JP4650603B2 - Anode material for secondary battery, method for producing the same, and secondary battery using the same - Google Patents

Anode material for secondary battery, method for producing the same, and secondary battery using the same Download PDF

Info

Publication number
JP4650603B2
JP4650603B2 JP2003424671A JP2003424671A JP4650603B2 JP 4650603 B2 JP4650603 B2 JP 4650603B2 JP 2003424671 A JP2003424671 A JP 2003424671A JP 2003424671 A JP2003424671 A JP 2003424671A JP 4650603 B2 JP4650603 B2 JP 4650603B2
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
lithium
electrode material
oxidation number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003424671A
Other languages
Japanese (ja)
Other versions
JP2005183264A (en
Inventor
博規 山本
麻里子 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003424671A priority Critical patent/JP4650603B2/en
Publication of JP2005183264A publication Critical patent/JP2005183264A/en
Application granted granted Critical
Publication of JP4650603B2 publication Critical patent/JP4650603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池用負極材料及びその製造方法並びにそれを用いた二次電池に関し、特に高容量でかつサイクル特性に優れ、さらに高い動作電圧を有する二次電池用負極材料及びその製造方法並びにそれを用いた二次電池に関する。   TECHNICAL FIELD The present invention relates to a negative electrode material for a secondary battery, a method for producing the same, and a secondary battery using the same, and particularly, a negative electrode material for a secondary battery having a high capacity, excellent cycle characteristics, and a higher operating voltage, and a method for producing the same. And a secondary battery using the same.

携帯電話やノートパソコン等のモバイル端末の普及により、その電力源となる電池の役割が重要視されている。これら電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められる。   With the widespread use of mobile terminals such as mobile phones and laptop computers, the role of the battery serving as the power source has been regarded as important. These batteries are required to have a small size, light weight, high capacity, and performance that does not easily deteriorate even after repeated charge and discharge.

高エネルギー密度でかつ軽量という観点から負極に金属リチウムを用いられることもあるが、この場合充放電サイクルの進行にともない、リチウム表面に針状結晶(デンドライト)が析出したり、このデンドライトが集電体から剥がれる現象が起きる。この結果デンドライトがセパレータを貫通し、内部で短絡を起こし、電池の寿命を短くしたり、サイクル特性が劣化するという問題があった。   From the viewpoint of high energy density and light weight, metallic lithium may be used for the negative electrode. In this case, acicular crystals (dendrites) are deposited on the lithium surface as the charge / discharge cycle progresses, or the dendrites are collected by current. The phenomenon of peeling from the body occurs. As a result, there is a problem that the dendrite penetrates the separator and causes a short circuit inside, shortening the life of the battery or deteriorating cycle characteristics.

そこで、現在の実用電池には上記のような問題のない炭素材料が負極材料として使用されていることが多い。このうちで代表的なものには、黒鉛系の炭素材料があるが、この材料の吸蔵可能なリチウムイオン量は黒鉛の層間に挿入可能な量によって制限されており、その比容量である372Ah/kg以上とすることは困難である。またリチウムイオン二次電池に使用されている炭素負極等はその理論容量の上限近くまですでに容量を使い切っているため、これ以上の容量アップは望めない。そこで黒鉛よりもリチウムイオンを吸蔵でき比容量の大きいシリコン系化合物を用いる方法が開発されている。   Therefore, carbon materials that do not have the above problems are often used as negative electrode materials in current practical batteries. Among these, a typical carbon material is a graphite-based carbon material, but the amount of lithium ions that can be occluded by this material is limited by the amount that can be inserted between graphite layers, and its specific capacity is 372 Ah / It is difficult to make it kg or more. Moreover, since the capacity of the carbon anode etc. used for the lithium ion secondary battery has already been used up to the upper limit of the theoretical capacity, further increase in capacity cannot be expected. Therefore, a method using a silicon compound that can occlude lithium ions and has a larger specific capacity than graphite has been developed.

例えば、特許文献1には、ゼロ価のシリコンと4価のシリコン酸化物とからなるシリコン酸化物をシランカップリング剤で処理した負極材料が提案されている。また、特許文献2には、ゼロ価のシリコンと4価のシリコン酸化物とからなるシリコン酸化物を機械的表面融合処理により導電性物質で被覆した負極材料が提案されている。
特開2001−216961号公報 特開2002−373653号公報
For example, Patent Document 1 proposes a negative electrode material obtained by treating a silicon oxide composed of zero-valent silicon and tetravalent silicon oxide with a silane coupling agent. Patent Document 2 proposes a negative electrode material in which a silicon oxide composed of zero-valent silicon and tetravalent silicon oxide is coated with a conductive substance by mechanical surface fusion treatment.
JP 2001-216916 A JP 2002-373653 A

しかしながら、特許文献1及び2に開示された負極材料を用いた電池では、ゼロ価のシリコンと4価のシリコン酸化物との間に格子の大きさの違いなどから充放電の体積膨張収縮及び熱などにより応力の発生が懸念され、その寿命は未だ十分ではなかった。   However, in the battery using the negative electrode material disclosed in Patent Documents 1 and 2, the volume expansion and contraction of charge and discharge and the heat due to the difference in the size of the lattice between the zero-valent silicon and the tetravalent silicon oxide. There was concern about the generation of stress due to the above, and its life was not yet sufficient.

本発明の目的は、高容量かつ動作電圧が高く、長寿命となる二次電池用負極材料及びその製造方法並びにそれを用いた二次電池を提供することにある。   An object of the present invention is to provide a negative electrode material for a secondary battery that has a high capacity, a high operating voltage, and a long life, a method for producing the same, and a secondary battery using the same.

本発明は、以下の通りである。
[1]リチウムイオンを吸蔵および放出することのできる二次電池用負極材料であって、酸化数が0のシリコンと、酸化数が+4のシリコン原子を有するシリコン化合物と、酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物とからなり
前記酸化数が+4のシリコン原子を有するシリコン化合物が、シリコン酸化物またはケイ酸塩であり、
前記酸化数0のシリコンの原子数が、シリコン原子の数の総和の0.1倍以上かつ0.7倍以下であり、
比容量が372Ah/kgより大きいことを特徴とする二次電池用負極材料。
[2]リチウムをさらに含み、
電池放電時の負極に含まれる前記リチウムの原子数が、前記酸化数0のシリコンの原子数の3.5倍以下であり、
電池放電時の負極に含まれる前記リチウムの質量が、前記酸化数が0のシリコンと、前記酸化数が+4のシリコン原子を有するシリコン化合物と、前記酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物との質量の総和の0.6倍以下であることを特徴とする前記[1]記載の二次電池用負極材料。
[3]P、B、Mg、Al、Ti、Fe、Co、Ni、Cu、Mo、W、Ag、Au及びPtからなる群より選ばれる少なくとも1種以上の元素からなる導電性材料をさらに含み、
前記導電性材料の質量が、前記酸化数が0のシリコンと、前記酸化数が+4のシリコン原子を有するシリコン化合物と、前記酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物と、前記導電性材料との質量の総和の0.5倍以下であることを特徴とする前記[1]又は[2]記載の二次電池用負極材料。
[4]前記[1]乃至[3]いずれか記載の二次電池用負極材料を製造する方法であって、前記酸化数が0のシリコンと、前記酸化数が+4のシリコン原子を有するシリコン化合物と、前記酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物とを混合する工程を有する二次電池用負極材料の製造方法。
[5]前記[1]乃至[3]いずれか記載の二次電池用負極材料を製造する方法であって、真空成膜法により集電体上に二次電池用負極材料を製膜する工程を有する二次電池用負極材料の製造方法。
[6]前記[1]乃至[3]いずれか記載の二次電池用負極材料を用いた負極を有する二次電池。
The present invention is as follows.
[1] A negative electrode material for a secondary battery capable of inserting and extracting lithium ions, a silicon compound having an oxidation number of 0, a silicon compound having a silicon atom of an oxidation number of +4, and an oxidation number greater than 0 consists of a silicon lower oxide having a +4 less silicon atoms,
The silicon compound having a silicon atom with an oxidation number of +4 is silicon oxide or silicate;
The number of silicon atoms having an oxidation number of 0 is not less than 0.1 times and not more than 0.7 times the total number of silicon atoms;
A negative electrode material for a secondary battery, wherein the specific capacity is greater than 372 Ah / kg.
[2] further containing lithium,
The number of lithium atoms contained in the negative electrode during battery discharge is 3.5 times or less of the number of silicon atoms of the oxidation number 0,
The mass of the lithium contained in the negative electrode during battery discharge includes silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and a silicon atom having an oxidation number of greater than 0 and less than +4. The negative electrode material for a secondary battery as described in [1] above, which is 0.6 times or less of the total mass of the silicon lower oxide.
[3] A conductive material comprising at least one element selected from the group consisting of P, B, Mg, Al, Ti, Fe, Co, Ni, Cu, Mo, W, Ag, Au and Pt is further included. ,
The conductive material has a mass of silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and a silicon lower oxide having a silicon atom having an oxidation number of greater than 0 and less than +4. The negative electrode material for secondary batteries as described in [1] or [2] above, which is 0.5 times or less of the total mass of the conductive material.
[4] A method for producing a negative electrode material for a secondary battery as described in any one of [1] to [3], wherein the silicon compound has silicon having an oxidation number of 0 and silicon atoms having an oxidation number of +4. And a method for producing a negative electrode material for a secondary battery, which comprises a step of mixing a silicon lower oxide having a silicon atom having an oxidation number greater than 0 and less than +4.
[5] A method for producing a negative electrode material for a secondary battery according to any one of [1] to [3], wherein the negative electrode material for a secondary battery is formed on a current collector by a vacuum film formation method. The manufacturing method of the negative electrode material for secondary batteries which has this.
[6] A secondary battery having a negative electrode using the secondary battery negative electrode material according to any one of [1] to [3].

二次電池の負極に、シリコンと、シリコン化合物と、シリコン低級酸化物とを含む負極材料を用いることで、高容量かつ動作電圧が高く、長寿命とすることができる。   By using a negative electrode material containing silicon, a silicon compound, and a silicon lower oxide for the negative electrode of the secondary battery, a high capacity, a high operating voltage, and a long life can be obtained.

本発明の二次電池用負極材料(以下、単に「負極材料」と称することもある)は、酸化数が0のシリコン(以下、単に「シリコン」と称することもある)と、酸化数が+4のシリコン原子を有するシリコン化合物(以下、単に「シリコン化合物」と称することもある)と、酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物(以下、単に「シリコン低級酸化物」と称することもある)とを含む。シリコン化合物としては、シリコン酸化物あるいはケイ酸塩を用いることができる。シリコンのリチウム吸蔵理論容量は4200Ah/kgと大きく、動作電圧も酸化物材料と比較し大きくすることができるため、負極材料としては有望であるが、リチウム吸蔵量が多いため、充放電に伴う体積膨張収縮が大きく、繰り返し使用すると構造破壊あるいは集電体から剥離し電気的接触をとることが困難になる。しかし、本発明のように、シリコンに、シリコン化合物とシリコン低級酸化物とを添加することで、シリコンの膨張収縮による構造破壊や集電体からの剥離を抑え、集電性の劣化を抑制することができる。   The negative electrode material for a secondary battery of the present invention (hereinafter also simply referred to as “negative electrode material”) has a silicon having an oxidation number of 0 (hereinafter also simply referred to as “silicon”) and an oxidation number of +4. A silicon compound having a silicon atom (hereinafter sometimes simply referred to as “silicon compound”) and a silicon lower oxide having a silicon atom having an oxidation number greater than 0 and less than +4 (hereinafter simply referred to as “silicon lower oxide”) May also be referred to). As the silicon compound, silicon oxide or silicate can be used. Silicon has a large lithium storage theoretical capacity of 4200 Ah / kg, and the operating voltage can be increased compared to oxide materials. Therefore, it is promising as a negative electrode material. Expansion and contraction are large, and repeated use makes it difficult to break the structure or peel from the current collector to make electrical contact. However, as in the present invention, by adding a silicon compound and a silicon lower oxide to silicon, structural destruction and exfoliation from the current collector due to silicon expansion and contraction are suppressed, and current collection deterioration is suppressed. be able to.

本発明の負極材料は、シリコンとシリコン化合物とシリコン低級酸化物とを有することで以下の効果が得られ、また、そのメカニズムは以下のように推定される。負極材料内にシリコンを含むことで高容量かつ放電電位の高い負極が得られる。これはシリコンが炭素の10倍以上の容量密度を持つことによる。また、シリコン化合物の存在により充放電の際に発生する体積膨張収縮に伴う応力の耐性が向上する。これはSi−Oの結合エネルギーが大きく安定な構造をとることに起因する。また、シリコン低級酸化物は、シリコンとシリコン化合物との間を取り持つような構造をとる。シリコンとシリコン化合物との間には格子の大きさの違いなどから充放電の体積膨張収縮以外にも熱などにより応力の発生が懸念されるが、シリコン低級酸化物の存在により構造が漸移的に変化しシリコンの酸化数が徐々に変化していくことで応力の発生を低減し、シリコンとシリコン化合物との親和性を向上させている。また、シリコン低級酸化物とシリコン化合物の中にはリチウムを吸蔵放出するものもある。さらに、シリコンは、シリコン低級酸化物との物性的な相性のよさからお互いが共存しても悪影響を及ぼすことが少ない。   The negative electrode material of the present invention has the following effects by including silicon, a silicon compound, and a silicon lower oxide, and the mechanism thereof is presumed as follows. By including silicon in the negative electrode material, a negative electrode having a high capacity and a high discharge potential can be obtained. This is because silicon has a capacity density more than 10 times that of carbon. In addition, the presence of the silicon compound improves the resistance to stress accompanying volume expansion and contraction that occurs during charging and discharging. This is due to the fact that Si-O has a large bond energy and a stable structure. In addition, the silicon lower oxide has a structure that holds between silicon and a silicon compound. Due to the difference in the size of the lattice between silicon and silicon compound, there are concerns about the generation of stress due to heat in addition to the volume expansion and contraction of charge and discharge, but the structure gradually changes due to the presence of silicon lower oxide. As the oxidation number of silicon gradually changes, the generation of stress is reduced and the affinity between silicon and silicon compounds is improved. Some silicon lower oxides and silicon compounds occlude and release lithium. In addition, silicon has little adverse effect even if it coexists with each other due to its good physical compatibility with lower silicon oxides.

図1は本発明の負極材料の構造の一例を示した模式図である。シリコン1aはリチウムを吸蔵放出する主たる部分でアモルファス、単結晶又は多結晶である。同一負極材料内にこれらの形態の2種以上が混在しても良い。シリコン化合物2aはシリコン1aの膨張収縮による負極材料の破壊を防ぐ材料であり、主にSiO2やケイ酸塩からなるアモルファスや多結晶からなる。シリコン低級酸化物3aはシリコン1aとシリコン化合物2aの親和性をあげる役割をし、非ストイキオメトリーのSiOa(ここでaは0<a<2)である。シリコン1a、シリコン化合物2a及びシリコン低級酸化物3aの粒径又は領域は1nmから100μmが適しており、さらに好ましくは10nmから50μmである。図1は本発明の負極材料の一例を示した模式図であり、シリコン、シリコン化合物及びシリコン低級酸化物が混合した状態であれば、いかなる形態もとりうる。酸化数が0のシリコン原子の存在比に関しては、下記式(1)で求められる数値として0.1以上0.9以下が好ましく、0.2以上0.7以下がより好ましい。 FIG. 1 is a schematic view showing an example of the structure of the negative electrode material of the present invention. Silicon 1a is a main part that occludes and releases lithium, and is amorphous, single crystal, or polycrystalline. Two or more of these forms may be mixed in the same negative electrode material. The silicon compound 2a is a material that prevents destruction of the negative electrode material due to expansion and contraction of the silicon 1a, and is mainly composed of amorphous or polycrystal composed of SiO 2 or silicate. The silicon lower oxide 3a serves to increase the affinity between the silicon 1a and the silicon compound 2a, and is non-stoichiometric SiO a (where a is 0 <a <2). The particle size or region of the silicon 1a, the silicon compound 2a, and the silicon lower oxide 3a is suitably 1 nm to 100 μm, more preferably 10 nm to 50 μm. FIG. 1 is a schematic view showing an example of the negative electrode material of the present invention, and any form can be used as long as silicon, a silicon compound, and a silicon lower oxide are mixed. Regarding the abundance ratio of silicon atoms having an oxidation number of 0, the numerical value obtained by the following formula (1) is preferably 0.1 or more and 0.9 or less, and more preferably 0.2 or more and 0.7 or less.

式(1):(酸化数が0のシリコン原子の存在比)=
(酸化数が0のシリコンの原子数)/(酸化数が0〜4のシリコン原子の数の総和)
次に本発明の負極材料の製造方法を説明する。これら負極材料は、集電体となる銅箔をはじめとした金属箔上に塗布あるいは成膜することで電極(負極)となる。
Formula (1): (Abundance ratio of silicon atoms with oxidation number 0) =
(Number of silicon atoms with oxidation number 0) / (Total number of silicon atoms with oxidation number 0 to 4)
Next, the manufacturing method of the negative electrode material of this invention is demonstrated. These negative electrode materials become an electrode (negative electrode) by applying or forming a film on a metal foil including a copper foil as a current collector.

本発明の負極材料の製造方法としては、シリコンとシリコン化合物とシリコン低級酸化物とを、メカニカルミリング、焼結法などによって混合する方法が挙げられる。このようにして得られた負極材料は、所望の大きさの粒子まで粉砕後、塗布により負極となる。負極材料の粒子径が0.1〜100μmとなるまで粉砕することが好ましい。具体的には、粉体となった負極材料、カーボンブラック等の導電性物質、PVDF(ポリフッ化ビニリデン)等の結着剤等をNMP(N−メチル−2−ピロリドン)等の溶剤に分散混練したものを、集電体に塗布する。塗布方法としてはドクターブレード法又はスプレー塗布等を用いることができる。塗布後、乾燥により溶媒等を蒸発させた後、所望の密度までプレスし負極とする。   Examples of the method for producing the negative electrode material of the present invention include a method in which silicon, a silicon compound, and a silicon lower oxide are mixed by mechanical milling, a sintering method, or the like. The negative electrode material thus obtained is pulverized to particles having a desired size and then becomes a negative electrode by coating. It is preferable to grind until the particle diameter of the negative electrode material becomes 0.1 to 100 μm. Specifically, a powdered negative electrode material, a conductive material such as carbon black, a binder such as PVDF (polyvinylidene fluoride), etc. are dispersed and kneaded in a solvent such as NMP (N-methyl-2-pyrrolidone). Apply to the current collector. As a coating method, a doctor blade method or spray coating can be used. After coating, the solvent and the like are evaporated by drying, and then pressed to a desired density to obtain a negative electrode.

また、本発明の負極材料をターゲットにしたスパッタリングや蒸着などの真空成膜法を利用することもできる。これらはシリコンとシリコン化合物とシリコン低級酸化物の複数のターゲットあるいは蒸着源からそれぞれの材料を供給して作製しても良いし、あらかじめ混合した単一ターゲットあるいは蒸着源から作製しても良い。真空成膜の場合、材料を集電体上に真空成膜し、それをそのまま負極として使用することもできる。   Moreover, vacuum film-forming methods, such as sputtering and vapor deposition which made the negative electrode material of this invention a target, can also be utilized. These may be produced by supplying respective materials from a plurality of targets or vapor deposition sources of silicon, silicon compound and silicon lower oxide, or may be produced from a single target or vapor deposition source mixed in advance. In the case of vacuum film formation, the material can be vacuum-deposited on a current collector and used as it is as a negative electrode.

本発明の負極材料は、さらにリチウムを含むことができる。図2は、このような本発明の負極材料の構造の一例を示した模式図である。シリコン1bは、リチウムを吸蔵放出する主たる部分でアモルファス、単結晶又は多結晶である。このシリコン1b内にリチウム4bが含まれる。シリコン内に含まれるリチウムの存在量は、シリコンの原子数1に対するリチウムの原子数として、0より大きく3.5以下であることが好ましい。より好ましくは、1以上2.5以下である。なお、この値は電池放電状態(セル電圧2.5V時)の値である。電池を充電するとリチウムを吸蔵するためこの値より大きい値となる。リチウム添加によりリチウムイオン導電性が向上するが、添加が過剰となると負極のリチウム吸蔵量が低下してしまうためあまり好ましくない。シリコン化合物2bは、シリコン1bの膨張収縮による負極材料の破壊を防ぐ材料であり、主にSiO2やケイ酸塩からなる単結晶・アモルファス・多結晶である。ここで、ケイ酸塩としてリチウムケイ酸塩を用いることもできる。リチウムケイ酸塩としては、Li2SiO3、Li4SiO4、Li4Si38、Li2Si25が例示できる。シリコン低級酸化物3bは、シリコン1bとシリコン化合物2bの親和性をあげる役割をし、非ストイキオメトリーのSiOa(ここでaは0<a<2)である。このシリコン低級酸化物はリチウムを含んでも良い。図2はリチウムを含む本発明の負極材料の一例を示した模式図であり、シリコン、シリコン化合物、シリコン低級酸化物及びリチウムが混合した状態であれば、いかなる形態もとりうる。また、添加するリチウムの質量は、シリコン、シリコン化合物及びシリコン低級酸化物との質量の総和の0.6倍以下が好ましい。より好ましくは、0.2倍以上0.5倍以下である。この値は電池放電状態(セル電圧2.5V時)の値である。電池を充電するとリチウムを吸蔵するためこの値より大きい値となる。また、シリコン、シリコン化合物及びシリコン低級酸化物の粒径や存在比は上述に示したとおりである。リチウムは、リチウム源となる材料をメカニカルミリングや焼結する際添加する、また真空成膜の際はソース(ターゲット)内に添加する、あるいはリチウムを供給する別ソース(ターゲット)を準備し、添加することができる。また、粒子で構成した負極や真空成膜で行った負極の上あるいは電池容器内にリチウム箔を貼り付けたり、真空成膜プロセスを使いリチウム層を形成することで負極内にリチウムを供給しても良い。 The negative electrode material of the present invention can further contain lithium. FIG. 2 is a schematic view showing an example of the structure of the negative electrode material of the present invention. Silicon 1b is a main part that occludes and releases lithium, and is amorphous, single crystal, or polycrystalline. This silicon 1b contains lithium 4b. The abundance of lithium contained in silicon is preferably greater than 0 and 3.5 or less as the number of lithium atoms relative to 1 silicon atom. More preferably, it is 1 or more and 2.5 or less. This value is a value in a battery discharge state (when the cell voltage is 2.5 V). When the battery is charged, lithium is occluded, so the value is larger than this value. Lithium addition improves lithium ion conductivity, but excessive addition is not preferable because the lithium storage capacity of the negative electrode is reduced. The silicon compound 2b is a material that prevents destruction of the negative electrode material due to expansion and contraction of the silicon 1b, and is a single crystal, amorphous, or polycrystal mainly composed of SiO 2 or silicate. Here, lithium silicate can also be used as the silicate. Examples of the lithium silicate include Li 2 SiO 3 , Li 4 SiO 4 , Li 4 Si 3 O 8 , and Li 2 Si 2 O 5 . The silicon lower oxide 3b serves to increase the affinity between the silicon 1b and the silicon compound 2b, and is non-stoichiometric SiO a (where a is 0 <a <2). This silicon lower oxide may contain lithium. FIG. 2 is a schematic view showing an example of the negative electrode material of the present invention containing lithium, and any form can be used as long as silicon, a silicon compound, a silicon lower oxide, and lithium are mixed. The mass of lithium to be added is preferably 0.6 times or less of the total mass of silicon, silicon compound, and silicon lower oxide. More preferably, it is 0.2 times or more and 0.5 times or less. This value is a value in a battery discharge state (when the cell voltage is 2.5 V). When the battery is charged, lithium is occluded, so the value is larger than this value. Further, the particle diameters and abundance ratios of silicon, silicon compound and silicon lower oxide are as described above. Lithium is added during mechanical milling and sintering of the lithium source material, or is added to the source (target) during vacuum film formation, or another source (target) that supplies lithium is prepared and added. can do. In addition, lithium can be supplied to the negative electrode by attaching lithium foil on the negative electrode composed of particles or the negative electrode formed by vacuum film formation or in the battery container, or by forming a lithium layer using a vacuum film formation process. Also good.

本発明の負極材料は、さらに導電性材料を含むことができる。なお、この導電性材料には、リチウムは含まないものとする(以下同様)。図3は、このような本発明の負極材料の構造一例を示した模式図である。シリコン1cは、リチウムを吸蔵放出する主たる部分でアモルファス、単結晶又は多結晶である。シリコン化合物2は、シリコン1cの膨張収縮による負極材料の破壊を防ぐ材料であり、主にSiO2やケイ酸塩からなる単結晶・アモルファス・多結晶である。シリコン低級酸化物3cは、シリコン1cとシリコン化合物2cの親和性をあげる役割をし、非ストイキオメトリーのSiOa(ここでaは0<a<2)である。導電性材料5cは負極材料の電気抵抗を下げる役割をする。添加する導電性材料としては、P、B、Mg、Al、Ti、Fe、Co、Ni、Cu、Mo、W、Ag、Au及びPtからなる群より選ばれる少なくとも1種以上の元素を含むことが好ましい。また、添加する導電性材料の質量は、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料の質量の総和の0.5倍以下が好ましい。より好ましくは、0.1倍以上0.4倍以下である。図3は導電性材料を含む本発明の負極材料の一例を示した模式図であり、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料が混合した状態であれば、いかなる形態もとりうる。すなわち、この導電性材料は、シリコン、シリコン化合物又はシリコン低級酸化物内に存在しても良いし、シリコン、シリコン化合物又はシリコン低級酸化物の境界に存在しても良い。シリコン、シリコン化合物及びシリコン低級酸化物の粒径や存在比は上述に示したとおりである。導電性材料は、導電性材料源となる材料をメカニカルミリングや焼結する際添加する、また真空成膜の際はソース(ターゲット)内に添加する、あるいは導電性材料を供給する別ソース(ターゲット)を準備し、添加することができる。 The negative electrode material of the present invention can further contain a conductive material. Note that this conductive material does not contain lithium (the same applies hereinafter). FIG. 3 is a schematic view showing an example of the structure of the negative electrode material of the present invention. The silicon 1c is an amorphous, single crystal, or polycrystal in the main part that occludes and releases lithium. The silicon compound 2 is a material that prevents destruction of the negative electrode material due to the expansion and contraction of the silicon 1c, and is a single crystal, amorphous, or polycrystalline mainly composed of SiO 2 or silicate. The silicon lower oxide 3c serves to increase the affinity between the silicon 1c and the silicon compound 2c, and is non-stoichiometric SiO a (where a is 0 <a <2). The conductive material 5c serves to lower the electrical resistance of the negative electrode material. The conductive material to be added contains at least one element selected from the group consisting of P, B, Mg, Al, Ti, Fe, Co, Ni, Cu, Mo, W, Ag, Au, and Pt. Is preferred. Further, the mass of the conductive material to be added is preferably 0.5 times or less of the total mass of silicon, silicon compound, silicon lower oxide, and conductive material. More preferably, they are 0.1 times or more and 0.4 times or less. FIG. 3 is a schematic view showing an example of the negative electrode material of the present invention including a conductive material, and can take any form as long as silicon, a silicon compound, a silicon lower oxide, and a conductive material are mixed. That is, this conductive material may be present in silicon, silicon compound or silicon lower oxide, or may be present at the boundary of silicon, silicon compound or silicon lower oxide. The particle sizes and abundance ratios of silicon, silicon compound and silicon lower oxide are as described above. The conductive material is added when mechanical milling or sintering the material that is the source of the conductive material, or is added to the source (target) during vacuum film formation, or another source (target) that supplies the conductive material. ) Can be prepared and added.

本発明の負極材料は、リチウムと導電材料との両方を含むことができる。図4は、このような本発明の負極材料の構造の一例を示した模式図である。シリコン1dはリチウムを吸蔵放出する主たる部分でアモルファス、単結晶又は多結晶である。このシリコン1d内にはリチウム4dが含まれる。シリコン内に含まれるリチウムの存在量は、シリコンの原子数1に対するリチウムの原子数として、0より大きく3.5以下であることが好ましい。より好ましくは、1以上2.5以下である。なお、この値は電池放電状態(セル電圧2.5V時)の値である。電池を充電するとリチウムを吸蔵するためこの値より大きい値となる。リチウム添加によりリチウムイオン導電性が向上するが、添加が過剰となると負極のリチウム吸蔵量が低下してしまうためあまり好ましくない。シリコン化合物2dは、シリコン1dの膨張収縮による負極材料の破壊を防ぐ材料であり、主にSiO2やケイ酸塩からなる単結晶・アモルファス・多結晶である。ここで、ケイ酸塩としてリチウムケイ酸塩を用いることもできる。リチウムケイ酸塩としては、Li2SiO3、Li4SiO4、Li4Si38、Li2Si25が例示できる。シリコン低級酸化物3d、はシリコン1dとシリコン化合物2dの親和性をあげる役割をし、非ストイキオメトリーのSiOa(ここでaは0<a<2)である。このシリコン低級酸化物はリチウムを含んでも良い。また、添加するリチウムの質量は、シリコン、シリコン化合物及びシリコン低級酸化物との質量の総和の0.6倍以下が好ましい。より好ましくは、0.2倍以上0.5倍以下である。この値は電池放電状態(セル電圧2.5V時)の値である。電池を充電するとリチウムを吸蔵するためこの値より大きい値となる。導電性材料5dは負極材料の電気抵抗を下げる役割をする。添加する導電性材料としては、P、B、Mg、Al、Ti、Fe、Co、Ni、Cu、Mo、W、Ag、Au及びPtからなる群より選ばれる少なくとも1種以上の元素を含むことが好ましい。また、添加する導電性材料の質量は、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料の質量の総和の0.5倍以下が好ましい。より好ましくは、0.1倍以上0.4倍以下である。図4はリチウム及び導電性材料を含む本発明の負極材料の一例を示した模式図であり、シリコン、シリコン化合物、シリコン低級酸化物、リチウム及び導電性材料が混合した状態であれば、いかなる形態もとりうる。シリコン、シリコン化合物及びシリコン低級酸化物の粒径や存在比は上述に示したとおりである。リチウム及び導電性材料はリチウム源及び導電材料源となる材料をメカニカルミリングや焼結する際添加する、また真空成膜の際はソース(ターゲット)内にリチウム及び導電性材料を添加する、あるいはリチウム及び導電性材料を供給する別ソース(ターゲット)を準備し、添加することができる。また、リチウムの供給に関しては、粒子で構成した負極や真空成膜で行った負極極の上あるいは電池容器内にリチウム箔を貼り付けたり、真空成膜プロセスを使いリチウム層を形成することで負極内にリチウムを供給しても良い。 The negative electrode material of the present invention can contain both lithium and a conductive material. FIG. 4 is a schematic view showing an example of the structure of the negative electrode material of the present invention. Silicon 1d is a main part that occludes and releases lithium, and is amorphous, single crystal, or polycrystalline. This silicon 1d contains lithium 4d. The abundance of lithium contained in silicon is preferably greater than 0 and 3.5 or less as the number of lithium atoms relative to 1 silicon atom. More preferably, it is 1 or more and 2.5 or less. This value is a value in a battery discharge state (when the cell voltage is 2.5 V). When the battery is charged, lithium is occluded, so the value is larger than this value. Lithium addition improves lithium ion conductivity, but excessive addition is not preferable because the lithium storage capacity of the negative electrode is reduced. The silicon compound 2d is a material that prevents destruction of the negative electrode material due to the expansion and contraction of the silicon 1d, and is a single crystal, amorphous, or polycrystalline mainly composed of SiO 2 or silicate. Here, lithium silicate can also be used as the silicate. Examples of the lithium silicate include Li 2 SiO 3 , Li 4 SiO 4 , Li 4 Si 3 O 8 , and Li 2 Si 2 O 5 . The silicon lower oxide 3d serves to increase the affinity between the silicon 1d and the silicon compound 2d, and is non-stoichiometric SiO a (where a is 0 <a <2). This silicon lower oxide may contain lithium. The mass of lithium to be added is preferably 0.6 times or less of the total mass of silicon, silicon compound, and silicon lower oxide. More preferably, it is 0.2 times or more and 0.5 times or less. This value is a value in a battery discharge state (when the cell voltage is 2.5 V). When the battery is charged, lithium is occluded, so the value is larger than this value. The conductive material 5d serves to lower the electrical resistance of the negative electrode material. The conductive material to be added contains at least one element selected from the group consisting of P, B, Mg, Al, Ti, Fe, Co, Ni, Cu, Mo, W, Ag, Au, and Pt. Is preferred. Further, the mass of the conductive material to be added is preferably 0.5 times or less of the total mass of silicon, silicon compound, silicon lower oxide, and conductive material. More preferably, they are 0.1 times or more and 0.4 times or less. FIG. 4 is a schematic view showing an example of the negative electrode material of the present invention containing lithium and a conductive material, and any form as long as silicon, silicon compound, silicon lower oxide, lithium and conductive material are mixed. It can also take. The particle sizes and abundance ratios of silicon, silicon compound and silicon lower oxide are as described above. Lithium and a conductive material are added when a lithium source and a material serving as a conductive material source are mechanically milled or sintered, and when vacuum film formation is performed, lithium and a conductive material are added to the source (target), or lithium And another source (target) for supplying the conductive material can be prepared and added. As for lithium supply, a negative electrode composed of particles, a negative electrode made by vacuum film formation, or a lithium foil is attached to the inside of a battery container, or a lithium layer is formed by using a vacuum film formation process. Lithium may be supplied inside.

本発明の二次電池は、上記のような負極材料で形成した負極を有するものであり、その他、正極、セパレータ、電解液等を併せて容器に収容した形態となるものである。   The secondary battery of the present invention has a negative electrode formed of the negative electrode material as described above, and additionally has a configuration in which a positive electrode, a separator, an electrolytic solution, and the like are contained together in a container.

上記の負極の対極となる正極としては、例えば、LiCoO2、LixCo1-yy2、Li2NiO2、LixMnO2、LixMnF2、LixMnS2、LixMn1-yy2、LixMn1-yy2、LixMn1-yy2-zz、LixMn1-yy2-zz、LixMn24、LixMn24、LixMn24、LixMn2-yy4、LixMn2-yy4-zz及びLixMn2-yy4-zz(0<x≦1.5、0<y<1.0、z≦1.0、Mは1つ以上の遷移金属を表す)が挙げられ、その厚みは通常10〜500μmである。また、正極活物質として、カーボンブラック等の導電性物質、ポリフッ化ビニリデン(PVDF)等の結着剤をN−メチル−2、フッ素樹脂等の多−ピロリドン(NMP)等の溶剤と分散混練したものを正極集電体に塗布し用いることができる。 The positive electrode comprising a negative electrode of the counter electrode described above, for example, LiCoO 2, Li x Co 1 -y M y O 2, Li 2 NiO 2, Li x MnO 2, Li x MnF 2, Li x MnS 2, Li x Mn 1-y M y O 2, Li x Mn 1-y M y O 2, Li x Mn 1-y M y O 2-z F z, Li x Mn 1-y M y O 2-z S z, Li x Mn 2 O 4, Li x Mn 2 F 4, Li x Mn 2 S 4, Li x Mn 2-y M y O 4, Li x Mn 2-y M y O 4-z F z , and Li x Mn 2 -y M y O 4-z S z (0 <x ≦ 1.5,0 <y <1.0, z ≦ 1.0, M represents one or more transition metals), with a thickness Is usually 10 to 500 μm. In addition, as a positive electrode active material, a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF) were dispersed and kneaded with a solvent such as N-methyl-2, multi-pyrrolidone (NMP) such as fluororesin. A thing can be apply | coated and used for a positive electrode electrical power collector.

負極と正極の間には、通常、両極を絶縁しかつ両極間のイオン導電性を発現できるセパレータが配置される。セパレータとしては、例えば、ポリプロピレン、ポリエチレン等のポリオレフィン孔性フィルム等を用いることができる。   Between the negative electrode and the positive electrode, a separator that can insulate both electrodes and develop ionic conductivity between the two electrodes is usually disposed. As the separator, for example, a polyolefin porous film such as polypropylene or polyethylene can be used.

また、電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ−ブチロラクトン等のγ−ラクトン類;1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類;ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させたものを用いることができる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などが挙げられる。また、電解液に代えてポリマー電解質を用いても良い。 Moreover, as electrolyte solution, cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl Chain carbonates such as carbonate (EMC) and dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; γ-lactones such as γ-butyrolactone; Chain ethers such as diethoxyethane (DEE) and ethoxymethoxyethane (EME); cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethyl Formamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2 -Using an aprotic organic solvent such as oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, or a mixture of two or more thereof. What dissolved the lithium salt which melt | dissolves in an organic solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides and the like. Further, a polymer electrolyte may be used instead of the electrolytic solution.

正極・セパレータ・負極を積層した後、又はその積層したものを巻回した後に、金属缶や合成樹脂と金属箔との積層体からなる可とう性フィルムからなる容器に収容後電解液を注液し、封口することによって二次電池を製造することができる。   After laminating the positive electrode, separator, and negative electrode, or after winding the laminated layer, the electrolyte solution is injected after being accommodated in a container made of a flexible film made of a laminated body of a metal can or a synthetic resin and a metal foil. The secondary battery can be manufactured by sealing.

(実施例1)
シリコン単結晶を粉砕した粒子とSiO2アモルファス粒子とSiOアモルファス粒子とを混合しメカニカルミリングを行った。それぞれの材料は、混合前の粒子径として1〜100μmに分布しているような材料を用いた。メカニカルミリングは不活性ガス雰囲気中で100時間行った。粉砕後分級により粒子径5〜40μmの粒子を取り出した。メカニカルミリング後XRD(X−ray Diffractmetry:X線回折法)にて結晶解析を行ったところ一部シリコンの結晶構造が確認できたが、それ以外はアモルファス構造であった。これら材料をXPS(X−ray Photoelectron Spectrometry:X線光電子分光法)を用いてシリコンの価数分布を分析した典型的な結果を図5に示す。この結果から、酸化数が0から+4のシリコン原子がそれぞれ存在していることを確認した。そこで、酸化数が0であるシリコンの存在量が変わるようにシリコン単結晶を粉砕した粒子とSiO2アモルファス粒子とSiOアモルファス粒子の仕込み量を調整した負極材料を調製した。得られた粉体(負極材料)にバインダーと導電付与剤となる黒鉛にNMPを加えたスラリーを銅箔上に塗布し乾燥後、プレスすることで負極を得た。
Example 1
Particles obtained by pulverizing silicon single crystals, SiO 2 amorphous particles, and SiO amorphous particles were mixed and mechanical milling was performed. Each material used was such that the particle size before mixing was distributed in the range of 1 to 100 μm. Mechanical milling was performed in an inert gas atmosphere for 100 hours. After pulverization, particles having a particle diameter of 5 to 40 μm were taken out. After mechanical milling, crystal analysis was performed by XRD (X-ray Diffractometry: X-ray diffraction method). As a result, a part of the crystal structure of silicon was confirmed, but the rest was an amorphous structure. Typical results obtained by analyzing the valence distribution of silicon using XPS (X-ray Photoelectron Spectrometry) are shown in FIG. From this result, it was confirmed that silicon atoms having oxidation numbers of 0 to +4 were present. Therefore, a negative electrode material was prepared in which the amount of silicon single crystal crushed, SiO 2 amorphous particles, and the amount of SiO amorphous particles were adjusted so that the amount of silicon having an oxidation number of 0 was changed. A slurry obtained by adding NMP to graphite as a binder and a conductivity-imparting agent to the obtained powder (negative electrode material) was applied onto a copper foil, dried, and then pressed to obtain a negative electrode.

比容量確認するため、対極にリチウム金属を使いその初期容量を求めた。次に、サイクル特性を確認するため、正極と組み合わせ評価を行った。なお、対極となる正極にはLiCoO2を主成分とした電極を使用し、正極と負極の容量比率は正極1に対し負極が1.0から1.1に収まるよう塗布量を制御した。この負極と正極間にセパレータを巻き込みながら捲回し円筒型のセルを作製し評価をおこなった。初期容量(初回充電容量)とサイクル特性の結果を表1に示す。サイクル特性は、容量が初回放電容量に対して80%まで低下するサイクル数で評価を行った。この結果、いずれも炭素材料の理論容量(372Ah/kg)より大きな値が得られることが判明し、式(1)で求められた数値が0.2となれば炭素負極の2倍以上の重量エネルギー密度が得られることが判明した。また式(1)で求められた数値が0.7を超えるとサイクル特性の低下が見られた。これはシリコン化合物やシリコンの低級酸化物の量が少ないためシリコンの膨張収縮による構造破壊を抑えきれないことに起因すると考えられる。なお、本実施例1のうち、「酸化数が0のシリコン原子の存在比」が0.1〜0.7の実験例が、本発明の範囲に含まれる実施例であり、「酸化数が0のシリコン原子の存在比」が0.8および0.9の実験例は、本発明に関連する参考例である。 In order to confirm the specific capacity, the initial capacity was determined using lithium metal as the counter electrode. Next, in order to confirm cycle characteristics, combination evaluation with the positive electrode was performed. An electrode mainly composed of LiCoO 2 was used for the positive electrode as the counter electrode, and the coating amount was controlled so that the capacity ratio of the positive electrode to the negative electrode was 1.0 to 1.1 with respect to the positive electrode 1. A cylindrical cell was fabricated by winding a separator between the negative electrode and the positive electrode and evaluated. Table 1 shows the results of initial capacity (initial charge capacity) and cycle characteristics. The cycle characteristics were evaluated by the number of cycles in which the capacity was reduced to 80% with respect to the initial discharge capacity. As a result, it has been found that all of them can obtain a value larger than the theoretical capacity (372 Ah / kg) of the carbon material, and when the numerical value obtained by the formula (1) becomes 0.2, the weight is more than twice that of the carbon negative electrode. It was found that energy density was obtained. The observed decrease in cycle characteristics when the numerical value given by Equation (1) exceeds 0.7. This is considered to be due to the fact that the amount of silicon compound or lower oxide of silicon is small, so that structural breakdown due to silicon expansion and contraction cannot be suppressed. In addition, among the present Example 1, an experimental example in which the “abundance ratio of silicon atoms having an oxidation number of 0” is 0.1 to 0.7 is an example included in the scope of the present invention. Experimental examples in which the abundance ratio of 0 silicon atoms is 0.8 and 0.9 are reference examples related to the present invention.

Figure 0004650603
Figure 0004650603

(実施例2)
シリコン多結晶を粉砕した粒子とLi4SiO4アモルファス粒子とSiOアモルファス粒子とリチウム金属とを混合しメカニカルミリングを行った。それぞれの材料は、混合前の粒子径として1〜100μmに分布しているような材料を用いた。メカニカルミリングは不活性ガス雰囲気中で120時間行った。粉砕後分級により粒子径5〜40μmの粒子を取り出した。メカニカルミリング後XRDにて結晶解析を行ったところアモルファス構造であった。これら材料をXPSを用いてシリコンの価数分布を分析した典型的な結果を図6に示す。この結果から、酸化数0がから+4のシリコン原子とシリコン−リチウム結合を形成するシリコン原子を確認した。そこでシリコン内に存在するリチウムの存在量をリチウム仕込み量を変えることで変化させた負極材料を調製した。電極は得られた粉体(負極材料)にバインダーと導電付与剤となる黒鉛にNMPを加えたスラリーを銅箔上に塗布し乾燥後、プレスすることで負極を得た。
(Example 2)
Particles obtained by pulverizing silicon polycrystal, Li 4 SiO 4 amorphous particles, SiO amorphous particles, and lithium metal were mixed to perform mechanical milling. Each material used was such that the particle size before mixing was distributed in the range of 1 to 100 μm. Mechanical milling was performed in an inert gas atmosphere for 120 hours. After pulverization, particles having a particle diameter of 5 to 40 μm were taken out. After mechanical milling, the crystal was analyzed by XRD and found to have an amorphous structure. FIG. 6 shows typical results obtained by analyzing the valence distribution of silicon using XPS for these materials. From this result, silicon atoms forming silicon-lithium bonds with silicon atoms having an oxidation number of 0 to +4 were confirmed. Thus, a negative electrode material was prepared in which the amount of lithium present in silicon was changed by changing the amount of lithium charged. The electrode was obtained by applying a slurry obtained by adding NMP to graphite as a binder and a conductive agent to the obtained powder (negative electrode material) on a copper foil, drying, and pressing to obtain a negative electrode.

比容量確認するため、対極にリチウム金属を使いその初期容量を求めた。なお、使用した負極材料は式(1)で求められた数値は0.5であった。初期容量測定結果を表2に示す。この結果、いずれも炭素材料の理論容量(372Ah/kg)より大きな値が得られることが判明した。ただし、リチウム原子数/シリコン原子数が2.5を超えると炭素材料と比較して容量が2倍以下となった。これはリチウムをあらかじめ多く添加すると電気抵抗は下がるものの、その分吸蔵できるリチウムが減少するからと考えられる。   In order to confirm the specific capacity, the initial capacity was determined using lithium metal as the counter electrode. In addition, the numerical value calculated | required by Formula (1) was 0.5 for the negative electrode material used. The initial capacity measurement results are shown in Table 2. As a result, it was found that a value larger than the theoretical capacity (372 Ah / kg) of the carbon material can be obtained. However, when the number of lithium atoms / number of silicon atoms exceeded 2.5, the capacity was 2 times or less as compared with the carbon material. This is presumably because, if a large amount of lithium is added in advance, the electrical resistance decreases, but the amount of lithium that can be occluded decreases accordingly.

Figure 0004650603
Figure 0004650603

(実施例3)
まずシリコン多結晶を粉砕した粒子とSiO2アモルファス粒子とSiOアモルファス粒子と混合し焼結した後、これをスパッタリング成膜用ターゲットとして用いた。真空容器内を10-4Pa以下の状態にした後、アルゴンガスを容器内に流入させ、真空容器内を1Paにしrfバイアスを印加する事でアルゴンプラズマを発生させ、ターゲットをスパッタし、対極に設置した銅箔上に電極を形成した。銅箔上の電極の結晶解析を行ったところアモルファス構造であった。またXPSでシリコンの酸化状態を調べたところ、式(1)で求められる数値は0.7であった。この電極にリチウム箔を貼り負極とした。得られた負極を用いて電池を作成し、その初期容量を求めた。なお、正極にはLiMnO2を使い、セパレータとともに捲回した電極をアルミラミネート容器内に収容して評価を行った。その結果を表3に示す。表3のリチウム添加量は、添加したリチウムの質量を、シリコン、シリコン化合物及びシリコン低級酸化物の質量の総和で除した値である。
(Example 3)
First, particles obtained by pulverizing silicon polycrystal, SiO 2 amorphous particles, and SiO amorphous particles were mixed and sintered, and then used as a target for sputtering film formation. After the inside of the vacuum vessel is kept at 10 −4 Pa or less, argon gas is allowed to flow into the vessel, the inside of the vacuum vessel is set to 1 Pa, an rf bias is applied to generate argon plasma, the target is sputtered, and the counter electrode is An electrode was formed on the installed copper foil. When the crystal analysis of the electrode on copper foil was conducted, it was amorphous structure. Further, when the oxidation state of silicon was examined by XPS, the numerical value obtained by the expression (1) was 0.7. Lithium foil was attached to this electrode to make a negative electrode. A battery was prepared using the obtained negative electrode, and its initial capacity was determined. In addition, LiMnO 2 was used for the positive electrode, and the electrode wound together with the separator was housed in an aluminum laminate container for evaluation. The results are shown in Table 3. The amount of lithium added in Table 3 is a value obtained by dividing the mass of added lithium by the total mass of silicon, silicon compound, and silicon lower oxide.

この結果、リチウムの質量が、シリコン、シリコン化合物及びシリコン低級酸化物の質量の総和に対し0.6以下であれば炭素材料の理論容量(372Ah/kg)より大きな値が得られることが判明した。ただし、0.5を超えると炭素材料と比較して容量が2倍以下となった。これはリチウムをあらかじめ多く添加すると電気抵抗は下がるものの、その分吸蔵できるリチウムが減少するからと考えられる。電池の平均動作電圧は1.0C放電時3.65Vであった。   As a result, it was found that a value larger than the theoretical capacity (372 Ah / kg) of the carbon material can be obtained if the mass of lithium is 0.6 or less with respect to the total mass of silicon, silicon compound and silicon lower oxide. . However, when it exceeded 0.5, the capacity became 2 times or less as compared with the carbon material. This is presumably because, if a large amount of lithium is added in advance, the electrical resistance decreases, but the amount of lithium that can be occluded decreases accordingly. The average operating voltage of the battery was 3.65 V when discharged at 1.0 C.

Figure 0004650603
Figure 0004650603

(実施例4)
まずシリコン単結晶を粉砕した粒子とSiO2アモルファス粒子とSiOアモルファス粒子と混合した材料を電子ビームを使い坩堝内で溶融させ蒸着させた。同時に導電性材料をとなる材料を別の坩堝内で溶融し同時に蒸着させた。蒸着の際酸素をわずかに流入させることによっても、シリコンの酸化数を制御することが可能である。蒸着基板には銅箔を使い、蒸着により得られた膜をそのまま負極として用いた。銅箔上の電極の結晶解析を行ったところアモルファス構造であった。またXPSでシリコンの酸化状態を調べたところ、式(1)で求められる数値は0.3であった。添加した導電性材料はFeである。導電性材料と添加量と、得られる負極を用いた電池の初期容量を表4に示す。表4の導電性材料添加量は、導電性材料の添加質量を、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料の質量の和で除した値である。評価は、正極にLiCoO2を使い捲回したものを角型の金属容器内に収容し行った。
Example 4
First, a material obtained by pulverizing silicon single crystal, SiO 2 amorphous particles, and SiO amorphous particles was melted and deposited in a crucible using an electron beam. At the same time, the material that became the conductive material was melted in another crucible and evaporated at the same time. It is also possible to control the oxidation number of silicon by allowing a slight amount of oxygen to flow during deposition. A copper foil was used for the vapor deposition substrate, and the film obtained by vapor deposition was used as a negative electrode as it was. When the crystal analysis of the electrode on copper foil was conducted, it was amorphous structure. Further, when the oxidation state of silicon was examined by XPS, the numerical value obtained by the formula (1) was 0.3. The added conductive material is Fe. Table 4 shows the conductive material, the added amount, and the initial capacity of the battery using the obtained negative electrode. The addition amount of the conductive material in Table 4 is a value obtained by dividing the addition mass of the conductive material by the sum of the masses of silicon, silicon compound, silicon lower oxide, and conductive material. The evaluation was carried out by accommodating a rolled positive electrode using LiCoO 2 in a square metal container.

この結果、いずれも炭素材料の理論容量(372Ah/kg)より大きな値が得られることが判明した。ただし、導電性材料の質量が、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料の質量の和に対し0.4を超えると炭素材料と比較して容量が2倍以下となった。   As a result, it was found that a value larger than the theoretical capacity (372 Ah / kg) of the carbon material can be obtained. However, when the mass of the conductive material exceeded 0.4 with respect to the sum of the masses of silicon, silicon compound, silicon lower oxide, and conductive material, the capacity became twice or less as compared with the carbon material.

Figure 0004650603
Figure 0004650603

また、他の導電性材料を添加したときの結果を表5に示す。表5の導電性材料添加量は、導電性材料の添加質量を、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料の質量の総和で除した値である。シリコン原子の存在比は、シリコン(酸化数が0のシリコン原子)、シリコン低級酸化物(酸化数が0より大きく+4未満のシリコン原子)及びシリコン化合物(酸化数が+4のシリコン原子)のそれぞれに含まれるシリコン原子数をシリコン原子数の総和で除した値である。   Table 5 shows the results when other conductive materials are added. The addition amount of the conductive material in Table 5 is a value obtained by dividing the addition mass of the conductive material by the sum of the masses of silicon, silicon compound, silicon lower oxide, and conductive material. The abundance ratio of silicon atoms is as follows: silicon (a silicon atom with an oxidation number of 0), silicon lower oxide (a silicon atom with an oxidation number greater than 0 and less than +4), and a silicon compound (a silicon atom with an oxidation number of +4). This is a value obtained by dividing the number of silicon atoms contained by the total number of silicon atoms.

Figure 0004650603
Figure 0004650603

(実施例5)
まずシリコン単結晶を粉砕した粒子とSiO2アモルファス粒子とSiOアモルファス粒子と混合した材料を電子ビームを使い坩堝内で溶融させ蒸着させた。同時にリチウムと導電性材料をとなる材料をそれぞれ別の坩堝内で溶融し同時に蒸着させた。蒸着の際酸素をわずかに流入させることによっても、シリコンの酸化数を制御することが可能である。蒸着基板には銅箔を使い、蒸着により得られた膜をそのまま負極として用いた。銅箔上の電極の結晶解析を行ったところアモルファス構造であった。リチウムと導電性材料の添加量と負極容量を表6に示す。表6の導電材料添加量は、導電性材料の添加質量を、シリコン、シリコン化合物、シリコン低級酸化物及び導電性材料の質量の総和で除した値である。表6のリチウム添加量は、添加したリチウムの質量を、シリコン、シリコン化合物及びシリコン低級酸化物の質量の総和で除した値である。シリコン原子の存在比は、シリコン(酸化数が0のシリコン原子)、シリコン低級酸化物(酸化数が0より大きく+4未満のシリコン原子)及びシリコン化合物(酸化数が+4のシリコン原子)のそれぞれに含まれるシリコン原子数をシリコン原子数の総和で除した値である。
(Example 5)
First, a material obtained by pulverizing silicon single crystal, SiO 2 amorphous particles, and SiO amorphous particles was melted and deposited in a crucible using an electron beam. At the same time, lithium and a conductive material were melted in separate crucibles and simultaneously deposited. It is also possible to control the oxidation number of silicon by allowing a slight amount of oxygen to flow during deposition. A copper foil was used for the vapor deposition substrate, and the film obtained by vapor deposition was used as a negative electrode as it was. When the crystal analysis of the electrode on copper foil was conducted, it was amorphous structure. Table 6 shows the addition amount of lithium and a conductive material and the negative electrode capacity. The addition amount of the conductive material in Table 6 is a value obtained by dividing the addition mass of the conductive material by the sum of the masses of silicon, silicon compound, silicon lower oxide, and conductive material. The amount of lithium added in Table 6 is a value obtained by dividing the mass of the added lithium by the total mass of silicon, silicon compound, and silicon lower oxide. The abundance ratio of silicon atoms is as follows: silicon (a silicon atom with an oxidation number of 0), silicon lower oxide (a silicon atom with an oxidation number greater than 0 and less than +4), and a silicon compound (a silicon atom with an oxidation number of +4). This is a value obtained by dividing the number of silicon atoms contained by the total number of silicon atoms.

Figure 0004650603
Figure 0004650603

(比較例1)
シリコン、Li2SiO3(ケイ酸リチウム)、LiAlSi26(スポジュメン)又はSiOをそれぞれ負極材料としてその容量と動作電圧の確認を行った。容量確認は対極にリチウム金属を使い、その他の条件は実施例2と同じ方法を用いた。
(Comparative Example 1)
The capacity and operating voltage were confirmed using silicon, Li 2 SiO 3 (lithium silicate), LiAlSi 2 O 6 (spodumene) or SiO as the negative electrode material. For capacity confirmation, lithium metal was used for the counter electrode, and the same method as in Example 2 was used for the other conditions.

その結果、シリコンの初回充電容量は3650Ah/kg、Li2SiO3の初回充電容量は315Ah/kg、SiOの初回充電容量は2300Ah/kgであった。LiAlSi26は充放電を確認できず、Li2SiO3は炭素負極の容量を下回りかつ放電電位が対リチウムで1.4Vと高いため、LiCoO2やLiMnO2を正極として使用した場合平均動作電圧は3.1Vと低くなりメリットは認められなかった。またSiOの初回充放電効率は15%と小さく、放電容量は345Ah/kgと炭素と同等レベルであった。シリコンで負極を作製し、正極にはLiCoO2を使いこれを捲回後金属製の円筒セル内に収容しサイクル特性を評価した結果、27サイクル後に初期容量の15%まで容量低下した。このようにシリコン、シリコン化合物、シリコン低級酸化物のみを使用しそれを負極とした場合、いずれも、容量、動作電位、サイクル寿命等にメリットは認められなかった。 As a result, the initial charge capacity of silicon was 3650 Ah / kg, the initial charge capacity of Li 2 SiO 3 was 315 Ah / kg, and the initial charge capacity of SiO was 2300 Ah / kg. LiAlSi 2 O 6 can not be charged / discharged, Li 2 SiO 3 is less than the capacity of the carbon negative electrode and the discharge potential is as high as 1.4V with respect to lithium, so when LiCoO 2 or LiMnO 2 is used as the positive electrode, the average operation The voltage was as low as 3.1 V, and no merit was observed. Further, the initial charge / discharge efficiency of SiO was as small as 15%, and the discharge capacity was 345 Ah / kg, a level equivalent to that of carbon. A negative electrode was made of silicon, LiCoO 2 was used for the positive electrode, and this was wound and housed in a metal cylindrical cell, and the cycle characteristics were evaluated. As a result, the capacity decreased to 15% of the initial capacity after 27 cycles. Thus, when only silicon, silicon compound, and silicon lower oxide were used and used as the negative electrode, no merit was found in capacity, operating potential, cycle life, etc.

本発明の負極材料の構造の一例を示した模式図である。It is the schematic diagram which showed an example of the structure of the negative electrode material of this invention. リチウムを含む本発明の負極材料の構造の一例を示した模式図である。It is the schematic diagram which showed an example of the structure of the negative electrode material of this invention containing lithium. 導電性材料を含む本発明の負極材料の構造の一例を示した模式図である。It is the schematic diagram which showed an example of the structure of the negative electrode material of this invention containing an electroconductive material. リチウム及び導電性材料を含む本発明の負極材料の構造の一例を示した模式図である。It is the schematic diagram which showed an example of the structure of the negative electrode material of this invention containing lithium and an electroconductive material. 本発明の実施例1の負極材料のSi2pをXPSで測定したの結果の一例を示す図である。It is a figure which shows an example of the result of having measured Si2p of the negative electrode material of Example 1 of this invention by XPS. 本発明の実施例2の負極材料のSi2pをXPSで測定したの結果の一例を示す図である。It is a figure which shows an example of the result of having measured Si2p of the negative electrode material of Example 2 of this invention by XPS.

符号の説明Explanation of symbols

1a,1b,1c,1d・・・・・シリコン
2a,2b,2c,2d・・・・・シリコン化合物
3a,3b,3c,3d・・・・・シリコン低級酸化物
4b,4d・・・・・リチウム
5c,5d・・・・・導電性材料



1a, 1b, 1c, 1d... Silicon 2a, 2b, 2c, 2d... Silicon compounds 3a, 3b, 3c, 3d... Lower silicon oxides 4b, 4d.・ Lithium 5c, 5d ... Conductive material



Claims (6)

リチウムイオンを吸蔵および放出することのできる二次電池用負極材料であって、酸化数が0のシリコンと、酸化数が+4のシリコン原子を有するシリコン化合物と、酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物とからなり
前記酸化数が+4のシリコン原子を有するシリコン化合物が、シリコン酸化物またはケイ酸塩であり、
前記酸化数0のシリコンの原子数が、シリコン原子の数の総和の0.1倍以上かつ0.7倍以下であり、
比容量が372Ah/kgより大きいことを特徴とする二次電池用負極材料。
A negative electrode material for a secondary battery capable of inserting and extracting lithium ions, wherein silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and an oxidation number of greater than 0 and less than +4 consists of a silicon lower oxide having a silicon atom,
The silicon compound having a silicon atom with an oxidation number of +4 is silicon oxide or silicate;
The number of silicon atoms having an oxidation number of 0 is not less than 0.1 times and not more than 0.7 times the total number of silicon atoms;
A negative electrode material for a secondary battery, wherein the specific capacity is greater than 372 Ah / kg.
リチウムをさらに含み、
電池放電時の負極に含まれる前記リチウムの原子数が、前記酸化数0のシリコンの原子数の3.5倍以下であり、
電池放電時の負極に含まれる前記リチウムの質量が、前記酸化数が0のシリコンと、前記酸化数が+4のシリコン原子を有するシリコン化合物と、前記酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物との質量の総和の0.6倍以下であることを特徴とする請求項1記載の二次電池用負極材料。
Further comprising lithium,
The number of lithium atoms contained in the negative electrode during battery discharge is 3.5 times or less of the number of silicon atoms of the oxidation number 0,
The mass of the lithium contained in the negative electrode during battery discharge includes silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and a silicon atom having an oxidation number of greater than 0 and less than +4. 2. The negative electrode material for a secondary battery according to claim 1, wherein the negative electrode material is not more than 0.6 times the total mass of the silicon lower oxide.
P、B、Mg、Al、Ti、Fe、Co、Ni、Cu、Mo、W、Ag、Au及びPtからなる群より選ばれる少なくとも1種以上の元素からなる導電性材料をさらに含み、
前記導電性材料の質量が、前記酸化数が0のシリコンと、前記酸化数が+4のシリコン原子を有するシリコン化合物と、前記酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物と、前記導電性材料との質量の総和の0.5倍以下であることを特徴とする請求項1又は2記載の二次電池用負極材料。
A conductive material comprising at least one element selected from the group consisting of P, B, Mg, Al, Ti, Fe, Co, Ni, Cu, Mo, W, Ag, Au, and Pt;
The conductive material has a mass of silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and a silicon lower oxide having a silicon atom having an oxidation number of greater than 0 and less than +4. The negative electrode material for a secondary battery according to claim 1, wherein the negative electrode material is 0.5 times or less of a total sum of mass with the conductive material.
請求項1乃至3いずれか記載の二次電池用負極材料を製造する方法であって、前記酸化数が0のシリコンと、前記酸化数が+4のシリコン原子を有するシリコン化合物と、前記酸化数が0より大きく+4未満のシリコン原子を有するシリコン低級酸化物とを混合する工程を有する二次電池用負極材料の製造方法。   4. A method for producing a negative electrode material for a secondary battery according to claim 1, wherein the silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and the oxidation number are A method for producing a negative electrode material for a secondary battery, comprising a step of mixing a silicon lower oxide having silicon atoms greater than 0 and less than +4. 請求項1乃至3いずれか記載の二次電池用負極材料を製造する方法であって、真空成膜法により集電体上に二次電池用負極材料を製膜する工程を有する二次電池用負極材料の製造方法。   A method for producing a negative electrode material for a secondary battery according to any one of claims 1 to 3, comprising a step of forming a negative electrode material for a secondary battery on a current collector by a vacuum film formation method. Manufacturing method of negative electrode material. 請求項1乃至3いずれかに記載の二次電池用負極材料を用いた負極を有する二次電池。   The secondary battery which has a negative electrode using the negative electrode material for secondary batteries in any one of Claims 1 thru | or 3.
JP2003424671A 2003-12-22 2003-12-22 Anode material for secondary battery, method for producing the same, and secondary battery using the same Expired - Lifetime JP4650603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424671A JP4650603B2 (en) 2003-12-22 2003-12-22 Anode material for secondary battery, method for producing the same, and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424671A JP4650603B2 (en) 2003-12-22 2003-12-22 Anode material for secondary battery, method for producing the same, and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005183264A JP2005183264A (en) 2005-07-07
JP4650603B2 true JP4650603B2 (en) 2011-03-16

Family

ID=34784798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424671A Expired - Lifetime JP4650603B2 (en) 2003-12-22 2003-12-22 Anode material for secondary battery, method for producing the same, and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4650603B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193141B2 (en) * 2005-03-25 2008-12-10 ソニー株式会社 Negative electrode for lithium secondary battery, lithium secondary battery, and production method thereof
US8071237B2 (en) 2005-12-02 2011-12-06 Panasonic Corporation Negative electrode active material and negative electrode using the same and lithium ion secondary battery
JP4655976B2 (en) * 2006-03-20 2011-03-23 ソニー株式会社 Negative electrode and battery
JP4985949B2 (en) * 2006-03-27 2012-07-25 信越化学工業株式会社 Method for producing silicon-silicon oxide-lithium composite, and negative electrode material for non-aqueous electrolyte secondary battery
JP5135712B2 (en) * 2006-05-25 2013-02-06 ソニー株式会社 Secondary battery
JP4961846B2 (en) * 2006-06-12 2012-06-27 パナソニック株式会社 Method for producing electrode for lithium battery
JP4844764B2 (en) * 2008-03-17 2011-12-28 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using the same
US8546019B2 (en) 2008-11-20 2013-10-01 Lg Chem, Ltd. Electrode active material for secondary battery and method for preparing the same
JP5369708B2 (en) * 2009-01-26 2013-12-18 旭硝子株式会社 Anode material for secondary battery and method for producing the same
JP5590521B2 (en) * 2009-11-06 2014-09-17 独立行政法人産業技術総合研究所 Positive electrode active material for lithium secondary battery and method for producing the same
JP5659696B2 (en) * 2009-12-24 2015-01-28 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP5842985B2 (en) * 2009-12-24 2016-01-13 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, electric tool, electric vehicle and power storage system
US9466827B2 (en) 2010-09-02 2016-10-11 Nec Corporation Secondary battery
US20130157119A1 (en) * 2010-09-02 2013-06-20 Nec Corporation Secondary battery
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
JP2013008586A (en) 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6003015B2 (en) * 2011-06-24 2016-10-05 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5935246B2 (en) 2011-06-24 2016-06-15 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5549982B2 (en) * 2011-11-25 2014-07-16 独立行政法人産業技術総合研究所 Silicon oxide powder, negative electrode material for lithium ion secondary battery using the same, lithium ion secondary battery using this material, and method for producing silicon oxide powder for negative electrode material of lithium ion secondary battery
JP6273868B2 (en) * 2013-01-30 2018-02-07 日本電気硝子株式会社 Negative electrode active material for power storage device and method for producing the same
WO2015029100A1 (en) * 2013-08-26 2015-03-05 日立オートモティブシステムズ株式会社 Negative-electrode active material for lithium-ion secondary batteries, lithium-ion secondary battery, and method for manufacturing negative-electrode active material for lithium-ion secondary batteries
JP6183443B2 (en) * 2015-12-10 2017-08-23 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6688663B2 (en) * 2016-04-07 2020-04-28 株式会社大阪チタニウムテクノロジーズ Li-containing silicon oxide powder and method for producing the same
JP6564740B2 (en) * 2016-07-04 2019-08-21 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of manufacturing negative electrode active material, and method of manufacturing lithium ion secondary battery
KR102291005B1 (en) * 2018-11-27 2021-08-19 한양대학교 산학협력단 Method for producing anode material for secondary battery
JP2022119664A (en) * 2021-02-04 2022-08-17 信越化学工業株式会社 Negative electrode and method for manufacturing negative electrode
WO2022270041A1 (en) * 2021-06-21 2022-12-29 パナソニックIpマネジメント株式会社 Composite active material particles and battery using same
JP7040832B1 (en) 2021-08-11 2022-03-23 日本重化学工業株式会社 Negative electrode active material for lithium ion secondary battery, its manufacturing method, and negative electrode for lithium ion secondary battery
JP2023026832A (en) * 2021-08-16 2023-03-01 信越化学工業株式会社 Negative electrode and negative electrode manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083817A (en) * 1996-07-19 1998-03-31 Sony Corp Anode material and non-aqueous electrolytic secondary battery using the material
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JP2001148248A (en) * 1999-11-22 2001-05-29 Sony Corp Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP2001216961A (en) * 2000-02-04 2001-08-10 Shin Etsu Chem Co Ltd Silicon oxide for lithium ion secondary battery and lithium ion secondary battery
JP2002042806A (en) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2004178917A (en) * 2002-11-26 2004-06-24 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, manufacturing method of the same, and lithium ion secondary battery
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083817A (en) * 1996-07-19 1998-03-31 Sony Corp Anode material and non-aqueous electrolytic secondary battery using the material
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JP2001148248A (en) * 1999-11-22 2001-05-29 Sony Corp Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP2001216961A (en) * 2000-02-04 2001-08-10 Shin Etsu Chem Co Ltd Silicon oxide for lithium ion secondary battery and lithium ion secondary battery
JP2002042806A (en) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2004178917A (en) * 2002-11-26 2004-06-24 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, manufacturing method of the same, and lithium ion secondary battery
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005183264A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4650603B2 (en) Anode material for secondary battery, method for producing the same, and secondary battery using the same
JP5132941B2 (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP5205424B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
JP4701579B2 (en) Negative electrode for secondary battery
JP5068459B2 (en) Lithium secondary battery
JP5210503B2 (en) Nonaqueous electrolyte secondary battery
JP6116138B2 (en) Negative electrode active material and secondary battery including the same
JP4752508B2 (en) Secondary battery negative electrode material, secondary battery negative electrode and secondary battery using the same
JP5278994B2 (en) Lithium secondary battery
JP2003303585A (en) Battery
JP2011096637A (en) Secondary battery
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
JP7262998B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material
US20180261837A1 (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
WO2012049723A1 (en) Nonaqueous electrolyte secondary battery
JP2005197080A (en) Anode for secondary battery and secondary battery using it
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
CN111247672A (en) Lithium secondary battery with long service life and ultra-high energy density
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP4951879B2 (en) Lithium secondary battery and positive electrode active material for lithium secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery
JP5766009B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Ref document number: 4650603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

EXPY Cancellation because of completion of term