけそれぞれの側に電流供給用および電圧検出用端子を2本ずつ設けて測定した。   The conductivity of the sintered body is such that the electrode is baked with silver paste so as to substantially cover the deposited portion on the deposited body and without short-circuiting the facing current collector, and the current supply and voltage detection terminals are 2 on each side. Measurements were made for each book.

これと対になる負極の形成は、以下の方法により行なった。粒径約1μmの黒鉛粉末90質量部と、ポリフッ化ビニリデンのn−メチル−2−ピロリドン溶液(14質量%)70質量部を混合し、均一な塗液とした。この塗液を集電体の銅箔上に塗布後、120℃で20分乾燥した後、10×10mmに打ち抜き、集電体と一体化した負極とした。   The negative electrode to be paired with this was formed by the following method. 90 parts by mass of graphite powder having a particle size of about 1 μm and 70 parts by mass of an n-methyl-2-pyrrolidone solution of polyvinylidene fluoride (14% by mass) were mixed to obtain a uniform coating solution. This coating solution was applied onto the copper foil of the current collector, dried at 120 ° C. for 20 minutes, punched out to 10 × 10 mm, and made into a negative electrode integrated with the current collector.

電解液はプロピレンカーボネートとジメチルカーボネートの体積比1:1混合溶媒に六フッ化リン酸リチウムを1mol/L溶解したものを用いた。上記の正極と負極とを、ポリエチレン多孔膜からなるセパレータを介して積層し、電池缶に収容後、上記電解液を注入して密封して電池セルを作製した。   The electrolyte used was a solution in which 1 mol / L of lithium hexafluorophosphate was dissolved in a 1: 1 mixed solvent of propylene carbonate and dimethyl carbonate. The positive electrode and the negative electrode were laminated via a separator made of a polyethylene porous film, and after being accommodated in a battery can, the electrolyte solution was injected and sealed to produce a battery cell.

この電池セルを室温で一昼夜放置した後、充放電試験を行ったところ、この電池セルの1サイクル日の放電容量は2mAhで、50サイクル目の容量保持率{=(50サイクル目の放電容量/1サイクル目の放電容量)×100}は90%であった。   When this battery cell was allowed to stand at room temperature for a whole day and night, a charge / discharge test was performed. The discharge capacity at the first cycle) × 100} was 90%.

(比較例1)
上記実施例1において、粒度分布がD50=0.1μm Dtop=2.3μmのLiCoO95体積部に対し、固体電解質として粒度分布がD50=0.1μm Dtop=2.3μmのLi1.3Al0.3Ti1.712とした以外は、実施例1と同様の方法により正極を調製し、空孔率27%のLiCoOの堆積体からなる正極を得た。導電率は0.2mS/cmであった。さらに、この電池セルの1サイクル目の放電容量は6mAh、50サイクル目の容量保持率は72%であった。
(Comparative Example 1)
In Example 1 above, 95 parts by volume of LiCoO 2 having a particle size distribution of D50 = 0.1 μm Dtop = 2.3 μm, and Li 1.3 Al having a particle size distribution of D50 = 0.1 μm Dtop = 2.3 μm as a solid electrolyte. A positive electrode was prepared by the same method as in Example 1 except that 0.3 Ti 1.7 P 3 O 12 was used, and a positive electrode made of a LiCoO 2 deposit with a porosity of 27% was obtained. The conductivity was 0.2 mS / cm. Furthermore, the discharge capacity at the first cycle of this battery cell was 6 mAh, and the capacity retention at the 50th cycle was 72%.

(比較例2)
上記実施例1において、LiCoO95体積部に対し、Li1.3Al0.3Ti1.712を5体積部とした以外は実施例と同様に空孔率9のLiCoOの堆積体からなる正極を得た。導電率は13mS/cmであった。さらに、この電池セルの1サイクル目の放電容量は0.2mAh、50サイクル目の容量保持率は92%であった。
(Comparative Example 2)
In the first embodiment, with respect to LiCoO 2 95 parts by volume, Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 a except for using 5 parts by volume Example similarly to LiCoO 2 of porosity 9 The positive electrode which consists of this deposit was obtained. The conductivity was 13 mS / cm. Furthermore, the discharge capacity of the battery cell at the first cycle was 0.2 mAh, and the capacity retention at the 50th cycle was 92%.

(比較例3)
上記実施例1において、同様の原料混合粉末を用いて成形体を作製し900℃で焼結して、正極焼結体を作製したこと以外は実施例と同様にして電池セルを構成し、充放電試験を行った。作製した電池セルは充放電しなかった。
(Comparative Example 3)
In Example 1 above, a battery body was constructed and charged in the same manner as in Example 1 except that a molded body was prepared using the same raw material mixed powder and sintered at 900 ° C. to prepare a positive electrode sintered body. A discharge test was conducted. The produced battery cell was not charged / discharged.

上記実施例1の堆積室13内部の温度を300℃とした以外は、実施例1と同様の方法により正極を調製し、空孔率4%のLiCoOの堆積体からなる正極を得た。これを正極とし、実施例1と同様の方法により電池セルを構成し、充放電試験を行なった。 A positive electrode was prepared by the same method as in Example 1 except that the temperature inside the deposition chamber 13 of Example 1 was set to 300 ° C., to obtain a positive electrode made of a LiCoO 2 deposit having a porosity of 4%. Using this as the positive electrode, a battery cell was constructed in the same manner as in Example 1, and a charge / discharge test was conducted.

LiCoOの、導電率は10mS/cmであった。さらに、この電池セルの1サイクル目の放電容量は6mAh、50サイクル目の容量保持率は95%であった。 The conductivity of LiCoO 2 was 10 mS / cm. Further, the discharge capacity of the battery cell at the first cycle was 6 mAh, and the capacity retention at the 50th cycle was 95%.

負極の形成を上記エアロゾルデポジション法によって行い二次電池を形成した結果、ほぼ同様の効果が示された。   As a result of forming the negative electrode by the aerosol deposition method and forming the secondary battery, almost the same effect was shown.

以上の結果より、密度が高く導電率の高い堆積体ほど、電極を構成する粒子間の結着がより進行し、粒子間の結着力が高まって、容量保持率が高い結果が得られた。これは、充放電に伴い電極が膨張・収縮を繰り返しても、一次粒子間の高い結着力により、一次粒子の脱落や電極の崩壊が抑制されたものと考えられる。さらに正極中に含まれる固体電解質の量を適正化することにより活物質の充填密度が高く、単位体積当りの容量が高い電池セルを作製できることが判明した。   From the above results, the higher the density and the higher the conductivity, the more the binding between the particles constituting the electrode progressed, the binding force between the particles increased, and the capacity retention rate was high. It is considered that even when the electrode repeatedly expands and contracts with charge and discharge, the primary particles are prevented from falling off and the electrode is prevented from collapsing due to the high binding force between the primary particles. Furthermore, it has been found that by optimizing the amount of the solid electrolyte contained in the positive electrode, a battery cell having a high active material packing density and a high capacity per unit volume can be produced.

正極活物質としてLiCoOを、負極活物質にLiTi12を、これらの活物質と混合する固体電解質にLi1.3Al0.3Ti1.712を、正極用導電性粒子としてNaCoを負極用導電性粒子としてSbドープSnOをそれぞれ用いた電池について以下に示す。 LiCoO 2 as a positive electrode active material, Li 4 Ti 5 O 12 as a negative electrode active material, Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 as a solid electrolyte mixed with these active materials, for positive electrode A battery using NaCo 2 O 4 as the conductive particles and Sb-doped SnO 2 as the negative electrode conductive particles will be described below.

原材料はいずれも市販のものを使用した。いずれの材料についても粒径のD50が0.8±0.2μmの範囲に収まるようにジェットミルや熱処理により粒度調整した。   All the raw materials used were commercially available. For any material, the particle size was adjusted by jet milling or heat treatment so that the D50 of the particle size was within the range of 0.8 ± 0.2 μm.

正極活物質層22は、LiCoOとLi1.3Al0.3Ti1.712とNaCo44の原料粉末を6:3:1の体積比になるように秤量・混合し、この混合粉体を10mm×10mmになるようにエアロゾルデポジション法により正極集電体21となる銀ペーストを焼き付けたガラス基材上に堆積させた。具体的には混合原料粉末17を、図2に示すエアロゾルデポジション装置の原料容器16に充填する。ついで、互いに経絡している原料容器16および堆積室13を真空ポンプ15により1torrまで減圧した。この際堆積室13内部の温度は室温とした。さらに圧縮空気を4リットル/minの送気量を原料容器16より圧入して、原料粉末17を気体に分散させて搬送し、堆積室13内の開口径5mm×0.5mmを有するノズル11より噴出させ、正極集電体である基材12に原料粉末の堆積体14を形成した。このとき基材12を0.1mm/secの速度で移動させることにより厚さ30μm、空孔率10%のLiCoOおよびLi1.3Al0.3Ti1.712およびNaCoの堆積体14からなる正極を得た。 The positive electrode active material layer 22 is prepared by weighing and mixing LiCoO 2 , Li 1.3 Al 0.3 Ti 1.7 P 3 O 12, and NaCo 2 O 44 raw material powders in a volume ratio of 6: 3: 1. Then, this mixed powder was deposited on a glass substrate onto which a silver paste serving as the positive electrode current collector 21 was baked by an aerosol deposition method so as to be 10 mm × 10 mm. Specifically, the mixed raw material powder 17 is filled in the raw material container 16 of the aerosol deposition apparatus shown in FIG. Next, the raw material container 16 and the deposition chamber 13 that are in the middle of each other were decompressed to 1 torr by the vacuum pump 15. At this time, the temperature inside the deposition chamber 13 was set to room temperature. Further, compressed air is injected at a feed rate of 4 liters / min from the raw material container 16 and the raw material powder 17 is dispersed and transported in the gas. From the nozzle 11 having an opening diameter of 5 mm × 0.5 mm in the deposition chamber 13. The raw material powder deposit 14 was formed on the base material 12 which was a positive electrode current collector. At this time, the base material 12 is moved at a speed of 0.1 mm / sec, thereby causing LiCoO 2 and Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 and NaCo 2 having a thickness of 30 μm and a porosity of 10%. A positive electrode composed of an O 4 deposit 14 was obtained.

このように作製した正極活物質層22の上に電解質層23を形成した。電解質層23も同様にLi1.3Al0.3Ti1.712を、正極活物質層22を覆うように形成した。 An electrolyte layer 23 was formed on the positive electrode active material layer 22 thus produced. Similarly, Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 was also formed on the electrolyte layer 23 so as to cover the positive electrode active material layer 22.

負極活物質層24も同様に、LiTi12とLi1.3Al0.3Ti1.712とSbドープSnOを6:3:1の体積比になるように秤量・混合し、この混合粉体を10mm×10mmになるようにエアロゾルデポジション法により電解質層23の上に形成した。 Similarly, in the negative electrode active material layer 24, the volume ratio of Li 4 Ti 5 O 12 , Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 and Sb-doped SnO 2 is set to 6: 3: 1. Weighing and mixing were performed, and the mixed powder was formed on the electrolyte layer 23 by an aerosol deposition method so as to be 10 mm × 10 mm.

負極活物質層24の上に負極集電体25となる銀ペーストを焼き付け電池とした。   A silver paste to be the negative electrode current collector 25 was baked on the negative electrode active material layer 24 to obtain a battery.

(比較例4)
実施例3と同様の正極活物質と負極活物質を、電極活物質と混合する固体電解質にLiO−B−ZnOガラスを、正極用導電性粒子にニッケルを負極用導電性粒子に錫をそれぞれ用いた電池について以下に示す。固体電解質のLiO−B−ZnOガラスと導電性粒子のニッケルおよび錫は市販のものを用いた。
(Comparative Example 4)
The same positive electrode active material and negative electrode active material as in Example 3, a solid electrolyte mixed with the electrode active material, Li 2 O—B 2 O 3 —ZnO glass, positive electrode conductive particles, nickel, and negative electrode conductive particles The batteries using tin are shown below. Commercially available Li 2 O—B 2 O 3 —ZnO glass for solid electrolyte and nickel and tin for conductive particles were used.

正極活物質層22はLiCoOとLiO−B−ZnOと金属Niを6:4:1の体積比になるように秤量し、この混合物を10mm×10mmになるように加圧成形し、正極活物質層22の生成形体を得た。負極活物質層24はLiTi12とLiO−B−ZnOとアセチレンブラックを6:4:1の体積比になるように秤量し、この混合物を10mm×10mmになるように加圧成形し、負極活物質層24の生成形体を得た。電解質層はLi1.3Al0.3Ti1.712とLiO−B−ZnOを体積比になるように秤量し、この混合物を10mm×10mmになるように加圧成形し、電解質層23の生成形体を得た。正極活物質層22、電解質層23、負極活物質層24を順次積層して再度加圧成形して正極集電体および負極集電体となる銀ペーストを塗布し、550℃で焼成することにより電池とした。作製した電池の厚みは2mmであった。 The positive electrode active material layer 22 weighs LiCoO 2 , Li 2 O—B 2 O 3 —ZnO, and metal Ni so as to have a volume ratio of 6: 4: 1, and pressurizes the mixture to 10 mm × 10 mm. Molding was performed to obtain a formed body of the positive electrode active material layer 22. The negative electrode active material layer 24 weighs Li 4 Ti 5 O 12 , Li 2 O—B 2 O 3 —ZnO, and acetylene black in a volume ratio of 6: 4: 1, and this mixture becomes 10 mm × 10 mm. Thus, the negative electrode active material layer 24 was formed. The electrolyte layer weighed Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 and Li 2 O—B 2 O 3 —ZnO in a volume ratio, and the mixture was adjusted to 10 mm × 10 mm. The formed body of the electrolyte layer 23 was obtained by pressure molding. By sequentially laminating the positive electrode active material layer 22, the electrolyte layer 23, and the negative electrode active material layer 24, press-molding them again, applying a silver paste to be a positive electrode current collector and a negative electrode current collector, and firing at 550 ° C. A battery was obtained. The thickness of the produced battery was 2 mm.

(比較例5)
正極用導電性粒子としてニッケルを負極用導電性粒子として錫をそれぞれ用いたこと以外は実施例3と同様に電池を作製した。
なお、比較例4および比較例5の電池は、白色であった負極活物質層24や電解質層23が黒変しており、これらを補成する結晶中の金属元素が還元されているものと考えられる。
(Comparative Example 5)
A battery was fabricated in the same manner as in Example 3, except that nickel was used as the positive electrode conductive particles and tin was used as the negative electrode conductive particles.
In the batteries of Comparative Example 4 and Comparative Example 5, the negative electrode active material layer 24 and the electrolyte layer 23, which were white, are blackened, and the metal elements in the crystals that supplement them are reduced. Conceivable.

(比較例6)
正確用導電性粒子としてNiOを負極用導電性粒子としてSnOをそれぞれ用いたこと以外は実施例3と同様に電池を作製した。
比較例6で用いた導電性粒子単味の導電率はいずれも室温で1S/cm以下であった。
(Comparative Example 6)
A battery was fabricated in the same manner as in Example 3 except that NiO was used as the conductive particles for accuracy and SnO 2 was used as the conductive particles for the negative electrode.
The conductivity of the single conductive particles used in Comparative Example 6 was 1 S / cm or less at room temperature.

正極用導電性粒子としてLiドープNiOを負極用導電性粒子としてAlドープZnOをそれぞれ用いたこと以外は実施例1と同様に電池を作製した。   A battery was fabricated in the same manner as in Example 1, except that Li-doped NiO was used as the positive electrode conductive particles and Al-doped ZnO was used as the negative electrode conductive particles.

上記実施例3および実施例4で用いた導電性粒子単味の導電率はいずれも室温で10S/cm以上であった。   The conductivity of the conductive particles used in Example 3 and Example 4 was 10 S / cm or more at room temperature.

上述の電池の容量保持率測定を実施した。電池の放電容量は充電終止電圧を2.8V、電流値2mAとして定電流充電した後、1時間放置して同じく電流値2mAで2.0Vまで定電流放電して、1サイクル目と100サイクル目の容量を比較して容量維持率を求めた。   The above-mentioned battery capacity retention rate was measured. The battery has a discharge capacity of 2.8V, a current value of 2mA, a constant current charge, left for 1 hour and discharged at a constant current value of 2mA to 2.0V. The capacity retention rate was calculated by comparing the capacity of the two.

その結果、上記実施例3の電池では放電維持率が95%、実施例4の電池では放電維持率が90%であった。これに対して上記比較例4の電池では放電維持率が70%、比較例5の電池では放電維持率が75%であった。比較例6の電池では、その放電電流が小さいため放電容量を測定することができなかった。これにより、電極活物質層に導電性還元性を示さない金属酸化物粒子が分散していることにより、電極内のインピーダンスを低くすることとともに、容量保持率が向上することがわかる。   As a result, the battery of Example 3 had a discharge maintenance ratio of 95%, and the battery of Example 4 had a discharge maintenance ratio of 90%. In contrast, the battery of Comparative Example 4 had a discharge maintenance ratio of 70%, and the battery of Comparative Example 5 had a discharge maintenance ratio of 75%. In the battery of Comparative Example 6, the discharge capacity could not be measured because the discharge current was small. Thus, it can be seen that the metal oxide particles that do not exhibit conductive reducibility are dispersed in the electrode active material layer, thereby reducing the impedance in the electrode and improving the capacity retention.

なお、本発明は上記実施形態に示したものに限定されるものではなく、その要旨を逸脱しない範囲において適量変更して実施できるものである。

In addition, this invention is not limited to what was shown to the said embodiment, In the range which does not deviate from the summary, it can implement by changing a suitable quantity.

本発明に係わる無機物質堆積体の形成装置の一例を示す概略図である。It is the schematic which shows an example of the formation apparatus of the inorganic substance deposit body concerning this invention. 本発明に係わるリチウム二次電池の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the lithium secondary battery concerning this invention.

符号の説明Explanation of symbols

11…ノズル
12…基材
13…堆積室
14…堆積体
15…真空ポンプ
16…原料容器
17…原料粉末
21…正極集電体
22…正極活物質層
23…電解質層
24…負極活物質層
25…負極集電体
27…容器
DESCRIPTION OF SYMBOLS 11 ... Nozzle 12 ... Base material 13 ... Deposition chamber 14 ... Deposition body 15 ... Vacuum pump 16 ... Raw material container 17 ... Raw material powder 21 ... Positive electrode collector 22 ... Positive electrode active material layer 23 ... Electrolyte layer 24 ... Negative electrode active material layer 25 ... Negative electrode current collector 27 ... Container

Claims (8)

リチウムイオンの挿入脱離が可能な金属酸化物と無機固体電解質もしくはこれらの前駆体からなる原料粉末の堆積体からなることを特徴とする非水系二次電池用電極。   An electrode for a non-aqueous secondary battery comprising a deposit of a raw material powder comprising a metal oxide capable of inserting and releasing lithium ions and an inorganic solid electrolyte or a precursor thereof. 前記堆積体が、空孔率15%以下、導電率1mS/cm以上、及び正極もしくは負極中に含まれる金属酸化物と固体電解質の割合の体積比1:1〜9:1からなるものであることを特徴とする請求項1に記載の非水系二次電池用電極。   The deposited body has a porosity of 15% or less, an electrical conductivity of 1 mS / cm or more, and a volume ratio of 1: 1 to 9: 1 of the ratio of the metal oxide and the solid electrolyte contained in the positive electrode or the negative electrode. The electrode for non-aqueous secondary batteries according to claim 1. 正極活物質を含有する正極及び負極活物質を含有する負極の少なくとも一方が、リチウムイオンの挿入脱離が可能な金属酸化物と無機固体電解質もしくはこれらの前駆体からなる原料粉末の超微粒子を、気流で搬送し、基材上に吹き付けて堆積させることによって形成したことを特徴とする非水系二次電池用電極材料の製造方法。   At least one of the positive electrode containing the positive electrode active material and the negative electrode containing the negative electrode active material is an ultrafine particle of a raw material powder composed of a metal oxide capable of inserting and releasing lithium ions and an inorganic solid electrolyte or a precursor thereof, A method for producing an electrode material for a non-aqueous secondary battery, characterized in that the electrode material is formed by transporting in an air stream and spraying and depositing on a substrate. 正極活物質層と負極活物質層との間に電解質を介在させて成るリチウム二次電池において、
前記正極活物質層および/または負極活物質層を、導電性を有する粒子を分散させた無機固体電解質と金属酸化物との堆積層で形成したことを特徴とするリチウム二次電池。
In a lithium secondary battery comprising an electrolyte interposed between a positive electrode active material layer and a negative electrode active material layer,
A lithium secondary battery, wherein the positive electrode active material layer and / or the negative electrode active material layer is formed of a deposited layer of an inorganic solid electrolyte in which conductive particles are dispersed and a metal oxide.
前記正極活物質層および/または負極活物質層中に含まれる導電性を有する粒子の室温における導電率が10S/cm以上の金属酸化物であることを特徴とする請求項4に記載のリチウム二次電池。   5. The lithium secondary battery according to claim 4, wherein the conductive particles contained in the positive electrode active material layer and / or the negative electrode active material layer are metal oxides having a conductivity at room temperature of 10 S / cm or more. Next battery. 前記正極活物質層および/または負極活物質層中に含まれる導電性を有する金属酸化物粒子が非還元性であることを特徴とする請求項4に記載のリチウム二次電池。   The lithium secondary battery according to claim 4, wherein the conductive metal oxide particles contained in the positive electrode active material layer and / or the negative electrode active material layer are non-reducing. 前記金属酸化物粒子が、ナトリウムコバルト酸化物、リチウムドープ酸化ニッケル、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化錫、錫ドープ酸化インジウムまたはそれらの誘導体のいずれか一種または複数種から成ることを特徴とする請求項6に記載のリチウム二次電池。   The metal oxide particles are composed of one or more of sodium cobalt oxide, lithium-doped nickel oxide, aluminum-doped zinc oxide, antimony-doped tin oxide, tin-doped indium oxide, and derivatives thereof. Item 7. The lithium secondary battery according to Item 6. 正極活物質を含有する正極及び負極活物質を含有する負極の少なくとも一方を、リチウムイオンの挿入脱離が可能な金属酸化物と無機固体電解質もしくはこれらの前駆体及び導電性を有する粒子からなる原料粉末の超微粒子を、気流で搬送し、基材上に吹き付けて堆積させることによって形成した正極もしくは負極を用いたことを特徴とするリチウム二次電池の製造方法。

A raw material comprising at least one of a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material comprising a metal oxide capable of inserting and releasing lithium ions and an inorganic solid electrolyte or a precursor thereof and conductive particles A method for producing a lithium secondary battery, comprising using a positive electrode or a negative electrode formed by transporting ultrafine particles of powder in an air stream and spraying and depositing on a substrate.

JP2003309506A 2003-09-02 2003-09-02 Electrode for nonaqueous secondary battery and lithium secondary battery using the same Pending JP2005078985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309506A JP2005078985A (en) 2003-09-02 2003-09-02 Electrode for nonaqueous secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309506A JP2005078985A (en) 2003-09-02 2003-09-02 Electrode for nonaqueous secondary battery and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2005078985A true JP2005078985A (en) 2005-03-24

Family

ID=34411625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309506A Pending JP2005078985A (en) 2003-09-02 2003-09-02 Electrode for nonaqueous secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2005078985A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156248A (en) * 2004-11-30 2006-06-15 Tottori Univ Electrode for lithium secondary battery and its manufacturing method
JP2008234843A (en) * 2007-03-16 2008-10-02 Idemitsu Kosan Co Ltd Electrode and member for all-solid secondary battery
JP2008305608A (en) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk Electrode for lithium secondary battery and its manufacturing method
WO2009050835A1 (en) * 2007-10-16 2009-04-23 Panasonic Corporation Film formation method and film formation apparatus
JP2009176541A (en) * 2008-01-23 2009-08-06 Idemitsu Kosan Co Ltd Solid electrolyte film, positive electrode film or negative electrode film for all-solid lithium secondary battery, forming method of these films, and all-solid lithium secondary battery
EP2139058A1 (en) * 2006-12-27 2009-12-30 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for production thereof
JP4563503B2 (en) * 2007-12-26 2010-10-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2010122974A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2010122975A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2010122984A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2010122983A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011154901A (en) * 2010-01-27 2011-08-11 Sony Corp Lithium ion secondary battery and negative electrode for the same
WO2011118799A1 (en) * 2010-03-26 2011-09-29 公立大学法人大阪府立大学 Solid electrolyte material and all solid-state lithium secondary battery
WO2011135713A1 (en) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 Electrode body and secondary battery using same
JP2012014885A (en) * 2010-06-30 2012-01-19 Rasa Ind Ltd Method for manufacturing solid electrolyte thin film, and solid electrolyte thin film
JP2012109052A (en) * 2010-11-15 2012-06-07 National Institute Of Advanced Industrial & Technology Thin film for electrode, all-solid lithium battery, and manufacturing method of thin film for electrode
JP2013026031A (en) * 2011-07-21 2013-02-04 National Institute Of Advanced Industrial & Technology Electrode body for all-solid secondary battery, all-solid secondary battery, method for manufacturing electrode body for all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP2013093126A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Production method of electrode mixture material and electrode mixture material
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2014067687A (en) * 2012-09-05 2014-04-17 Idemitsu Kosan Co Ltd Negative electrode mixture, negative electrode, and lithium ion battery
WO2014102131A2 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Method for producing a galvanic element and galvanic element
JP2016024916A (en) * 2014-07-17 2016-02-08 トヨタ自動車株式会社 Electrode for all-solid battery and method for manufacturing the same
JP2016100069A (en) * 2014-11-18 2016-05-30 国立研究開発法人産業技術総合研究所 Method of manufacturing lithium solid battery
JP2017037821A (en) * 2015-08-14 2017-02-16 アルプス電気株式会社 Secondary battery and method for manufacturing secondary battery
CN107112595A (en) * 2014-10-15 2017-08-29 Sakti3有限公司 Amorphous cathode material for cell apparatus
CN110998922A (en) * 2017-08-17 2020-04-10 株式会社Lg化学 Electrode for solid-state battery and method for producing same
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
WO2021070601A1 (en) * 2019-10-11 2021-04-15 株式会社村田製作所 Solid-state battery
CN112886051A (en) * 2015-08-18 2021-06-01 松下知识产权经营株式会社 Battery with a battery cell
JP7239679B2 (en) 2019-03-29 2023-03-14 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries, and lithium-ion secondary batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205780A (en) * 1992-01-27 1993-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Battery
JPH05205779A (en) * 1992-01-27 1993-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Battery
JPH10255764A (en) * 1997-03-14 1998-09-25 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2000340255A (en) * 1999-05-28 2000-12-08 Kyocera Corp Lithium battery
JP2001126757A (en) * 1999-10-25 2001-05-11 Kyocera Corp Lithium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205780A (en) * 1992-01-27 1993-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Battery
JPH05205779A (en) * 1992-01-27 1993-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Battery
JPH10255764A (en) * 1997-03-14 1998-09-25 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2000340255A (en) * 1999-05-28 2000-12-08 Kyocera Corp Lithium battery
JP2001126757A (en) * 1999-10-25 2001-05-11 Kyocera Corp Lithium battery

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156248A (en) * 2004-11-30 2006-06-15 Tottori Univ Electrode for lithium secondary battery and its manufacturing method
JP4626966B2 (en) * 2004-11-30 2011-02-09 国立大学法人鳥取大学 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
EP2139058A4 (en) * 2006-12-27 2011-01-19 Sanyo Electric Co Nonaqueous electrolyte secondary battery and method for production thereof
EP2139058A1 (en) * 2006-12-27 2009-12-30 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for production thereof
US8067118B2 (en) 2006-12-27 2011-11-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2008234843A (en) * 2007-03-16 2008-10-02 Idemitsu Kosan Co Ltd Electrode and member for all-solid secondary battery
JP2008305608A (en) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk Electrode for lithium secondary battery and its manufacturing method
WO2009050835A1 (en) * 2007-10-16 2009-04-23 Panasonic Corporation Film formation method and film formation apparatus
US8399045B2 (en) 2007-10-16 2013-03-19 Panasonic Corporation Film formation method and film formation apparatus
US8597815B2 (en) * 2007-12-26 2013-12-03 Panasonic Corporation Nonaqueous electrolyte rechargeable battery
JP4563503B2 (en) * 2007-12-26 2010-10-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JPWO2009081594A1 (en) * 2007-12-26 2011-05-06 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US20100330410A1 (en) * 2007-12-26 2010-12-30 Panasonic Corporation Nonaqueous electrolyte rechargeable battery
JP2009176541A (en) * 2008-01-23 2009-08-06 Idemitsu Kosan Co Ltd Solid electrolyte film, positive electrode film or negative electrode film for all-solid lithium secondary battery, forming method of these films, and all-solid lithium secondary battery
US8394536B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2010272509A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP2010272512A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP2010272511A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
US8394535B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2010272510A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2010122983A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2010122974A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN102414878A (en) * 2009-04-24 2012-04-11 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN102414876A (en) * 2009-04-24 2012-04-11 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2010122975A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2010122984A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011154901A (en) * 2010-01-27 2011-08-11 Sony Corp Lithium ion secondary battery and negative electrode for the same
JPWO2011118799A1 (en) * 2010-03-26 2013-07-04 公立大学法人大阪府立大学 Solid electrolyte material and all solid lithium secondary battery
CN102884666A (en) * 2010-03-26 2013-01-16 丰田自动车株式会社 Solid electrolyte material and all solid-state lithium secondary battery
WO2011118799A1 (en) * 2010-03-26 2011-09-29 公立大学法人大阪府立大学 Solid electrolyte material and all solid-state lithium secondary battery
US9397365B2 (en) 2010-03-26 2016-07-19 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material and all solid-state lithium secondary battery
JP5686300B2 (en) * 2010-03-26 2015-03-18 公立大学法人大阪府立大学 Solid electrolyte material and all solid lithium secondary battery
CN102870255A (en) * 2010-04-30 2013-01-09 丰田自动车株式会社 Electrode body and secondary battery using same
WO2011135713A1 (en) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 Electrode body and secondary battery using same
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
JP2012014885A (en) * 2010-06-30 2012-01-19 Rasa Ind Ltd Method for manufacturing solid electrolyte thin film, and solid electrolyte thin film
JP2012109052A (en) * 2010-11-15 2012-06-07 National Institute Of Advanced Industrial & Technology Thin film for electrode, all-solid lithium battery, and manufacturing method of thin film for electrode
US9136527B2 (en) 2010-11-15 2015-09-15 Toyota Jidosha Kabushiki Kaisha Electrode thin film, all-solid lithium battery, and method of manufacturing electrode film
JP2013026031A (en) * 2011-07-21 2013-02-04 National Institute Of Advanced Industrial & Technology Electrode body for all-solid secondary battery, all-solid secondary battery, method for manufacturing electrode body for all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP2013093126A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Production method of electrode mixture material and electrode mixture material
JP2014067687A (en) * 2012-09-05 2014-04-17 Idemitsu Kosan Co Ltd Negative electrode mixture, negative electrode, and lithium ion battery
WO2014102131A3 (en) * 2012-12-27 2014-08-21 Robert Bosch Gmbh Method for producing a galvanic element and galvanic element
US10490804B2 (en) 2012-12-27 2019-11-26 Robert Bosch Gmbh Method for producing a galvanic element and galvanic element
CN104995763A (en) * 2012-12-27 2015-10-21 罗伯特·博世有限公司 Method for producing a galvanic element and galvanic element
WO2014102131A2 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Method for producing a galvanic element and galvanic element
JP2016024916A (en) * 2014-07-17 2016-02-08 トヨタ自動車株式会社 Electrode for all-solid battery and method for manufacturing the same
CN107112595A (en) * 2014-10-15 2017-08-29 Sakti3有限公司 Amorphous cathode material for cell apparatus
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
US10593985B2 (en) 2014-10-15 2020-03-17 Sakti3, Inc. Amorphous cathode material for battery device
JP2016100069A (en) * 2014-11-18 2016-05-30 国立研究開発法人産業技術総合研究所 Method of manufacturing lithium solid battery
US10158143B2 (en) 2014-11-18 2018-12-18 National Institute Of Advanced Industrial Science And Technology Method for producing lithium solid state battery
JP2017037821A (en) * 2015-08-14 2017-02-16 アルプス電気株式会社 Secondary battery and method for manufacturing secondary battery
CN112886051A (en) * 2015-08-18 2021-06-01 松下知识产权经营株式会社 Battery with a battery cell
CN110998922A (en) * 2017-08-17 2020-04-10 株式会社Lg化学 Electrode for solid-state battery and method for producing same
CN110998922B (en) * 2017-08-17 2022-12-06 株式会社Lg新能源 Electrode for solid-state battery and method for producing same
US11557750B2 (en) 2017-08-17 2023-01-17 Lg Energy Solution, Ltd. Electrode for solid-state battery and manufacturing method therefor
JP7239679B2 (en) 2019-03-29 2023-03-14 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries, and lithium-ion secondary batteries
JPWO2021070601A1 (en) * 2019-10-11 2021-04-15
WO2021070601A1 (en) * 2019-10-11 2021-04-15 株式会社村田製作所 Solid-state battery
CN114503357A (en) * 2019-10-11 2022-05-13 株式会社村田制作所 Solid-state battery
JP7435615B2 (en) 2019-10-11 2024-02-21 株式会社村田製作所 solid state battery

Similar Documents

Publication Publication Date Title
JP2005078985A (en) Electrode for nonaqueous secondary battery and lithium secondary battery using the same
US7824795B2 (en) Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
TWI553947B (en) Cathode for lithium-sulfur battery and method of preparing the same
JP5568686B2 (en) Thermoelectric generator
EP3745519A1 (en) Battery
KR101876861B1 (en) Hybrid solid electrolyte for all solid lithium secondary battery and method for preparing the same
JP2003115293A (en) Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
KR20190017651A (en) Pre-lithiation method of lithium secondary battery anode using lithium metal-ceramic thin layer
JP2006202702A (en) Nonaqueous electrolyte secondary battery
KR101463996B1 (en) Improved stable lithium secondary battery
US11081727B2 (en) Solid electrolyte and electricity storage device using the same
JP2021120937A (en) Positive electrode active material for lithium ion secondary battery, positive electrode and lithium ion secondary battery
EP2503634A1 (en) Method for manufacturing lithium ion secondary battery
JP2017011068A (en) Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode
JP2017139142A (en) Solid electrolyte, method for producing the same, and battery
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
KR101856830B1 (en) Electrode Assembly Comprising Separator Coated with Lithium or Lithium Compound and Method for Preparing the Same
EP3609014B1 (en) Electrode structure and secondary battery
KR20230108268A (en) Precursors, positive electrode active materials for lithium secondary batteries, positive electrodes for lithium secondary batteries and lithium secondary batteries
CN109075383B (en) Lithium ion secondary battery and battery pack
US20180212235A1 (en) Lithium secondary battery and method for manufacturing same
JP4145647B2 (en) Lithium secondary battery and manufacturing method thereof
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115