JPH07326342A - Negative electrode for lithium secondary battery, and lithium secondary battery using the same - Google Patents

Negative electrode for lithium secondary battery, and lithium secondary battery using the same

Info

Publication number
JPH07326342A
JPH07326342A JP6116299A JP11629994A JPH07326342A JP H07326342 A JPH07326342 A JP H07326342A JP 6116299 A JP6116299 A JP 6116299A JP 11629994 A JP11629994 A JP 11629994A JP H07326342 A JPH07326342 A JP H07326342A
Authority
JP
Japan
Prior art keywords
alloy
secondary battery
lithium secondary
negative electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6116299A
Other languages
Japanese (ja)
Inventor
Hiroshi Soejima
博 副島
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6116299A priority Critical patent/JPH07326342A/en
Publication of JPH07326342A publication Critical patent/JPH07326342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a negative electrode for lithium secondary battery which has a large charge/discharge capacity and a high electromotive force, and is minimized in the deterioration by repeat of charge/discharge, and a lithium secondary battery using this negative electrode. CONSTITUTION:This negative electrode A for lithium secondary battery has a laminated body having a porous layer 3 consisting of Li alloy formed on the surface of a carbon layer 2. The Li alloy used in the porous layer 3 has a characteristic that the speed of absorption and release of Li is slow, compared with the carbon used in the carbon layer 2, and Li-Si alloy or Li-Zn alloy is particularly preferred. The composition ratio of each alloy is most preferably about Li:Si=1:(3.3-4.4) in the Li-Si alloy and about Li:Zn=l:(1-1.5) in the Li-Zn alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、詳しくは高起電力・大放電容量を有するとともに、
充放電に係るサイクル寿命に優れたリチウム二次電池用
負極、およびその負極を用いてなるリチウム二次電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more specifically, it has high electromotive force and large discharge capacity, and
The present invention relates to a negative electrode for a lithium secondary battery, which has an excellent cycle life related to charging and discharging, and a lithium secondary battery using the negative electrode.

【0002】[0002]

【従来の技術】Liは、充放電容量・起電力の面から二
次電池の負極用の活物質として優れた素材である。しか
し、リチウムは、充電時における負極上への析出の際
に、針状の結晶(デンドライト)として成長しやすい性
質を有し、該デンドライトが種々の問題を発生させる。
上記Liデンドライトの成長の仕方が、成長と欠落とを
繰り返すものである場合、この欠落したLiは、電荷の
供給が絶たれるため、充放電に関係しないものとなる場
合が多い。従って、Liは必要以上に消耗し、充放電サ
イクル特性は劣化する。また、Liデンドライトの成長
の仕方が、欠落せずに成長を続けるものである場合、こ
の針状の結晶はついには正極に接触し、短絡トラブルを
引き起こすことになる。従来、これらのトラブルを解決
するため、負極の材料としてカーボン、又はLi合金
(Li−Si、Li−Zn等)を用いるということがな
されている。しかし、カーボン負極は、比較的大きな放
電容量が得られるが、起電力が低いという問題がある。
一方、Li−Si、Li−Zn等のLi合金による負極
は、Liに匹敵する程の高い電極電位を示し高起電力を
発生するが、Liの吸収・放出の速度が低いために充放
電容量が小さく、実用的でないという問題があった。
2. Description of the Related Art Li is an excellent material as an active material for a negative electrode of a secondary battery in terms of charge / discharge capacity and electromotive force. However, lithium has a property of easily growing as acicular crystals (dendrites) during deposition on the negative electrode during charging, and the dendrites cause various problems.
When the above Li dendrite grows and repeats growth and lack, the lack of Li is often unrelated to charge and discharge because the supply of electric charge is cut off. Therefore, Li is consumed more than necessary, and the charge / discharge cycle characteristics deteriorate. Further, when the Li dendrite grows continuously without being lost, the needle-like crystals finally come into contact with the positive electrode and cause a short circuit trouble. Conventionally, in order to solve these problems, it has been made to use carbon or a Li alloy (Li-Si, Li-Zn, etc.) as a material for the negative electrode. However, the carbon negative electrode has a problem of low electromotive force, although a relatively large discharge capacity can be obtained.
On the other hand, a negative electrode made of a Li alloy such as Li-Si or Li-Zn exhibits a high electrode potential comparable to that of Li and generates a high electromotive force, but since the Li absorption / desorption rate is low, the charge / discharge capacity is low. There is a problem that is small and not practical.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、充放
電容量が大きく高い起電力を有しながら、特に充放電の
繰り返しによる劣化の少ないリチウム二次電池用負極を
提供することである。また、本発明の他の目的は、上記
リチウム二次電池用負極を用いて、大容量・高起電力
で、充放電のサイクル寿命に優れたリチウム二次電池を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a negative electrode for a lithium secondary battery, which has a large charge / discharge capacity and a high electromotive force and which is less deteriorated due to repeated charge / discharge. Another object of the present invention is to provide a lithium secondary battery having a large capacity, high electromotive force, and excellent charge / discharge cycle life using the above-mentioned negative electrode for a lithium secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明のリチウム二次電
池用負極は、以下の特徴を有するものである。 (1) カーボン層上にLi合金からなる多孔性の層が形成
されてなる積層体を活物質層として有することを特徴と
するリチウム二次電池用負極。 (2) Li合金が、Li−Si合金又はLi−Zn合金で
ある (1)記載のリチウム二次電池用負極。 (3) Li−Si合金の組成比(成分元素の数の比、以下
同様)が、Li:Si=1:(3.3〜4.4)であ
り、Li−Zn合金の組成比が、Li:Zn=1:(1
〜1.5)である (2)記載のリチウム二次電池用負極。
また、本発明のリチウム二次電池は、上記 (1)〜 (3)の
いずれかに記載のリチウム二次電池用負極を備えること
を特徴とするものである。
The negative electrode for a lithium secondary battery of the present invention has the following features. (1) A negative electrode for a lithium secondary battery, which has a laminated body in which a porous layer made of a Li alloy is formed on a carbon layer as an active material layer. (2) The negative electrode for a lithium secondary battery according to (1), wherein the Li alloy is a Li-Si alloy or a Li-Zn alloy. (3) The composition ratio of the Li-Si alloy (the ratio of the number of component elements, the same applies below) is Li: Si = 1: (3.3 to 4.4), and the composition ratio of the Li-Zn alloy is Li: Zn = 1: (1
~ 1.5) (2) The negative electrode for a lithium secondary battery according to (2).
A lithium secondary battery of the present invention is characterized by including the negative electrode for a lithium secondary battery according to any one of (1) to (3) above.

【0005】本発明のリチウム二次電池用負極が、カー
ボンとLi合金の各々の特徴を兼ね備える負極となり得
るための構成を、以下に図を用いて説明する。図1は、
本発明のリチウム二次電池用負極(以下、「負極」)の
一例をリチウム二次電池の一部として部分的に拡大し模
式的に示す図である。同図に示すように、本発明の負極
Aの構成は、カーボン層2上に、Li合金からなる多孔
性の層3が形成されてなる積層体を活物質層1として有
することを特徴とするものである。また、同図におい
て、4はLi合金からなる多孔性の層3に多数存在する
孔、5は導電体層、6は電解液であり、該孔4によって
カーボン層2の表面は電解液6に露出される。また、本
発明のリチウム二次電池は、本発明のリチウム二次電池
用負極を用いるものであって、該負極に、正極・セパレ
ータ・電解質・ケース等、所定の必須要素を組み合わせ
て種々の態様として形成される二次電池である。
A structure for enabling the negative electrode for a lithium secondary battery of the present invention to serve as a negative electrode having both characteristics of carbon and Li alloy will be described below with reference to the drawings. Figure 1
It is a figure which partially expands and shows typically an example of the negative electrode for lithium secondary batteries (henceforth "a negative electrode") of this invention as some lithium secondary batteries. As shown in the figure, the constitution of the negative electrode A of the present invention is characterized in that it has, as an active material layer 1, a laminate in which a porous layer 3 made of a Li alloy is formed on a carbon layer 2. It is a thing. Further, in the figure, 4 is a large number of holes present in the porous layer 3 made of a Li alloy, 5 is a conductor layer, 6 is an electrolytic solution, and the surface of the carbon layer 2 becomes an electrolytic solution 6 by the holes 4. Exposed. Further, the lithium secondary battery of the present invention uses the negative electrode for a lithium secondary battery of the present invention, and combines the negative electrode with predetermined essential elements such as a positive electrode, a separator, an electrolyte, a case, etc. Is a secondary battery formed as.

【0006】[0006]

【作用】負極を上記のような構成とすることで、同じ電
解液中にカーボンとLi合金とが一体となって、電気的
に接続されて1つの負極として存在し、しかも図1に示
すように、電解液6側から見たときに、多孔性の層3が
有する孔4の一番奥に、カーボン層2が存在することに
なる。このような構成によって、次の3つの主な作用が
示される。 (1) 充放電過程においては、電解液中のLiイオンは多
孔性の層のLi合金上には電析せず、該Li合金内の孔
を通過しカーボン層上に優先的に電析する。この作用
は、本発明における材料選択面での特徴であり、Li合
金が、カーボンに比べて電解質に対するLiの吸収と放
出の速度がゆるやかな特性を有することによる。詳しく
は、該Li合金の表面におけるLiの陽極溶解・電析の
分極抵抗が、カーボンの表面におけるそれよりも大きい
ことによるものである。Li合金とカーボンとを一体的
に負極の活物質層として用いると、Li合金は、カーボ
ンに比べてLiを吸収・放出しにくいので、負極の活物
質層におけるLiの電析・陽極溶解は、カーボン表面上
にて優先的に進行する。 (2) カーボン層が大きな放電容量を分担し、Li合金か
らなる多孔性の層は高い起電力発生を分担する。この作
用は、本発明の構造面の特徴によって得られるものであ
って、上記 (1)の材料選択面の特徴であるところの、カ
ーボン表面へ優先的にLiが析出するという作用を生か
しながらも、これとは相反する作用、即ち、カーボンの
特性と上記Li合金の特性とが両立するという作用であ
る。即ち、Liイオンがカーボン層上に到達するために
は、必ずLi合金の孔内を通過しなければならないとい
う構造によって、Li合金と電解液との界面において
も、Liイオンの電気化学反応が可逆的に進行するよう
になり、電極電位を発生して、カーボン層とLi合金層
とが 負極機能を分担する。即ち、Liはカーボンに対
して優先的に析出するが、これによってもLi合金の存
在価値は失われることはなく、その特性を発揮しうる。 (3) 活物質層全体としての表面積は、充分大きくなるた
め、表面に対する電流密度が小さくなる。この作用は、
単に活物質層の多孔性によって得られるというものでは
なく、上記 (1)と (2)の作用のもとで成立するものであ
る。これによって、Liは好適に分散し、集中的な析出
が抑制される。
By configuring the negative electrode as described above, carbon and Li alloy are integrated in the same electrolytic solution and electrically connected to be present as one negative electrode, and as shown in FIG. In addition, when viewed from the side of the electrolytic solution 6, the carbon layer 2 exists at the innermost part of the pores 4 of the porous layer 3. With such a configuration, the following three main actions are shown. (1) In the charging / discharging process, Li ions in the electrolytic solution do not deposit on the Li alloy of the porous layer, but pass through the pores in the Li alloy and are preferentially deposited on the carbon layer. . This action is a feature in the material selection aspect of the present invention, and is because the Li alloy has a characteristic that the absorption and desorption rates of Li with respect to the electrolyte are slower than that of carbon. Specifically, this is because the polarization resistance of anodic dissolution and electrodeposition of Li on the surface of the Li alloy is larger than that on the surface of carbon. When a Li alloy and carbon are used integrally as the negative electrode active material layer, Li alloy is less likely to absorb and release Li as compared with carbon. Therefore, Li electrodeposition and anodic dissolution in the negative electrode active material layer are It proceeds preferentially on the carbon surface. (2) The carbon layer is responsible for a large discharge capacity, and the porous layer made of Li alloy is responsible for generating a high electromotive force. This action is obtained by the feature of the structural aspect of the present invention, and while utilizing the action of preferentially depositing Li on the carbon surface, which is the feature of the material selection aspect of (1) above, This is an action contrary to this, that is, the property of carbon and the property of the above Li alloy are compatible with each other. That is, in order for Li ions to reach the carbon layer, they must always pass through the pores of the Li alloy, so that the electrochemical reaction of Li ions is reversible even at the interface between the Li alloy and the electrolytic solution. The carbon layer and the Li alloy layer share the negative electrode function. That is, Li preferentially precipitates with respect to carbon, but the existing value of the Li alloy is not lost even by this, and the characteristics can be exhibited. (3) Since the surface area of the entire active material layer is sufficiently large, the current density on the surface is small. This action is
It is not simply obtained by the porosity of the active material layer, but is established by the actions of (1) and (2) above. Thereby, Li is preferably dispersed and concentrated precipitation is suppressed.

【0007】カーボン層に用いる炭素材料としては、結
晶性の高いものが好ましく、グラファイト、天然黒鉛等
が例示される。
As the carbon material used for the carbon layer, those having high crystallinity are preferable, and graphite, natural graphite and the like are exemplified.

【0008】多孔性の層を形成するLi合金としては、
本発明の目的を達成しうるものである限り特に制限はな
く、例えば、以下のものが挙げられる。Li−M1−T
e系合金。ただしM1は、Ag、Zn、Ca、Al、M
g等より選ばれる一種の金属または二種以上の合金成分
であって、その組成比(成分元素の数の比、以下同様)
が、Li:M1:Te=80〜150:1〜20:0.
001〜2である。Li−M2−Cd系合金。ただしM
2は、Sn、Bi、Pb、In等より選ばれる一種の金
属または二種以上の合金成分であって、その組成比が、
Li:M2:Cd=70〜90:10〜30:10〜3
0である。Li−M3−Si系合金。ただしM3は、A
l、Y、Fe、Er等の希土類金属より選ばれる一種の
金属または二種以上の合金成分であって、その組成比
が、Li:M3:Si=5〜7:0.5〜2:1〜2で
ある。Li−In−Zn系合金(組成比Li:In:Z
n=2〜6:0.5〜1.5:0.5〜1.5)。Li
−Ag系合金(組成比Li:Ag=80〜99:1〜2
0) その他、Li6 Hg、Li4 Ba、Li2 Ca、Li5
Pd、Li5 Pt、Li23Sr6 等が例示される。ま
た、Li−Si、Li−Znは、高い起電力が得られる
好ましい負極材料である。Li−Si合金の組成比は、
Li:Si=1:(1〜10)程度、好ましくはLi:
Si=1:(3〜5)、特にLi:Si=1:(3.3
〜4.4)が、金属リチウムの結晶の析出を抑制しつ
つ、高い起電力を保持するという点で好ましい。Li−
Zn合金の組成比は、Li:Zn=1:(0.5〜5)
程度、好ましくはLi:Zn=1:(0.8〜3)、特
にLi:Zn=1:(1〜1.5)が、上記Li−Si
合金の場合と同様の理由によって好ましい。
As the Li alloy forming the porous layer,
There is no particular limitation as long as the object of the present invention can be achieved, and examples thereof include the following. Li-M1-T
e-based alloy. However, M1 is Ag, Zn, Ca, Al, M
One metal or two or more alloy components selected from g, etc., and their composition ratio (ratio of the number of component elements, the same applies hereinafter)
, Li: M1: Te = 80 to 150: 1 to 20: 0.
001 to 2. Li-M2-Cd type alloy. However, M
2 is one kind of metal or two or more kinds of alloy components selected from Sn, Bi, Pb, In, etc., and the composition ratio thereof is
Li: M2: Cd = 70-90: 10-30: 30-10-3
It is 0. Li-M3-Si based alloy. However, M3 is A
One kind of metal or two or more kinds of alloy components selected from rare earth metals such as l, Y, Fe and Er, and the composition ratio thereof is Li: M3: Si = 5 to 7: 0.5 to 2: 1. ~ 2. Li-In-Zn alloy (composition ratio Li: In: Z
n = 2 to 6: 0.5 to 1.5: 0.5 to 1.5). Li
-Ag-based alloy (composition ratio Li: Ag = 80 to 99: 1 to 2)
0) Others, Li 6 Hg, Li 4 Ba, Li 2 Ca, Li 5
Examples include Pd, Li 5 Pt, Li 23 Sr 6 and the like. Moreover, Li-Si and Li-Zn are preferable negative electrode materials with which high electromotive force can be obtained. The composition ratio of the Li-Si alloy is
Li: Si = 1: (1 to 10) or so, preferably Li:
Si = 1: (3-5), especially Li: Si = 1: (3.3
.About.4.4) is preferable in that a high electromotive force is maintained while suppressing the precipitation of metallic lithium crystals. Li-
The composition ratio of the Zn alloy is Li: Zn = 1: (0.5 to 5).
The degree, preferably Li: Zn = 1: (0.8 to 3), especially Li: Zn = 1: (1 to 1.5), is the above Li—Si.
It is preferable for the same reason as for the alloy.

【0009】Li合金からなる層を多孔性とする目的
は、上記の様に、カーボン層の表面をLi合金内部の孔
の一番奥に於いて電解液6に露出させることである。従
って、本明細書でいう多孔性は、材料中に微細な孔が不
規則に又は規則的に多数存在するものであって、電解液
が材料の一方の面から該孔内に浸入し、他の面(カーボ
ン層との接触面)へ、よく連通できるものを好ましいも
のとする。また、Li合金からなる層を多孔性とする場
合の多孔度は、空隙率にして20〜80%程度、好まし
くは30〜70%、特に好ましくは50〜60%が、起
電力を低下させずに、イオンの拡散能を高めるという理
由で適している。
The purpose of making the layer made of the Li alloy porous is to expose the surface of the carbon layer to the electrolytic solution 6 at the innermost of the holes inside the Li alloy as described above. Therefore, the term "porosity" as used herein means that a large number of fine pores are irregularly or regularly present in the material, and the electrolytic solution penetrates into the pores from one surface of the material, It is preferable to have good communication with the surface (contact surface with the carbon layer). The porosity of the Li alloy layer having a porosity of about 20 to 80%, preferably 30 to 70%, and particularly preferably 50 to 60% in porosity does not lower the electromotive force. It is suitable for the reason that it enhances the ion diffusivity.

【0010】上記Li合金を用いて多孔性の層を形成す
る方法は、特に制限されるものではないが、各種の蒸着
法が用いられ、特に好ましい方法として、焼結法、加圧
鋳造法、溶射法が挙げられる。
The method for forming a porous layer using the above Li alloy is not particularly limited, but various vapor deposition methods are used, and particularly preferable methods are a sintering method, a pressure casting method, A thermal spraying method can be mentioned.

【0011】焼結法は、原料金属粒子を加熱により拡散
接合させることによって多孔性材料を形成する方法であ
る。この方法では、先ず、ガストマイズ法によって、L
i合金の粒子を作製する。ガストマイズ法は、減圧雰囲
気中に溶融金属をノズルを介して噴射し金属粒子を作る
方法である。このLi合金の粒子の一定量に揮発性有機
溶媒を加え、流動性を付与してペースト状物とし、この
ペースト状物をCu、Al等の良導体金属からなる導電
体層テープ上に展開する。次いで、これを120℃程度
に加熱し、有機溶媒を揮散させると同時にLi合金の粒
子を拡散接合させ、多孔性材料を得る。Li合金の粒子
の拡散接合は、有機溶媒の揮散後、軽く圧着することに
よっても行なうことが可能である。原料の金属粒子径は
1〜50μm程度が好ましく、特に5〜20μmは、形
成される多孔状態が微細かつ緻密であり、しかも粘性の
高い電解液の吸収性を損なわないという点から好まし
い。
The sintering method is a method of forming a porous material by heating and diffusion-bonding raw metal particles. In this method, first, by the gastomize method, L
Particles of i-alloy are prepared. The gastomize method is a method in which molten metal is injected into a reduced pressure atmosphere through a nozzle to produce metal particles. A volatile organic solvent is added to a certain amount of the particles of the Li alloy to impart fluidity to form a paste, and the paste is spread on a conductor layer tape made of a good conductor metal such as Cu or Al. Next, this is heated to about 120 ° C. to volatilize the organic solvent and at the same time, the particles of the Li alloy are diffusion-bonded to obtain a porous material. Diffusion bonding of the particles of the Li alloy can also be performed by volatilizing the organic solvent and then lightly pressing. The metal particle diameter of the raw material is preferably about 1 to 50 μm, and particularly preferably 5 to 20 μm from the viewpoint that the formed porous state is fine and dense and that the absorbability of a highly viscous electrolytic solution is not impaired.

【0012】加圧鋳造法は、多孔性ガラスビーズ粒子・
多孔性炭素粒子等の多孔性粒子の中に液相の原料金属を
加圧鋳造する方法である。先ず、多孔性粒子の所定量に
揮発性有機溶剤を加え流動性を付与してペースト状物と
する。このペースト状物を、上記と同様の導電体層テー
プ上に展開し、加熱乾燥により有機溶剤を揮散させる。
次いで、多孔性粒子間に液相のLi合金を加圧鋳造し、
全体をプレスすることにより多孔粒子を粉砕させた後、
ヘキサン等の無極性溶媒中で超音波洗浄し、粉砕した多
孔粒子を除去し、多孔性材料を得る。
[0012] The pressure casting method uses porous glass bead particles
This is a method of pressure-casting a raw material metal in a liquid phase into porous particles such as porous carbon particles. First, a volatile organic solvent is added to a predetermined amount of porous particles to impart fluidity to form a paste. This paste-like material is spread on the same conductor layer tape as above, and the organic solvent is volatilized by heating and drying.
Then, a liquid phase Li alloy is pressure-cast between the porous particles,
After crushing the porous particles by pressing the whole,
Ultrasonic cleaning is performed in a non-polar solvent such as hexane to remove the crushed porous particles to obtain a porous material.

【0013】溶射法は、粉末粒径、溶射距離、冷却速度
等の溶射パラメータを調整して多孔性の膜を形成する方
法である。溶射はプラズマ溶射であり、アルゴン常圧雰
囲気又は減圧雰囲気にて被膜を形成する。
The thermal spraying method is a method of forming a porous film by adjusting thermal spraying parameters such as powder particle size, thermal spraying distance, cooling rate and the like. The thermal spraying is plasma spraying, and the coating is formed in an atmospheric pressure atmosphere or a reduced pressure atmosphere of argon.

【0014】導電体層5は、電池の形状によっては集電
体とも呼ばれる電流路であり、該導電体層5上にカーボ
ン層2が形成される。導電体層5の材料としては、良導
体の金属が好ましく、Cu、Alの他、Au、Ag、N
i等が例示される。
The conductor layer 5 is a current path also called a current collector depending on the shape of the battery, and the carbon layer 2 is formed on the conductor layer 5. The material of the conductor layer 5 is preferably a good conductor metal, such as Cu, Al, Au, Ag, N.
i etc. are illustrated.

【0015】本発明のリチウム二次電池用負極を用いる
ことによって、優れたリチウム二次電池を形成すること
ができる。該リチウム二次電池の正極を構成する正極材
としては特に限定されず、通常リチウム二次電池の正極
に使用される正極材が使用でき、例えば、V2 5 、M
nO2 、LiMn2 4 、LiCoO2 、LiNi0.5
Co0.5 2 、LiNiO 2 、Li−Co−P系複合酸
化物(LiCo0.5 0.5 2 、LiCo0.4 0. 6
2 、LiCo0.6 0.4 2 、LiCo0.3 Ni0.3
0.4 2 、LiCo 0.2 Ni0.2 0.6 2 等)、Ti
2 、MoS2 、MoO3 等を活物質とする正極材が使
用できる。これらのなかでも、二次電池の起電力や充放
電電圧を特に高くすることができるLi−Co−P系複
合酸化物が好適に使用できる。
Using the negative electrode for lithium secondary battery of the present invention
To form an excellent lithium secondary battery by
You can Positive electrode material constituting the positive electrode of the lithium secondary battery
Is not particularly limited, and is usually the positive electrode of a lithium secondary battery.
The positive electrode material used in2OFive, M
nO2, LiMn2OFour, LiCoO2, LiNi0.5
Co0.5O2, LiNiO 2, Li-Co-P complex acid
Compound (LiCo0.5P0.5O2, LiCo0.4P0. 6O
2, LiCo0.6P0.4O2, LiCo0.3Ni0.3P
0.4O2, LiCo 0.2Ni0.2P0.6O2Etc.), Ti
S2, MoS2, MoO3A positive electrode material with an active material such as
Can be used. Among these, the rechargeable battery's electromotive force and charge / discharge
Li-Co-P compound that can increase the electric voltage in particular
A compound oxide can be preferably used.

【0016】本発明においては、負極の活物質部が基本
的にLiを含有するものであるから、上記正極の活物質
としてLiを含有しないもの(V2 5 、MnO2 、T
iS 2 、MoS2 、MoO3 等)を用いてもよいが、L
iを含有する正極の活物質(LiCoO2 、LiNiO
2 、Li−Co−P系複合酸化物等)を使用すると、前
記負極活物質の量を少なくすることができる。また、上
記正極の活物質には、アセチレンブラック、ケッチェン
ブラック等の導電材料が、またポリテトラフルオロエチ
レン、ポリエチレン等の結着剤が配合される。
In the present invention, the active material portion of the negative electrode is basically
The active material of the positive electrode, which contains Li as a positive electrode
Not containing Li (V2OFive, MnO2, T
iS 2, MoS2, MoO3Etc.) may be used, but L
The positive electrode active material containing i (LiCoO 22, LiNiO
2, Li-Co-P-based composite oxide)
The amount of the negative electrode active material can be reduced. Also on
The positive electrode active material includes acetylene black and Ketjen.
Conductive materials such as black are also used in polytetrafluoroethylene.
A binder such as len or polyethylene is mixed.

【0017】電解質としては、塩類を有機溶媒に溶解さ
せた電解液や固体電解質が使用できる。電解質が液状、
即ち、電解液の場合、この塩類としては、LiCl
4 、LiBF4 、LiPF6 、LiAsF6 、LiA
lCl4 、Li(CF3 SO2 2N等が使用でき、エ
チレンカーボネート、プロピレンカーボネート、ジメチ
ルスルホキシド、スルホラン、γ−ブチロラクトン、1,
2-ジメトキシエタン、N,N-ジメチルホルムアミド、テト
ラヒドロフラン、1,3-ジオキソラン、2-メチルテトラヒ
ドロフラン、ジエチルエーテルおよびこれらの混合物等
の有機溶媒に溶解させて濃度0.1〜3モル/リットル
に調製して使用される。この電解液は、通常、多孔性ポ
リマーやガラスフィルタのようなセパレータに含浸ある
いは充填させて使用される。電解質が固体電解質の場
合、上記塩類がポリエチレンオキシド、ポリホスファゼ
ン、ポリアジリジン、ポリエチレンスルフィド等やこれ
らの誘導体、混合物、複合体等に混合されて使用され
る。この固体電解質は、負極と正極とのセパレータを兼
ねる。
As the electrolyte, an electrolytic solution in which salts are dissolved in an organic solvent or a solid electrolyte can be used. Liquid electrolyte,
That is, in the case of an electrolytic solution, this salt is LiCl
O 4, LiBF 4, LiPF 6 , LiAsF 6, LiA
lCl 4 , Li (CF 3 SO 2 ) 2 N and the like can be used, and ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,
Prepared to a concentration of 0.1 to 3 mol / l by dissolving it in an organic solvent such as 2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolane, 2-methyltetrahydrofuran, diethyl ether and a mixture thereof. Then used. This electrolytic solution is usually used by impregnating or filling a separator such as a porous polymer or a glass filter. When the electrolyte is a solid electrolyte, the above-mentioned salts are mixed with polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide and the like, and derivatives, mixtures, complexes and the like for use. This solid electrolyte also serves as a separator for the negative electrode and the positive electrode.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。 実施例1 本実施例では、Li−Si合金からなる多孔性の層をカ
ーボン層上に形成し、これを活物質層として有する負極
の具体的な製造工程を示し、さらにこの負極を用いて作
製した円筒形のリチウム二次電池の一例を示す。
EXAMPLES The present invention will be described in more detail with reference to examples. Example 1 In this example, a specific manufacturing process of a negative electrode in which a porous layer made of a Li—Si alloy is formed on a carbon layer and which is used as an active material layer is shown, and further, the negative electrode is manufactured. An example of the cylindrical lithium secondary battery is shown.

【0019】〔負極の作製〕厚さ10μm、幅41m
m、長さ300mmのCuテープ上に、平均粒径5μm
の天然黒鉛粒子を有機溶媒を用いて展開し、溶媒を揮散
させて、厚さ80μmのカーボン層を形成した。ただ
し、天然黒鉛粒子の結着材としてPVDFを1重量%添
加して用いた。該カーボン層上に、プラズマ容射によ
り、Li3.5 Si合金を多孔性を呈するように厚さ5μ
mの膜として形成し、テープ状の負極(負極テープ)と
した。
[Production of Negative Electrode] Thickness 10 μm, Width 41 m
m, 300 mm in length on Cu tape, average particle size 5 μm
The natural graphite particles of 3 were developed using an organic solvent and the solvent was volatilized to form a carbon layer having a thickness of 80 μm. However, 1% by weight of PVDF was added and used as a binder for the natural graphite particles. A Li 3.5 Si alloy having a thickness of 5 μm is formed on the carbon layer by plasma spraying so as to exhibit porosity.
m to form a tape-shaped negative electrode (negative electrode tape).

【0020】〔正極の作製〕炭酸リチウムと、塩基性コ
バルトと、リン酸含有率85%のリン酸水溶液とを組成
比(成分元素の数の比)でLi:Co:P=2:1.
5:0.5となる量をそれぞれ秤量して十分に混合した
後、これをアルミナ坩堝にいれて900℃で24時間加
熱処理し、酸化物質を製造した。この酸化物質は、リチ
ウムのリン酸塩、リチウム・コバルトのリン酸塩および
コバルト酸化物からなる混合物である。この混合物を粉
砕し、ふるいによって平均粒径20μmの粉末に調整し
た。この粉末を46重量部とアセチレンブラック4重量
部、ポリフッ化ビニリデン2重量部、n−メチルピロリ
ドン50重量部を混合し、これを幅38mm、長さ30
0mm、厚さ20μmのアルミテープに塗布し、さらに
真空乾燥を行い、厚さ100μmのテープ状の正極(正
極テープ)を作製した。
[Preparation of Positive Electrode] Lithium carbonate, basic cobalt, and a phosphoric acid aqueous solution having a phosphoric acid content of 85% were used at a composition ratio (ratio of the number of component elements) of Li: Co: P = 2: 1.
The respective amounts of 5: 0.5 were weighed and sufficiently mixed, and then the mixture was put into an alumina crucible and heat-treated at 900 ° C. for 24 hours to produce an oxide substance. The oxidant is a mixture of lithium phosphate, lithium cobalt phosphate and cobalt oxide. This mixture was crushed and adjusted to a powder having an average particle size of 20 μm by sieving. 46 parts by weight of this powder, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride and 50 parts by weight of n-methylpyrrolidone were mixed, and this was 38 mm wide and 30 mm long.
It was applied to an aluminum tape having a thickness of 0 mm and a thickness of 20 μm and further vacuum dried to produce a tape-shaped positive electrode (positive electrode tape) having a thickness of 100 μm.

【0021】〔電解液の調製〕炭酸プロピレンに1モル
/リットルの過塩素酸リチウムを溶解し、非水溶液電解
質の電界液とした。
[Preparation of Electrolyte Solution] 1 mol / liter of lithium perchlorate was dissolved in propylene carbonate to prepare an electrolytic solution of a non-aqueous electrolyte.

【0022】〔リチウム二次電池の組み立て〕上記負極
テープと正極テープとによってポリプロピレン製セパレ
ータを挟んで3層とし、これを巻いて電池缶に挿入し、
電界液3mlを注入した後、電極の接続、電池缶の封止
等を行い、単3型(円筒形)のリチウム二次電池を得
た。
[Assembly of Lithium Secondary Battery] A polypropylene separator is sandwiched between the negative electrode tape and the positive electrode tape to form three layers, which are wound and inserted into a battery can.
After injecting 3 ml of the electrolytic solution, the electrodes were connected and the battery can was sealed to obtain an AA-type (cylindrical) lithium secondary battery.

【0023】〔充放電特性〕上記リチウム二次電池の放
電容量および起電圧の初期の最大値は500mAh、
4.5Vであり、大容量・高起電力であることが確認で
きた。このリチウム二次電池を用いて、充電電流100
mAにて起電力が4.2Vに到達するまで充電して1時
間休止し、充電電流と同じ電流値にて起電力が2.75
Vになるまで放電させて1時間休止する、という充放電
サイクルを50回繰り返した。充放電サイクル後の放電
容量維持率は85%、電池の単位重量当たりの放電容量
は120mAh/gであった。
[Charge / Discharge Characteristics] The initial maximum values of the discharge capacity and electromotive voltage of the lithium secondary battery are 500 mAh,
It was 4.5 V, and it was confirmed that it had a large capacity and high electromotive force. Using this lithium secondary battery, a charging current of 100
It is charged for 1 hour until the electromotive force reaches 4.2 V at mA, and the electromotive force is 2.75 at the same current value as the charging current.
A charging / discharging cycle of discharging until V and resting for 1 hour was repeated 50 times. The discharge capacity retention rate after the charge / discharge cycle was 85%, and the discharge capacity per unit weight of the battery was 120 mAh / g.

【0024】実施例2 実施例1における負極の多孔性の層を形成するLi合金
を、Li3.5 Si合金に代えてLi1.2 Zn合金とした
以外は実施例1と同様にしてリチウム二次電池を製作
し、実施例1と同様の充放電特性を調べたところ、リチ
ウム二次電池の放電容量および起電圧の初期の最大値は
520mAh、4.4Vであり、大容量・高起電力であ
ることが確認でき、また、充放電サイクル後の放電容量
維持率は91%、電池の単位重量当たりの放電容量は1
10mAh/g、開回路電圧は4.1Vであった。
Example 2 A lithium secondary battery was obtained in the same manner as in Example 1 except that the Li alloy forming the porous layer of the negative electrode in Example 1 was changed to Li 1.2 Zn alloy instead of Li 3.5 Si alloy. When manufactured and examined for charge and discharge characteristics similar to those of Example 1, the initial maximum values of discharge capacity and electromotive voltage of the lithium secondary battery were 520 mAh and 4.4 V, indicating that they had a large capacity and high electromotive force. The discharge capacity retention rate after charge / discharge cycles was 91%, and the discharge capacity per unit weight of the battery was 1
The open circuit voltage was 10 mAh / g and the voltage was 4.1V.

【0025】比較例1 上記実施例1または2における負極テープに代えて、
0.2mmの金属Li箔だけを負極テープとして用いた
以外は、上記実施例と同様にしてリチウム二次電池を製
作し、同様の充放電サイクル試験を行ったところ、充放
電サイクル後の放電容量維持率は0%であった。
Comparative Example 1 Instead of the negative electrode tape in the above-mentioned Example 1 or 2,
A lithium secondary battery was manufactured in the same manner as in the above example except that only a 0.2 mm metal Li foil was used as the negative electrode tape, and the same charge / discharge cycle test was performed. The maintenance rate was 0%.

【0026】[0026]

【発明の効果】以上詳述したように、本発明のリチウム
二次電池用負極は、カーボンが大きな放電容量を分担
し、Li合金からなる多孔性の層が高い起電力発生を分
担する。この作用によって、大きな放電容量と高い起電
力とを兼ね備えるリチウム二次電池を提供することがで
きる。さらに、電解液に接する負極全体の表面積が大き
いので、Liイオンが分散し、デンドライトの成長を抑
制することができる。これによって、充放電の繰り返し
による劣化の少ないリチウム二次電池を提供することが
できる。
As described in detail above, in the negative electrode for a lithium secondary battery of the present invention, carbon shares a large discharge capacity, and a porous layer made of a Li alloy shares a large electromotive force. By this action, it is possible to provide a lithium secondary battery having both a large discharge capacity and a high electromotive force. Furthermore, since the total surface area of the negative electrode in contact with the electrolytic solution is large, Li ions are dispersed and dendrite growth can be suppressed. This makes it possible to provide a lithium secondary battery that is less likely to deteriorate due to repeated charging and discharging.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池用負極の一例を、電
池の一部として部分的に拡大し模式的に示す図である。
FIG. 1 is a diagram schematically showing an example of a negative electrode for a lithium secondary battery of the present invention by partially enlarging it as a part of a battery.

【符号の説明】[Explanation of symbols]

A リチウム二次電池用負極 1 活物質層 2 カーボン層 3 多孔性の層 A negative electrode for lithium secondary battery 1 active material layer 2 carbon layer 3 porous layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 カーボン層上にLi合金からなる多孔性
の層が形成されてなる積層体を活物質層として有するこ
とを特徴とするリチウム二次電池用負極。
1. A negative electrode for a lithium secondary battery, comprising a laminated body formed by forming a porous layer made of a Li alloy on a carbon layer as an active material layer.
【請求項2】 Li合金が、Li−Si合金又はLi−
Zn合金である請求項1記載のリチウム二次電池用負
極。
2. The Li alloy is a Li—Si alloy or Li—
The negative electrode for a lithium secondary battery according to claim 1, which is a Zn alloy.
【請求項3】 Li−Si合金の組成比(成分元素の数
の比)がLi:Si=1:(3.3〜4.4)であり、
Li−Zn合金の組成比がLi:Zn=1:(1〜1.
5)である請求項2記載のリチウム二次電池用負極。
3. The composition ratio (ratio of the number of component elements) of the Li—Si alloy is Li: Si = 1: (3.3 to 4.4),
The composition ratio of the Li—Zn alloy is Li: Zn = 1: (1-1.
The negative electrode for a lithium secondary battery according to claim 2, which is 5).
【請求項4】 請求項1〜3のいずれかに記載のリチウ
ム二次電池用負極を備えることを特徴とするリチウム二
次電池。
4. A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 1.
JP6116299A 1994-05-30 1994-05-30 Negative electrode for lithium secondary battery, and lithium secondary battery using the same Pending JPH07326342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6116299A JPH07326342A (en) 1994-05-30 1994-05-30 Negative electrode for lithium secondary battery, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116299A JPH07326342A (en) 1994-05-30 1994-05-30 Negative electrode for lithium secondary battery, and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JPH07326342A true JPH07326342A (en) 1995-12-12

Family

ID=14683589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116299A Pending JPH07326342A (en) 1994-05-30 1994-05-30 Negative electrode for lithium secondary battery, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JPH07326342A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024070A1 (en) * 1998-10-22 2000-04-27 Matsushita Electric Industrial Co., Ltd. Secondary cell having non-aqueous electrolyte
WO2001022519A1 (en) * 1999-09-20 2001-03-29 Sony Corporation Secondary cell
JP2002280064A (en) * 2001-03-16 2002-09-27 Sony Corp Electrolyte and battery
FR2823013A1 (en) * 2001-03-27 2002-10-04 Nec Corp Anode for a secondary cell comprises a first layer consisting of carbon and a second thin layer comprising a material that absorbs and liberates lithium
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
WO2003073535A1 (en) * 2002-02-26 2003-09-04 Nec Corporation Negative electrode for secondary cell, secondary cell, and method for producing negative electrode for secondary cell
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
JPWO2005006469A1 (en) * 2003-07-15 2007-09-20 伊藤忠商事株式会社 Current collecting structure and electrode structure
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2011192629A (en) * 2010-02-19 2011-09-29 Panasonic Corp Coin-shaped lithium secondary battery
KR101190026B1 (en) * 2002-06-20 2012-10-12 소니 주식회사 Negative electrode material and battery using the same
CN107293701A (en) * 2016-03-31 2017-10-24 比亚迪股份有限公司 A kind of lithium ion battery anode active material and preparation method thereof, negative pole and the lithium ion battery comprising the negative pole
JP2019033053A (en) * 2017-08-10 2019-02-28 トヨタ自動車株式会社 Lithium solid battery and manufacturing method thereof
JP2020532831A (en) * 2017-08-31 2020-11-12 アルベマール コーポレーション A method for prelithiumizing an electrode using a lithium-silicon alloy
US10873087B2 (en) 2017-09-27 2020-12-22 Toyota Jidosha Kabushiki Kaisha Metal negative electrode secondary battery and method of manufacturing same
WO2021241001A1 (en) * 2020-05-28 2021-12-02 パナソニックIpマネジメント株式会社 Battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265111B1 (en) 1998-10-22 2001-07-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2000024070A1 (en) * 1998-10-22 2000-04-27 Matsushita Electric Industrial Co., Ltd. Secondary cell having non-aqueous electrolyte
WO2001022519A1 (en) * 1999-09-20 2001-03-29 Sony Corporation Secondary cell
US7150941B2 (en) 1999-09-20 2006-12-19 Sony Corporation Secondary battery
US6884546B1 (en) 1999-09-20 2005-04-26 Sony Corporation Secondary battery
JP2002280064A (en) * 2001-03-16 2002-09-27 Sony Corp Electrolyte and battery
KR100450548B1 (en) * 2001-03-27 2004-09-30 닛본 덴끼 가부시끼가이샤 Anode for secondary battery and secondary battery therewith
FR2823013A1 (en) * 2001-03-27 2002-10-04 Nec Corp Anode for a secondary cell comprises a first layer consisting of carbon and a second thin layer comprising a material that absorbs and liberates lithium
JP2002358954A (en) * 2001-03-27 2002-12-13 Nec Corp Negative electrode for secondary battery and secondary battery using the same
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
EP1282179A3 (en) * 2001-07-31 2005-06-29 Nec Corporation Negative electrode for rechargeable battery
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
US7202000B2 (en) 2001-07-31 2007-04-10 Nec Corporation Anode for secondary battery, secondary battery using same and method for fabricating anode
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery
JP4701579B2 (en) * 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
WO2003073535A1 (en) * 2002-02-26 2003-09-04 Nec Corporation Negative electrode for secondary cell, secondary cell, and method for producing negative electrode for secondary cell
US7118831B2 (en) 2002-04-10 2006-10-10 Nec Corporation Nonaqueous electrolyte cell
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
KR101190026B1 (en) * 2002-06-20 2012-10-12 소니 주식회사 Negative electrode material and battery using the same
JPWO2005006469A1 (en) * 2003-07-15 2007-09-20 伊藤忠商事株式会社 Current collecting structure and electrode structure
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2011192629A (en) * 2010-02-19 2011-09-29 Panasonic Corp Coin-shaped lithium secondary battery
CN107293701A (en) * 2016-03-31 2017-10-24 比亚迪股份有限公司 A kind of lithium ion battery anode active material and preparation method thereof, negative pole and the lithium ion battery comprising the negative pole
JP2019033053A (en) * 2017-08-10 2019-02-28 トヨタ自動車株式会社 Lithium solid battery and manufacturing method thereof
JP2020532831A (en) * 2017-08-31 2020-11-12 アルベマール コーポレーション A method for prelithiumizing an electrode using a lithium-silicon alloy
US10873087B2 (en) 2017-09-27 2020-12-22 Toyota Jidosha Kabushiki Kaisha Metal negative electrode secondary battery and method of manufacturing same
WO2021241001A1 (en) * 2020-05-28 2021-12-02 パナソニックIpマネジメント株式会社 Battery

Similar Documents

Publication Publication Date Title
US9837665B2 (en) Lipon coatings for high voltage and high temperature Li-ion battery cathodes
JP4777593B2 (en) Method for producing lithium ion secondary battery
KR100450548B1 (en) Anode for secondary battery and secondary battery therewith
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JPH08153541A (en) Lithium secondary battery
JPH07240201A (en) Negative electrode and lithium secondary battery
JP2005078985A (en) Electrode for nonaqueous secondary battery and lithium secondary battery using the same
KR102324692B1 (en) Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP2004039491A (en) Nonaqueous electrolyte secondary battery
CN115275098A (en) Negative pole piece, preparation method thereof and sodium ion battery
KR20200081305A (en) Electrode comprising particle, method for fabricating the same, and lithium secondary battery
JP5820219B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
EP4160712A1 (en) Power storage device and electrode or separator used for same
JP2008300179A (en) Nonaqueous secondary battery
JP2003115324A (en) Nonaqueous electrolyte battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH08180853A (en) Separator and lithium secondary battery
JP2002093416A (en) Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
KR20020094530A (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JP2004335192A (en) Method of manufacturing positive electrode and method of manufacturing battery
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JP2005235686A (en) Positive electrode, battery and their manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224