JP2008300179A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2008300179A
JP2008300179A JP2007144756A JP2007144756A JP2008300179A JP 2008300179 A JP2008300179 A JP 2008300179A JP 2007144756 A JP2007144756 A JP 2007144756A JP 2007144756 A JP2007144756 A JP 2007144756A JP 2008300179 A JP2008300179 A JP 2008300179A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007144756A
Other languages
Japanese (ja)
Inventor
Hiroshige Takase
高瀬  浩成
Masaki Koike
小池  将樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2007144756A priority Critical patent/JP2008300179A/en
Publication of JP2008300179A publication Critical patent/JP2008300179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery restoring a negative electrode material deteriorated by repeating charge/discharge and realizing high charge/discharge characteristics. <P>SOLUTION: The nonaqueous secondary battery is equipped with a positive electrode containing a positive active material capable of absorbing and releasing lithium; a negative electrode containing a negative active material capable of alloying with lithium or absorbing and releasing lithium; and a nonaqueous electrolyte containing an electrolyte ionizing lithium ions and a nonaqueous solvent. A metal complex is contained in the nonaqueous electrolyte, a metal complex in the negative electrode, metallic fine particles of the metal complex in the positive electrode, and deposition potential of ionic species eluted from the metallic fine particles or ionized from the metal complex is nobler than 0.3 V vs. Li/Li<SP>+</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池用の添加剤及びリチウム二次電池に関するものである。   The present invention relates to an additive for a lithium secondary battery and a lithium secondary battery.

近年、高出力及び高エネルギー密度の新型二次電池の1つとして、非水電解質を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うリチウム二次電池が利用されている。   In recent years, lithium secondary batteries that use a non-aqueous electrolyte and charge and discharge by moving lithium ions between a positive electrode and a negative electrode have been used as one of new secondary batteries with high output and high energy density. .

このようなリチウム二次電池用負極として、リチウム遷移金属酸化物やリチウムと合金化する材料を負極活物質として用いたものが検討されている。例えばリチウムバナジウム酸化物やシリコン、スズなどが検討されている。しかしながら、これらの材料は、リチウムを吸蔵・放出する際に、活物質の体積が膨張・収縮するため、充放電に伴い活物質が微粉化したり、活物質が集電体から脱離する。このため、電極内の集電性が低下し、充放電サイクル特性が悪くなるという問題があった。   As such a negative electrode for a lithium secondary battery, a lithium transition metal oxide or a material alloyed with lithium is used as a negative electrode active material. For example, lithium vanadium oxide, silicon, tin, and the like are being studied. However, in these materials, the volume of the active material expands and contracts when lithium is occluded / released. Therefore, the active material is pulverized or the active material is detached from the current collector with charge / discharge. For this reason, there existed a problem that the current collection property in an electrode fell and charging / discharging cycling characteristics worsened.

このような問題に対して、シリコンを活物質とし、良好な充放電サイクル特性を示すリチウム二次電池用電極として、スパッタリング法、化学気相堆積法(CVD法)、及び蒸着法などの薄膜形成方法により、集電体上にシリコンの薄膜を形成した電極を提案されている(特許文献1)。また、シリコンにコバルトなどの他の元素を添加したリチウム二次電池用電極を提案している(特許文献2)。   In response to these problems, thin film formation such as sputtering, chemical vapor deposition (CVD), and vapor deposition is used as an electrode for a lithium secondary battery that uses silicon as an active material and exhibits good charge / discharge cycle characteristics. An electrode in which a silicon thin film is formed on a current collector by a method has been proposed (Patent Document 1). Further, an electrode for a lithium secondary battery in which another element such as cobalt is added to silicon has been proposed (Patent Document 2).

一方、炭素材料または金属リチウムなどを負極活物質として用いたリチウム二次電池においては、非水電解液にフォスファゼンを溶解することが提案されている(例えば、特許文献3)。   On the other hand, in a lithium secondary battery using a carbon material or metallic lithium as a negative electrode active material, it has been proposed to dissolve phosphazene in a non-aqueous electrolyte (for example, Patent Document 3).

上記電極を用いたリチウム二次電池は充放電容量が非常に大きい電池であるが、充放電の繰り返しに伴って発生する活物質の微粉化によって孤立した活物質や集電材料と解離した活物質からの導電維持や修復は出来ない。よって、充放電に伴う体積変化の小さいグラファイト(Graphite)負極と比較して、サイクル特性が不十分となる場合があった。
国際公開第01/29913号パンフレット 国際公開第02/071512号パンフレット 特開2006−185829号公報
The lithium secondary battery using the above electrode is a battery having a very large charge / discharge capacity, but the active material isolated from the isolated active material or the current collecting material due to the pulverization of the active material generated by repeated charge / discharge. It is not possible to maintain or restore the electrical conductivity from. Therefore, the cycle characteristics may be insufficient as compared with a graphite (Graphite) negative electrode having a small volume change due to charge and discharge.
International Publication No. 01/29913 Pamphlet International Publication No. 02/071512 Pamphlet JP 2006-185829 A

本発明は上記事情に鑑みてなされたものであって、充放電を繰り返すことで劣化する負極材料を充放電サイクル中に修復して、高い充放電特性を実現することができる非水二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can repair a negative electrode material that deteriorates by repeated charge and discharge during a charge and discharge cycle, and can realize high charge and discharge characteristics. The purpose is to provide.

本発明の非水二次電池は、リチウムの吸蔵、放出が可能な正極活物質を含む正極と、リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、リチウムイオンを電離する電解質と非水溶媒とを含む非水電解液とを備える非水二次電池において、前記非水電解液中に金属錯体化合物を有し、前記金属錯体化合物から電離するイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴であること特徴とする。   The non-aqueous secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of alloying with or absorbing lithium, and lithium, and lithium. In a non-aqueous secondary battery comprising an electrolyte that ionizes ions and a non-aqueous electrolyte solution containing a non-aqueous solvent, the non-aqueous electrolyte solution has a metal complex compound and ionized ions from the metal complex compound The deposition potential is nobler than 0.3 V on the basis of a lithium reference electrode.

また、本発明の非水二次電池は、リチウムの吸蔵、放出が可能な正極活物質を含む正極と、リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、リチウムイオンを電離する電解質と非水溶媒とを含む非水電解液とを備える非水二次電池において、前記負極中に金属錯体化合物を有し、前記金属錯体化合物から電離するイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴であること特徴とする。   The non-aqueous secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, and a negative electrode including a negative electrode active material capable of being alloyed with lithium and occluding and releasing lithium. In a non-aqueous secondary battery comprising an electrolyte that ionizes lithium ions and a non-aqueous electrolyte solution containing a non-aqueous solvent, the negative electrode has a metal complex compound and is ionized from the metal complex compound. It is characterized in that the potential is nobler than 0.3 V on the basis of the lithium reference electrode.

また、本発明の非水二次電池においては、前記金属錯体化合物に含まれる金属元素が、Al、Si、Sc、Ti、V、Co、Ni、Cu、Zn、Zr、Nb、Ag、In、Sn、W、Ga、Pd、PtまたはAuのいずれかであることが好ましい。   In the nonaqueous secondary battery of the present invention, the metal element contained in the metal complex compound contains Al, Si, Sc, Ti, V, Co, Ni, Cu, Zn, Zr, Nb, Ag, In, It is preferably any of Sn, W, Ga, Pd, Pt or Au.

また、本発明の非水二次電池は、リチウムの吸蔵、放出が可能な正極活物質を含む正極と、リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、リチウムイオンを電離する電解質と非水溶媒とを含む非水電解液とを備える非水二次電池において、前記正極中に金属微粒子または金属錯体化合物を有し、前記金属から溶出する、または金属錯体化合物から電離するイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴であること特徴とする。   The non-aqueous secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, and a negative electrode including a negative electrode active material capable of being alloyed with lithium and occluding and releasing lithium. In a non-aqueous secondary battery comprising a non-aqueous electrolyte containing an electrolyte that ionizes lithium ions and a non-aqueous solvent, the positive electrode has metal fine particles or a metal complex compound and is eluted from the metal, or metal The deposition potential of the ion species ionized from the complex compound is characterized by being nobler than 0.3 V on the basis of the lithium reference electrode.

また、本発明の非水二次電池においては、前記金属微粒子または前記金属錯体化合物に含まれる金属元素が、Al、Si、Sc、Ti、V、Co、Ni、Cu、Zn、Zr、Nb、Ag、In、Sn、W、Ga、Pd、PtまたはAuのいずれかであることが好ましい。   In the nonaqueous secondary battery of the present invention, the metal element contained in the metal fine particles or the metal complex compound contains Al, Si, Sc, Ti, V, Co, Ni, Cu, Zn, Zr, Nb, Ag, In, Sn, W, Ga, Pd, Pt or Au is preferable.

また、本発明のリチウム二次電池においては、前記負極活物質がリチウムバナジウム酸化物を含むことが好ましい。   Moreover, in the lithium secondary battery of this invention, it is preferable that the said negative electrode active material contains a lithium vanadium oxide.

上記のリチウム二次電池によれば、リチウムの吸蔵、放出が可能な正極活物質を含む正極と、リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、非水電解液とを具備してなり、前記正極に金属微粒子あるいは金属錯体化合物が、あるいは前記負極に金属錯体化合物が、あるいは前記電解液に金属錯体化合物が添加されている。上記金属微粒子から溶出するまたは金属錯体化合物から電離する金属イオンの析出電位がリチウム参照極基準で0.3Vよりも貴である。従って、本発明のリチウム二次電池によれば、充電過程で負極活物質の亀裂間に電子伝導性を与えて容量劣化を抑制し、サイクル特性に優れたリチウム二次電池を提供できる。   According to the lithium secondary battery, a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of alloying with or absorbing lithium, and non- A metal electrolyte compound is added to the positive electrode, a metal complex compound is added to the negative electrode, or a metal complex compound is added to the electrolytic solution. The deposition potential of metal ions eluted from the metal fine particles or ionized from the metal complex compound is nobler than 0.3 V on the basis of the lithium reference electrode. Therefore, according to the lithium secondary battery of the present invention, it is possible to provide a lithium secondary battery having excellent cycle characteristics by imparting electronic conductivity between cracks of the negative electrode active material during charging and suppressing capacity deterioration.

以下、本発明の実施の形態について説明する。
本発明のリチウム二次電池は、正極と負極と非水電解質とを具備して構成されている。
本発明のリチウム二次電池においては、予め正極に金属微粒子あるいはそれの金属錯体化合物が、または非水電解液中あるいは負極に金属錯体化合物が添加されている。前記金属微粒子が正極に添加された場合には、正極電位が金属溶解電位に達するとイオン化して電解液中に溶出する。金属錯体化合物として正極、負極あるいは非水電解質に添加された場合には、電解液中に静電的に電離して金属イオンとして溶存する。それらの金属イオンが初充電時に、負極に電析する。電析量は、初回及び2回目の充電条件及び添加量で制御する。
Embodiments of the present invention will be described below.
The lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, and a nonaqueous electrolyte.
In the lithium secondary battery of the present invention, metal fine particles or a metal complex compound thereof are added to the positive electrode in advance, or a metal complex compound is added to the non-aqueous electrolyte or the negative electrode. When the metal fine particles are added to the positive electrode, when the positive electrode potential reaches the metal dissolution potential, it is ionized and eluted into the electrolytic solution. When added as a metal complex compound to the positive electrode, negative electrode or non-aqueous electrolyte, it is electrostatically ionized in the electrolyte and dissolved as metal ions. These metal ions are electrodeposited on the negative electrode during the initial charge. The amount of electrodeposition is controlled by the first and second charging conditions and the amount added.

正極に金属微粒子を添加した場合、初回充電の時に電気化学的酸化を受けて金属イオンとして電解液中に溶出する。添加剤が金属錯体化合物の場合は、電池に電解液を注液した後に電解液中に静電的に電離して溶存する。それら金属イオンが電気泳動して負極近傍に拡散していき、負極活物質の電位が各金属イオンの還元電位(析出電位)に達すると、負極に近い金属イオンから順次電気化学的還元反応にて負極に析出(電析)する。
この時、前記負極活物質はリチウムイオンの挿入反応を行っているが、リチウム吸蔵していく表面から体積膨張して亀裂が生じはじめる。この充電過程においても、負極電位が前記金属析出電位に達すると、金属イオンが電気化学的還元反応にて負極活物質に電析して被覆する。放電時のリチウムイオンの脱離反応で体積収縮して亀裂が拡大するが、次の充電で前記の電析で、その亀裂部分にも電析する。
When metal fine particles are added to the positive electrode, it undergoes electrochemical oxidation during the first charge and is eluted into the electrolyte as metal ions. In the case where the additive is a metal complex compound, the electrolyte is poured into the battery and then electrostatically ionized and dissolved in the electrolyte. When these metal ions migrate and diffuse to the vicinity of the negative electrode, and the potential of the negative electrode active material reaches the reduction potential (precipitation potential) of each metal ion, the metal ions near the negative electrode are sequentially subjected to an electrochemical reduction reaction. Deposited (electrodeposited) on the negative electrode.
At this time, the negative electrode active material undergoes an insertion reaction of lithium ions. However, the negative electrode active material starts to crack due to volume expansion from the surface where lithium is occluded. Also in this charging process, when the negative electrode potential reaches the metal deposition potential, the metal ions are electrodeposited on the negative electrode active material by an electrochemical reduction reaction and coated. The volume shrinks due to the lithium ion desorption reaction during discharge, and the crack expands. However, the next charge causes the above electrodeposition, and the crack is also electrodeposited.

負極に金属錯体化合物を添加した場合、電池に電解液を注液した後に電解液中に静電的に電離して溶存する。それら金属イオンが負極中及び近傍に溶存している時に、負極活物質の電位が各金属イオンの還元電位(析出電位)に達すると、負極に近い金属イオンから順次電気化学的還元反応にて負極に析出(電析)する。
電解液に金属錯体化合物を添加した場合、すでに電解液中で静電的に電離して溶存おり、それら金属イオンが負極/電解液界面に吸着していたり、負極近傍に溶存している。そして、負極活物質の電位が各金属イオンの還元電位(析出電位)に達すると、負極に近い金属イオンから順次電気化学的還元反応にて負極に析出(電析)する。
When a metal complex compound is added to the negative electrode, the electrolytic solution is poured into the battery, and then electrostatically ionized and dissolved in the electrolytic solution. When these metal ions are dissolved in and near the negative electrode and the potential of the negative electrode active material reaches the reduction potential (precipitation potential) of each metal ion, the negative electrode is sequentially subjected to an electrochemical reduction reaction from the metal ions close to the negative electrode. Precipitated (electrodeposited).
When a metal complex compound is added to the electrolytic solution, it is already electrostatically ionized and dissolved in the electrolytic solution, and these metal ions are adsorbed at the negative electrode / electrolytic solution interface or dissolved in the vicinity of the negative electrode. When the potential of the negative electrode active material reaches the reduction potential (deposition potential) of each metal ion, the metal ions close to the negative electrode are sequentially deposited (deposited) on the negative electrode by an electrochemical reduction reaction.

上記の充電の時、前記負極活物質はリチウムイオンの挿入反応を行っているが、リチウム吸蔵していく表面から体積膨張して亀裂が生じはじめる。この充電過程においても、負極電位が前記金属析出電位に達すると、金属イオンが電気化学的還元反応にて負極活物質に電析して被覆する。放電時のリチウムイオンの脱離反応で体積収縮して亀裂が拡大するが、次の充電で前記の電析で、その亀裂部分にも電析する。
以下、本発明のリチウム二次電池を構成する正極、負極及び非水電解質について順次説明する。
During the above charging, the negative electrode active material undergoes an insertion reaction of lithium ions. However, the negative electrode active material starts to crack due to volume expansion from the surface where lithium is occluded. Also in this charging process, when the negative electrode potential reaches the metal deposition potential, the metal ions are electrodeposited on the negative electrode active material by an electrochemical reduction reaction and coated. The volume shrinks due to the lithium ion desorption reaction during discharge, and the crack expands. However, the next charge causes the above electrodeposition, and the crack is also electrodeposited.
Hereinafter, the positive electrode, the negative electrode, and the nonaqueous electrolyte constituting the lithium secondary battery of the present invention will be sequentially described.

(正極)
本発明のリチウム二次電池では、正極として、リチウムの吸蔵、放出が可能な正極活物質と導電助材と結着剤とが含有されてなる正極合材と、正極合材に接合される正極集電体とからなるシート状の電極を用いることができる。また、正極として、上記の正極合材を円板状に成形させてなるペレット型若しくはシート状の正極も用いることができる。
また、上記の正極合材には、後述する金属微粒子あるいは金属錯体化合物が含有されていてもよい。
(Positive electrode)
In the lithium secondary battery of the present invention, as a positive electrode, a positive electrode mixture containing a positive electrode active material capable of occluding and releasing lithium, a conductive additive, and a binder, and a positive electrode joined to the positive electrode mixture A sheet-like electrode made of a current collector can be used. Further, as the positive electrode, a pellet type or sheet-shaped positive electrode formed by forming the above positive electrode mixture into a disk shape can also be used.
In addition, the positive electrode mixture may contain metal fine particles or metal complex compounds described later.

正極活物質としては、Liを含んだ化合物、酸化物、硫化物を挙げることができ、含まれる金属としては、例えば、Mn、Co、Ni、Fe、Al等、少なくとも一種類以上含む物質を例示できる。更に具体的にはLiMn、LiCoO、LiNiO、LiFeO、LiNi1/3Co1/3Mn1/3、LiNi0.8Co0.2等を例示できる。
また結着剤としてはポリフッ化ビニリデン、ポリ4フッ化エチレン等を例示できる。
更に導電助材としては、カーボンブラック、ケッチェンブラック、黒鉛等の炭素化物を例示できる。更に正極集電体としては、アルミニウム、ステンレス等からなる金属箔または金属網を例示できる。
Examples of the positive electrode active material include Li-containing compounds, oxides, and sulfides, and examples of the contained metal include substances containing at least one or more of Mn, Co, Ni, Fe, Al, and the like. it can. More specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.8 Co 0.2 O 2 and the like can be exemplified.
Examples of the binder include polyvinylidene fluoride and polytetrafluoroethylene.
Furthermore, examples of the conductive aid include carbonized materials such as carbon black, ketjen black, and graphite. Furthermore, examples of the positive electrode current collector include a metal foil or a metal net made of aluminum, stainless steel, or the like.

金属微粒子または金属錯体化合物を正極に添加する場合の添加率は、金属微粒子や金属錯体化合物に関らず、正極合材重量に対して0.0001質量%以上0.1質量%以下の範囲が好ましく、0.001質量%以上0.05質量%以下の範囲がより好ましい。金属微粒子径は、D50で1μm以下が好ましく、電池作製時の両極間の短絡や溶出効率、溶出後の正極空隙率を加味すれば0.1μm以下がより好ましい。添加率が0.001質量%以上であれば、充分な電析被膜が形成される。   The addition rate in the case of adding metal fine particles or metal complex compounds to the positive electrode has a range of 0.0001% by mass to 0.1% by mass with respect to the weight of the positive electrode mixture regardless of the metal fine particles or metal complex compounds. The range of 0.001% by mass or more and 0.05% by mass or less is more preferable. The metal fine particle diameter is preferably 1 μm or less at D50, and more preferably 0.1 μm or less in consideration of the short circuit between the electrodes during electrode fabrication, elution efficiency, and the cathode porosity after elution. If the addition rate is 0.001% by mass or more, a sufficient electrodeposition coating is formed.

(負極)
次に、負極としては、リチウムと合金化あるいはリチウムの吸蔵、放出が可能な負極活物質と結着剤及び必要に応じて導電助材とが含有されてなる負極合材と、この負極合材に接合される負極集電体とからなるシート状の電極を用いることができる。また、負極として、上記の負極合材を円板状に成形させてなるペレット型若しくはシート状の電極も用いることができる。
(Negative electrode)
Next, as the negative electrode, a negative electrode mixture containing a negative electrode active material capable of being alloyed with lithium or occluding and releasing lithium, a binder, and optionally a conductive additive, and the negative electrode mixture A sheet-like electrode comprising a negative electrode current collector bonded to the electrode can be used. Further, as the negative electrode, a pellet-type or sheet-like electrode obtained by forming the negative electrode mixture into a disk shape can also be used.

負極の結着剤は、有機質または無機質のいずれでも良く、負極活物質と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより負極活物質を結着させるものであればどのようなものでもよい。また、負極活物質と共に混合し、加圧成形等の固化成形を行うことにより負極活物質を結着させるものでもよい。このような結着剤として例えば、ビニル系樹脂、セルロース系樹脂、フェノール樹脂、熱可塑性樹脂、熱硬化性樹脂などが使用でき、例えばポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、スチレンブタジエンラバー、等の樹脂を例示できる。
また、負極活物質及び結着剤の他に、導電助材としてカーボンブラック、黒鉛粉末、炭素繊維、金属粉末、金属繊維等を添加しても良い。更に負極集電体としては、銅からなる金属箔または金属網を例示できる。
The binder for the negative electrode may be either organic or inorganic, and may be any material as long as it is dispersed or dissolved in a solvent together with the negative electrode active material and further binds the negative electrode active material by removing the solvent. . Alternatively, the negative electrode active material may be bound by mixing with the negative electrode active material and performing solidification molding such as pressure molding. As such a binder, for example, vinyl resin, cellulose resin, phenol resin, thermoplastic resin, thermosetting resin and the like can be used, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, etc. Resins can be exemplified.
In addition to the negative electrode active material and the binder, carbon black, graphite powder, carbon fiber, metal powder, metal fiber, or the like may be added as a conductive additive. Furthermore, examples of the negative electrode current collector include a metal foil or a metal net made of copper.

負極活物質としては、リチウムと合金化が可能な金属質物単体やリチウムの吸蔵、放出が可能なLiを含んだV化合物、V酸化物、V硫化物を挙げることができ、含まれる金属としては、例えば、Mg、Ti、Al、Zr等、少なくとも一種類以上含む物質を例示できる。更に具体的にはLi1.10.9が例示できる。リチウムと合金化が可能な金属としては、Si、Al、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。また負極活物質として金属リチウム箔も使用できる。前記金属質物と複合化する炭素質材料としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等を例示できる。
金属錯体化合物を負極に添加する場合の添加率は、負極合材重量に対して0.0001質量%以上0.1質量%以下の範囲が好ましく、0.001質量%以上0.05質量%以下の範囲がより好ましい。金属錯体化合物の結晶粉体粒子径は、D50で1μm以下が好ましく、電解液を電池内に注液した後の溶解性や溶出効率、溶出後の負極空隙率を加味すれば0.1μm以下がより好ましい。添加率が0.001質量%以上であれば、充分な電析被膜が形成される。
Examples of the negative electrode active material include a metal substance that can be alloyed with lithium and a lithium-containing V compound, V oxide, and V sulfide that can occlude and release lithium. Examples thereof include substances containing at least one kind such as Mg, Ti, Al, Zr, and the like. More specifically, Li 1.1 V 0.9 O 2 can be exemplified. Examples of metals that can be alloyed with lithium include Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd. A metal lithium foil can also be used as the negative electrode active material. Examples of the carbonaceous material to be compounded with the metallic material include artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon.
When the metal complex compound is added to the negative electrode, the addition ratio is preferably in the range of 0.0001% by mass to 0.1% by mass with respect to the negative electrode mixture weight, and is 0.001% by mass to 0.05% by mass. The range of is more preferable. The crystal powder particle size of the metal complex compound is preferably 1 μm or less at D50, and is 0.1 μm or less in consideration of the solubility and elution efficiency after pouring the electrolyte into the battery and the negative electrode porosity after elution. More preferred. If the addition rate is 0.001% by mass or more, a sufficient electrodeposition coating is formed.

(非水電解質)
非水電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる非水電解質を例示できる。また、非水電解質には、後述する金属錯体化合物が添加されていてもよい。
(Nonaqueous electrolyte)
Examples of the non-aqueous electrolyte include a non-aqueous electrolyte in which a lithium salt is dissolved in an aprotic solvent. Moreover, the metal complex compound mentioned later may be added to the nonaqueous electrolyte.

非プロトン性溶媒は、環状カ−ボネ−ト単独あるいは鎖状カ−ボネ−トと混合使用されるのが一般だが、混合する場合、次の組合せ例を挙げることができる。
エチレンカ−ボネ−トとジメチルカ−ボネ−ト、エチレンカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとジエチルカ−ボネ−ト、プロピレンカ−ボネ−トとジメチルカ−ボネ−ト、プロピレンカ−ボネ−トとメチルエチルカ−ボネ−ト、プロピレンカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとジメチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト。
環状カ−ボネ−トと鎖状カ−ボネ−トとの混合割合(環状カ−ボネ−ト:鎖状カ−ボネ−ト)は、重量比で表して、好ましくは1:99〜99:1、より好ましくは5:95〜70:30、さらに好ましくは10:90〜60:40である。この混合割合はリチウム二次電池の充放電特性を損なわない非水電解質の良好な電気伝導性をもって適宜決定される。
The aprotic solvent is generally used alone or in combination with a cyclic carbonate, but when mixed, the following combination examples can be given.
Ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene Carbonate and methyl ethyl carbonate, propylene carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and dimethyl carbonate, ethylene carbonate, Propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate, Ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and dimethyl carbonate Methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.
The mixing ratio of the cyclic carbonate and the chain carbonate (cyclic carbonate: chain carbonate) is preferably expressed by weight ratio, preferably 1:99 to 99: 1, More preferably, it is 5: 95-70: 30, More preferably, it is 10: 90-60: 40. This mixing ratio is appropriately determined with good electrical conductivity of the nonaqueous electrolyte that does not impair the charge / discharge characteristics of the lithium secondary battery.

一方、リチウム塩には、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF{C(2k+1)}(6−n)(n=1〜5の整数、k=1〜8の整数)などのリチウム塩が挙げられる。また、次の一般式で示されるリチウム塩も使用することができる。LiC(SO)(SO)(SO)、LiN(SOOR)(SOOR)、LiN(SO10)(SOOR11)、LiN(SO12)(SO13)。ここで、R〜R13は、互いに同一であってもよいし異なっていてもよく、炭素数1〜8のパ−フルオロアルキル基である。これらのリチウム塩は単独で使用してもよいし、また2種類以上を混合して使用してもよい。
また、従来技術で適用される添加剤(ビニレンカーボネート、フルオロエチレンカーボネート等)を添加してもよい。
On the other hand, lithium salt includes LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiPF n {C k F (2k + 1) )} (6-n) (wherein n is an integer of 1 to 5, k is an integer of 1 to 8). Moreover, the lithium salt shown by the following general formula can also be used. LiC (SO 2 R 5 ) (SO 2 R 6 ) (SO 2 R 7 ), LiN (SO 2 OR 8 ) (SO 2 OR 9 ), LiN (SO 2 R 10 ) (SO 2 OR 11 ), LiN ( SO 2 R 12) (SO 2 R 13). Here, R 5 to R 13 may be the same as or different from each other, and are a C 1-8 perfluoroalkyl group. These lithium salts may be used alone or in combination of two or more.
Moreover, you may add the additives (vinylene carbonate, fluoroethylene carbonate, etc.) applied with a prior art.

また非水電解質として、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに、上記の非プロトン性溶媒及びリチウム塩を含浸させたもの等、いわゆるポリマー電解質を用いることもできる。   In addition, as a non-aqueous electrolyte, a polymer such as PEO or PVA mixed with any of the lithium salts described above, a highly swellable polymer impregnated with the above aprotic solvent or lithium salt, or the like A so-called polymer electrolyte can also be used.

金属錯体化合物を非水電解質に添加した場合の添加率は、0.01質量%以上1質量%以下の範囲が好ましく、0.05質量%以上1質量%以下の範囲がより好ましく、0.01質量%以上0.5質量%以下の範囲が更に好ましい。添加率が0.05質量%以上であれば、充分な電析被膜が形成できる。   When the metal complex compound is added to the nonaqueous electrolyte, the addition ratio is preferably in the range of 0.01% by mass to 1% by mass, more preferably in the range of 0.05% by mass to 1% by mass, A range of from mass% to 0.5 mass% is more preferable. When the addition rate is 0.05% by mass or more, a sufficient electrodeposition coating can be formed.

更に、本発明のリチウム二次電池は、正極、負極、非水電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。セパレータは、非水電解質がポリマー電解質でない場合には必須であり、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等、公知のセパレータを適宜使用できる。   Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the non-aqueous electrolyte, and may include other members as necessary. For example, the lithium secondary battery includes a separator that separates the positive electrode and the negative electrode. Also good. The separator is essential when the non-aqueous electrolyte is not a polymer electrolyte, and a known separator such as a porous polypropylene film or a porous polyethylene film can be appropriately used.

次に、正極や負極、非水電解質に添加する添加剤について説明する。
本発明に係る微粒子及び錯体化合物は、溶出または電離した金属イオン種の析出電位がリチウム参照極基準で0.3Vよりも貴である金属からなるものである。
Next, the additive added to a positive electrode, a negative electrode, and a nonaqueous electrolyte is demonstrated.
The fine particles and complex compounds according to the present invention are made of a metal having a deposition potential of the eluted or ionized metal ion species that is nobler than 0.3 V on the basis of the lithium reference electrode.

前記金属微粒子および金属錯体化合物を構成する金属元素としては、析出物の電子伝導性の高いものが亀裂間の高い集電効率の観点から好ましく、また、負極活物質の主な構成元素と同じ金属が活物質との高い密着性の観点から好ましい。例えば、Al、Si、Sc、Ti、V、Co、Ni、Cu、Zn、Zr、Nb、Ag、In、Sn、W、Ga、Pd、Pt、Auが挙げられる。
前記金属微粒子の寸法仕様を規定するものとして、金属微粒子径はD50で1μm以下が好ましく、電池作製時の両極間の短絡や溶出効率、溶出後の正極空隙率を加味すれば0.1μm以下がより好ましい。添加率が0.001質量%以上であれば、充分な電析被膜が形成される。
As the metal element constituting the metal fine particles and the metal complex compound, a deposit having high electron conductivity is preferable from the viewpoint of high current collection efficiency between cracks, and the same metal as the main constituent element of the negative electrode active material Is preferable from the viewpoint of high adhesion to the active material. Examples include Al, Si, Sc, Ti, V, Co, Ni, Cu, Zn, Zr, Nb, Ag, In, Sn, W, Ga, Pd, Pt, and Au.
As for defining the dimensional specification of the metal fine particles, the metal fine particle diameter is preferably 1 μm or less at D50, and 0.1 μm or less is taken into account when short-circuiting between electrodes and elution efficiency at the time of battery production, and the positive electrode porosity after elution are taken into account. More preferred. If the addition rate is 0.001% by mass or more, a sufficient electrodeposition coating is formed.

前記金属錯体化合物としては、前述金属元素の有機酸あるいは無機酸の塩であり、金属イオンがカチオン分子およびアニオン分子の構成元素であってもよい。例えば、AgBF、AgPF、NiPF、Cu(BF、Ga(ClO、LiTiF、有機酸である−PF{C(2k+1)(6−n)(n=1〜5の整数、k=1〜8の整数)、−C(SO)(SO)(SO)、−N(SOOR)(SOOR)、−N(SO10)(SOOR11)、−N(SO12)(SO13)などの塩が挙げられる。ここで、R〜R13は、互いに同一であってもよいし異なっていてもよく、炭素数1〜8のパ−フルオロアルキル基である。これらの塩は単独で使用してもよいし、また2種類以上を混合して使用してもよい。 The metal complex compound may be a salt of an organic acid or an inorganic acid of the metal element, and the metal ion may be a constituent element of a cation molecule or an anion molecule. For example, AgBF 4 , AgPF 6 , NiPF 6 , Cu (BF 4 ) 2 , Ga (ClO 4 ) 3 , Li 2 TiF 6 , organic acid —PF n {C k F (2k + 1) } (6-n) (n = 1 to 5 integer, k = 1 to 8 integer), - C (SO 2 R 5) (SO 2 R 6) (SO 2 R 7), - n (SO 2 OR 8) (SO 2 OR 9 ), —N (SO 2 R 10 ) (SO 2 OR 11 ), and —N (SO 2 R 12 ) (SO 2 R 13 ) are included. Here, R 5 to R 13 may be the same as or different from each other, and are a C 1-8 perfluoroalkyl group. These salts may be used alone or in combination of two or more.

上記の導電性被膜形成化合物によって形成される金属被膜の析出形態は、負極電位が各金属の析出電位に相当する電池電圧での印加する電流、電圧保持条件や温度、添加量で基本的に制御できる。また、デンドライ状析出を制御するために、ホウ素化合物や弗素化エステルを併用するとさらによい。   The deposition pattern of the metal film formed by the conductive film forming compound is basically controlled by the current applied at the battery voltage corresponding to the deposition potential of each metal, the voltage holding conditions, the temperature, and the addition amount. it can. Further, in order to control dendritic precipitation, it is more preferable to use a boron compound or a fluorinated ester in combination.

また、形成された導電性被膜がリチウムと合金化するなど活物質として機能する場合、導電性被膜が形成される電位よりも低い電位で被膜形成する化合物を同時に添加すると非水電解質の分解も同時に抑制することができる。例えば、非水電解質にビニレンカーボネートなどの従来のSEI形成添加剤を添加すればよい。SEI形成添加剤は、正極及び負極にも予め添加していてもよい。   In addition, when the formed conductive film functions as an active material such as an alloy with lithium, if a compound that forms a film at a potential lower than the potential at which the conductive film is formed is added at the same time, the decomposition of the nonaqueous electrolyte is simultaneously performed. Can be suppressed. For example, a conventional SEI forming additive such as vinylene carbonate may be added to the non-aqueous electrolyte. The SEI formation additive may be added to the positive electrode and the negative electrode in advance.

導電性被膜形成化合物を正極に添加するには、例えば、あらかじめ正極活物質と導電助材と結着剤と被膜形成化合物とを含むスラリーを調製し、このスラリーを集電体上に塗布し、加熱によりスラリー中の溶媒を除去することによって、導電性被膜形成化合物を正極に添加すればよい。
この方法では、スラリー中の溶媒を加熱除去する際に、40℃〜120℃程度、好ましくは80℃〜120℃、更に好ましくは100℃〜120℃で加熱するとよい。
In order to add the conductive film forming compound to the positive electrode, for example, a slurry containing a positive electrode active material, a conductive additive, a binder, and a film forming compound is prepared in advance, and this slurry is applied onto a current collector. The conductive film forming compound may be added to the positive electrode by removing the solvent in the slurry by heating.
In this method, when the solvent in the slurry is removed by heating, heating is performed at about 40 ° C to 120 ° C, preferably 80 ° C to 120 ° C, more preferably 100 ° C to 120 ° C.

また、被膜形成化合物を非水電解質に添加するには、予め非水電解質に被膜形成化合物を添加しておき、これを電池に注液してもよく、非水電解質と被膜形成化合物を別個に電池に添加してもよい。
このようにして添加された導電性被膜形成化合物は、電池組立後の初充電工程において通電された際に電析して、負極上に導電性被膜を形成する。初充電時には、0℃〜80℃程度、好ましくは10℃〜60℃、更に好ましくは14℃〜38℃に加熱しながら充電を行いとよい。加熱しながら充電することによって、導電性被膜の形成を促進できる。
このように、主に2回目充電までに被膜形成される。
In addition, in order to add the film-forming compound to the non-aqueous electrolyte, the film-forming compound may be added to the non-aqueous electrolyte in advance, and this may be injected into the battery. The non-aqueous electrolyte and the film-forming compound may be separately added. It may be added to the battery.
The conductive film-forming compound added in this way is electrodeposited when energized in the initial charging step after battery assembly, and forms a conductive film on the negative electrode. At the time of initial charging, charging may be performed while heating to about 0 ° C to 80 ° C, preferably 10 ° C to 60 ° C, more preferably 14 ° C to 38 ° C. By charging while heating, the formation of the conductive film can be promoted.
Thus, a film is formed mainly by the second charge.

以上説明したように、本実施形態のリチウム二次電池によれば、溶出または電離したイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴である金属微粒子あるいは錯体化合物である導電性被膜形成が添加されており、この被膜形成化合物によって負極に導電性被膜が形成されるので、リチウムバナジウム酸化物やシリコン、スズなどの高容量負極活物質を使用したリチウム二次電池を実現することができる。   As described above, according to the lithium secondary battery of the present embodiment, the conductivity is a metal fine particle or complex compound in which the precipitation potential of the eluted or ionized ion species is nobler than 0.3 V on the basis of the lithium reference electrode. Since film formation is added and a conductive film is formed on the negative electrode by this film-forming compound, to realize a lithium secondary battery using a high-capacity negative electrode active material such as lithium vanadium oxide, silicon, or tin Can do.

(実施例1)
結着材であるポリフッ化ビニリデン(呉羽化学工業株式会社製#1100)が溶解されたN−メチル−2−ピロリドン溶液を調製し、この溶液に、LiCoO95質量部と、導電カーボン2質量部とを加えてスラリー化した。調製済みの正極スラリーを厚み20μmのAl箔上に均一に塗布、乾燥して正極とした。正極における、LiCoO:導電カーボン:ポリフッ化ビニリデン:Ni微粒子の比は95:2:3であった。
次に、リチウムバナジウム酸化物(LVO)粉末と炭素材料粉末の混合物を負極活物質とし、このLVO粉末と炭素材料粉末の混合粉末90重量部と、結着剤となるポリフッ化ビニリデン(PVDF)10重量部とを混合し、N−メチル−2−ピロリドンに分散させて負極スラリーとした。そして、この負極スラリーを厚み20μmの銅箔上に均一に塗布、乾燥して負極とした。
Example 1
An N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder (# 1100 manufactured by Kureha Chemical Industry Co., Ltd.) was dissolved was prepared. In this solution, 95 parts by mass of LiCoO 2 and 2 parts by mass of conductive carbon were prepared. And was slurried. The prepared positive electrode slurry was uniformly applied on an Al foil having a thickness of 20 μm and dried to obtain a positive electrode. The ratio of LiCoO 2 : conductive carbon: polyvinylidene fluoride: Ni fine particles in the positive electrode was 95: 2: 3.
Next, a mixture of lithium vanadium oxide (LVO) powder and carbon material powder is used as the negative electrode active material, 90 parts by weight of the mixed powder of this LVO powder and carbon material powder, and polyvinylidene fluoride (PVDF) 10 serving as a binder. Part by weight was mixed and dispersed in N-methyl-2-pyrrolidone to obtain a negative electrode slurry. And this negative electrode slurry was uniformly apply | coated on the 20-micrometer-thick copper foil, it dried, and it was set as the negative electrode.

正極及び負極を20μmのポリプロピレン製セパレータを介在させ、非水電解質を注液して2032型のコイン型リチウム二次電池を作製した。
非水電解質としては、エチレンカーボネートとジエチルカーボネートとが3:7の割合で混合されてなる混合溶媒に、LiPFが1.50モル/Lの濃度で溶解されてなる非水電解液を用いた。
また、非水電解液には、ヘキサフルオロリン酸銀(AgPF)を非水電解質に対して0.1質量%の割合で添加した。
A 2032 μm polypropylene separator was interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte was injected to prepare a 2032 type coin-type lithium secondary battery.
As the non-aqueous electrolyte, a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.50 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 3: 7 was used. .
In addition, silver hexafluorophosphate (AgPF 6 ) was added to the non-aqueous electrolyte at a ratio of 0.1% by mass with respect to the non-aqueous electrolyte.

実施例1のリチウム二次電池について、導電性被膜形成工程として定電流定電圧(0.1C)で3.8Vまで28℃の環境中で充電後、定電流(0.1C)で3.0Vまで放電した。続いて、効果の確認のために定電流定電圧(0.1C)で4.35Vまで充電後、定電流(0.1C)で3.0Vまでの放電を繰り返し行い、放電容量を推移を測定した。導電性被膜形成工程以後の4.35Vから3.0Vまでの充放電における結果を図1に示す。   About the lithium secondary battery of Example 1, after charging in an environment of 28 ° C. up to 3.8 V at a constant current and constant voltage (0.1 C) as a conductive film forming step, 3.0 V at a constant current (0.1 C). Discharged until. Next, to confirm the effect, after charging to 4.35V with constant current and constant voltage (0.1C), discharging to 3.0V with constant current (0.1C) was repeated, and the transition of discharge capacity was measured. did. FIG. 1 shows the results of charging and discharging from 4.35 V to 3.0 V after the conductive film forming step.

(実施例2)
非水電解質(非水電解液)に、テトラフルオロホウ酸銀(AgBF)を非水電解質に対して0.1質量%の割合で添加したこと以外は上記実施例1と同様にして、実施例2のリチウム二次電池を製造した。
実施例2のリチウム二次電池について、実施例1と同様にして評価した。結果を図1に示す。
(Example 2)
Implementation was performed in the same manner as in Example 1 except that silver tetrafluoroborate (AgBF 4 ) was added to the nonaqueous electrolyte (nonaqueous electrolyte) at a ratio of 0.1% by mass with respect to the nonaqueous electrolyte. The lithium secondary battery of Example 2 was manufactured.
The lithium secondary battery of Example 2 was evaluated in the same manner as in Example 1. The results are shown in FIG.

(実施例3)
非水電解質(非水電解液)に、テトラフルオロホウ酸銅(Cu(BF)を非水電解質に対して0.1質量%の割合で添加したこと以外は上記実施例1と同様にして、実施例2のリチウム二次電池を製造した。
実施例3のリチウム二次電池について、実施例1と同様にして評価した。結果を図1に示す。
(Example 3)
The same as Example 1 except that copper tetrafluoroborate (Cu (BF 4 ) 2 ) was added to the nonaqueous electrolyte (nonaqueous electrolyte) at a ratio of 0.1 mass% with respect to the nonaqueous electrolyte. Thus, a lithium secondary battery of Example 2 was produced.
The lithium secondary battery of Example 3 was evaluated in the same manner as in Example 1. The results are shown in FIG.

(実施例4)
実施例1と同様に、結着材であるポリフッ化ビニリデン(呉羽化学工業株式会社製#1100)が溶解されたN−メチル−2−ピロリドン溶液を調製し、この溶液に、LiCoO95質量部と、導電カーボン2質量部、Ni微粒子(粒子径D50、0.4μm)0.03質量部とを加えてスラリー化した。調製済みの正極スラリーを厚み20μmのAl箔上に均一に塗布、乾燥して正極とした。正極における、LiCoO:導電カーボン:ポリフッ化ビニリデン:Ni微粒子の比は95.00:2.00:2.99:0.01であった。
Example 4
Similarly to Example 1, an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride (# 1100 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder was dissolved was prepared, and 95 parts by mass of LiCoO 2 was added to this solution. Then, 2 parts by mass of conductive carbon and 0.03 parts by mass of Ni fine particles (particle diameter D50, 0.4 μm) were added to form a slurry. The prepared positive electrode slurry was uniformly applied on an Al foil having a thickness of 20 μm and dried to obtain a positive electrode. The ratio of LiCoO 2 : conductive carbon: polyvinylidene fluoride: Ni fine particles in the positive electrode was 95.00: 2.00: 2.99: 0.01.

正極及び負極を20μmのポリプロピレン製セパレータを介在させ、非水電解質を注液して2032型のコイン型リチウム二次電池を作製した。
非水電解質としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが3:7の割合で混合されてなる混合溶媒に、LiPFが1.50モル/Lの濃度で溶解されてなる非水電解液を用いた。
負極は上記実施例1と同じものを使用して、実施例4のリチウム二次電池を製造した。実施例4のリチウム二次電池について、実施例1と同様にして評価した。結果を図1に示す。
A 2032 μm polypropylene separator was interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte was injected to prepare a 2032 type coin-type lithium secondary battery.
As the non-aqueous electrolyte, LiPF 6 is dissolved in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a ratio of 3: 7 at a concentration of 1.50 mol / L. A water electrolyte was used.
The lithium secondary battery of Example 4 was manufactured using the same negative electrode as in Example 1 above. The lithium secondary battery of Example 4 was evaluated in the same manner as in Example 1. The results are shown in FIG.

(実施例5)
正極合材スラリーを作製する過程で、スラリー中にテトラフルオロホウ酸ニッケル(Ni(BF、結晶粒子径1μm以下)を添加したこと以外は上記実施例4と同様にして正極を作製した。正極における、LiCoO:導電カーボン:ポリフッ化ビニリデン:Ni(BFの比は95.00:2.00:2.97:0.03であった。負極および電解液は上記実施例4と同じものを使用して、実施例5のリチウム二次電池を製造した。実施例5のリチウム二次電池について、実施例1と同様にして評価した。結果を図1に示す。
(Example 5)
A positive electrode was prepared in the same manner as in Example 4 except that nickel tetrafluoroborate (Ni (BF 4 ) 2 , crystal particle diameter of 1 μm or less) was added to the slurry in the process of preparing the positive electrode mixture slurry. . The ratio of LiCoO 2 : conductive carbon: polyvinylidene fluoride: Ni (BF 4 ) 2 in the positive electrode was 95.00: 2.00: 2.97: 0.03. The lithium secondary battery of Example 5 was manufactured using the same negative electrode and electrolytic solution as in Example 4 above. The lithium secondary battery of Example 5 was evaluated in the same manner as in Example 1. The results are shown in FIG.

(実施例6)
負極合材スラリーを作製する過程で、スラリー中にAgBF(結晶粒子径1μm以下)を添加したこと以外は上記実施例1と同様にして負極を作製した。負極における、負極活物質:ポリフッ化ビニリデン:AgPFの比は90.00:9.95:0.05であった。正極および電解液は上記実施例4と同じものを使用して、実施例6のリチウム二次電池を製造した。実施例6のリチウム二次電池について、実施例1と同様にして評価した。結果を図1に示す。
(Example 6)
A negative electrode was produced in the same manner as in Example 1 except that AgBF 4 (crystal particle diameter: 1 μm or less) was added to the slurry in the process of producing the negative electrode mixture slurry. The ratio of negative electrode active material: polyvinylidene fluoride: AgPF 6 in the negative electrode was 90.00: 9.95: 0.05. The lithium secondary battery of Example 6 was manufactured using the same positive electrode and electrolytic solution as in Example 4 above. The lithium secondary battery of Example 6 was evaluated in the same manner as in Example 1. The results are shown in FIG.

(比較例1)
導電性皮膜形成剤を非水電解液に添加しなかったこと以外は実施例1と同様にして、比較例1のリチウム二次電池を製造した。
そして、比較例1のリチウム二次電池について、実施例1と同様にして評価した。結果を図1に示す。
(Comparative Example 1)
A lithium secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the conductive film forming agent was not added to the nonaqueous electrolytic solution.
The lithium secondary battery of Comparative Example 1 was evaluated in the same manner as in Example 1. The results are shown in FIG.

図1に示すように、実施例1〜6のリチウム二次電池の容量保持率は、比較例1比べて、初期の充放電サイクルから降下量が少なく、サイクル安定性に優れていることが分かる。このような結果は、実施例1〜6の非水電解質に、本発明に係る導電性被膜形成化合物が添加されているため、この被膜形成化合物による負極活物質粒子間の電導性の確保及び活物質の利用率が高く保持されたためと考えられる。   As shown in FIG. 1, it can be seen that the capacity retention of the lithium secondary batteries of Examples 1 to 6 is smaller than the initial charge / discharge cycle in comparison with Comparative Example 1, and is excellent in cycle stability. . Such a result is obtained because the conductive film forming compound according to the present invention is added to the nonaqueous electrolytes of Examples 1 to 6, and thus the conductivity between the negative electrode active material particles by the film forming compound is ensured and active. This is probably because the utilization rate of the substance was kept high.

このように本実施形態によれば、充電中に金属メッキ膜や導電性化合物を発生させることにより、負極活物質表面や微粉化の過程で発生した亀裂壁面を被覆したり、亀裂を埋めて孤立した活物質間の電子伝導性を与えて活物質の利用率を下げず容量を確保することが可能となり、安定した充放電サイクル特性を有する非水二次電池を提供することが可能となる。   As described above, according to the present embodiment, by generating a metal plating film or a conductive compound during charging, the surface of the negative electrode active material or the crack wall generated in the process of pulverization is covered, or the crack is filled and isolated. Thus, it is possible to secure the capacity without lowering the utilization rate of the active material by giving the electron conductivity between the active materials, and it is possible to provide a non-aqueous secondary battery having stable charge / discharge cycle characteristics.

なお、本実施形態においては、正極、負極または非水電解液のうちのいずれか一つに、金属錯体化合物または金属微粒子を混合させた非水二次電池を作製し、本発明の効果を検証したが、当然にこれに限定されず、正極、負極または非水電解液のうちの二要素もしくは三要素に同時に金属錯体化合物または金属微粒子を混合させても良い。また、正極に金属錯体化合物と金属微粒子とを同時に混合させても良い。   In this embodiment, a non-aqueous secondary battery in which any one of a positive electrode, a negative electrode, and a non-aqueous electrolyte is mixed with a metal complex compound or metal fine particles is manufactured, and the effect of the present invention is verified. However, the present invention is naturally not limited to this, and a metal complex compound or metal fine particles may be mixed simultaneously in two or three elements of the positive electrode, the negative electrode, and the nonaqueous electrolytic solution. Moreover, you may mix a metal complex compound and metal microparticles | fine-particles simultaneously with a positive electrode.

本実施形態の非水二次電池のサイクル特性を示す図である。It is a figure which shows the cycling characteristics of the non-aqueous secondary battery of this embodiment.

Claims (6)

リチウムの吸蔵、放出が可能な正極活物質を含む正極と、
リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、
リチウムイオンを電離する電解質と非水溶媒とを含む非水電解液とを備える非水二次電池において、
前記非水電解液中に金属錯体化合物を有し、前記金属錯体化合物から電離するイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴であること特徴とする非水二次電池。
A positive electrode containing a positive electrode active material capable of inserting and extracting lithium;
A negative electrode containing a negative electrode active material capable of alloying with lithium, or occluding and releasing lithium; and
In a non-aqueous secondary battery comprising a non-aqueous electrolyte containing an electrolyte that ionizes lithium ions and a non-aqueous solvent,
A non-aqueous secondary battery comprising a metal complex compound in the non-aqueous electrolyte, and a deposition potential of ion species ionized from the metal complex compound being nobler than 0.3 V based on a lithium reference electrode.
リチウムの吸蔵、放出が可能な正極活物質を含む正極と、
リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、
リチウムイオンを電離する電解質と非水溶媒とを含む非水電解液とを備える非水二次電池において、
前記負極中に金属錯体化合物を有し、前記金属錯体化合物から電離するイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴であること特徴とする非水二次電池。
A positive electrode containing a positive electrode active material capable of inserting and extracting lithium;
A negative electrode containing a negative electrode active material capable of alloying with lithium, or occluding and releasing lithium; and
In a non-aqueous secondary battery comprising a non-aqueous electrolyte containing an electrolyte that ionizes lithium ions and a non-aqueous solvent,
A non-aqueous secondary battery comprising a metal complex compound in the negative electrode, and a deposition potential of ion species ionized from the metal complex compound being nobler than 0.3 V based on a lithium reference electrode.
前記金属錯体化合物に含まれる金属元素が、Al、Si、Sc、Ti、V、Co、Ni、Cu、Zn、Zr、Nb、Ag、In、Sn、W、Ga、Pd、PtまたはAuのいずれかであることを特徴とする請求項1または2に記載の非水二次電池。   The metal element contained in the metal complex compound is any of Al, Si, Sc, Ti, V, Co, Ni, Cu, Zn, Zr, Nb, Ag, In, Sn, W, Ga, Pd, Pt, or Au. The nonaqueous secondary battery according to claim 1, wherein the nonaqueous secondary battery is a non-aqueous secondary battery. リチウムの吸蔵、放出が可能な正極活物質を含む正極と、
リチウムとの合金化、あるいはリチウムの吸蔵、放出が可能な負極活物質を含む負極と、
リチウムイオンを電離する電解質と非水溶媒とを含む非水電解液とを備える非水二次電池において、
前記正極中に金属微粒子または金属錯体化合物を有し、前記金属微粒子から溶出する、または前記金属錯体化合物から電離するイオン種の析出電位がリチウム参照極基準で0.3Vよりも貴であること特徴とする非水二次電池。
A positive electrode containing a positive electrode active material capable of inserting and extracting lithium;
A negative electrode containing a negative electrode active material capable of alloying with lithium, or occluding and releasing lithium; and
In a non-aqueous secondary battery comprising a non-aqueous electrolyte containing an electrolyte that ionizes lithium ions and a non-aqueous solvent,
The positive electrode has metal fine particles or a metal complex compound, and the precipitation potential of ion species eluted from the metal fine particles or ionized from the metal complex compound is nobler than 0.3 V on the basis of a lithium reference electrode. Non-aqueous secondary battery.
前記金属微粒子または前記金属錯体化合物に含まれる金属元素が、Al、Si、Sc、Ti、V、Co、Ni、Cu、Zn、Zr、Nb、Ag、In、Sn、W、Ga、Pd、PtまたはAuのいずれかであることを特徴とする請求項4に記載の非水二次電池。   The metal element contained in the metal fine particles or the metal complex compound is Al, Si, Sc, Ti, V, Co, Ni, Cu, Zn, Zr, Nb, Ag, In, Sn, W, Ga, Pd, Pt. The nonaqueous secondary battery according to claim 4, wherein the battery is either Au or Au. 前記負極活物質がリチウムバナジウム酸化物を含むことを特徴とする請求項1乃至5のいずれかに記載の非水二次電池。   The non-aqueous secondary battery according to claim 1, wherein the negative electrode active material contains a lithium vanadium oxide.
JP2007144756A 2007-05-31 2007-05-31 Nonaqueous secondary battery Pending JP2008300179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144756A JP2008300179A (en) 2007-05-31 2007-05-31 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144756A JP2008300179A (en) 2007-05-31 2007-05-31 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2008300179A true JP2008300179A (en) 2008-12-11

Family

ID=40173503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144756A Pending JP2008300179A (en) 2007-05-31 2007-05-31 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2008300179A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277827A (en) * 2009-05-28 2010-12-09 Sony Corp Nonaqueous electrolyte, positive electrode, and nonaqueous electrolyte secondary battery using the nonaqueous electrolyte and the positive electrode
JP2011065812A (en) * 2009-09-16 2011-03-31 Toyota Industries Corp Anode for lithium ion secondary battery and its manufacturing method
US20110189548A1 (en) * 2010-02-03 2011-08-04 Us Government As Represented By Secretary Of Army Ionic additives for electrochemical devices using intercalation electrodes
WO2011102171A1 (en) * 2010-02-19 2011-08-25 日本電気株式会社 Secondary battery
EP2463950A1 (en) * 2010-12-07 2012-06-13 Samsung Electronics Co., Ltd. Lithium air battery
JP2014096321A (en) * 2012-11-12 2014-05-22 Waseda Univ Electroplating solution, process of manufacturing active material for lithium secondary battery, and lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277827A (en) * 2009-05-28 2010-12-09 Sony Corp Nonaqueous electrolyte, positive electrode, and nonaqueous electrolyte secondary battery using the nonaqueous electrolyte and the positive electrode
JP2011065812A (en) * 2009-09-16 2011-03-31 Toyota Industries Corp Anode for lithium ion secondary battery and its manufacturing method
US20110189548A1 (en) * 2010-02-03 2011-08-04 Us Government As Represented By Secretary Of Army Ionic additives for electrochemical devices using intercalation electrodes
WO2011102171A1 (en) * 2010-02-19 2011-08-25 日本電気株式会社 Secondary battery
CN102792510A (en) * 2010-02-19 2012-11-21 日本电气株式会社 Secondary battery
US20120315535A1 (en) * 2010-02-19 2012-12-13 Nec Corporation Secondary battery
JP5811361B2 (en) * 2010-02-19 2015-11-11 日本電気株式会社 Secondary battery
EP2463950A1 (en) * 2010-12-07 2012-06-13 Samsung Electronics Co., Ltd. Lithium air battery
US9178254B2 (en) 2010-12-07 2015-11-03 Samsung Electronics Co., Ltd. Lithium air battery
JP2014096321A (en) * 2012-11-12 2014-05-22 Waseda Univ Electroplating solution, process of manufacturing active material for lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
EP3580171B1 (en) Passivation of lithium metal by two-dimensional materials for rechargeable batteries
CN108886166B (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
JP4650603B2 (en) Anode material for secondary battery, method for producing the same, and secondary battery using the same
JP2003217574A (en) Negative electrode for secondary battery and secondary battery using the same
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
JPWO2005057715A1 (en) Secondary battery
WO2016147607A1 (en) Anode for sodium-ion and potassium-ion batteries
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP2019046589A (en) Aqueous electrolyte solution and aqueous lithium ion secondary battery
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
JP6509363B2 (en) ELECTRODE FOR ELECTROCHEMICAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME
WO2022038793A1 (en) Lithium secondary battery
JP2008300179A (en) Nonaqueous secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP5424052B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP4582684B2 (en) Non-aqueous secondary battery
JP2010170867A (en) Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP2005026091A (en) Nonaqueous electrolyte battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery
JP2015179606A (en) Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery arranged by use of negative electrode active material
JP5610034B2 (en) Secondary battery and negative electrode for secondary battery
US20230137413A1 (en) Lithium secondary battery and method for using same