KR20020094530A - Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes - Google Patents

Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes Download PDF

Info

Publication number
KR20020094530A
KR20020094530A KR1020010032800A KR20010032800A KR20020094530A KR 20020094530 A KR20020094530 A KR 20020094530A KR 1020010032800 A KR1020010032800 A KR 1020010032800A KR 20010032800 A KR20010032800 A KR 20010032800A KR 20020094530 A KR20020094530 A KR 20020094530A
Authority
KR
South Korea
Prior art keywords
electrode
lithium
current collector
coated
metal
Prior art date
Application number
KR1020010032800A
Other languages
Korean (ko)
Other versions
KR100404733B1 (en
Inventor
조병원
조원일
김형선
김운석
박호영
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2001-0032800A priority Critical patent/KR100404733B1/en
Publication of KR20020094530A publication Critical patent/KR20020094530A/en
Application granted granted Critical
Publication of KR100404733B1 publication Critical patent/KR100404733B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A current collector coated with a metal, an electrode employing the current collector and a lithium battery containing the electrode are provided to improve the conductivity and to allow the potential distribution on the surface of an electrode to be maintained uniformly, thereby enhancing the utilization rate of an electrode and the cycle characteristic and the charge/discharge characteristic of a battery. CONSTITUTION: The current collector is a foil, a punched foil, an expanded foil or a porous plate made of copper, nickel, aluminum or titanium, and whose both faces are coated with a metal with a thickness of several nm to several micrometers uniformly. Preferably the metal coating the current collector is selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb and their alloys. The electrode comprises a lithium electrode made by coating the current collector with lithium; a carbon-coated carbon electrode; and a metal compound-coated metal compound electrode. The lithium battery comprises a cathode and an anode according to the electrode; a polypropylene or polyethylene separation membrane; and a polymer electrolyte or a solid electrolyte.

Description

금속이 피복된 집전체, 이를 이용한 전극 및 이들 전극을 포함하는 리튬전지{CURRENT COLLECTOR COATED WITH METAL, ELECTRODES COMPRISING IT, AND LITHIUM BATTERIES COMPRISING THE ELECTRODES}A current collector coated with a metal, an electrode using the same, and a lithium battery including the same {{RRRRENT COLLECTOR COATED WITH METAL, ELECTRODES COMPRISING IT, AND LITHIUM BATTERIES COMPRISING THE ELECTRODES}

본 발명은 금속이 피복된 집전체와 이를 이용한 전극 및 리튬전지에 관한 것이다. 보다 구체적으로는 구리, 니켈, 알루미늄 또는 티타늄 등의 집전체 양면에 은, 금, 백금을 포함하는 금속 또는 이들의 합금이 전기 도금법, 무전해 도금법, 물리 증착법, 화학 증착법에 의하여 수 ㎚ 내지 수 ㎛ 두께로 피복된 집전체, 이를포함하는 전극 및 이들 전극을 포함하는 리튬전지에 관한 것이다.The present invention relates to a current collector coated with a metal, an electrode and a lithium battery using the same. More specifically, a metal containing silver, gold, platinum, or an alloy thereof on both surfaces of a current collector such as copper, nickel, aluminum, or titanium may be several nm to several μm by electroplating, electroless plating, physical vapor deposition, or chemical vapor deposition. The present invention relates to a current collector coated with a thickness, an electrode including the same, and a lithium battery including the electrode.

종래의 리튬 이차전지용 집전체를 그 형태 상으로 분류하면, 박판(foil), 구멍 뚫린 박판(punched foil), 확장된 박판(expanded foil) 및 다공성 박판(porous plate) 등이 있다. 음극 집전체로는 구리. 니켈 또는 티타늄이 사용되며, 양극 집전체로는 알루미늄 또는 티타늄이 사용되고 있다.(J. O. Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim(1999) 참조.) 현재 대부분의 리튬전지가 이들 집전체를 그대로 사용하고 있다. 다만 벨코어 형태의 리튬이온폴리머전지인 경우 전극 활물질과 집전체가 잘 접착이 되지 않기 때문에 이들 사이의 결합력을 높이고 계면저항을 줄이기 위해 확장된 박판에 카본류를 피복하여 사용하고 있으나, 이것은 본 발명의 목적과는 다른 것이다.If the current collector for a lithium secondary battery is classified into its shape, there are a foil, a punched foil, an expanded foil, a porous plate, and the like. Copper is the negative electrode current collector. Nickel or titanium is used, and aluminum or titanium is used as the positive electrode current collector (see JO Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim (1999)). I use it. However, in the case of a bel-core type lithium ion polymer battery, since the electrode active material and the current collector are not easily adhered to each other, carbon is coated on the expanded thin plate to increase the bonding force between them and reduce the interface resistance. It is different from the purpose.

리튬전지는 리튬 일차전지와 리튬 이차전지로 대별될 수 있다. 리튬 일차전지는 음극으로 리튬금속을 사용하고, 양극의 종류에 따라 Li-MnO2, Li-(CF)n및 Li-SOCl2등으로 나뉘며, 이들은 현재 상용화되어 있다.(J. O. Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim(1999) 참조.) 그러나, 리튬 일차전지는 리튬전극의 국부적인 용해 반응에 의한 전위분포의 불균일화가 일어나 전극의 이용률이 저하되는 것이 단점이다.Lithium batteries may be roughly classified into lithium primary batteries and lithium secondary batteries. Lithium primary batteries use lithium metal as a negative electrode, and are divided into Li-MnO 2 , Li- (CF) n, and Li-SOCl 2 according to the type of positive electrode, and these are currently commercialized. (JO Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim (1999). However, the lithium primary battery has a disadvantage in that the potential distribution is uneven due to local dissolution of the lithium electrode, thereby lowering the utilization rate of the electrode.

리튬 이차전지의 경우는 현재 음극으로 탄소계 물질을 사용하고 양극으로 LiCoO2또는 LiMn2O4를 사용하는 것이 상용화되어 있으나, 전지의 에너지 밀도를 높이기 위한 리튬 음극에 대한 연구가 많이 이루어지고 있다.(D. Linden, Handbookof Batteries, McGRAW-HILL INC., New York(1995)참조.) 한편 전지가 대형화됨에 따라 집전체의 전도도가 전지성능에 많은 영향을 미치게 되는데, 기존의 집전체는 표면에 얇은 산화막이 자연적으로 생성되어 고전류가 흐르는 데 저항으로 작용하여 집전체로서의 한계를 드러내고 있으므로 이의 개선이 필요하다.In the case of a lithium secondary battery, it is currently commercialized to use a carbon-based material as a negative electrode and to use LiCoO 2 or LiMn 2 O 4 as a positive electrode, but much research has been conducted on lithium negative electrodes to increase energy density of a battery. (See D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York (1995).) On the other hand, as the size of the battery increases, the conductivity of the current collector greatly affects the battery performance. Since the oxide film is naturally formed and acts as a resistance to high current flow, the limit of the current collector is revealed, and thus an improvement thereof is required.

리튬전극은 이론적으로 용량이 3860mAh/g으로 매우 높지만, 충방전 효율이 낮고, 충전시 전극 표면에 수지상(dendrite)이 석출되는데 이러한 수지상은 내부 단락을 일으켜서 폭발의 위험을 초래하기도 한다. 또한 현재 사용하는 구리 집전체와 리튬이 반응하여 리튬합금을 형성하며, 이 합금은 가역성이 떨어져 리튬의 충방전효율 및 이용률의 저하를 초래하므로 리튬금속을 사용하는 이차전지의 개발에 걸림돌이 되고 있다.Lithium electrodes have a very high capacity of 3860mAh / g in theory, but have low charging and discharging efficiency, and dendrite precipitates on the electrode surface during charging, which may cause an internal short circuit and cause an explosion. In addition, lithium currently reacts with the current collector of copper to form a lithium alloy, and this alloy has a reversibility and causes a decrease in the charge / discharge efficiency and utilization rate of lithium, which is an obstacle to the development of a secondary battery using lithium metal. .

근래 이러한 문제점을 해결하기 위하여 전해액 중에 첨가물을 첨가하여 충방전 효율을 증대시키고 리튬 석출 형태를 변화시키는 연구, 니켈과 구리 등의 금속 미립자를 혼합하는 연구 및 리튬 합금 조성을 변화시키는 연구 등이 이루어지고 있다.(제35회전지토론회 강연요지집 103(1994), 제36회전지토론회 강연요지집 147(1995), 및 J. O. Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim(1999) 참조.) 그러나 아직 특별한 해결책이 제시되고 있지 않다.Recently, in order to solve these problems, studies have been made to increase the charge and discharge efficiency by adding additives to the electrolyte, to change the form of lithium deposition, to study the mixing of metal fine particles such as nickel and copper, and to change the composition of the lithium alloy. (See the 35th Round Discussion Seminar Collection 103 (1994), the 36th Round Discussion Forum Abstract 147 (1995), and JO Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim (1999).) This is not being presented.

본 발명의 목적은 구리, 니켈, 알루미늄 또는 티타늄 등의 집전체 양면에 은, 금, 백금을 포함하는 금속, 또는 이들의 힙금이 수 ㎚ 내지 수 ㎛ 두께로 피복된 집전체를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a current collector on which both surfaces of a current collector, such as copper, nickel, aluminum, or titanium, are coated with a metal including silver, gold, platinum, or a heap gold thereof.

본 발명의 또 다른 목적은 전극 표면의 전위 분포도가 일정하게 유지됨으로써 전극의 이용률 및 싸이클 특성이 증대되고 고율 충방전 특성이 향상된, 상기 집전체를 포함하는 리튬전극, 탄소 전극 및 금속화합물 전극, 및 이러한 전극을 포함하는 리튬전지를 제공하는 것이다.Still another object of the present invention is to maintain a constant distribution of potentials on the surface of the electrode, thereby increasing the utilization and cycle characteristics of the electrode and improving the high rate charge / discharge characteristics, including the current collector, the lithium electrode, the carbon electrode, and the metal compound electrode; It is to provide a lithium battery comprising such an electrode.

제 1 도는 금속이 피복된 본 발명에 의한 집전체의 단면도이다.1 is a cross-sectional view of a current collector according to the present invention coated with a metal.

제 2 도는 실시예 1 내지 4, 및 비교예 1에 의해 제조된 리튬 이차전지에 대한 전극 용량 및 수명시험 결과를 나타낸 그래프이다.2 is a graph showing the electrode capacity and the life test results for the lithium secondary battery prepared in Examples 1 to 4, and Comparative Example 1.

제 3 도는 실시예 2 및 비교예 1에 의해 제조된 리튬 이차전지에 대한 고율 방전 특성을 나타낸 그래프이다.3 is a graph showing high rate discharge characteristics of the lithium secondary batteries manufactured by Example 2 and Comparative Example 1. FIG.

제 4 도는 본 발명에 의한 집전체로 제조된 리튬전극을 포함하는 리튬 일차전지의 실시예 6 및 비교예 2에 대한 방전특성을 나타낸 그래프이다.4 is a graph showing discharge characteristics of Example 6 and Comparative Example 2 of a lithium primary battery including a lithium electrode manufactured from a current collector according to the present invention.

본 발명에 의한 집전체는 도 1에 나타낸 것과 같이 구리, 니켈, 알루미늄 또는 티타늄 등의 집전체 양면에 은, 금, 백금, 티타늄을 포함하는 금속 또는 이들의 합금이 수 ㎚ 내지 수 ㎛ 두께로 피복되는 것이 바람직하다. 집전체 상에 금속을 수 ㎚ 내지 수 ㎛로 피복하는 것은 이 정도 두께로 피복되어야 전기전도성을 나타내어 집전체로서의 역할을 할 수 있으며, 피복이 이보다 두꺼운 경우 피복된 집전체 자체의 부피 및 무게가 커지게 되어 한정된 크기를 갖는 전지의 내부에 충진될 수 있는 양극 활물질의 양을 상대적으로 감소시키므로 전지용량이 저하되고 비경제적이기 때문이다. 피복되는 금속은 Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb, 또는 이들의 합금으로 구성된 군에서 선택된다.In the current collector according to the present invention, as shown in FIG. 1, a metal including silver, gold, platinum, titanium, or an alloy thereof is coated on both surfaces of a current collector such as copper, nickel, aluminum, or titanium with a thickness of several nm to several μm. It is desirable to be. The coating of the metal on the current collector with a thickness of several nm to several μm should be coated at such a thickness to exhibit electrical conductivity, which can serve as a current collector. If the coating is thicker, the volume and weight of the coated current collector itself are large. This is because the battery capacity is lowered and uneconomical because the amount of the positive electrode active material that can be filled in the inside of the battery having a limited size is relatively reduced. The metal to be coated is Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb, or alloys thereof It is selected from the group consisting of.

본 발명에 의한 집전체는 구리, 니켈, 알루미늄 또는 티타늄 등의 통상의 집전체 양면에 금속을 전기 도금법, 무전해 도금법, 물리 증착법 또는 화학 증착법 으로 피복시켜 제조한다. 이 때 물리 증착법은 가열 증착법, 전자선 증착법, 이온선 증착법, 스퍼터링법 또는 레이저 어블레이션 등의 방법이 바람직하다. 본 발명에 의한 제조방법 상의 특징은 원하는 종류의 금속이나 합금을 집전체의 양면에 자유롭게 피복할 수 있고, 외부 요인에 의한 오염 없이 순수한 금속 복합체를 피복할 수 있으며, 피복 속도를 조절함으로써 금속의 조성, 피막의 균일성, 피복 두께 및 피복 시간을 조절할 수 있다는 점이다.The current collector according to the present invention is prepared by coating a metal on both surfaces of a common current collector such as copper, nickel, aluminum, or titanium by an electroplating method, an electroless plating method, a physical vapor deposition method, or a chemical vapor deposition method. At this time, the physical vapor deposition method is preferably a method such as a thermal vapor deposition method, an electron beam deposition method, an ion beam deposition method, a sputtering method or a laser ablation. Features of the manufacturing method according to the present invention can be freely coated on both sides of the current collector of the metal or alloy of the desired type, can be coated with a pure metal composite without contamination by external factors, the composition of the metal by controlling the coating speed , Uniformity of coating, coating thickness and coating time can be adjusted.

본 발명에 의한 전극은 금속이 피복된 집전체에 각각 리튬, 탄소 또는 금속화합물을 피복한 리튬전극, 탄소전극, 금속화합물 전극의 형태를 갖는다. 전극 활물질의 피복 방법 및 피복 두께는 통상의 리튬 일차전지 및 리튬 이차전지에서 사용하는 방법과 동일하며, 다만 집전체로서 본 발명의 집전체를 사용하는 것이 다르다. 금속화합물도 통상의 리튬일차전지 및 리튬이차전지에서 사용하는 금속화합물과 같다. 즉, 금속이 피복된 집전체에 피복되는 금속화합물의 예에는 MnO2, (CF)n,LiCoO2, LiNiO2, LiNiCoO2, LiMn2O4, V2O5,V6O13,LixCoPO4, LixFePO4및 LixCaCoF6등이 포함된다.The electrode according to the present invention has a form of a lithium electrode, a carbon electrode, and a metal compound electrode, each of which is coated with lithium, carbon or a metal compound on a metal-coated current collector. The coating method and coating thickness of the electrode active material are the same as those used in ordinary lithium primary batteries and lithium secondary batteries, except that the current collector of the present invention is used as the current collector. Metal compounds are also the same as those used in conventional lithium primary batteries and lithium secondary batteries. That is, examples of the metal compound coated on the metal-coated current collector include MnO 2 , (CF) n, LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiMn 2 O 4 , V 2 O 5, V 6 O 13, Li x CoPO 4 , Li x FePO 4 , Li x CaCoF 6, and the like.

본 발명의 전극을 사용하여 리튬전지를 제조할 수 있다. 즉, MnO2, (CF)n또는 SOCl2를 양극으로 사용하여 리튬 일차전지를, LiCoO2, LiNiO2, LiNiCoO2, LiMn2O4, V2O5,V6O13,LixCoPO4, LixFePO4 또는LixCaCoF6등을 양극으로 사용하여 리튬 이차전지를 제조할 수 있다. 또한 본 발명에 의한 전극은 폴리프로필렌(이하 PP라 한다.) 또는 폴리에틸렌(이하 PE라 한다.) 등의 분리막을 사용하는 리튬전지, 고분자 전해질을 사용하는 리튬 고분자전지 및 고체 전해질을 사용하는 전고체형 리튬전지의 전극으로 사용될 수 있다.The lithium battery can be manufactured using the electrode of the present invention. That is, a lithium primary battery is formed using MnO 2 , (CF) n or SOCl 2 as a positive electrode, LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiMn 2 O 4 , V 2 O 5, V 6 O 13, Li x CoPO 4 , Li x FePO 4 or Li x CaCoF 6 may be used as a positive electrode to manufacture a lithium secondary battery. In addition, the electrode according to the present invention is a lithium battery using a separator such as polypropylene (hereinafter referred to as PP) or polyethylene (hereinafter referred to as PE), a lithium polymer battery using a polymer electrolyte, and an all-solid type using a solid electrolyte. It can be used as an electrode of a lithium battery.

다음은 본 발명에 따른 리튬전극 및 리튬전지를 제조하고 성능시험을 행한 실시예 및 비교예이다. 이에 의하여 본 발명이 보다 구체적으로 설명되지만, 이러한 실시예는 본 발명의 예시에 불과할 뿐, 본 발명이 이에 한정되는 것은 아니다.The following are examples and comparative examples of preparing a lithium electrode and a lithium battery according to the present invention and performing a performance test. Although the present invention will be described in more detail by this, these examples are merely illustrative of the present invention, the present invention is not limited thereto.

실시예Example

실시예 1Example 1

확장된 구리박판 집전체의 양면에 전기 도금법으로 금을 100㎚ 두께로 피복시켜 금이 피복된 집전체를 얻는다. 흑연(meso carbon micro bead = MCMB) 6g, 폴리비닐리덴 플로라이드(이하 PVdF라 한다.) 0.4g의 조성물을 적당량의 1-메틸-2-피롤리돈(이하 NMP라 한다.) 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 금이 피복된 구리박판 집전체 위에 캐스팅하여 건조시킨 후 압연하여 흑연음극을 얻는다. LiCoO2양극은 LiCoO25.7g, 아세틸렌 블랙(이하 AB라 한다.) 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 상기의 흑연음극, PP 분리막 및 LiCoO2양극을 적층하여 구성하고, 1M LiPF6에틸 카보네이트/에틸 메틸 카보네이트 용액(이하 EC/EMC 용액이라 한다.)을 주입하여 리튬 이차전지를 제조한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.Gold is coated on both sides of the expanded copper sheet current collector by electroplating to a thickness of 100 nm to obtain a current collector coated with gold. 6 g of graphite (meso carbon micro bead = MCMB) and 0.4 g of polyvinylidene fluoride (hereinafter referred to as PVdF) are mixed with an appropriate amount of 1-methyl-2-pyrrolidone (hereinafter referred to as NMP) and acetone. Then, when a suitable viscosity is obtained, it is cast on a copper-clad current collector coated with gold, dried, and then rolled to obtain a graphite cathode. The LiCoO 2 positive electrode was mixed with a composition of 5.7 g of LiCoO 2 , 0.6 g of acetylene black (hereinafter referred to as AB) and 0.4 g of PVdF with an appropriate amount of NMP and acetone, and then cast on a thin sheet of aluminum when a suitable viscosity was obtained. After rolling, it is obtained. The graphite cathode, the PP separator, and the LiCoO 2 anode were laminated to each other, and a lithium secondary battery was prepared by injecting 1M LiPF 6 ethyl carbonate / ethyl methyl carbonate solution (hereinafter referred to as EC / EMC solution). The electrode capacity and cycle life based on the anode were investigated with C / 2.

실시예 2Example 2

구리박판 집전체의 양면에 전기 도금법으로 금을 200㎚ 두께로 피복시켜 금이 피복된 집전체를 얻는다. 이 집전체 위에 진공 증착법으로 리튬을 양면에 각각 20㎛ 정도 피복시켜 리튬음극을 제조한다. LiCoO2양극은 LiCoO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 리튬음극, PP 분리막 및 LiCoO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 이차전지를 제조한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.Both surfaces of the copper foil current collector are coated with gold at a thickness of 200 nm by electroplating to obtain a current collector coated with gold. On the current collector, lithium was coated on both sides by vacuum deposition to produce a lithium cathode. The LiCoO 2 anode is obtained by mixing a composition of 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting on a thin sheet of aluminum when the proper viscosity is obtained, drying and rolling. Lithium anode, PP separator and LiCoO 2 positive electrode are laminated and manufactured by injecting 1M LiPF 6 EC / EMC solution to manufacture a lithium secondary battery. Investigate.

실시예 3Example 3

알루미늄 박판 집전체의 양면에 진공 증착법으로 금을 100㎚ 두께로 피복시켜 금이 피복된 알루미늄 집전체를 얻는다. LiCoO2양극은 LiCoO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 금이 피복된 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 실시예 1과 동일한 방법으로 구리 집전체를 사용하여 탄소 음극을 제조한다. 탄소음극, PP 분리막 및 LiCoO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 이차전지를 제조한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.Gold is coated on both sides of the thin aluminum current collector to a thickness of 100 nm to obtain an aluminum current collector coated with gold. The LiCoO 2 anode is obtained by mixing a composition of 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting it on a gold-coated aluminum sheet when the proper viscosity is obtained, drying and rolling. . A carbon negative electrode was manufactured using a copper current collector in the same manner as in Example 1. Carbon anode, PP separator and LiCoO 2 positive electrode were laminated, and lithium secondary battery was prepared by injecting 1M LiPF 6 EC / EMC solution, and then the electrode capacity and cycle life based on the positive electrode were measured at charge / discharge rate C / 2. Investigate.

실시예 4Example 4

구리박판 집전체의 양면에 진공 증착법으로 은을 200㎚ 두께로 피복시켜 은이 피복된 구리 집전체를 얻는다. 이 집전체 위에 진공 증착법으로 리튬을 양면에각각 20㎛ 정도 피복시켜 리튬 음극을 제조한다. LiCoO2양극은 LiCoO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 리튬음극, PP 분리막 및 LiCoO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 이차전지를 제조한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.Silver is coated on both surfaces of the copper foil current collector by a vacuum deposition method to a thickness of 200 nm to obtain a copper current collector coated with silver. Lithium anode was manufactured by coating lithium on both sides of the current collector by vacuum deposition on the both sides. The LiCoO 2 anode is obtained by mixing a composition of 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting on a thin sheet of aluminum when the proper viscosity is obtained, drying and rolling. Lithium anode, PP separator and LiCoO 2 positive electrode are laminated and manufactured by injecting 1M LiPF 6 EC / EMC solution to manufacture a lithium secondary battery. Investigate.

실시예 5Example 5

구리박판 집전체의 양면에 스퍼터링법으로 백금을 200㎚ 두께로 피복시켜 백금이 피복된 구리 집전체를 얻는다. 이 집전체 위에 진공 증착법으로 리튬을 양면에 각각 20㎛ 정도 피복시켜 리튬음극을 제조한다. LiCoO2양극은 LiCoO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 리튬음극, PP 분리막 및 LiCoO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 이차전지를 제조한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.Platinum is coated with a thickness of 200 nm on both surfaces of the copper foil current collector by sputtering to obtain a copper current collector coated with platinum. On the current collector, lithium was coated on both sides by vacuum deposition to produce a lithium cathode. The LiCoO 2 anode is obtained by mixing a composition of 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting on a thin sheet of aluminum when the proper viscosity is obtained, drying and rolling. Lithium anode, PP separator and LiCoO 2 positive electrode are laminated and manufactured by injecting 1M LiPF 6 EC / EMC solution to manufacture a lithium secondary battery. Investigate.

실시예 6Example 6

구리박판 집전체의 양면에 전기 도금법으로 금을 200㎚ 두께로 피복시켜 금이 피복된 구리 집전체를 얻는다. 이 집전체 위에 진공 증착법으로 리튬을 양면에각각 20㎛ 정도 피복시켜 리튬 음극을 제조한다. MnO2양극은 MnO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 리튬음극, PP 분리막 및 MnO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 일차전지를 제조한 다음, 방전율 C/10로 방전특성을 조사하였다.Both surfaces of the copper foil current collector are coated with gold at a thickness of 200 nm by electroplating to obtain a copper current collector coated with gold. Lithium anode was manufactured by coating lithium on both sides of the current collector by vacuum deposition on the both sides. The MnO 2 anode is obtained by mixing a composition of 5.7 g of MnO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting on a thin sheet of aluminum when the proper viscosity is obtained, drying and rolling. A lithium cathode, a PP separator, and an MnO 2 anode were stacked to form a lithium primary battery by injecting a 1M LiPF 6 EC / EMC solution, and then discharge characteristics were investigated at a discharge rate of C / 10.

비교예Comparative example

비교예 1Comparative Example 1

확장된 구리박판 위에 100㎛ 두께의 리튬박판을 80㎛ 두께로 압착하여 리튬 음극을 제조한다. LiCoO2양극은 LiCoO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 얻는다. 상기의 리튬음극, PP 분리막 및 LiCoO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 이차전지를 제조한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.A lithium negative electrode having a thickness of 100 μm was pressed to an 80 μm thickness on an expanded copper thin plate to prepare a lithium negative electrode. The LiCoO 2 anode is obtained by mixing a composition of 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting on a thin sheet of aluminum when the proper viscosity is obtained, drying and rolling. The lithium cathode, the PP separator and the LiCoO 2 positive electrode were laminated, and a lithium secondary battery was prepared by injecting 1M LiPF 6 EC / EMC solution. The lifetime was investigated.

비교예 2Comparative Example 2

구리박판 위에 50㎛ 두께의 리튬박판을 40㎛ 두께로 압착하여 리튬전극을 제조한다. MnO2양극은 MnO25.7g, AB 0.6g 및 PVdF 0.4g의 조성물을 적당량의 NMP 및 아세톤과 혼합한 다음, 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여건조시킨 후 압연하여 얻는다. 리튬음극, PP 분리막 및 MnO2양극을 적층하여 구성하고, 1M LiPF6EC/EMC 용액을 주입하여 리튬 일차전지를 제조한 다음, 방전율 C/10로 방전특성을 조사하였다.A 50 μm thick lithium platen is pressed onto a copper foil to 40 μm to prepare a lithium electrode. The MnO 2 anode is obtained by mixing a composition of 5.7 g of MnO 2 , 0.6 g of AB and 0.4 g of PVdF with an appropriate amount of NMP and acetone, then casting on a thin sheet of aluminum when the proper viscosity is obtained, drying and rolling. A lithium cathode, a PP separator, and an MnO 2 anode were stacked to form a lithium primary battery by injecting a 1M LiPF 6 EC / EMC solution, and then discharge characteristics were investigated at a discharge rate of C / 10.

실시예 1 내지 5 및 비교예 1에 따라 제조한 리튬 이차전지의 전극 용량 및 싸이클 특성을 조사한 결과를 제 2 도에 나타내었다. 본 발명에 의한 전지들은 전극 용량 및 싸이클 수명특성이 우수한 반면, 비교예 1에서 제조된 전지는 전극 용량 및 싸이클 수명특성이 떨어짐을 알 수 있다. 제 3 도는 실시예 2 및 비교예 1에 의한 리튬 이차전지의 고율 방전특성(1C)를 타나낸 것으로서, 본 발명에 의한 전지의 고율 방전특성이 더 우수함을 보여준다.The electrode capacity and the cycle characteristics of the lithium secondary batteries manufactured according to Examples 1 to 5 and Comparative Example 1 were examined and shown in FIG. 2. While the batteries according to the present invention have excellent electrode capacity and cycle life characteristics, it can be seen that the battery prepared in Comparative Example 1 has poor electrode capacity and cycle life characteristics. 3 shows the high rate discharge characteristics (1C) of the lithium secondary batteries according to Example 2 and Comparative Example 1, showing that the high rate discharge characteristics of the battery according to the present invention is more excellent.

도 4는 실시예 6 및 비교예 2에서 제조된 리튬 일차전지의 방전특성을 조사한 결과를 나타낸 것으로서, 본 발명에 의한 전지의 방전특성이 더 우수함을 보여준다.Figure 4 shows the results of the discharge characteristics of the lithium primary battery prepared in Example 6 and Comparative Example 2, showing that the discharge characteristics of the battery according to the present invention is more excellent.

본 발명에 따라 금속이 피복된 집전체, 이를 이용한 전극 및 이러한 전극을 포함하는 리튬전지가 제공되었다.According to the present invention, a current collector coated with a metal, an electrode using the same, and a lithium battery including the electrode are provided.

전도도가 향상된 본 발명에 따른 집전체를 사용하여 제조된 전극은 종래의 전극에 비하여 전극의 이용률, 싸이클 수명특성 및 고율 충방전 특성이 우수하므로, 이러한 전극을 포함하는 리튬전지는 각종 소형 전자기기, 통신기기 및 전기 자동차의 전원용 등 다양한 산업분야에서의 응용이 기대된다Since the electrode manufactured using the current collector according to the present invention having improved conductivity is superior to the conventional electrode, the utilization rate, cycle life characteristics, and high rate charge / discharge characteristics of the electrode, the lithium battery including the electrode includes various small electronic devices, It is expected to be applied in various industrial fields such as power supply of communication equipment and electric vehicle.

Claims (6)

구리, 니켈, 알루미늄 또는 티타늄을 재질로 하는 박판, 구멍 뚫린 박판, 확장된 박판 또는 다공성 박판 형태의 집전체 양면에 금속이 수 ㎚ 내지 수 ㎛ 두께로 균일하게 피복된 집전체.A current collector in which metal is uniformly coated with a thickness of several nm to several μm on both sides of a current collector in the form of a thin plate, a perforated thin plate, an expanded thin plate or a porous thin plate made of copper, nickel, aluminum, or titanium. 제 1 항에 있어서, 피복되는 금속이 Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb 및 이들의 합금으로 구성된 군에서 선택되는 집전체.The method of claim 1, wherein the metal to be coated is Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, A current collector selected from the group consisting of Sb and their alloys. 제 1 항 또는 제 2 항에 따른 집전체 상에 리튬이 피복된 리튬전극, 탄소가 피복된 탄소전극, 금속화합물이 피복된 금속화합물 전극을 포함하는 전극.An electrode comprising a lithium electrode coated with lithium, a carbon electrode coated with carbon, and a metal compound coated metal compound on the current collector according to claim 1. 제 3 항에 따른 음극과 양극, PP 또는 PE 분리막, 및 고분자 전해질 또는 고체전해질을 포함하는 리튬전지.A lithium battery comprising a negative electrode and a positive electrode according to claim 3, a PP or PE separator, and a polymer electrolyte or a solid electrolyte. 제 3 항에 따른 리튬전극이 음극으로, MnO2, (CF)n및 SOCl2로 구성된 군에서 선택되는 활물질이 양극으로 구성된 리튬 일차전지.The lithium primary battery of claim 3, wherein the lithium electrode according to claim 3 is an anode, and an active material selected from the group consisting of MnO 2 , (CF) n, and SOCl 2 is an anode. 제 3 항에 따른 리튬전극 또는 탄소전극이 음극으로, 제 3 항에 따른 금속화합물 전극이 양극으로 구성된 리튬 이차전지.A lithium secondary battery comprising a lithium electrode or a carbon electrode according to claim 3 as a negative electrode, and a metal compound electrode according to claim 3 as a positive electrode.
KR10-2001-0032800A 2001-06-12 2001-06-12 Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes KR100404733B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0032800A KR100404733B1 (en) 2001-06-12 2001-06-12 Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0032800A KR100404733B1 (en) 2001-06-12 2001-06-12 Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes

Publications (2)

Publication Number Publication Date
KR20020094530A true KR20020094530A (en) 2002-12-18
KR100404733B1 KR100404733B1 (en) 2003-11-07

Family

ID=27708729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0032800A KR100404733B1 (en) 2001-06-12 2001-06-12 Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes

Country Status (1)

Country Link
KR (1) KR100404733B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878718B1 (en) * 2007-08-28 2009-01-14 한국과학기술연구원 Silicon thin film anode for lithium secondary battery, preparatuon mehode thereof and lithium secondary battery therewith
KR101147201B1 (en) * 2010-02-08 2012-05-25 삼성에스디아이 주식회사 Anode for lithium secondary battery, method for manufacturing thereof, and lithium secondary battery comprising the same
CN103722169A (en) * 2013-12-23 2014-04-16 天津大学 Two-dimensional porous graphitized carbon-coated nickel-tin alloy material and preparation and application thereof
KR101507497B1 (en) * 2013-05-24 2015-03-31 한국과학기술연구원 Anode foil for magnesium secondary battery and its fabrication method
KR20160009511A (en) * 2014-07-16 2016-01-26 프로로지움 홀딩 인크. Anode electrode
US9318746B2 (en) 2011-06-02 2016-04-19 Samung Sdi Co., Ltd. Positive electrode having current collector with carbon layer for rechargeable lithium battery and rechargeable lithium battery including same
KR20190143710A (en) * 2018-06-21 2019-12-31 주식회사 엘지화학 Curent Collector, Electrode and Lithium Secondary Battery Comprising the Same
CN110993876A (en) * 2019-12-24 2020-04-10 烟台孚信达双金属股份有限公司 Copper-aluminum composite terminal for lithium battery tab connection and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709860B1 (en) 2005-07-22 2007-04-23 삼성에스디아이 주식회사 Electrode including si material layer and porous layer and the lithium battery employing the same
KR101150400B1 (en) * 2010-02-25 2012-06-01 엘에스엠트론 주식회사 Multilayer metal foil for lithium-battery and producing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367120B2 (en) * 1992-09-24 2003-01-14 株式会社ユアサコーポレーション Metal current collector with lithium metal and method for producing the same
US5578396A (en) * 1994-10-19 1996-11-26 Arthur D. Little, Inc. Current collector device
JP3395440B2 (en) * 1995-04-04 2003-04-14 松下電器産業株式会社 Air electrode current collecting material for air battery and air battery provided with the same
US5554459A (en) * 1996-01-23 1996-09-10 Bell Communications Research, Inc. Material and method for low internal resistance LI-ion battery
US5747195A (en) * 1996-05-06 1998-05-05 Alamgir; Mohammed Current collectors for high energy density cells
KR100451436B1 (en) * 1999-06-09 2004-10-06 에스케이씨 주식회사 Preparation of electrodes for secondary lithium batteries
JP4564118B2 (en) * 1999-10-26 2010-10-20 パナソニック株式会社 Battery and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878718B1 (en) * 2007-08-28 2009-01-14 한국과학기술연구원 Silicon thin film anode for lithium secondary battery, preparatuon mehode thereof and lithium secondary battery therewith
US8168328B2 (en) 2007-08-28 2012-05-01 Korea Institute Of Science And Technology Silicon thin film anode for lithium secondary battery and preparation method thereof
KR101147201B1 (en) * 2010-02-08 2012-05-25 삼성에스디아이 주식회사 Anode for lithium secondary battery, method for manufacturing thereof, and lithium secondary battery comprising the same
US9318746B2 (en) 2011-06-02 2016-04-19 Samung Sdi Co., Ltd. Positive electrode having current collector with carbon layer for rechargeable lithium battery and rechargeable lithium battery including same
KR101507497B1 (en) * 2013-05-24 2015-03-31 한국과학기술연구원 Anode foil for magnesium secondary battery and its fabrication method
CN103722169A (en) * 2013-12-23 2014-04-16 天津大学 Two-dimensional porous graphitized carbon-coated nickel-tin alloy material and preparation and application thereof
KR20160009511A (en) * 2014-07-16 2016-01-26 프로로지움 홀딩 인크. Anode electrode
US10483534B2 (en) 2014-07-16 2019-11-19 Prologium Holding Inc. Lithium metal anode electrode
KR20190143710A (en) * 2018-06-21 2019-12-31 주식회사 엘지화학 Curent Collector, Electrode and Lithium Secondary Battery Comprising the Same
CN110993876A (en) * 2019-12-24 2020-04-10 烟台孚信达双金属股份有限公司 Copper-aluminum composite terminal for lithium battery tab connection and preparation method thereof

Also Published As

Publication number Publication date
KR100404733B1 (en) 2003-11-07

Similar Documents

Publication Publication Date Title
JP4777593B2 (en) Method for producing lithium ion secondary battery
JP4415241B2 (en) Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
JP5313761B2 (en) Lithium ion battery
WO2001097304A1 (en) Multi-layered lithium electrode, its preparation and lithium batteries comprising it
CN110521033A (en) A kind of silicon substrate anode of prelithiation and preparation method thereof
JP2009054596A (en) Lithium-ion secondary battery, and manufacturing method thereof
WO2002061863A1 (en) A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
KR100485336B1 (en) Multi-layered lithium electrode, its preparation and lithium batteries comprising it
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
KR100447792B1 (en) A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
JP2002042783A (en) Lithium secondary battery
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
KR20200081305A (en) Electrode comprising particle, method for fabricating the same, and lithium secondary battery
CN106063014A (en) Non-aqueous electrolyte secondary cell
JP3707617B2 (en) Negative electrode and battery using the same
JPH06260168A (en) Lithium secondary battery
WO2002061864A1 (en) A lithium electrode comprising surface-treated lithium particles, its fabrication method and lithium battery comprising the same
EP4220750A1 (en) Solid-state battery anode comprising polymer layer for preventing micro-short circuit, and solid-state battery comprising same
KR20010037101A (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
JP2019175568A (en) Lithium ion secondary battery
CN112216809B (en) Metal cathode, preparation method thereof and lithium ion battery
KR100445792B1 (en) United lithium electrode with a separator and lithium batteries comprising it
JP2010056093A (en) Lithium ion secondary battery
JP2023513815A (en) Anode piece, battery and electronic device employing said electrode piece
KR20010097422A (en) Metal oxide electrodes modified by conductive slurries and lithium secondary batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080930

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee