JP5369708B2 - Anode material for secondary battery and method for producing the same - Google Patents

Anode material for secondary battery and method for producing the same Download PDF

Info

Publication number
JP5369708B2
JP5369708B2 JP2009014330A JP2009014330A JP5369708B2 JP 5369708 B2 JP5369708 B2 JP 5369708B2 JP 2009014330 A JP2009014330 A JP 2009014330A JP 2009014330 A JP2009014330 A JP 2009014330A JP 5369708 B2 JP5369708 B2 JP 5369708B2
Authority
JP
Japan
Prior art keywords
negative electrode
sio
electrode material
crystalline
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009014330A
Other languages
Japanese (ja)
Other versions
JP2010170943A (en
Inventor
泰夫 篠崎
賢二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009014330A priority Critical patent/JP5369708B2/en
Publication of JP2010170943A publication Critical patent/JP2010170943A/en
Application granted granted Critical
Publication of JP5369708B2 publication Critical patent/JP5369708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a secondary battery which is an Si-SiO<SB>2</SB>-magnesium silicate-carbon based composite material, and superior in cycle characteristics and charge-discharge efficiency. <P>SOLUTION: In the negative electrode material for the secondary battery containing crystalline Si, amorphous SiO<SB>2</SB>, a crystalline Mg<SB>2</SB>SiO<SB>4</SB>, and a carbonaceous material, it is preferable that atomic ratio of Mg atom and Si atom in the negative electrode material is from 1:2 to 1:40. The negative material is manufactured through a mixing process 1 of silicon oxide SiO<SB>X</SB>(0&lt;X&lt;2), and magnesium compound, a process 2 of making Mg-Si based compound containing a magnesium silicate phase by heating treatment of a mixture 1, a process 3 of making Mg-Si based composite powder by pulverization treatment of the Mg-Si based compound, a process 4 of mixing the Mg-Si based composite and carbon precursor, a process 5 of obtaining curing treated body by heating treatment of carbon precursor mixture obtained in the process 4, a process 6 of obtaining curing treated powder by pulverization treatment of the curing treated body, and a process 7 of obtaining active material by carbonization treatment of the curing treated body powder. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、非水電解液を用いたリチウムイオン二次電池用負極材料およびその製造方法に係るものである。   The present invention relates to a negative electrode material for a lithium ion secondary battery using a non-aqueous electrolyte and a method for producing the same.

携帯機器の高機能化に伴いリチウムイオン二次電池に代表される大容量二次電池は従来にも増して高いエネルギー密度を求められている。従来、リチウムイオン二次電池(以下、単に二次電池と略す)の負極材料としては黒鉛系の材料が一般に用いられてきたが、黒鉛負極の容量はその理論容量(372mAh/g)に近づいており、新たな高容量負極材料の開発が求められている。なお、本明細書では、負極材料と活物質とは同じ意味で使用する。   With higher functionality of portable devices, high-capacity secondary batteries represented by lithium ion secondary batteries are required to have higher energy density than ever before. Conventionally, a graphite-based material has been generally used as a negative electrode material of a lithium ion secondary battery (hereinafter simply referred to as a secondary battery), but the capacity of the graphite negative electrode approaches its theoretical capacity (372 mAh / g). Therefore, development of a new high capacity negative electrode material is demanded. Note that in this specification, the negative electrode material and the active material are used interchangeably.

近年、Liと合金を作るSiやSnなどの金属を負極材料として用いる試みがなされている。これらの金属負極はその理論容量が黒鉛の数倍から10倍と非常に大きいもののLiイオンの吸蔵(合金化)と放出(脱合金化)時の体積変化が大きいため、充放電の繰り返しにより電極活物質内部にクラックが生じ数十サイクルで容量が大幅に低下するという課題を有している。   In recent years, attempts have been made to use metals such as Si and Sn that form alloys with Li as negative electrode materials. Although these metal negative electrodes have a very large theoretical capacity of several to 10 times that of graphite, the volume change during storage (alloying) and release (dealloying) of Li ions is large. There is a problem that a crack is generated inside the active material and the capacity is drastically reduced in several tens of cycles.

この課題を克服するため、一酸化ケイ素(SiO)などのSiの低級酸化物を非酸化雰囲気で加熱(不均化反応)した際に得られるナノサイズのSi−SiO系複合材料が負極材料として注目されている。しかし、この複合材料は導電性に乏しいため、導電性付与およびサイクル特性向上を目的に炭素との複合化(Si−SiO−C)が試みられている(特許文献1、2)。 In order to overcome this problem, a nano-sized Si—SiO 2 composite material obtained when a lower oxide of Si such as silicon monoxide (SiO) is heated in a non-oxidizing atmosphere (disproportionation reaction) is a negative electrode material. It is attracting attention as. However, since this composite material has poor electrical conductivity, composite (Si—SiO 2 —C) with carbon has been attempted for the purpose of imparting electrical conductivity and improving cycle characteristics (Patent Documents 1 and 2).

また、Si−SiO系複合材料では、充電過程でLiがLiOやLiシリケートに変化すると、放電時にLiの脱離が非常に起こりにくくなり、Liの充電量と放電量のバランス(充放電効率)が低下する問題も指摘されている。そこで充放電効率を改善する目的で、Si−SiO系複合材料に予めLiを導入して、Si−SiO−LiSiOの3相からなる複合構造酸化物と炭素を複合化した負極材料(Si−SiO−LiSiO−C)が提案されている(特許文献3)。しかし、提案されている複合材料でも、サイクル特性および充放電効率の向上という点で必ずしも充分なものではなかった。 In addition, in the Si—SiO 2 composite material, when Li changes to Li 2 O or Li silicate during the charging process, Li desorption becomes very difficult during discharge, and the balance between the charge amount of Li and the discharge amount (charge) A problem that the discharge efficiency is reduced has also been pointed out. Therefore, for the purpose of improving the charge / discharge efficiency, Li is introduced in advance into the Si—SiO 2 composite material, and the composite structure oxide composed of three phases of Si—SiO 2 —Li 4 SiO 4 and carbon are combined into a negative electrode A material (Si—SiO 2 —Li 4 SiO 4 —C) has been proposed (Patent Document 3). However, even the proposed composite materials are not always sufficient in terms of improving cycle characteristics and charge / discharge efficiency.

特開2004−47404号公報JP 2004-47404 A 特開2004−119176号公報JP 2004-119176 A 特開2007−59213号公報JP 2007-59213 A

本発明は、Si−SiO−マグネシウムシリケート−炭素系複合材料であって、サイクル特性および充放電効率に優れた、二次電池用負極材料の提供を目的とする。 An object of the present invention is to provide a negative electrode material for a secondary battery which is a Si—SiO 2 -magnesium silicate-carbon composite material and has excellent cycle characteristics and charge / discharge efficiency.

本発明は、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とを含むことを特徴とする二次電池用負極材料を提供する。 The present invention provides a negative electrode material for a secondary battery comprising crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and a carbonaceous material.

また、別の本発明は、酸化ケイ素SiO(0<X<2)と、マグネシウム化合物とをMg原子とSi原子の原子比が1:2から1:40となるように混合して混合物1を得る工程1と、前記混合物1を不活性雰囲気下、保持温度800℃〜1500℃で加熱処理してマグネシウムシリケート相を含むMg−Si系複合物とする工程2と、前記Mg−Si系複合物を粉砕処理してMg−Si系複合粉末とする工程3と、前記Mg−Si系複合粉末と、炭素前駆体とを混合して炭素前駆体混合物とする工程4と、工程4で得られた炭素前駆体混合物を保持温度100〜500℃で加熱処理して硬化処理体とする工程5と、前記硬化処理体を粉砕処理して硬化処理体粉末とする工程6と、を含み、工程7として前記硬化処理体粉末を不活性雰囲気下、保持温度700℃〜1300℃で加熱処理して前記硬化処理体粉末を炭化処理して活物質とすることを特徴とする二次電池用負極材料の製造方法を提供する。 In another embodiment of the present invention, silicon oxide SiO X (0 <X <2) and a magnesium compound are mixed so that the atomic ratio of Mg atoms to Si atoms is 1: 2 to 1:40. Step 1 for obtaining a Mg—Si based composite containing a magnesium silicate phase by heat-treating the mixture 1 at a holding temperature of 800 ° C. to 1500 ° C. in an inert atmosphere, and the Mg—Si based composite Obtained by pulverizing the product to obtain Mg-Si based composite powder, Step 4 to mix the Mg-Si based composite powder and the carbon precursor to obtain a carbon precursor mixture, and Step 4 Step 7 including heat treatment of the carbon precursor mixture at a holding temperature of 100 to 500 ° C. to obtain a cured product, and step 6 to pulverize the cured product to obtain a cured product powder. As said hardened body powder as an inert atmosphere Lower, to provide a method of manufacturing a negative electrode material for a secondary battery, characterized in that by carbonizing the cured powder is heat treated at a holding temperature 700 ° C. to 1300 ° C. and the active material.

本発明の二次電池用負極材料(以下、本負極材料という)は、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とを含み、しかもこれらの相の構成元素が相互に拡散し相界面が結合している状態、すなわち、各相が原子レベルで結合状態にあるためLiイオンの吸蔵と放出時の体積変化が小さく、充放電の繰り返しによっても電極活物質内にクラックが発生しにくい。したがって、サイクル数が多くても容量の低下がおきにくく、従来のもののような少ないサイクル数での急激な容量の低下がないためサイクル特性に優れる。 The negative electrode material for a secondary battery of the present invention (hereinafter referred to as the present negative electrode material) includes crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and a carbonaceous material, and these phases. In the state in which the constituent elements of each other are diffused and the phase interface is bonded, that is, each phase is in a bonded state at the atomic level, so the volume change at the time of insertion and extraction of Li ions is small, Cracks are less likely to occur in the active material. Therefore, even if the number of cycles is large, the capacity is hardly reduced, and the cycle characteristics are excellent because there is no sudden capacity decrease at a small number of cycles as in the conventional one.

本負極材料は、各相が原子レベルで結合状態にあるため放電時のLiイオンの脱離がスムーズでLiイオンの充電量と放電量のバランスがよく、充放電効率が高いという特徴もある。充放電効率とは、充電に要した電気量に対する放電できた電気量の比率であり、充電時に負極活物質に取り込まれたLiイオンのうち放電時に取り出せたLiイオンの割合を示す。当然のことながら、充放電効率が高いほど良い。   This negative electrode material is also characterized in that each phase is in a bonded state at the atomic level, so that the desorption of Li ions during discharge is smooth, the balance between the charge amount and the discharge amount of Li ions is good, and the charge / discharge efficiency is high. The charge / discharge efficiency is the ratio of the amount of electricity that can be discharged to the amount of electricity required for charging, and indicates the proportion of Li ions that can be taken out during discharge out of Li ions taken into the negative electrode active material during charging. Naturally, the higher the charge / discharge efficiency, the better.

本発明の二次電池用負極材料の製造方法では、結晶質MgSiOをフォルステライト粉末を使用せずに、酸化ケイ素とマグネシウム化合物とを反応させて生成させ、これを粉砕して粉体とするため、大きな塊となって偏在することがなく均質性に優れる。 In the method for producing a negative electrode material for a secondary battery according to the present invention, crystalline Mg 2 SiO 4 is produced by reacting silicon oxide with a magnesium compound without using forsterite powder, and pulverizing this to produce powder. Therefore, it is excellent in homogeneity without being unevenly distributed as a large lump.

また、従来の炭素前駆体を炭化処理後、粉砕して活物質とする方法では、炭化処理後の粉砕により活物質粒子内にマイクロクラックが残留して、結果として、電極材料として使用中に微粉化して劣化の原因となるおそれがあるが、本発明は、最終的な炭化処理前に500℃までの温度処理にて硬化処理した後粉砕し、その後に、炭化処理するため、活物質中へのマイクロクラックの残留を防止できる利点がある。   In addition, in the conventional method of carbonizing the carbon precursor and then pulverizing it into an active material, microcracks remain in the active material particles due to the pulverization after carbonization, resulting in fine powder during use as an electrode material. However, the present invention is hardened by a temperature treatment up to 500 ° C. before the final carbonization treatment, and then pulverized and then carbonized, so that it enters the active material. There is an advantage that the remaining of microcracks can be prevented.

特に、工程4で得られた炭素前駆体混合物が粉末状態である場合、硬化処理の熱処理を昇温速度を遅くし、所定温度で長時間保持することにより、硬化処理体が粉砕処理を必要としないほど簡単に粉末化できるため、マイクロクラックを起因とする劣化の防止が顕著となり、耐久性が著しく向上する。   In particular, when the carbon precursor mixture obtained in step 4 is in a powder state, the cured body needs to be pulverized by slowing the heating rate of the curing process and holding it at a predetermined temperature for a long time. Since it can be pulverized as easily as possible, the prevention of deterioration due to microcracks becomes remarkable, and the durability is remarkably improved.

すなわち、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とが非常に均質性が高く混合されているため、単に、各構成原料を混合したものに比べて、特性が安定し、高性能となる電極材料を製造できる。 That is, crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and carbonaceous material are mixed with a very high homogeneity, so it is simply compared with a mixture of each constituent material. Thus, an electrode material with stable characteristics and high performance can be manufactured.

本発明で得られたMg−Si系複合体の透過型電子顕微鏡写真。非晶質SiO相マトリックスと10nm以下の結晶質Siと数10nm以上の大きな結晶質MgSiOの3相が原子レベルで結合していることがわかる。The transmission electron micrograph of the Mg-Si type composite obtained by this invention. It can be seen that three phases of an amorphous SiO 2 phase matrix, crystalline Si of 10 nm or less, and large crystalline Mg 2 SiO 4 of several tens of nm or more are bonded at an atomic level. 本発明で得られたMg−Si系複合体と非晶質炭素を複合化した活物質の透過型電子顕微鏡写真。3相構造からなるMg−Si系複合体の外表面が非晶質炭素で覆われていることがわかる。The transmission electron micrograph of the active material which combined the Mg-Si type complex and amorphous carbon obtained by this invention. It can be seen that the outer surface of the Mg—Si based composite having a three-phase structure is covered with amorphous carbon. 本発明による結晶質Siとマグネシウムシリケートと非晶質SiOの3相構造からなる複合構造酸化物のX線回折図形。3 is an X-ray diffraction pattern of a composite structure oxide composed of a three-phase structure of crystalline Si, magnesium silicate, and amorphous SiO 2 according to the present invention. 本発明による結晶質Siとマグネシウムシリケートと非晶質SiOの3相構造からなる複合構造酸化物に非晶質炭素を複合化した活物質のX線回折図形。Crystalline Si and magnesium silicate and the X-ray diffraction pattern of the active material complexed with an amorphous carbon composite structure oxide of three-phase structure of an amorphous SiO 2 according to the present invention. 本発明の複合構造酸化物の合成に用いたSiO(X=1.0)の1000℃−2時間の加熱処理前後でのX線回折図形。1000℃−2時間の加熱で結晶質のSiと非晶質のSiOに不均化反応を起こして分解することがわかる。Composite structure oxide X-ray diffraction pattern of before and after the heat treatment of 1000 ° C. -2 h SiO X to that used for the synthesis (X = 1.0) of the present invention. It can be seen that heating at 1000 ° C. for 2 hours causes a disproportionation reaction between crystalline Si and amorphous SiO 2 to cause decomposition. 本発明の一部の実施例に用いたレゾール型フェノール樹脂を800℃で炭化して得られた炭素材料のX線回折図形。得られた炭素材料が非晶質炭素であることが分かる。The X-ray diffraction pattern of the carbon material obtained by carbonizing the resol type phenol resin used for the one part Example of this invention at 800 degreeC. It can be seen that the obtained carbon material is amorphous carbon.

本負極材料は、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とを含む。ここで、結晶質SiとはX線回折でSiの結晶ピークを示すものをいい、非晶質SiOとはX線回折で回折角2Θ=22°付近でハローといわれる非晶質に特有な回折パターンを示すものをいい、炭素質材料とは、化学分析でCの存在を示すものをいう。 The present negative electrode material includes crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and a carbonaceous material. Here, crystalline Si means that which shows a crystal peak of Si by X-ray diffraction, and amorphous SiO 2 is peculiar to amorphous called halo at a diffraction angle of 2Θ = 22 ° in X-ray diffraction. What shows a diffraction pattern is said, and a carbonaceous material means what shows the presence of C by chemical analysis.

本負極材料は、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とが、これらの相の構成元素が相互に拡散し相界面が結合している状態、すなわち、各相が原子レベルで結合状態にあることが好ましい。 In this negative electrode material, crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and carbonaceous material are in a state in which the constituent elements of these phases diffuse to each other and the phase interface is bonded That is, it is preferable that each phase is in a bonded state at the atomic level.

本負極材料は、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料以外の元素や化合物を含んでもいいが、高性能にするためには、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とから実質的に構成されることが好ましい。ここで、実質的に構成されるとは、結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料以外には、不可避的な不純物を除いて含まないとの意味である。 The negative electrode material may contain crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and elements and compounds other than the carbonaceous material, but for high performance, crystalline Si And amorphous SiO 2 , crystalline Mg 2 SiO 4, and a carbonaceous material. Here, “substantially constituted” means that it does not contain any inevitable impurities other than crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and carbonaceous material. Meaning.

以下、本負極材料の構成について詳しく説明する。本負極材料において、結晶質Siは、nmサイズで負極材料中に分散していることが好ましい。より好ましくは、結晶質Siの結晶子サイズが100nm以下であると好ましく、結晶質Siの結晶子サイズが2〜30nmであるとさらに好ましい。結晶質Siの結晶子サイズが3〜10nmであると特に好ましい。なお、本明細書において、結晶質Siの結晶子サイズは、(220)面からの回折ピークについてシェーラー式から算出するものとする。   Hereinafter, the configuration of the negative electrode material will be described in detail. In the present negative electrode material, the crystalline Si is preferably dispersed in the negative electrode material in nm size. More preferably, the crystallite size of the crystalline Si is preferably 100 nm or less, and more preferably 2 to 30 nm. The crystallite size of crystalline Si is particularly preferably 3 to 10 nm. In the present specification, the crystallite size of crystalline Si is calculated from the Scherrer equation for the diffraction peak from the (220) plane.

本負極材料において、結晶質MgSiOは、鉱物相がフォルステライトであり、Pbnm型の結晶構造を示すマグネシウムシリケートである。結晶質MgSiOは、負極材料中に均一に分散していることが好ましい。結晶質MgSiOの結晶子サイズは100nm以下であると好ましく、5〜50nmであるとさらに好ましく、結晶質MgSiOの結晶子サイズが10〜30nmであると特に好ましい。本明細書において、結晶質MgSiOの結晶子サイズは、(031)面からの回折ピークについてシェーラー式から算出するものとする。 In the present negative electrode material, crystalline Mg 2 SiO 4 is magnesium silicate having a mineral phase of forsterite and showing a Pbnm-type crystal structure. The crystalline Mg 2 SiO 4 is preferably uniformly dispersed in the negative electrode material. The crystallite size of the crystalline Mg 2 SiO 4 is preferably 100 nm or less, more preferably 5 to 50 nm, and particularly preferably the crystallite size of the crystalline MgSiO 4 is 10 to 30 nm. In this specification, the crystallite size of crystalline MgSiO 4 is calculated from the Scherrer equation for the diffraction peak from the (031) plane.

本負極材料においては、Mg原子:Si原子=1:2〜1:40であると好ましい。負極材料中のMg原子:Si原子=1:4〜1:20であるとさらに好ましい。負極材料中のMg原子:Si原子=1:6〜1:10であると特に好ましい。MgとSiの原子比が1:40より小さいと形成されるMgSiO型のマグネシウムシリケート相の量が少なく、充放電試験時のサイクル特性の改善効果が小さくなる。またMgとSiの原子比が1:2より大きい(Mgの添加量が多い)と充放電サイクル特性は優れるものの初期の充放電容量が小さくなり好ましくない。MgとSiの原子比が1:2より大きいと初期の充放電容量が小さくなる理由は、SiOに含まれていて、本来Li原子と合金化するSi原子と添加されたMg原子が反応してLi原子と反応しにくいMgSiOが過剰量形成されてしまうためと考えられる。 In this negative electrode material, Mg atoms: Si atoms = 1: 2 to 1:40 are preferable. It is more preferable that Mg atoms: Si atoms in the negative electrode material = 1: 4 to 1:20. It is particularly preferable that Mg atom: Si atom = 1: 6 to 1:10 in the negative electrode material. When the atomic ratio of Mg and Si is smaller than 1:40, the amount of Mg 2 SiO 4 type magnesium silicate phase formed is small, and the effect of improving the cycle characteristics during the charge / discharge test is small. On the other hand, when the atomic ratio of Mg and Si is larger than 1: 2 (the amount of Mg added is large), although the charge / discharge cycle characteristics are excellent, the initial charge / discharge capacity is decreased, which is not preferable. The reason why the initial charge / discharge capacity is reduced when the atomic ratio of Mg and Si is larger than 1: 2 is that the SiO atom contained in SiO X reacts with the originally added Si atom and the Mg atom. This is probably because an excessive amount of Mg 2 SiO 4 that does not easily react with Li atoms is formed.

本負極材料において、炭素質材料としては、結晶質または非晶質のいずれでも使用できる。炭素質材料の含有量が5〜75質量%(以下、質量%を単に%と略す)であると好ましく、炭素質材料の含有量が20〜50%であるとさらに好ましい。炭素材料が少なすぎると、充放電時の導電性が十分確保できず、初期の容量も小さくなるとともにサイクル経過後の容量劣化も大きいものとなる。また炭素材料が多すぎると、充放電サイクル特性は良好になるが、炭素材料自身の質量あたりの充電容量が複合構造酸化物材料の容量の3分の1から5分の1程度であるため、負極材料全体の充放電容量が小さくなり好ましくない。   In the present negative electrode material, the carbonaceous material can be either crystalline or amorphous. The content of the carbonaceous material is preferably 5 to 75% by mass (hereinafter, mass% is simply abbreviated as%), and the content of the carbonaceous material is more preferably 20 to 50%. If the amount of the carbon material is too small, sufficient conductivity during charging / discharging cannot be secured, the initial capacity becomes small, and the capacity deterioration after the cycle elapses becomes large. If the carbon material is too much, the charge / discharge cycle characteristics are improved, but the charge capacity per mass of the carbon material itself is about one third to one fifth of the capacity of the composite structure oxide material. The charge / discharge capacity of the whole negative electrode material becomes small, which is not preferable.

本負極材料において、結晶質Siと、非晶質SiOと、結晶質MgSiOとの合量が25〜95%であると、高い充放電容量とサイクル特性のバランスがとれるため好ましい。本負極材料において、前記合量が80〜50%であるとさらに好ましい。 In the present negative electrode material, it is preferable that the total amount of crystalline Si, amorphous SiO 2 and crystalline Mg 2 SiO 4 is 25 to 95% because a high charge / discharge capacity and cycle characteristics can be balanced. In the present negative electrode material, the total amount is more preferably 80 to 50%.

本負極材料においては、比表面積が1〜400(m/g)であると好ましい。本負極材料の比表面積が2〜100(cm/g)であるとさらに好ましい。本負極材料の比表面積が5〜250(m/g)であると特に好ましい。本負極材料の比表面積が過剰に大きいと初回の充電時に負極表面で電解質が分解してやすくなり充放電効率が低下するため好ましくない。また比表面積が過剰に小さいと電池の内部抵抗が上昇する傾向を示し好ましくない。本明細書において、比表面積の値は、BET法により測定した値をいうものとする。 In the present negative electrode material, the specific surface area is preferably 1 to 400 (m 2 / g). The specific surface area of the present negative electrode material is more preferably 2 to 100 (cm 2 / g). The specific surface area of the present negative electrode material is particularly preferably 5 to 250 (m 2 / g). If the specific surface area of the negative electrode material is excessively large, the electrolyte tends to decompose on the negative electrode surface during the first charge, which is not preferable. Further, if the specific surface area is excessively small, the internal resistance of the battery tends to increase, which is not preferable. In the present specification, the value of the specific surface area is a value measured by the BET method.

本負極材料において、平均粒子直径(以下、粒子直径を粒径と略す)が10〜100μmであると、負極材料を集電板に塗工する場合に高い電極層密度が得られるため好ましい。本負極材料の平均粒径が10〜50μmであると、さらに好ましい。本明細書において、平均粒径の値は、レーザー回折式粒度分布測定器により測定した値をいうものとする。   In the present negative electrode material, an average particle diameter (hereinafter, the particle diameter is abbreviated as a particle size) of 10 to 100 μm is preferable because a high electrode layer density is obtained when the negative electrode material is applied to a current collector plate. The average particle size of the negative electrode material is more preferably 10 to 50 μm. In this specification, the value of average particle diameter shall mean the value measured with the laser diffraction type particle size distribution measuring device.

本負極材料は、マグネシウムシリケートを含む点に特徴があるが、マグネシウムシリケート相はLiイオンと反応しにくため、電極とした場合にLiイオンが吸蔵される際の電極の膨張・収縮量を低減させることによってサイクル特性を向上させているものと推測される。   This negative electrode material is characterized in that it contains magnesium silicate. However, since the magnesium silicate phase is difficult to react with Li ions, the amount of expansion / contraction of the electrodes when Li ions are occluded is reduced. Thus, it is presumed that the cycle characteristics are improved.

次に、本負極材料の製造方法(以下、本製造方法という)について説明する。本製造方法は、以下の工程1〜工程7を順に行う方法である。各工程順に説明していく。   Next, a method for producing the present negative electrode material (hereinafter referred to as the present production method) will be described. This manufacturing method is a method of performing the following steps 1 to 7 in order. This will be described in the order of each process.

まず、工程1は、酸化ケイ素SiO(0<X<2)と、マグネシウム化合物とをMg原子とSi原子の原子比が1:2から1:40となるように混合して混合物1を得る工程である。 First, in step 1, silicon oxide SiO X (0 <X <2) and a magnesium compound are mixed so that the atomic ratio of Mg atoms to Si atoms is 1: 2 to 1:40 to obtain mixture 1. It is a process.

工程1の酸化ケイ素としては、上述のように組成式はSiO(0<X<2)で表せるもののうち、広角X線回折解析を行った際の回折パターンが非晶質構造あるいはナノサイズ構造特有のハローな回折パターンを示し、シャープな回折パターンを有さないものが好ましい。このような組成の酸化ケイ素を原料に用いることで高い容量とサイクル安定性がえられるためである。このような特徴を示す酸化珪素材料としてSiO(0.8<X<1.2)であらわされるものがさらに好ましく、SiO(0.9<X<1.1)であると、特に好ましい。 As described above, the silicon oxide of step 1 has an amorphous structure or a nano-sized structure when a wide-angle X-ray diffraction analysis is performed, among which the composition formula can be expressed as SiO X (0 <X <2). Those having a unique halo diffraction pattern and not having a sharp diffraction pattern are preferred. This is because high capacity and cycle stability can be obtained by using silicon oxide having such a composition as a raw material. A silicon oxide material exhibiting such characteristics is more preferably represented by SiO X (0.8 <X <1.2), and particularly preferably SiO X (0.9 <X <1.1). .

また、混合物1中のSi原子とMg原子との比がMg原子:Si原子=1:4〜1:20であるとより好ましく、Mg原子:Si原子=1:5〜1:15であるとさらに好ましい。酸化ケイ素の平均粒径が0.5〜10μmであると、工程2で得られるマグネシウムシリケート相の分布が均一になるため好ましい。酸化ケイ素の平均粒径が0.5〜5μmであるとさらに好ましい。   Further, the ratio of Si atom to Mg atom in the mixture 1 is more preferably Mg atom: Si atom = 1: 4 to 1:20, and Mg atom: Si atom = 1: 5 to 1:15. Further preferred. It is preferable that the average particle diameter of silicon oxide is 0.5 to 10 μm because the distribution of the magnesium silicate phase obtained in step 2 becomes uniform. The average particle size of silicon oxide is more preferably 0.5 to 5 μm.

工程1におけるマグネシウム化合物としては、2価のマグネシウムを含有する化合物が好ましい。このような化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、硝酸マグネシウム、塩化マグネシウムなどの無機マグネシウム塩が具体的に挙げられる。マグネシウム化合物としては、他に、酢酸マグネシウム、シュウ酸マグネシウム、マグネシウムエトキサイド、アセチルアセトンマグネシウムなどの有機マグネシウム化合物なども具体的なものとして挙げられる。   As the magnesium compound in step 1, a compound containing divalent magnesium is preferable. Specific examples of such compounds include inorganic magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium nitrate, and magnesium chloride. Specific examples of the magnesium compound include organic magnesium compounds such as magnesium acetate, magnesium oxalate, magnesium ethoxide, and acetylacetone magnesium.

これらのマグネシウム化合物のなかでも、水または有機溶剤に可溶性である硝酸マグネシウム、酢酸マグネシウムなどを溶液状態で酸化ケイ素と混合しさらに脱溶媒処理すると酸化ケイ素とマグネシウム化合物との均一な混合状態が得られため好ましい。   Among these magnesium compounds, magnesium nitrate, magnesium acetate, etc., which are soluble in water or organic solvents, are mixed with silicon oxide in a solution state and further desolvated to obtain a uniform mixed state of silicon oxide and magnesium compound. Therefore, it is preferable.

マグネシウム化合物を粉体で酸化ケイ素と混合する場合は、その粒径は、酸化ケイ素粉体の粒径とほぼ同程度にすると、得られた混合物の均質性があがるため好ましい。マグネシウム化合物粉体の平均粒径が0.5〜10μmであると混合物中の均質性が上がるために好ましく、マグネシウム化合物粉体の平均粒径が0.5〜5μmであるとさらに好ましい。
混合手段としては、ボールミル、V型ミキサー、ヘンシェルミキサーなど通常一般に用いられる混合手法が適宜採用される。
When the magnesium compound is mixed with silicon oxide in the form of powder, it is preferable that the particle size be approximately the same as the particle size of the silicon oxide powder because the homogeneity of the resulting mixture is increased. When the average particle diameter of the magnesium compound powder is 0.5 to 10 μm, it is preferable because the homogeneity in the mixture is increased, and it is more preferable that the average particle diameter of the magnesium compound powder is 0.5 to 5 μm.
As a mixing means, a generally used mixing method such as a ball mill, a V-type mixer, a Henschel mixer, or the like is appropriately employed.

次に、工程1で得られた混合物1を不活性雰囲気下で800〜1500℃で加熱処理してマグネシウムシリケート相を含むMg−Si系複合物とする工程2を行う。この加熱処理では、SiO→Si+SiOの不均化反応と、2MgO+SiO→MgSiOのマグネシウムシリケートの生成反応とがおこる。 Next, Step 2 is performed by heating the mixture 1 obtained in Step 1 at 800 to 1500 ° C. under an inert atmosphere to obtain an Mg—Si based composite containing a magnesium silicate phase. In this heat treatment, a disproportionation reaction of SiO X → Si + SiO 2 and a formation reaction of magnesium silicate of 2MgO + SiO 2 → Mg 2 SiO 4 occur.

加熱処理温度が800℃未満であると、酸化ケイ素とマグネシウム化合物とが反応しないおそれもある。一方、加熱処理温度が1500℃を超えると酸化ケイ素の不均化反応により生じた結晶質Siの結晶子径が粗大になり、電極材料にしたときに、サイクル特性が低下するおそれがある。   There exists a possibility that a silicon oxide and a magnesium compound may not react that heat processing temperature is less than 800 degreeC. On the other hand, when the heat treatment temperature exceeds 1500 ° C., the crystallite diameter of crystalline Si generated by the disproportionation reaction of silicon oxide becomes coarse, and the cycle characteristics may be deteriorated when an electrode material is used.

工程2の加熱処理温度が700〜1500℃であるため、酸化ケイ素中の一部のSi原子とMg原子とが反応して、マグネシウムシリケートであるMgSiOの形成が効果的になされるとともに、酸化ケイ素から不均化反応により、結晶質のSiと非晶質のSiOの形成も効果的になされる。工程2の加熱処理温度が750〜1100℃であると前記マグネシウムシリケートの形成の点で好ましい。工程2の加熱処理温度が800〜1000℃であるとさらに好ましい。 Since the heat treatment temperature in step 2 is 700 to 1500 ° C., some of the Si atoms and Mg atoms in the silicon oxide react with each other to effectively form Mg 2 SiO 4 that is a magnesium silicate. By the disproportionation reaction from silicon oxide, crystalline Si and amorphous SiO 2 can be effectively formed. The heat treatment temperature in step 2 is preferably 750 to 1100 ° C. from the viewpoint of forming the magnesium silicate. The heat treatment temperature in step 2 is more preferably 800 to 1000 ° C.

工程2では、SiOとマグネシウム化合物とを混合後、800℃以上の高温で加熱処理すると、SiOとマグネシウム化合物とが反応し、マグネシウムシリケート(Pbnm型の結晶構造を有するMgSiO)が形成されるとともに金属Siおよび非晶質SiOからなるMg−Si系複合物が得られる。Mg−Si系複合物の組織は、加熱処理時に各原料構成元素が相互拡散するため、非晶質SiOおよび結晶質MgSiOを主体としたマトリックス中に結晶質Siが均質に分散された組織となる。工程2は、本発明に特徴的な工程の一つである。 In Step 2, when SiO X and the magnesium compound are mixed and then heat-treated at a high temperature of 800 ° C. or higher, the SiO X and the magnesium compound react to form magnesium silicate (Mg 2 SiO 4 having a Pbnm type crystal structure). As a result, an Mg—Si based composite composed of metallic Si and amorphous SiO 2 is obtained. In the structure of the Mg-Si composite, the constituent elements of the raw materials are mutually diffused during the heat treatment, so that crystalline Si is homogeneously dispersed in a matrix mainly composed of amorphous SiO 2 and crystalline Mg 2 SiO 4. Organization. Step 2 is one of the steps characteristic of the present invention.

さらに、工程2において、加熱処理温度での保持時間が1〜20時間であることが好ましい。これは、保持時間が1時間未満と短い場合には、前記の反応が充分に進行しないおそれがあり、一方、保持時間が20時間を超える場合には、結晶質Siの結晶子径が粗大になり、電極材料にしたときに、サイクル特性が低下するおそれがあるためである。   Furthermore, in step 2, the holding time at the heat treatment temperature is preferably 1 to 20 hours. This is because when the holding time is as short as less than 1 hour, the above reaction may not proceed sufficiently. On the other hand, when the holding time exceeds 20 hours, the crystalline Si crystallite diameter becomes coarse. This is because when the electrode material is used, the cycle characteristics may deteriorate.

工程2の次は、Mg−Si系複合物を粉砕処理してMg−Si系複合粉末とする工程3である。これは工程2の加熱処理により得られるMg−Si系複合物が一種の焼結状態になり粉末が粗大化するので、これを粒度調整してMg−Si系複合粉末とするものである。Mg−Si系複合粉末としては、平均粒径3〜300μmとするのが所要時間が短く、労力がかからず、しかも後工程での取扱性も良好なため好ましい。このような粒度調整の手段としては、ボールミル、振動ミル、ジェットミル、などのセラミックス粉末の一般的な粒度調整手段が適宜採用できる。Mg−Si系複合粉末の平均粒径が5〜200μmであるとさらに好ましく、Mg−Si系複合粉末の平均粒径が10〜100μmであると特に好ましい。なお、粉砕としては、乾式法を採用する簡便となり、一方、湿式法を採用すると乾燥の手間が余分に必要となるものの、混合粉末中の均質性が高くなる利点がある。   Next to step 2, step 3 is a step of pulverizing the Mg-Si composite to form an Mg-Si composite powder. This is because the Mg—Si based composite obtained by the heat treatment in step 2 becomes a kind of sintered state and the powder becomes coarse, so that the particle size is adjusted to obtain an Mg—Si based composite powder. As the Mg—Si based composite powder, an average particle size of 3 to 300 μm is preferable because the required time is short, labor is not required, and handling property in the subsequent process is also good. As such particle size adjusting means, general particle size adjusting means for ceramic powder such as a ball mill, a vibration mill, and a jet mill can be appropriately employed. The average particle size of the Mg—Si based composite powder is more preferably 5 to 200 μm, and the average particle size of the Mg—Si based composite powder is particularly preferably 10 to 100 μm. In addition, as the pulverization, it is easy to adopt a dry method. On the other hand, when a wet method is adopted, there is an advantage that the homogeneity in the mixed powder becomes high although an extra labor of drying is required.

次の工程4は、前記Mg−Si系複合粉末と、炭素前駆体とを混合して炭素前駆体混合物とする工程である。ここでMg−Si系複合粉末と混合する炭素前駆体としては、加熱処理によって、炭素となるものであれば特に制限されない。炭素前駆体としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂などの熱硬化性樹脂が挙げられる。   The next step 4 is a step of mixing the Mg—Si based composite powder and a carbon precursor to obtain a carbon precursor mixture. Here, the carbon precursor to be mixed with the Mg—Si based composite powder is not particularly limited as long as it becomes carbon by heat treatment. Examples of the carbon precursor include thermosetting resins such as phenol resin, furan resin, epoxy resin, and xylene resin.

または、熱可塑性の樹脂であってもよい。このような熱可塑性樹脂としては、ポリ塩化ビニル、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルピロリドンなどが好適なものとして挙げられる。中でも、ポリビニルピロリドンは、炭化収率が高く、取扱い性にも優れるため特に、好ましい。熱硬化性樹脂、熱可塑性樹脂以外のものとしては、石油ピッチ、石炭ピッチなどのピッチ類等が好ましいものとして挙げられる。   Alternatively, a thermoplastic resin may be used. Preferred examples of such thermoplastic resins include polyvinyl chloride, polyacrylonitrile, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, and polyvinyl pyrrolidone. Among these, polyvinylpyrrolidone is particularly preferable because it has a high carbonization yield and is excellent in handleability. Preferable examples other than thermosetting resins and thermoplastic resins include pitches such as petroleum pitch and coal pitch.

前記Mg−Si系複合粉末と混合する炭素前駆体は、液状であると炭素前駆体混合物の均質性を向上させやすいため好ましい。この場合の混合手段としては湿式混合が好適であり、その後、液分を除去するため乾燥することが好ましい。   The carbon precursor to be mixed with the Mg—Si based composite powder is preferably in a liquid form because it is easy to improve the homogeneity of the carbon precursor mixture. As the mixing means in this case, wet mixing is suitable, and then drying is preferably performed to remove the liquid component.

具体的には、炭素前駆体としてポリビニルピロリドン、レゾール型フェノール樹脂を採用する場合には、ポリビニルピロリドン、レゾール型フェノール樹脂をエタノール、イソプロビルアルコール、工業アルコール等のアルコール類などの有機溶媒を使用して液状とする例が好適に挙げられる。また、炭素前駆体混合物を薄いシート状に加工したり、数mm程度の小粒、または数μmから数十μm程度の粉末状に加工すると、後工程での処理が迅速かつ均質性も向上するため好ましい。   Specifically, when polyvinyl pyrrolidone or a resol type phenol resin is adopted as a carbon precursor, an organic solvent such as an alcohol such as ethanol, isopropyl alcohol, or industrial alcohol is used as the polyvinyl pyrrolidone or resol type phenol resin. An example of a liquid is preferable. In addition, if the carbon precursor mixture is processed into a thin sheet, processed into a small particle of about several millimeters, or processed into a powder of about several μm to several tens of μm, processing in the subsequent process is quick and homogeneity is improved. preferable.

これらの炭素前駆体は、単独でまたは複数を混合して用いてもよい。また、炭素前駆体の一部をカーボンブラック、黒鉛、炭素繊維などの炭素材料で置き換えても良い。炭素前駆体を炭素材料で置き換える場合は、固形分換算で50%以下とするのがサイクル特性を高めるため好ましい。混合する手段としては、工程1で挙げられた混合手段を採用することが好ましい。   These carbon precursors may be used alone or in combination. Further, a part of the carbon precursor may be replaced with a carbon material such as carbon black, graphite, or carbon fiber. When the carbon precursor is replaced with a carbon material, it is preferable that the carbon precursor is 50% or less in terms of solid content in order to improve cycle characteristics. As a means for mixing, it is preferable to employ the mixing means mentioned in Step 1.

工程5は、前記炭素前駆体混合物を100〜500℃で加熱処理して前記混合物中の炭素前駆体を硬化させて硬化処理体とする工程である。なお、硬化に際して炭素前駆体の一部が炭化(以下、部分炭化ともいう)してもよい。   Step 5 is a step of heat-treating the carbon precursor mixture at 100 to 500 ° C. to cure the carbon precursor in the mixture to obtain a cured body. A part of the carbon precursor may be carbonized (hereinafter also referred to as partial carbonization) during curing.

加熱処理の雰囲気としては、熱硬化性樹脂の場合は特に制限はないが、熱可塑性樹脂やピッチ系材料の場合は、空気中などの酸素を含む雰囲気(以下、酸素雰囲気という)であると構造中に酸素が取り込まれて硬化が促進されるため好ましい。   The atmosphere of the heat treatment is not particularly limited in the case of a thermosetting resin, but in the case of a thermoplastic resin or a pitch-based material, the atmosphere includes an oxygen-containing atmosphere (hereinafter referred to as an oxygen atmosphere). Since oxygen is taken in and hardening is accelerated | stimulated, it is preferable.

工程5の加熱処理温度が500℃を超えると非酸素雰囲気の場合は炭化が進行し過ぎるため好ましくなく、一方、酸素雰囲気の場合は部分燃焼が進行するため好ましくない。また、加熱処理温度が100℃未満であると、硬化が起こらないため、最後の炭化過程で炭素前駆体が一度溶融して大きな塊となったまま炭化されることとなり、それを粉砕する過程でマイクロクラックが活物質中に入り、結果として電極材料の耐久性が低下するおそれがある。工程5の加熱処理温度としては、150〜400℃であると好ましく、200〜300℃であるとさらに好ましい。   If the heat treatment temperature in step 5 exceeds 500 ° C., it is not preferable because carbonization proceeds excessively in a non-oxygen atmosphere, while it is not preferable because partial combustion proceeds in an oxygen atmosphere. In addition, when the heat treatment temperature is less than 100 ° C., curing does not occur, and in the final carbonization process, the carbon precursor is once melted and carbonized as a large lump, and in the process of pulverizing it Micro cracks may enter the active material, and as a result, the durability of the electrode material may be reduced. As heat-processing temperature of the process 5, it is preferable in it being 150-400 degreeC, and it is further more preferable in it being 200-300 degreeC.

工程5の加熱処理において、前記加熱処理温度での保持時間は、1〜30時間とするのが好ましい。保持時間が1時間未満であると、前記の硬化が不充分となるおそれがある。一方、保持時間が30時間を超えると、酸素雰囲気下では、硬化した部分が気体となって消失するおそれがあるか、消失量が大きくなって最終的な活物質の収量が大きく低下するおそれも出てくる。保持時間を1〜10時間とするのがさらに好ましい。   In the heat treatment of step 5, the holding time at the heat treatment temperature is preferably 1 to 30 hours. If the holding time is less than 1 hour, the above curing may be insufficient. On the other hand, if the holding time exceeds 30 hours, the cured part may be lost as a gas in an oxygen atmosphere, or the amount of disappearance may be increased and the yield of the final active material may be greatly reduced. Come out. More preferably, the holding time is 1 to 10 hours.

工程5の加熱処理において、昇温速度としては、5℃/時間〜100℃/時間とすると硬化が確実にされるほか、硬化処理体を簡単に手でも解砕でき、以下に説明する次工程である工程6の粉砕工程が容易となる。しかも最後の炭化処理時において炭素前駆体が溶融することがないため活物質中のマイクロクラック発生を防止できる。さらに、生産性とのバランスも良いため好ましい。   In the heat treatment of step 5, when the rate of temperature rise is 5 ° C./hour to 100 ° C./hour, curing is ensured and the cured body can be easily crushed by hand. The pulverizing step of Step 6 is easy. In addition, since the carbon precursor does not melt during the final carbonization treatment, generation of microcracks in the active material can be prevented. Furthermore, it is preferable because the balance with productivity is good.

工程5の昇温速度が5℃/時間〜50℃/時間とするとさらに好ましい。昇温速度が5℃/時間〜25℃/時間であるとさらに好ましい。なお、炭素前駆体として熱硬化性樹脂を採用する場合、当該樹脂に対する硬化剤がある場合は、工程5の前に、硬化剤を添加してもよい。   More preferably, the temperature increase rate in step 5 is 5 ° C./hour to 50 ° C./hour. More preferably, the rate of temperature rise is 5 ° C./hour to 25 ° C./hour. In addition, when employ | adopting a thermosetting resin as a carbon precursor, when there exists a hardening | curing agent with respect to the said resin, you may add a hardening | curing agent before the process 5. FIG.

工程5により炭素前駆体を硬化することにより、炭素前駆体が最終工程である炭化処理工程の昇温過程で融液となり大きなブロックとなることを防止する。炭素前駆体が融液となり大きなブロックが一度形成されると、経験的には硬い凝集体となり、それを解砕するのが容易ではなく、また、仮に壊したとしても粒子内にマイクロクラックが残留して、結果として、電極材料として使用中に微粉化して劣化の原因となるおそれがあるほか、電極材料の均質性に悪影響を及ぼすおそれもある。すなわち、工程5は、炭素前駆体の硬化と最終工程である炭化処理時の炭素前駆体の不溶融化処理である。   By curing the carbon precursor in step 5, the carbon precursor is prevented from becoming a melt and a large block in the temperature rising process of the carbonization treatment step which is the final step. Once the carbon precursor is melted and a large block is formed, empirically it becomes a hard agglomerate, which is not easy to crush, and even if it breaks, microcracks remain in the particles. As a result, it may be finely powdered during use as an electrode material, causing deterioration, and may also adversely affect the homogeneity of the electrode material. That is, Step 5 is a carbon precursor curing and a non-melting treatment of the carbon precursor during carbonization, which is the final step.

工程6は、工程5で得られた硬化処理体を粉砕処理して硬化処理体粉末とする。粉砕手段としては、ボールミル、V型ミキサー、ヘンシェルミキサー、ジョークラッシャーなどが適宜採用される。なお、硬化処理体が柔らかい場合には、手または乳鉢等で解砕して前記粉末としてもよい。   In step 6, the cured body obtained in step 5 is pulverized to obtain a cured body powder. As a pulverizing means, a ball mill, a V-type mixer, a Henschel mixer, a jaw crusher, or the like is appropriately employed. In addition, when a hardening process body is soft, it is good also as pulverizing with a hand or a mortar etc. to make the said powder.

硬化処理体粉末の平均粒径としては、10〜100μmとすると製造時のハンドリング性に優れ、炭化処理時間も短時間で済むため好ましい。工程5および工程6により炭素前駆体混合物中の炭素前駆体を炭化処理前に表面が硬化した粉体とすることも本発明の特徴の一つである。工程5および工程6を行うことで負極材料中の炭素質材料の分布の均質性が向上し、性能が安定した電極材料が得られることとなる。なお、工程6の粉砕処理前に硬化処理体を液体窒素等で冷却しておくと、簡単に粉砕でき、粒子内のマイクロクラックの発生を少なくできるため好ましい。   The average particle size of the cured body powder is preferably 10 to 100 μm because it is excellent in handling at the time of manufacture and requires a short carbonization time. It is also one of the features of the present invention that the carbon precursor in the carbon precursor mixture is made into a powder whose surface is hardened before carbonization treatment in Step 5 and Step 6. By performing Step 5 and Step 6, the homogeneity of the distribution of the carbonaceous material in the negative electrode material is improved, and an electrode material with stable performance can be obtained. In addition, it is preferable to cool the cured body with liquid nitrogen or the like before the pulverization process in Step 6 because it can be easily pulverized and the generation of microcracks in the particles can be reduced.

工程6を終了後に、硬化処理体粉末を不活性雰囲気下700℃〜1300℃で加熱処理して炭素前駆体を炭素化(炭化処理)して活物質とする工程7を行う。最高温度保持時間は、長すぎると結晶質Siの結晶子径が大きくなりすぎるおそれがあるため、0.5〜5時間とするのが好ましい。工程4から直接工程7に進む場合には炭素前駆体混合物を平均粒径10〜300μm程度に整粒しておくと電極材料の均質性が向上するために好ましい。   After step 6 is completed, step 7 is performed in which the cured powder is heat-treated at 700 ° C. to 1300 ° C. in an inert atmosphere to carbonize (carbonize) the carbon precursor to obtain an active material. If the maximum temperature holding time is too long, the crystallite diameter of crystalline Si may be too large, and therefore it is preferably 0.5 to 5 hours. In the case of proceeding directly from step 4 to step 7, it is preferable to adjust the carbon precursor mixture to an average particle size of about 10 to 300 μm because the homogeneity of the electrode material is improved.

工程7において、昇温速度としては、10℃/時間〜300℃/時間とするのが、均質な硬化処理体が得られやすいため好ましい。昇温速度が50℃/時間〜200℃/時間であるとさらに好ましい。工程7の次に、前記活物質が直接負極材料として使用するには大きすぎる塊である場合には、前記活物質を粉砕ほど機械的衝撃の大きくない解砕処理をしてもよい。   In step 7, the rate of temperature rise is preferably 10 ° C./hour to 300 ° C./hour because a homogeneous cured product is easily obtained. More preferably, the rate of temperature rise is 50 ° C./hour to 200 ° C./hour. After step 7, when the active material is a lump that is too large to be used directly as a negative electrode material, the active material may be crushed so as not to have a mechanical impact as much as the pulverization.

本製造方法において、工程4として、Mg−Si系複合粉末と、炭素前駆体とを水中または有機溶媒中で混合してスラリー状の炭素前駆体混合物とし、さらに、スラリー状の炭素前駆体混合物をスプレードライ法で乾燥・造粒してもよい。本製造方法2において、工程4をスプレードライ法とした場合には、乾燥と同時に造粒して粒度調整されることから、工程4と同時に工程6を実施できる。この場合には、工程4および工程6を同時に行い、その後に工程5、次に工程7を行うこととなる。   In this production method, as Step 4, the Mg-Si based composite powder and the carbon precursor are mixed in water or an organic solvent to form a slurry-like carbon precursor mixture, and further, the slurry-like carbon precursor mixture is obtained. You may dry and granulate by the spray-drying method. In the present production method 2, when the step 4 is a spray drying method, the particle size is adjusted by granulation at the same time as drying, so that the step 6 can be performed simultaneously with the step 4. In this case, step 4 and step 6 are performed simultaneously, and then step 5 and then step 7 are performed.

以下に、本発明の実施例(例1〜例8:実施例、例9〜例11:比較例)を詳述するが、本発明は、これら実施例に限定されるものではない。   Examples of the present invention (Examples 1 to 8: Examples, Examples 9 to 11: Comparative Examples) will be described in detail below, but the present invention is not limited to these Examples.

[例1]
(1)Mg−Si系複合粉末の作製
市販の酸化ケイ素粉末(SiO、X=1.0、平均粒径3μm)20gと硝酸マグネシウム6水和物14.5gをMgとSiの原子比が1:8となるように秤量した。次にこれらにイオン交換水80gを加えてスラリーとしマグネチックスターラーを用いて十分混合した後、ロータリーエバポレーターを用いてイオン交換水を減圧乾燥して酸化ケイ素粉末と硝酸マグネシウムの混合物1を得た。次にこの混合物1をアルミナ製ボートに入れ、環状炉中でアルゴンガス気流下200℃/時間の昇温速度で1000℃まで昇温して2時間保持した後室温まで冷却してMg−Si系複合物を得た。
[Example 1]
(1) Production of Mg-Si based composite powder 20 g of commercially available silicon oxide powder (SiO x , X = 1.0, average particle size 3 μm) and 14.5 g of magnesium nitrate hexahydrate are mixed with an atomic ratio of Mg and Si. Weighed to be 1: 8. Next, 80 g of ion-exchanged water was added to these to prepare a slurry, which was sufficiently mixed using a magnetic stirrer, and then ion-exchanged water was dried under reduced pressure using a rotary evaporator to obtain a mixture 1 of silicon oxide powder and magnesium nitrate. Next, this mixture 1 was put into an alumina boat, heated to 1000 ° C. at a heating rate of 200 ° C./hour in an annular furnace at a heating rate of 200 ° C./hour, held for 2 hours, then cooled to room temperature, and Mg—Si system A composite was obtained.

次にMg−Si系複合物をボールミル(ジルコニア製のポットとボール)を用いて乾式で4時間粉砕し、平均粒径3μmのMg−Si系複合粉末を得た。なお、実施例での平均粒径は、特に、断らない限りレーザー回折式粒度分布測定装置(日機装社製、商品名:マイクロトラックMK−I)を用いて測定した。得られたMg−Si系複合粉末を蛍光X線装置(理学電機社製、商品名:RIX3000以下、断りない限り同様)で元素分析したところMgとSiの元素比率は1:8であった。さらにMg−Si系複合粉末をCuKα線による広角X線回折装置(理学電機社製、商品名:TTR−III、以下、断りない限り同様)にて2Θ=10°〜60°の範囲でX線回折パターンを測定した。X線回折パターンは図3に示すように、結晶質の金属Si相からの回折ピークと、結晶質のマグネシウムシリケート(MgSiO)相からの回折ピークおよび回折角2Θ=22°付近に非晶質SiOからのハローなピークを示した。 Next, the Mg—Si based composite was pulverized in a dry manner for 4 hours using a ball mill (a zirconia pot and ball) to obtain a Mg—Si based composite powder having an average particle size of 3 μm. In addition, unless otherwise indicated, the average particle diameter in an Example was measured using the laser diffraction type particle size distribution measuring apparatus (The Nikkiso Co., Ltd. make, brand name: Microtrac MK-I). Elemental analysis of the obtained Mg-Si based composite powder with a fluorescent X-ray apparatus (manufactured by Rigaku Corporation, trade name: RIX3000 or less, the same unless otherwise noted) revealed an element ratio of Mg to Si of 1: 8. Further, the Mg—Si based composite powder was X-rayed in a range of 2Θ = 10 ° to 60 ° with a wide angle X-ray diffractometer (trade name: TTR-III, manufactured by Rigaku Corporation) using CuKα rays. The diffraction pattern was measured. As shown in FIG. 3, the X-ray diffraction pattern shows a diffraction peak from a crystalline metal Si phase, a diffraction peak from a crystalline magnesium silicate (Mg 2 SiO 4 ) phase, and a diffraction angle of 2Θ = 22 °. A halo peak from crystalline SiO 2 was shown.

また結晶質シリコンの(220)面からの回折ピークについてシェーラー式により結晶子径を算出したところ、5nmであった。この反応物を透過型電子顕微鏡(日本電子社製、商品名:JEM1230以下、断りない限り同様)で観察したところ、図1に示すように非晶質相と結晶質相が原子レベルで結合された複合構造の材料であることがわかった。   The crystallite diameter of the diffraction peak from the (220) plane of crystalline silicon was calculated by the Scherrer equation and found to be 5 nm. When this reaction product was observed with a transmission electron microscope (manufactured by JEOL Ltd., trade name: JEM1230 or less, the same unless otherwise noted), the amorphous phase and the crystalline phase were bonded at the atomic level as shown in FIG. It was found to be a composite material.

(2)炭素前駆体混合物および硬化処理体の作製
上記で得られたMg−Si系複合粉末;10gと炭素前駆体材料として熱硬化性樹脂であるレゾール型フェノール樹脂(昭和高分子社製、商品名:BRL−120Z);23gおよびエタノール10gを混合し、超音波を照射しながら撹拌し均一なスラリーとした。次にこのスラリーを減圧下70℃で加熱してエタノールを除去して炭素前駆体混合物を得た。この炭素前駆体混合物を大気中で昇温速度50℃/時間で90℃まで加熱し90℃で15時間保持した後、昇温速度7.5℃/時間で180℃まで加熱して2時間保持し炭素前駆体混合物中のフェノール樹脂成分を硬化させて硬化処理体を作成した。
(2) Production of carbon precursor mixture and cured body Mg-Si composite powder obtained above: 10 g and resol type phenolic resin (manufactured by Showa Polymer Co., Ltd., a thermosetting resin as a carbon precursor material) Name: BRL-120Z); 23 g and 10 g of ethanol were mixed and stirred while irradiating ultrasonic waves to obtain a uniform slurry. Next, this slurry was heated at 70 ° C. under reduced pressure to remove ethanol to obtain a carbon precursor mixture. This carbon precursor mixture is heated to 90 ° C. at a heating rate of 50 ° C./hour in the atmosphere and held at 90 ° C. for 15 hours, and then heated to 180 ° C. at a heating rate of 7.5 ° C./hour and held for 2 hours. Then, the phenol resin component in the carbon precursor mixture was cured to prepare a cured product.

次に得られた硬化処理体を液体窒素で冷却しながら回転羽根式粉砕機とボールミルを用いて粉砕し、平均粒径30μmの粉末(粉体物2)とした。得られた粉体物2を小型のロータリーキルンを用いて、アルゴン気流中、昇温速度200℃/時間で800℃まで加熱し2時間保持してフェノール樹脂成分を炭化させ、炭素材料の含有量が50%の活物質(負極材料)を得た。炭化が終了した活物質は加熱中に若干凝集が生じ塊状になったが、乳鉢を用いて容易に解砕でき、平均粒径約30μmの粉末となった。この活物質粉末を窒素吸着測定装置(カンタクローム社製、商品名:オートソーブ3以下、断らない限り同様)用いてBET法にて比表面積を測定したところ200m/gであった。 Next, the obtained cured treated body was pulverized using a rotary blade type pulverizer and a ball mill while being cooled with liquid nitrogen to obtain a powder (powder product 2) having an average particle size of 30 μm. Using a small rotary kiln, the obtained powder 2 was heated to 800 ° C. at a temperature rising rate of 200 ° C./hour in an argon stream and held for 2 hours to carbonize the phenol resin component, and the content of the carbon material was A 50% active material (negative electrode material) was obtained. The active material that had been carbonized was slightly agglomerated during heating to form a lump, but it could be easily crushed using a mortar, resulting in a powder with an average particle size of about 30 μm. The specific surface area of this active material powder measured by the BET method using a nitrogen adsorption measuring apparatus (manufactured by Cantachrome, trade name: Autosorb 3 or less, the same unless otherwise specified) was 200 m 2 / g.

なおフェノール樹脂の添加量は、フェノール樹脂とエタノールのみの混合物をあらかじめ上記工程と同一の条件で処理した場合の初期のフェノール樹脂質量に対する得られた炭素材料の質量の比率から収率を測定することで決定した。   The amount of phenol resin added should be measured from the ratio of the mass of the obtained carbon material to the mass of the initial phenol resin when a mixture of phenol resin and ethanol is treated in advance under the same conditions as above. Determined.

こうして得られた活物質のCuKα線を用いた広角X線回折測定を行ったところ、図4に示すように結晶質Siと結晶質MgSiOからの回折ピークが観察され、さらに非晶質SiOおよびアモルファス炭素からのハローなピークが2Θ=22°付近に重畳されて観察された。このときの結晶質Siの結晶子サイズは6nmであり、また結晶質MgSiOの結晶子サイズは15nmであった。 When wide-angle X-ray diffraction measurement using CuKα rays of the active material thus obtained was performed, diffraction peaks from crystalline Si and crystalline Mg 2 SiO 4 were observed as shown in FIG. A halo peak from SiO 2 and amorphous carbon was observed superimposed on around 2Θ = 22 °. At this time, the crystallite size of crystalline Si was 6 nm, and the crystallite size of crystalline Mg 2 SiO 4 was 15 nm.

なお参考までに、図5に実験に用いた酸化ケイ素単体およびこれを1000℃で2時間加熱して不均化反応をさせた後の広角X線回折パターンを、図6にはフェノール樹脂単体を上記工程と同じ条件で炭化して得られた炭素材料の広角X線パターンを示した。図4ではSiOの不均化反応で生じた結晶質Siと2Θ=23°付均にハローなピークを示す非晶質SiOのピークが観察される。図6ではフェノール樹脂を炭化して得られた炭素材料のX線回折パターンが非晶質構造特有のハローパターンを示す炭素材料であることを示している。 For reference, FIG. 5 shows a silicon oxide used in the experiment and a wide-angle X-ray diffraction pattern after heating the mixture at 1000 ° C. for 2 hours to cause a disproportionation reaction, and FIG. 6 shows a phenol resin alone. A wide-angle X-ray pattern of a carbon material obtained by carbonization under the same conditions as in the above process was shown. In FIG. 4, the crystalline Si produced by the disproportionation reaction of SiO X and the amorphous SiO 2 peak showing a halo peak at 2Θ = 23 ° are observed. FIG. 6 shows that the X-ray diffraction pattern of the carbon material obtained by carbonizing the phenol resin is a carbon material showing a halo pattern peculiar to the amorphous structure.

[例2]
例1において、MgとSiの原子比が1:4となるように酸化ケイ素粉末(SiO、X=1.0、平均粒径3μm)と硝酸マグネシウム6水和物を調合した以外は例1と同様にして炭素材料の含有量が50%の活物質を作製した。
[Example 2]
Example 1 except that silicon oxide powder (SiO X , X = 1.0, average particle size 3 μm) and magnesium nitrate hexahydrate were prepared so that the atomic ratio of Mg and Si was 1: 4 in Example 1. Similarly, an active material having a carbon material content of 50% was produced.

[例3]
例1において、マグネシウム源として酢酸マグネシウム4水和物を用い、MgとSiの原子比を1:2となるように酸化ケイ素粉末(SiO、X=1.0、平均粒径3μm)と調合した以外は例1と同様にして活物質を作製した。
[Example 3]
In Example 1, magnesium acetate tetrahydrate was used as the magnesium source, and the silicon oxide powder (SiO X , X = 1.0, average particle size 3 μm) was prepared so that the atomic ratio of Mg and Si was 1: 2. An active material was prepared in the same manner as in Example 1 except that.

[例4]
例1において、MgとSiの原子比が1:15となるように酸化ケイ素粉末(SiO、X=1.0、平均粒径3μm)と硝酸マグネシウム6水和物を調合した以外は例1と同様にして炭素材料の含有量が50%の活物質を得た。
[Example 4]
In Example 1, except that silicon oxide powder (SiO X , X = 1.0, average particle size 3 μm) and magnesium nitrate hexahydrate were prepared so that the atomic ratio of Mg and Si was 1:15. In the same manner as described above, an active material having a carbon material content of 50% was obtained.

[例5]
例1において、活物質中の炭素材料の含有量を70%とする以外は例1と同様にして活物質を作製した。この活物質粉末をBET法にて比表面積を測定したところ250m/gであった。
[Example 5]
In Example 1, an active material was produced in the same manner as in Example 1 except that the content of the carbon material in the active material was 70%. It was 250 m < 2 > / g when the specific surface area of this active material powder was measured by BET method.

[例6]
例1と同様に作製したMgとSiの原子比が1:8のMg−Si系複合粉末;50gと例1で使用したレゾール型フェノール樹脂(昭和高分子社製、商品名:BRL−120Z);115gおよびエタノール1485gを混合し、回転式ボールミル(アルミナ製ポット/アルミナ製ボール)を用いて1時間混合し固形分量10%のスラリーとした。
[Example 6]
Mg-Si based composite powder with an atomic ratio of Mg and Si of 1: 8 produced in the same manner as in Example 1; 50 g and the resol type phenolic resin used in Example 1 (trade name: BRL-120Z, manufactured by Showa Polymer Co., Ltd.) 115 g and 1485 g of ethanol were mixed and mixed for 1 hour using a rotary ball mill (alumina pot / alumina ball) to obtain a slurry with a solid content of 10%.

さらにこのスラリーを防爆型のスプレードライヤー(乾燥室入り口温度150℃、出口温度70℃)を用いて乾燥し、平均粒径20μmの顆粒を得た。得られた顆粒を大気中で昇温速度50℃/時間で90℃まで加熱し90℃で15時間保持して残留するエタノールを除去した後、昇温速度7.5℃/時間で180℃まで加熱して2時間保持し混合物のフェノール樹脂成分を硬化させた。フェノール樹脂成分が硬化した顆粒は硬化処理過程で顆粒同士が若干凝集していたので、顆粒形状が破壊されない程度に回転羽根式粉砕機を用いて解砕した。   Furthermore, this slurry was dried using an explosion-proof spray dryer (drying chamber inlet temperature 150 ° C., outlet temperature 70 ° C.) to obtain granules having an average particle diameter of 20 μm. The obtained granule is heated to 90 ° C. at a temperature rising rate of 50 ° C./hour in the atmosphere and kept at 90 ° C. for 15 hours to remove residual ethanol, and then to 180 ° C. at a temperature rising rate of 7.5 ° C./hour. The mixture was heated and held for 2 hours to cure the phenol resin component of the mixture. Since the granules in which the phenol resin component was cured had some aggregates in the course of the curing treatment, they were crushed using a rotary blade crusher to such an extent that the granule shape was not destroyed.

こうして得られた顆粒状の硬化処理体は、小型のロータリーキルンを用いて、アルゴン気流中、昇温速度200℃/時間で800℃まで加熱し2時間保持してフェノール樹脂成分を炭化させ、炭素材料の含有量が30%の活物質を得た。炭化が終了した活物質は加熱中に若干凝集が生じ塊状になったが、乳鉢を用いて軽く解砕することで容易にほぐすことができ、平均粒径約20μmの粉末となった。この活物質粉末をBET法にて比表面積を測定したところ100m/gであった。 The granular cured product thus obtained was heated to 800 ° C. at a heating rate of 200 ° C./hour in an argon stream using a small rotary kiln, and held for 2 hours to carbonize the phenol resin component, thereby producing a carbon material. An active material having a content of 30% was obtained. The active material that had been carbonized was slightly agglomerated during heating and became a lump, but it could be easily loosened by lightly crushing using a mortar, resulting in a powder with an average particle size of about 20 μm. When the specific surface area of this active material powder was measured by the BET method, it was 100 m 2 / g.

[例7]
例1と同様に作製したMgとSiの原子比が1:8のMg−Si系複合粉末;10gに炭素前駆体材料としてポリビニルピロリドン(純正化学社製、商品名:K−90)11gおよびエタノール70gを加え、ボールミルで3時間混合しスラリーを得た。次にこのスラリーからロータリーエバポレーターを用いてエタノールを減圧除去し、炭素前駆体混合物を得た。次にこの炭素前駆体混合物を大気中90℃で15時間保持した後、100℃/時間の昇温速度で300℃まで昇温し2時間保持して硬化させて硬化処理体を作製した。
[Example 7]
Mg-Si based composite powder prepared in the same manner as in Example 1 and having an atomic ratio of Mg to Si of 1: 8; 10 g of polyvinyl pyrrolidone (trade name: K-90, manufactured by Junsei Chemical Co., Ltd.) as a carbon precursor material and ethanol 70 g was added and mixed with a ball mill for 3 hours to obtain a slurry. Next, ethanol was removed from the slurry under reduced pressure using a rotary evaporator to obtain a carbon precursor mixture. Next, this carbon precursor mixture was held in the atmosphere at 90 ° C. for 15 hours, and then heated to 300 ° C. at a temperature increase rate of 100 ° C./hour and held for 2 hours to be cured to produce a cured product.

得られた硬化処理体をジョークラッシャーとボールミルを用いて粉砕し、平均粒径15μmの粉末とした。前記粉末を大気中で100℃/時間の昇温速度で200℃まで昇温して2時間保持し再び硬化(不融化処理)を行った。得られた硬化体粉末を小型のロータリーキルンを用いてアルゴン気流中で、昇温速度200℃/時間で800℃まで昇温し2時間保持してポリビニルピロリドン成分を炭化させた。炭化が終了した活物質は加熱中に若干凝集が生じ塊状になったので乳鉢を用いて軽く解砕して平均粒径約18μmの粉末を得た。この活物質粉末をBET法にて比表面積を測定したところ20m/gであった。 The obtained cured product was pulverized using a jaw crusher and a ball mill to obtain a powder having an average particle size of 15 μm. The powder was heated to 200 ° C. at a heating rate of 100 ° C./hour in the atmosphere, held for 2 hours, and cured (infusibilized) again. The obtained cured product powder was heated to 800 ° C. at a temperature increase rate of 200 ° C./hour and held for 2 hours in a stream of argon using a small rotary kiln to carbonize the polyvinylpyrrolidone component. The active material that had been carbonized was slightly agglomerated during heating and became agglomerated, so it was lightly crushed using a mortar to obtain a powder having an average particle size of about 18 μm. It was 20 m < 2 > / g when the specific surface area was measured for this active material powder by BET method.

[例8]
例1と同様に作製したMgとSiの原子比が1:8のMg−Si系複合粉末;10gに例1で使用したレゾール型フェノール樹脂(昭和高分子社製、商品名:BRL−120Z)23gおよびエタノール10gを混合し、超音波を照射しながら撹拌し均一なスラリーとした。
[Example 8]
Mg-Si composite powder having an atomic ratio of Mg and Si of 1: 8 produced in the same manner as in Example 1; resol type phenol resin used in Example 1 for 10 g (manufactured by Showa Polymer Co., Ltd., trade name: BRL-120Z) 23 g and 10 g of ethanol were mixed and stirred while irradiating with ultrasonic waves to obtain a uniform slurry.

次にこのスラリーを減圧下、70℃で加熱してエタノールを除去し、さらに大気中で昇温速度50℃/時間で90℃まで加熱し90℃で15時間保持した後、昇温速度7.5℃/時間で180℃まで加熱して2時間保持し混合物のフェノール樹脂成分を硬化させブロック状の硬化処理体を得た。   Next, the slurry was heated at 70 ° C. under reduced pressure to remove ethanol, and further heated in the atmosphere to 90 ° C. at a temperature rising rate of 50 ° C./hour and held at 90 ° C. for 15 hours, and then the temperature rising rate was changed to 7. The mixture was heated to 180 ° C. at 5 ° C./hour and held for 2 hours to cure the phenol resin component of the mixture to obtain a block-shaped cured product.

次に硬化処理体をジョークラッシャーで粉砕し、粒径3mm程度の粒子に整粒した。得られた粒子を小型のロータリーキルンを用いてアルゴン気流中で、800℃まで昇温し(昇温速度:200℃/時間)2時間保持してフェノール樹脂成分を炭化させ炭素材料の含有量が50%の活物質を得た。   Next, the cured product was pulverized with a jaw crusher and sized into particles having a particle size of about 3 mm. The obtained particles were heated to 800 ° C. in a stream of argon using a small rotary kiln (temperature rising rate: 200 ° C./hour) for 2 hours to carbonize the phenol resin component and have a carbon material content of 50. % Active material was obtained.

次にこの活物質を遊星ボールミル(ジルコニアポットとジルコニアボール使用)を用いて粉砕して平均粒径30μmの活物質粉末を得た。なお、活物質を粉砕したのは、例1〜例11において、本例のみである。例1〜例7では活物質内部にマイクロクラックはほとんど観察されなかったが、本例では活物質内部にマイクロクラックが比較的多く観察された。本例の50サイクル後の放電容量維持率が、例1〜例7のそれに比べて低い理由は、マイクロクラックの有無と関係しているものと思われる。   Next, this active material was pulverized using a planetary ball mill (using a zirconia pot and zirconia balls) to obtain an active material powder having an average particle size of 30 μm. In Examples 1 to 11, the active material was pulverized only in this example. In Examples 1 to 7, almost no microcracks were observed inside the active material, but in this example, relatively many microcracks were observed inside the active material. The reason why the discharge capacity retention rate after 50 cycles in this example is lower than that in Examples 1 to 7 seems to be related to the presence or absence of microcracks.

[例9(比較例)]
例1において硝酸マグネシウムを使用しない以外は例1と同様にした。具体的には市販の酸化ケイ素粉末(SiO、X=1.0、平均粒径3μm)10gと例1で用いたレゾール型フェノール樹脂23gとエタノール10gを混合し、超音波を照射しながら撹拌し均一なスラリーとした。以下は、例1と同様にした。この例ではSiOにマグネシウム化合物を添加していないため、X線回折結果から判定される相構成にはマグネシウムシリケート相の形成は認められず、充放電サイクルによる性能劣化が例1〜例8と比べて大きかった。
[Example 9 (comparative example)]
Example 1 was the same as Example 1 except that magnesium nitrate was not used. Specifically, 10 g of commercially available silicon oxide powder (SiO X , X = 1.0, average particle size 3 μm), 23 g of the resol type phenol resin used in Example 1 and 10 g of ethanol are mixed and stirred while irradiating with ultrasonic waves. A uniform slurry was obtained. The following was performed in the same manner as in Example 1. In this example, since no magnesium compound is added to SiO X , the formation of magnesium silicate phase is not recognized in the phase structure determined from the X-ray diffraction results, and the performance deterioration due to the charge / discharge cycle is as in Examples 1 to 8. It was big compared.

[例10(比較例)]
例1において、MgとSiの原子比が1:1/3となるように酸化ケイ素粉末(SiO、X=1.0、平均粒径3μm)と硝酸マグネシウムを調合した以外は例1と同様にして活物質を得た。この例ではSiに対してMgを多量に添加したため、Mg−Si系複合粉末のX線回折結果から判定される相構成としてはマグネシウムシリケート(MgSiO)相およびMgOの2相となり結晶質Si相は観察されなかった。その結果初回充電容量は例1に比べ大幅に小さいものであった。
[Example 10 (comparative example)]
Example 1 was the same as Example 1 except that silicon oxide powder (SiO X , X = 1.0, average particle size 3 μm) and magnesium nitrate were prepared so that the atomic ratio of Mg and Si was 1: 1/3. Thus, an active material was obtained. In this example, since a large amount of Mg is added to Si, the phase structure determined from the X-ray diffraction result of the Mg—Si based composite powder is a magnesium silicate (Mg 2 SiO 4 ) phase and a MgO phase. Si phase was not observed. As a result, the initial charge capacity was much smaller than in Example 1.

[例11(比較例)]
例1において、Mg−Si系複合体を得る加熱処理条件を1000℃×2時間から700℃×2時間に変更するとともに、炭化処理条件を800℃×2時間から700℃×2時間に変更した以外は例1と同様にして活物質を得た。
[Example 11 (comparative example)]
In Example 1, the heat treatment conditions for obtaining the Mg—Si based composite were changed from 1000 ° C. × 2 hours to 700 ° C. × 2 hours, and the carbonization treatment conditions were changed from 800 ° C. × 2 hours to 700 ° C. × 2 hours. An active material was obtained in the same manner as in Example 1 except that.

本例では、複合構造酸化物合成時の加熱温度が700℃と低温であったため、マグネシウムシリケート(MgSiO)相が形成されず、SiOの不均化反応も進行しなかったため、結果として複合構造酸化物のX線回折結果からは、マグネシア(MgO)と2Θ=23°付近にピークを有する非晶質相しか観察されなかった。さらに炭素材料との複合化時の加熱温度も700℃と低温であったためこの工程でもSiOの不均化反応も進行せず、X線回折から同定された活物質の最終的な相構成もマグネシア(MgO)相と非晶質相の2相構造であった。この結果得られた活物質のサイクル特性は3相構造を有する実施例1より劣ったものであった。 In this example, since the heating temperature at the time of synthesizing the composite structure oxide was as low as 700 ° C., the magnesium silicate (Mg 2 SiO 4 ) phase was not formed, and the disproportionation reaction of SiO X did not proceed. From the X-ray diffraction result of the composite structure oxide, only an amorphous phase having a peak in the vicinity of magnesia (MgO) and 2Θ = 23 ° was observed. Furthermore, since the heating temperature at the time of compounding with the carbon material was 700 ° C., the disproportionation reaction of SiO X did not proceed even in this step, and the final phase structure of the active material identified from X-ray diffraction was also It was a two-phase structure of a magnesia (MgO) phase and an amorphous phase. The cycle characteristics of the active material obtained as a result were inferior to those of Example 1 having a three-phase structure.

例1〜例11の活物質の調製条件を表1、表2にまとめて示す。表1は、Mg−Si系複合体の調製条件である。表1中のMg−Si系複合体の生成加熱条件は、保持時間2時間一定であるので、保持温度のみを記載している。   The preparation conditions of the active materials of Examples 1 to 11 are summarized in Tables 1 and 2. Table 1 shows the preparation conditions of the Mg—Si based composite. Since the production heating conditions for the Mg—Si based composite in Table 1 are constant for 2 hours, only the holding temperature is shown.

表2は、炭素前駆体の炭化処理条件、活物質の粒度調整条件である。表2中の炭素前駆体でフェノール樹脂をPFと、ポリビニルピロリドン樹脂をPVPと、それぞれ略記する。炭化処理条件は、処理温度のみを変更し、保持時間は2時間一定としたので、処理温度のみを記載する。また、表2中のSiおよびMgSiOの結晶子径は炭化処理後の値である。 Table 2 shows the carbon precursor carbonization conditions and the active material particle size adjustment conditions. The carbon precursors in Table 2 are abbreviated as PF for phenol resin and PVP for polyvinylpyrrolidone resin, respectively. Since the carbonization treatment condition is changed only in the treatment temperature and the holding time is constant for 2 hours, only the treatment temperature is described. The crystallite diameters of Si and Mg 2 SiO 4 in Table 2 are values after carbonization.

[Liイオン二次電池用負極の作製]
得られた活物質と、結着剤としてポリフッ化ビニリデン樹脂と、導電剤としてアセチレンブラックを質量比で8:1:1の比率で秤量し、N−メチルピロリドンを溶媒としてよく混合しスラリーとした。つぎにバーコーターを用いてこのスラリーを厚さ30μmの銅箔に塗布した。大気中120℃で溶媒を乾燥後、ロールプレスにて塗工層を圧密化した後、幅10mm長さ40mmの短冊状に切り出した。
[Preparation of negative electrode for Li ion secondary battery]
The obtained active material, polyvinylidene fluoride resin as a binder, and acetylene black as a conductive agent were weighed at a mass ratio of 8: 1: 1, and well mixed with N-methylpyrrolidone as a solvent to form a slurry. . Next, this slurry was applied to a copper foil having a thickness of 30 μm using a bar coater. After drying the solvent at 120 ° C. in the air, the coating layer was consolidated by a roll press, and then cut into strips having a width of 10 mm and a length of 40 mm.

塗工層は短冊状銅箔の先端部10×10mm部分を残して剥離しこれを電極とした。得られた電極のロールプレス後の塗工層厚みは50μmであった。得られた電極は150℃で真空乾燥したのち、精製アルゴンガスが満たされたグローブボックス中に搬入し、ニッケルメッシュに圧着したリチウム箔の対極と多孔質ポリエチレンフィルム製セパレータを介して対向させ、両側をポリエチレン板で挟んで固定した。   The coating layer was peeled off leaving a 10 × 10 mm portion of the strip-shaped copper foil, and this was used as an electrode. The thickness of the coating layer after roll pressing of the obtained electrode was 50 μm. The obtained electrode was vacuum-dried at 150 ° C., then carried into a glove box filled with purified argon gas, and opposed to a lithium foil counter electrode pressed against a nickel mesh with a porous polyethylene film separator on both sides. Was fixed with a polyethylene plate.

この対向電極をポリエチレン製ビーカーに入れ、過塩素酸リチウムをエチレンカーボネートとジエチレンカーボネートの混合溶媒(1:1体積比)に濃度1mol/Lで溶解した非水電解液を注液し十分に含浸させた。電解液含浸後の電極をビーカーから取り出し、アルミニウムラミネートフィルム袋に入れ、リード線部を取り出して封止して半電池を構成した。   This counter electrode was put into a polyethylene beaker, and a nonaqueous electrolytic solution in which lithium perchlorate was dissolved in a mixed solvent of ethylene carbonate and diethylene carbonate (1: 1 volume ratio) at a concentration of 1 mol / L was sufficiently impregnated. It was. The electrode after impregnation with the electrolytic solution was taken out from the beaker, put in an aluminum laminate film bag, the lead wire part was taken out and sealed to form a half battery.

[Liイオン二次電池特性の評価]
得られた半電池を25℃の恒温槽に入れ、定電流充放電試験器(北斗電工社製)に接続して充放電試験を行った。電流密度は電極活物質の質量(導電材とバインダーを除いた質量量)あたりの電流値を75mA/gとし、初回の充電(Liイオンの吸蔵反応)を行った。
[Evaluation of Li-ion secondary battery characteristics]
The obtained half-cell was placed in a constant temperature bath at 25 ° C. and connected to a constant current charge / discharge tester (manufactured by Hokuto Denko) to conduct a charge / discharge test. For the current density, the current value per mass of the electrode active material (the mass amount excluding the conductive material and the binder) was 75 mA / g, and the first charge (Li ion occlusion reaction) was performed.

充電終止電位はLi対極基準で0.01Vとし、終止電圧に到達後即座に放電(Liイオンの脱離反応)を開始した。放電終止電圧はLi対極基準で1.5Vとした。この充放電のサイクルを最大で100サイクル繰り返し、充電容量、放電容量および充放電効率(放電容量/充電容量のパーセンテージ)を測定した。   The end-of-charge potential was 0.01 V with respect to the Li counter electrode, and discharge (Li ion desorption reaction) started immediately after reaching the end voltage. The end-of-discharge voltage was 1.5 V with respect to the Li counter electrode. This charge / discharge cycle was repeated up to 100 cycles, and the charge capacity, discharge capacity, and charge / discharge efficiency (discharge capacity / percentage of charge capacity) were measured.

測定結果を初回充電容量、初回放電容量、初回充放電効率、50サイクル後の放電容量、50サイクル後の放電容量維持率(=50サイクル後の放電容量/初回放電容量)として表3に示す。   The measurement results are shown in Table 3 as initial charge capacity, initial discharge capacity, initial charge / discharge efficiency, discharge capacity after 50 cycles, and discharge capacity retention ratio after 50 cycles (= discharge capacity after 50 cycles / initial discharge capacity).

Figure 0005369708
Figure 0005369708

Figure 0005369708
Figure 0005369708

Figure 0005369708
Figure 0005369708

本発明は、携帯電話やノートパソコン等の携帯機器用の電源、あるいはハイブリッド自動車用の蓄電素子として使用可能な非水電解質二次電池、特にリチウムイオン二次電池用の高容量で高寿命な負極材料(活物質)を提供する。   The present invention relates to a non-aqueous electrolyte secondary battery that can be used as a power source for portable equipment such as a mobile phone or a notebook computer, or a storage element for a hybrid vehicle, particularly a high-capacity and long-life anode for a lithium ion secondary battery. Provide material (active material).

Claims (10)

結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とを含むことを特徴とする二次電池用負極材料。 A negative electrode material for a secondary battery comprising crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and a carbonaceous material. 前記負極材料中のMg原子とSi原子の原子比が1:2から1:40である請求項1記載の二次電池用負極材料。   The negative electrode material for a secondary battery according to claim 1, wherein an atomic ratio of Mg atoms to Si atoms in the negative electrode material is 1: 2 to 1:40. 前記負極材料中の結晶質Siと、非晶質SiOと、結晶質MgSiOとの合量が25〜95質量%で、炭素質含有量が5〜75質量%である請求項1または2記載の二次電池用負極材料。 2. The total amount of crystalline Si, amorphous SiO 2 , and crystalline Mg 2 SiO 4 in the negative electrode material is 25 to 95 mass% and the carbonaceous content is 5 to 75 mass%. Or the negative electrode material for secondary batteries of 2. 前記結晶質Siの結晶子サイズが2〜30nmである請求項1、2または3記載の二次電池用負極材料。   The negative electrode material for a secondary battery according to claim 1, 2 or 3, wherein the crystalline Si has a crystallite size of 2 to 30 nm. 前記結晶質MgSiOの結晶子サイズが5〜50nmである請求項1、2、3または4記載の二次電池用負極材料。 5. The negative electrode material for a secondary battery according to claim 1, wherein the crystalline Mg 2 SiO 4 has a crystallite size of 5 to 50 nm. 酸化ケイ素SiO(0<X<2)と、マグネシウム化合物とをMg原子とSi原子の原子比が1:2から1:40となるように混合して混合物1を得る工程1と、前記混合物1を不活性雰囲気下、保持温度700℃〜1500℃で加熱処理してマグネシウムシリケート相を含むMg−Si系複合物とする工程2と、前記Mg−Si系複合物を粉砕処理してMg−Si系複合粉末とする工程3と、前記Mg−Si系複合粉末と、炭素前駆体とを混合して炭素前駆体混合物とする工程4と、工程4で得られた炭素前駆体混合物を保持温度100〜500℃で加熱処理して硬化処理体とする工程5と、前記硬化処理体を粉砕処理して硬化処理粉末とする工程6と、を含み、工程7として前記硬化処理粉末を不活性雰囲気下、保持温度700℃〜1300℃で加熱処理して前記硬化処理粉末を炭化処理して活物質とすることを特徴とする二次電池用負極材料の製造方法。 Step 1 of mixing silicon oxide SiO X (0 <X <2) and a magnesium compound so that the atomic ratio of Mg atoms to Si atoms is 1: 2 to 1:40 to obtain a mixture 1, and the mixture 1 is heated at a holding temperature of 700 ° C. to 1500 ° C. in an inert atmosphere to obtain a Mg—Si based composite containing a magnesium silicate phase, and the Mg—Si based composite is pulverized to form Mg— Step 3 for preparing Si-based composite powder, Step 4 for mixing the Mg-Si-based composite powder and the carbon precursor to form a carbon precursor mixture, and holding the carbon precursor mixture obtained in Step 4 at a holding temperature. Including a step 5 of heat-treating at 100 ° C. to 500 ° C. to obtain a cured product and a step 6 of crushing the cured product to obtain a cured powder. Holding temperature 700 ° C under atmosphere A method for producing a negative electrode material for a secondary battery, characterized by heat-treating at -1300 ° C. and carbonizing the cured powder to obtain an active material. 工程5の加熱処理条件として、酸素雰囲気下で、室温から保持温度までの昇温速度を5℃/時間〜100℃/時間とし、かつ前記保持温度での保持時間を1〜30時間とする請求項6記載の二次電池用負極材料の製造方法。   The heat treatment conditions in step 5 are as follows: a temperature increase rate from room temperature to a holding temperature in an oxygen atmosphere is 5 ° C / hour to 100 ° C / hour, and a holding time at the holding temperature is 1 to 30 hours. Item 7. A method for producing a negative electrode material for a secondary battery according to Item 6. 前記マグネシウム化合物は、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、酢酸マグネシウム、シュウ酸マグネシウム、マグネシウムエトキサイド、およびアセチルアセトンマグネシウムからなる群から選ばれる1種以上である請求項6または7記載の二次電池用負極材料の製造方法。   The magnesium compound is at least one selected from the group consisting of magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium nitrate, magnesium chloride, magnesium acetate, magnesium oxalate, magnesium ethoxide, and acetylacetone magnesium. 8. A method for producing a negative electrode material for a secondary battery according to 7. 前記炭素前駆体の一部を炭素質材料で置換する請求項6、7または8記載の二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a secondary battery according to claim 6, wherein a part of the carbon precursor is substituted with a carbonaceous material. 前記二次電池用負極材料が結晶質Siと、非晶質SiOと、結晶質MgSiOと、炭素質材料とを含む請求項6〜9のいずれかに記載の二次電池用負極材料の製造方法。 The negative electrode for a secondary battery according to claim 6, wherein the negative electrode material for a secondary battery includes crystalline Si, amorphous SiO 2 , crystalline Mg 2 SiO 4, and a carbonaceous material. Material manufacturing method.
JP2009014330A 2009-01-26 2009-01-26 Anode material for secondary battery and method for producing the same Expired - Fee Related JP5369708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014330A JP5369708B2 (en) 2009-01-26 2009-01-26 Anode material for secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014330A JP5369708B2 (en) 2009-01-26 2009-01-26 Anode material for secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010170943A JP2010170943A (en) 2010-08-05
JP5369708B2 true JP5369708B2 (en) 2013-12-18

Family

ID=42702865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014330A Expired - Fee Related JP5369708B2 (en) 2009-01-26 2009-01-26 Anode material for secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5369708B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069885B2 (en) 2017-09-13 2021-07-20 Unifrax I Llc Silicon-based anode material for lithium ion battery
US11942640B2 (en) 2019-01-18 2024-03-26 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714307B (en) 2009-12-21 2014-12-10 株式会社丰田自动织机 Negative electrode active substance for nonaqueous secondary cell and method for producing the same
JP2012204195A (en) * 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
CN102723479A (en) * 2011-03-30 2012-10-10 昭荣化学工业株式会社 Positive active material for rechargeable magnesium battery and rechargeable magnesium battery
JP5611453B2 (en) * 2011-04-21 2014-10-22 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
US10629900B2 (en) 2011-05-04 2020-04-21 Corning Incorporated Porous silicon compositions and devices and methods thereof
JP5729163B2 (en) * 2011-06-24 2015-06-03 トヨタ自動車株式会社 Negative electrode active material and method for producing negative electrode active material
KR101201807B1 (en) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 Lithium secondary battery
US20130224581A1 (en) 2011-08-31 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Negative electrode of power storage device and power storage device
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5440661B2 (en) * 2012-06-27 2014-03-12 株式会社豊田自動織機 Silicon-containing material and active material for secondary battery containing silicon-containing material
KR101724012B1 (en) * 2012-08-23 2017-04-07 삼성에스디아이 주식회사 Silicone based negative active material, preparing method of the same and lithium secondary battery including the same
JP6107946B2 (en) 2013-05-23 2017-04-05 信越化学工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
PL2905832T3 (en) 2013-10-31 2018-12-31 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and method for preparing same
US10050272B2 (en) * 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same
WO2015145521A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Negative electrode active material for non-aqueous electrolyte cell, negative electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack
KR102308691B1 (en) * 2014-03-31 2021-10-05 대주전자재료 주식회사 Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same
KR102318864B1 (en) * 2014-03-31 2021-10-29 대주전자재료 주식회사 Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same
WO2015157538A1 (en) * 2014-04-09 2015-10-15 Corning Incorporated Method and material for lithium ion battery anodes
WO2015177665A1 (en) * 2014-05-23 2015-11-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode active material and power storage device
JP6424476B2 (en) * 2014-06-04 2018-11-21 日立化成株式会社 Conductive material
JP6315258B2 (en) * 2014-06-04 2018-04-25 日立化成株式会社 Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery
JP2015229606A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Magnesium silicate complex
CN104617277B (en) * 2015-02-23 2017-03-01 贵州中伟正源新材料有限公司 A kind of preparation method of composite cathode material of lithium ion battery
KR101586816B1 (en) * 2015-06-15 2016-01-20 대주전자재료 주식회사 Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
WO2017091543A1 (en) 2015-11-25 2017-06-01 Corning Incorporated Porous silicon compositions and devices and methods thereof
JP6688673B2 (en) * 2016-05-11 2020-04-28 株式会社大阪チタニウムテクノロジーズ Silicon oxide powder negative electrode material
HUE062435T2 (en) * 2016-06-02 2023-11-28 Lg Energy Solution Ltd Cathode active material, cathode comprising same, and lithium secondary battery comprising same
JP6573646B2 (en) * 2016-06-09 2019-09-11 株式会社大阪チタニウムテクノロジーズ Silicon oxide negative electrode material
KR101960855B1 (en) 2017-03-20 2019-03-21 대주전자재료 주식회사 Silicon oxide composite for anode material of secondary battery and method for preparing the same
CN110521034B (en) * 2017-03-29 2022-06-21 松下知识产权经营株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP3696893A4 (en) * 2017-11-24 2020-12-16 LG Chem, Ltd. Anode active material for lithium secondary battery, and preparation method therefor
WO2019108050A1 (en) * 2017-12-01 2019-06-06 대주전자재료 주식회사 Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same
KR102185490B1 (en) * 2017-12-01 2020-12-02 대주전자재료 주식회사 Negative active material comprising silicon composite oxide for non-aqueous electrolyte secondary battery and manufacturing method of the same
US20200295352A1 (en) * 2017-12-05 2020-09-17 Daejoo Electronic Materials Co., Ltd Negative electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
CN113437274A (en) * 2017-12-12 2021-09-24 贝特瑞新材料集团股份有限公司 Lithium ion battery cathode material and preparation method thereof
KR102321502B1 (en) * 2017-12-19 2021-11-02 주식회사 엘지에너지솔루션 Anode active material for lithium secondary battery, Method of making the same and Lithium secondary battery comprising the same
US11605811B2 (en) 2018-01-30 2023-03-14 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode
KR102250897B1 (en) * 2018-01-30 2021-05-10 주식회사 엘지화학 Active material for an anode and a secondary battery comprising the same
CN111466046B (en) 2018-01-31 2022-05-24 株式会社Lg新能源 Negative electrode active material, negative electrode comprising the same, and lithium secondary battery comprising the same
EP3671915A4 (en) 2018-01-31 2020-12-30 Lg Chem, Ltd. Anode active material, anode comprising same, and lithium secondary battery
KR20190116010A (en) 2018-04-04 2019-10-14 대주전자재료 주식회사 Silicon-Carbon composite and manufacturing method for Silicon-Carbon composite
KR20190116011A (en) 2018-04-04 2019-10-14 대주전자재료 주식회사 Silicon-Silicon Oxide-Carbon composite and manufacturing method for Silicon- Silicon Oxide-Carbon composite
KR20190116012A (en) 2018-04-04 2019-10-14 대주전자재료 주식회사 Silicon composite and manufacturing method for Silicon composite
KR102633552B1 (en) * 2018-12-11 2024-02-06 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
KR20200073350A (en) * 2018-12-13 2020-06-24 삼성전자주식회사 Negative active material, lithium secondary battery including the material, and method for manufacturing the material
KR101999191B1 (en) 2019-03-15 2019-07-11 대주전자재료 주식회사 Silicon oxide composite for anode material of secondary battery and method for preparing the same
KR102466133B1 (en) 2019-04-29 2022-11-14 대주전자재료 주식회사 Silicon composite oxide for anode material of lithium secondary battery and preparation method of the same
KR102374350B1 (en) 2019-06-19 2022-03-16 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
US20220231280A1 (en) * 2019-12-11 2022-07-21 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, and negative electrode and secondary battery including same
KR102590434B1 (en) * 2020-09-11 2023-10-18 주식회사 엘지에너지솔루션 Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
CN112289993B (en) * 2020-10-26 2022-03-11 合肥国轩高科动力能源有限公司 Carbon-coated core-shell structure silicon monoxide/silicon composite material and preparation method thereof
KR102342309B1 (en) * 2020-10-30 2021-12-24 주식회사 테라테크노스 Negative Electrode Material for Secondary Battery
KR102405757B1 (en) * 2021-07-15 2022-06-08 주식회사 테라테크노스 Negative Electrode Material for Secondary Battery
CN113725409A (en) * 2021-07-29 2021-11-30 合肥国轩高科动力能源有限公司 Silicon-based negative electrode material and preparation method thereof
CN114373915B (en) * 2022-01-12 2024-02-02 万华化学集团股份有限公司 Silicon oxide negative electrode material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283180A (en) * 1996-04-16 1997-10-31 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP4650603B2 (en) * 2003-12-22 2011-03-16 日本電気株式会社 Anode material for secondary battery, method for producing the same, and secondary battery using the same
JP4533822B2 (en) * 2005-08-24 2010-09-01 株式会社東芝 Nonaqueous electrolyte battery and negative electrode active material
JP4985949B2 (en) * 2006-03-27 2012-07-25 信越化学工業株式会社 Method for producing silicon-silicon oxide-lithium composite, and negative electrode material for non-aqueous electrolyte secondary battery
JP5329858B2 (en) * 2008-07-10 2013-10-30 株式会社東芝 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069885B2 (en) 2017-09-13 2021-07-20 Unifrax I Llc Silicon-based anode material for lithium ion battery
US11652201B2 (en) 2017-09-13 2023-05-16 Unifrax I Llc Silicon-based anode material for lithium ion battery
US11942640B2 (en) 2019-01-18 2024-03-26 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP2010170943A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5369708B2 (en) Anode material for secondary battery and method for producing the same
JP5291179B2 (en) Method for preparing lithium iron phosphate cathode material for lithium secondary battery
KR102236365B1 (en) Negative active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
Gu et al. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
JP4751138B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5627250B2 (en) Lithium ion battery
WO2013067956A1 (en) Nano-silicon/carbon composite material and preparation method therefor
KR101667125B1 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
TW201547090A (en) Negative electrode active material for lithium ion secondary battery and manufacturing thereof
JP2008186732A (en) Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
WO2013017101A2 (en) Mesoporous silicon composite used as cathode material for lithium-ion batteries and preparation method therefor
JP7452599B2 (en) Composite active material for lithium secondary batteries
WO2012133584A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
JPWO2010150889A1 (en) Manufacturing method of positive electrode material for secondary battery and positive electrode material for secondary battery
WO2016199358A1 (en) Silicon material and production method thereof
JP5061718B2 (en) Carbon material powder and method for producing the same
JP5652070B2 (en) Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
Li et al. Synthesis and electrochemical properties of lithium zinc titanate as an anode material for lithium ion batteries via microwave method
Lian et al. Si@ C anode materials decorated with higher manganese silicides for enhanced rate capability and cycle stability
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
KR101018659B1 (en) Silicon anode active material for lithium secondary battery
JP2016189294A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method for the same
TW201607125A (en) Negative electrode material for lithium-ion secondary batteries and method for manufacturing the same, negative electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
JP7405342B2 (en) Negative electrode active material for sodium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

LAPS Cancellation because of no payment of annual fees